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STABILITYDERIVATIVES OF CONES AT SUPERSONIC SPEEDS

By Murray Tobak and WillMm R. Webrend

The aerodynamic stability derivatives due to pitching velocity and
vertical acceleration are calculated by use of potential theory for cir-
cular cones traveling at supersonic speeds. The analysis is based on two
theoretical techniques used successfdly previously in application to the
case of uniform axial and inclined flow. ~ the ftist, potential solu-
tions for sxial flow snclcrossfl.oware deriveclfrm the first-order wave
equation but in application to caltiations for the forces no approxima-
tions sre made either to the tangency condition or to the isentropic #

pressure relatim. The secona methoa consists in conibmg the first-
oraer crossflow potential with an axial-flow potential correct to second
or&?r. Closed-form solutions by both methods are found for a cone,”and
numerical results for the stability derivatives are pres~teii as a func-
tion of Mach number for cones having semivertex angles of 10° anti20°.

lh addition, expressions for the forces, maments, and stability
derivatives of arbitrary bodies of revolution are obtainea using Newtonian
impact theory. Numerical results for cones compsre well with those
obtainea from the conibinedfirst- ana second-order potential theory at
the highest Mach nuniberfor which the latter theory is applicable.

INTRODUCTION

The hportance of the body as a lift-producing congmnent of aircraft
flying at supersonic speea has occasioned a great aea,lof theoretical work
frm which it is now possible to calculate the bodyts static aerodynamic
properties with good accuracy (see, e.g., refs. 1 to 3 and attendant
bibliographies). There is required, however, along with the static prop-
erties, theoretical info?mwtion frcm which the dynamic behavior of bodies
can be calculated, and in this field no work has been done that can be
said to be applicable to nonslender bodies traveltigat high supersonic
Mach nuuibers. Slender-body theory, as is well known, fails to predict a
aeptimce of the aerodynamic coefficients either on Mach nwiber or on
body shape (see, e.g., ref. 4). The work of Dorrsnce (ret. 5) basea on
the linear theory aoes idicate a Mach numbs dependence, but here too
approximations made in the analysis effectively limit its app~cation to
boties of vanislxhgly small tbickuess.
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lh this rep~, an attempt is made to overcome these Imitations by
adapting to the calculation of the body?s rot

T

stability deriyatives twu
theoretical.methods d=ived by Van Dyke (ref. 1 that have pruven suc-

9

cessful in calculations for the static aerodynamic derivatives. It WaS
shown by Van Dyke that the solution for normal force of a cone derived
from the first-order potential equation may be greatly improved in accu-
racy (in comparison with the exact numerical results, ref. 2) if no
a~roxtmations are made to the tangency condition or to the isentrapic
pressure relation. It was also shown that a further improvement could
be realized by the use of a ccmibinationof first- and second-order poten-
tial soltiions. The same ideas are used hereti to calculate for a cone
the stability derivatives due to pitc~g velocity, ha and ~, and due

to vertical acceleration, ~ and ~. The results ar; believ;d to be of

the ssme order of accuracy a= those of reference 1 for the normal force .
due to angle of attack, and hence, for a cone of given thiclmess ratio,
should apply to the ssme range of Mach nuud)=s aver which the normal force
compares well with the Kapal results (ref. 2). Moreover, as in the angle- ,1
of-attack case, the cone solutions given herein are adaptable to the cal- “
culation of the stability derivatives of other more general body shapes
by use of the techniques described in references 6 aud 7. .

In addition, expressions for the forces, moments, and stability
derivatives of arbitrary bodies of revolution sre obtained from Newtonian
impact theory in order to flzrnishsome information about the nature of
these quantities at Mach numbers beyond the highest for which the results
derived from potential theory are applicable.

NOI!ATION

% speed of sound b still air

% normal-force coefficient,
normal force

q#

% pitching-mmuent coefficient,~
itching moment

qosz

%
pressure coefficient

Cx axial-force coefficient, ‘i- force
%s

z body length

Mach nuuddr, &

,,

—-— —. . . . . . —.. ..- -- —. ———
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c

.

angular velocity (sketch (b))

dynsmic pressure, ~ pop

radius of body in r,u plane (sketch (a))

body base area, Y#(z)

ttie

free-stream velocity components relative to cylindrical coordinates
fixed in body

cylindrical coordinates (sketch (a))

velocity in tial direction of body

component of free-stream velocity normal to body surface

angle of attack

e

ratio of specific heats

slope of body meridian curve (sketch (a))

density of still air

slope of cone surface, R(7)
1

.

total potential

perturbation potential

first-order uniform axial fluw potential

seccmd-order uniform SJKLalfluw potential

free-stream potential

When a, c%,and q are usedas mibscripts, a
is indicated. and this derivative is evaluated as

Wnensionless derivative
the independent variable

(cc,~, or q) approaches zero and all other variables sme identicsL3y zero.
Thus,

.,

.. . .. - —-—.. —. ..— _ —— .—. .— ..—.—. .. . ..- .--— .-— -—— -_. —_-——.- .-
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k=e),z,’ ~=[a,+:‘=[wq+o
U=q=o a=ci=o

ANAIXSIS

Coordinate SystaU and Definition of Free stream

In the succeeding analysis we consider a potited body of revolution
flying at constant supersonic forward speed. Our purpose is to calculate
the body?s aerodynamic stability derivatives correspontig to the follow-
ing motions: (1) sinldng with uniform vertical.velocity, (2) flying in .
a circ- path with uniform angular velocity and at zero ~le of attack}
(3) g-g with

I

I

uniform vertical acceleration. In order to deftie the
motions conv&Lently, a cylindri- “ -
cal coordinate system is chosen
that is fixed with respect to the
body. As shown in sketch (a),

x the origin of the coordi@e
* system is placed at the body
apex. The positive branch of
the x axis is coincident with
the body?s axis of revolution,
and the coordinates r and u

Sketch (a) are measured in a plane perpen-
dicular to the x -S. With

respect to this system of coordinates, the components of free-stream
velocity u,v,w for the three motions =e given below.

Sinking with unifcmm vertical velocity.- This case is of cmr-
equivalent to that of a statimary body situated in a uniform inclined
stream and has already been treated extensively (refs. 1 to 3) . It is
included here again since the methods to be discussed subsequently for
calculating the stability derivatives due to pitching velocity and verti-
cal acceleration are in large part derived frm the one used here. Let
a be the angle of inclination of the stream with respect to the u = O
plane; then the components of stream velocity in the axial, radial, and
azimuthsl directions, respectively, may be written,1

lNote that we have chosen to desiguate as V the axial component
of velocity rather than the resultant flow velocity. It is necessary
to do this in the mibsequent cases, and we ccmply here for the sake of
consif3tency.Note also that the radial and azimuthal velocities are c.- 0

measured in Wrections respectively normal and tangential to the body ,.
surface h the r,6J plane.

o
—-. .—.— ..—-— -— —-—-—- — —--—— ------—--- .——
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.

.

u= v

lr.vtaaah~

I

(1)

w= Vtanacosu

Once the normal-force coefficient CN sndpitcldng -moment coefficient

Cm corresponding to this motion have been calculated, the stability

derivatives CNa ana ~ are formeilaccording to the definitions,-

~a=t%?)a+o’~=r3.)a+o
Pitching with uniform angular velocity.- For this case, the body is

considered to be flying in & circular path at zero angle of attack and
with constant angular velocity q. The motion is, of course, that of the
whirling-arm experiment, and, in terms of the latter case, we specify
that the petit of attachment of the body to the arm be at the body nose.
With respect to a fixed system of coordinates, the pertinent physical
dimensions are as shown in sketch (b). 4z,
It will be assumed that the pitchfig
rate q is small, so that qz << V.
The radius of the flight path V/q.,
is then large compared with the body
length. The body is assmed to have
traveled far enough to have outrun
its starting sound waves, but not so
far as to have encountered its own
wake, so that the flow may be said
to be steady.

k the body system of coordi-
nates, the components of stream
velocity are,

u= V-qrsinu

V=qxslblu

1

(2)

~ W=qxcosu

The stability derivatives due to
the moticm are calculated according
to the following definitions:

0

,!

f

x,

Y-4q
v~q /r,G3=3c/2

Sketch (b)

-. . ..-. . .. . . ---- .—— -— . . .... .—. ——— — —- . ..—. —. —. __ -— -- ..— .—.
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f Altitude, h

P T “@v

/ \
Flight Path
h=he-V&t~2

I

Uniform vertical acceleratim. -
Since the body s- (without
pitchtig) at a lineariy increasing
rate, the flight path describes the
parabolic arc shown in sketch (c).
It is assumed that the motion has
continued long enough so that tran-
sient effects have died out and,
further, we choose to begin record-
ing time at the point where the
angle of attack is zero.

1
@

Time, t
●

Sket8h (c)
As viewed from the body-

coordinate system, the compmmnts
of free-stream velocity are, .

..

u =V

v = Vd$tsin u
I

(3)

w = wit Cos (A) J

where & is a constant. Note that although it has been assumed that
transiart effects associated with the stsrt of the motion have disappeared,
nevertheless, the flow in this case is unsteady, the crossflow velocities
being linear functions of time.

The stability derivatives due to the motion are evaluated when the
angle of attack is zero (t = O) according to:

Equatims of Motion snd Boundary Conditi&s
-1

,

For the main part of this paper, the analysis will.be based on the
first-order steady and ttie-depend&rt potential equations for compressible -
flow. lh body coorddhates, the latter equation is,

.——. .-— .-. — —-
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A perturbatim potential q is introduced such that

@(x,r,u,t)= Q(x,r,u,t)+ q(x,r,u,t) (5)

)
~-

where 0 is the free-stream potential. Direct substitution gives for ..
the first-order time-dependent perturbation eqyation,

(6)

The steady-state counterpart
“ time derivatives, so that,

of equation (6) is obtained by eliminating

. .
t“ (7)

I

‘ Equation (7) will be used to determine solutions for the stability dkriva-
? tives due to steady sinktug snd steady pitching, whereas the stability

derivatives due to vertical acceleration are derived from eqwtion (6).... W either case, however, the boundary conditions have the same form,
namely, that,

(1) Velocity perturbations vanish on the Mach cone emanattig from
the body nose:

(8)

(2) The flow velocity normal to the body surface is identically zero:

The velocities
,

axial velocity

.

“

.

dR _%(x>R>@~t) + %(x,R,u,*)

~- qx(x~,w,t) + Qx(x,R,@)

& and ~ are, of course, the free-stream radial and

components, respectively, so that more conveniently,

(9)

~ Tr(x2R}@jt) + v(x)R2u>t)—= (lo)
I= q)x(x,R,c@ + u(x,R,~,t)

. . . . ..—-.—-. ..— — -.-+ —— .-. — --- . . ...- ,. ----- --— .- —-—-..—-..—
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where, for the three motions to be considered, u and v sre given by
equations (1) to (3) . Note also that we designate the independent radial
coordinate by r, whereas in evaluation of conditions at the body surface,

.

the fact that r is a function of x is indicated by the use of R (i.e.,
r= R= R(x)).

First-Order Solutions for the Potential

We consider next the task of finding solutions for the perturbation
potential satis~g e uations (6) or (7) and compatible with the boundary
conditions, equations ?8) and (9), corremon~g to each of the t~ee
motions.

Sinking with uniform vertical velocity.- As mentioned previously,
the method of solution b this case is well known; however, since the
methods to be used for the two subsequent cases derive from the one used .
here, a brief account of the essential steps is given below.

The steady perturbation potential is broken tito two psrts: A poten- -
tial q). hidependent of w and hence corresponding to a uniform axial
flow, and a crossflow potential q)=. The total perturbation potential is
then the sum of q. and q=. For the axial-flow potential go, the equa-
tion of motion is,

with the boundary conditions (from eqs. (1), (8), and (10))

‘A soltiion to eqyation (n)

()(pox,: =0

g= %@) -
&x cpox(x,R)+ V

(11)

(12)

(13)

t~t autmatic~ satisfies (12) is (ref. 6),

.

J’
o

qo(x,r)= f(x- @ cosh u)du (14) -

cosh-~ * “

——-———-— ..— —. ..—-—
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where f(x - @ cosh u) represents
x axis, and is to be chosen such
boundary condition (13).

For the crossflow potential

9

the distribution of sources along the
that equation (14) satisfies the

q=, the equation ofrnotion is,

‘+ ‘~
%rr+y+~- I=Pl==o (15)

with the boundary conditions (eqs. (1), (8), end (10)),

‘l(x’b)”o (16)

(17)

A solutionto eqwtion (15) that automatically satisfies (16) is (ref. 6),

o

q=(x,r,~) =-p S5nW f( m x-pr cosh u)cosh u @ (18)

where m(x-@ cosh u)
x axis, and is to be
condition (17).

d
cOsh-l*

represents the distribution of
chosen such that equation (18)

dmiblets along the
satisfies the boundary

Pitchingwithuniform angular velocity.- The procedure in this case
parallels the above development. Again, the perturbation potential Q
is broken into a uniform&al flow-pot&ntial.-q). and a potential q2j

each having the ssme equation of motion as equations (n) and (15),
respectively. Note, however, that unlike the previous example, the cal-
culation for the potential qz must tske into account the nonuniform
axial ccmrponentof stream velocity, -qr sin u (eq. (2)). The boundary
conditions on go are, from equations (2), (8), and (10),

m. qor(x>R)

( R)+V=-cpox x,

(19)

(20)

. .._. _____-._. ..__ ._ .—— -- --. .— — . . . ...— -. — -—. _______ _
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while the boundary conditions on 92 me,

‘<x6~o)=0
(21)

.

The solutions for the potentials q. and (p= of course Have the same form
as equations (14) and (18), respectively, where f(x - @ cosh u) and”
m(x - pr cosh u) are to be chosen such that equtions (20) and (22) are
satisfied.

Sinking with uniform vertical acceleration.- As mentioned previously, ~
this is a problem in unsteady flow, since the crossflow velocities v
and w are functions of t5me. It is still possible, however, to cmsider
the potential cp in two parts; an axial component ‘q. that-is

of both t and u, and hence is again governed by equation (n),
Crossflow component (p~,governed in this case by eqpation (6),
q=(p=.

For the tial-fiow potential, we proceed exactly as in the

independent ~

and a
with

two

previous cases. The boundary con&Lti&s to
equations (3), (8), and (10),

00(p X,; =o

dR Qor(’JO

== V+ qJ%(X,R)

be satisfied are, from

‘ (23)

(24)

The solution for q. is given by equation (14) where f(x - ~r cosh u)

is chosen such that equation (24) is satisfied.

For the unsteady crossflow potential q~, we adapt a concept used
previously in wing theory by Ribner and Malvestuto (ref. 8) and origi-
nated by C. S. Gardner. It is easily verified by mibstitution into
equation (6) that the follcming relation satisfies the unsteady potential
eq~tion no matter what the constant K may be:

()M%‘s K xr w)+ t-~~=v(>> X (x,r,u) (25)

. . .. -.—— --— —. -.—__—._ .-
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.,

where

.
* steady-state potential for unit pitching velocity about

PP

.

“

body apex,

~

x v=
steady-state potential for unit angle of attack, —

tan u

Note that the potentials involved in equation (25) are steady-state
potentials and, further, are just the potentials q)land qz develcrped

in the two previous sections. Having found a solution for the potential,
we then must satis~ the boundary conditions which, fran eqyations (3),
(8), and (10), are

(26)

(27)

Equation (26) is satisfied inmwdiately, since the potentials ~ and X
individually satisfy it. The tangency condition, equatkn (27), iS then
readily satisfied by proper choice of the constant K.

Pressure, Force, ad Mamnt Coefficients

It will have been noticed in the previous section that we have speci-
fied the exact form of the tangency condition for each of the motions
considered. The same will be done for the pressure relations, to be given
below. Following Van Dyke (ref. 1), the view taken on this point is simply
that approximations to the tangency and pressure relations, while justifi-
able mathematically on an order basis, serve to impair unnecessarily the
accuracy of the solution b comparison with lmown numerical results. While
this is hum to be the case only for the ‘untYormlysimking matton, the
formulation of the problem for the other motions has introduced no further
approximateions, end hence it is entirely reasonable to suppose that the
same order of accuracy will be realized in these cases as well if the
pressure and tangency relations are not approximated.

The pressure coefficient must be defined separately for each of the
three motions; this has been done in the appendix, and the results are
repeated here for convenience.

.- ..- . .—— ..—- —..——.— .-. .-. . .—. -—.. — . —— ——. — -..—----- .-. ———— -------- --- -. ---
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sinking with uniform vertical velocity.-

where,

(
&

)1
l.~@A1 -1

2-.

and r is taken as R(x) when evaluating ~ at the body surface.

Pitching with uniform angular velocity.-

.

(28)

(29)

Sinking with uniform vertical acceleration.- -

(30)

where

Normal-force and pitching-moment coefficients.- Once having the
pressure coefficient, one cen determine the normal-force and pitching-
moment coefficients from the following relations:

(31)

.

.

—.——.-. .—. ---——. -—————. . . . .— -—— _
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J
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%- 2-m
G

where the pitching

Stability

10 ILliR x + tan 13R2(x)dx

Yt.—
2

moment is referred to an

Derivatives for a Cone -

1 F
~(x,R,w)sin u du (32)

axis through the body nose.

First-Order Theory

ecnzationsfor potential and pressure coefficient are,The foregotig
in principle, applic~ble to the d=te-tion Of forcesj m~ents~ and
stability derivatives of arbitrarily shaped bodies of revolution. In
order to complete the smalysis, it is necessary to find distributions of
sources and doublets f(x- j3rcosh u) aud m(x - @ cosh u) that are com-
patible with the boundary conditions corresponding to the specified body
shape. Unfortunately, analytical expressions for these quantities have
been found only for the cone. However, it has been shown in the axial- -
and inclined-flow cases (refs. 6 and 7) how, by the use of summation
techniques, the cone solutim can be used to find solutions for other
more general body shapes to any desired accuracy. The same techniques
are readily adaptable to the other motions considered herein. Therefore,
as a necessary beghntig towm?d obtaining the stability derivatives of
more general body shapes, the calculations for the cone me carried at
below for each of the three motions under consideration.

sinking with uniform vertical velocity.- Consider first the pcrkntial
for axial flow q., given by equation (14). For the case of a cone, whose
surface is given by R = n, an appropriate distribution of sources is
simply (ref. 6),

\

f(x - & cosh u)= &(x- @ cosh u) (33)

where A. is a constsnt, to be determined from the boundary condition,
equation (13). Integrating eqyation (14), and substituttig the appro-
priate derivatives in equation (13), we get fcm Ao,

A.= v T2
(34)

~cosh-l & + _ .

wher~on the axial-flow potential is,

qo(x,r)=< )-- X cosh-l & (35)

. . .. . . . . . .. ..— ——---- --— --——- --—-— -— —-—— ..—--—- —— -...-——. -— ——.- -- --
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The computation for the crossflow potential ql proceeds in the same
way. An appropriate distribution of doublets is found to be (ref. 6)

m(x- @ coshu) =Al(x- ~r coshu) (36)

Substituting in equation (18), integrating, and solving for Al in
equation (17),

2Vr%an a

and

The perturbation potential q) is then given by
and (38).

Having obtained the potential, one can now

(37)

)@ cosh-l~ (38)

the sumof equations (35.)

compute the pressure
coefficient by equation (28). However, it is more convenient to proceed
directly to the calculation of the stability derivatives %amd ~>
by means of the eqressions,

c)cmc%. —
a

q“bm(x)+tazl e R=(x)l&f*f&)
‘s20

Sillu du

U*O Yc U+o
--
2

J
(39)

where

.

.

.

.

-. —— --- —-—— -— — ———
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1

.

%1()The quantity —
aa

is computed by substituting the appropriate

a+.

derivatives of q into equation (28) and differentiating with respect
to a as indicated. Substituting the results ~~to equation (39) and
integrating gives

.

.

where

A=

r= =
/

The above results
ness parameter T

L

.

(4”)

(letting 7=1.4),

C..=L-)L :::2+)

%’ -: (1 + +)c~a

1

j32#cosh-1”~

J-

+ ‘“**[1 -
(1 +T2,(A:’J]y”’

reduce to the slender-body-theoryresult as the thick-
approaches zero:

CNa = 2
1

I (41)

w=-:

Pitching with uniform angular velocity.- Again, consider first the
uniform axial flow potential cpo. There ‘isnothing new to compute,
however, since the equation of motion and boundary conditions are the
same for all three cases. The potential Q. is, therefore, given by
equation (35).

. ---- .. . . . ..__ . . . . ..— -..__ .._____ _.. _ —-.--—. ——-.——.. . - . ..
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For the potential
satisfies the boundary

m(x -

NAcAm 3788

~2 (eq. (18)) a distribution of doublets that
condition, equation (22), is,

.

@ coshu) =&(x- ~r coshu)2 (42)

Substituting equation (42) in (18), integrating, and solving for & in
equation (22), we get, .

(43)
where

b=
-ql-ql ++)

((+ - 1) ~%%dl-l & -
j3T J=?+’ -‘2’2)s’2

As before, the total perturbation potential q is-the sum of rpo
(eq. (35)) =d P2 (eq. (43)). Also? in the same way, the stability
derivatives CNqand ~ are computed according to,

.

where %2 is givenby equation (29). There results,

— .— -. —— .—. -— —
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3 (1 + T2)C~q%lq=-J# “1
(45)

where A and ‘1 have been defined in equations (40).

As in the previous case,
theory result as T + O;

these results reduce to the slender-body-

c

.

17

.

.

tial
flow
for

(46)

Sinking with uniform vertical acceleration.- The exial-flow poten-

90 iS ~fi given by e~tion (35). FOr the %tie-dqendent moSS-
potential q~, use is made
qland (P2 obtained in the

gives,

%= K(3S”W[w
of equation (25).
two previous cases

Inserting the values
into equation (25)

1[5X==’+’)] -‘%xC“sh-%i+

(t-$)(G2-X%+)~’m=“r=’%]
(47)

where B2/q and A~tan a have been deftied in equations (43) and (37).
The constant K is then determined by substituting the appropriate
derivatives of g= into the boundary condition, equation (27). There
results,

-- - --———- --.-..-—— .- .—-. —. .._-_ _; -—.-—-— - - —— ——- . ..— ___ _ _____ .- ___
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As before, the sum of

.

1(3~+1)~~+(1-72)~2%cosh-1~ ‘
(48)

(2T2+ 1)$7 + j32T2cosh-z-$
.

90 (W- (35)) ~% (w. (47)) is then the total
perturbation potential q) due

The stability derivatives

as the two preceding examples,
tion (30), and the relations,

to uniforn-;e~icai acceleration.

~. and ~ are formed in the same way
a &

us- the pressure coefficient, equ-

}

(49)

g

() [mm z 2 acp~
%uG= —

2
‘=

[m(x) +tie R2(x)]dx

‘() J

sinwdw

a+ ‘ Yc
~

--

&+o
2

ti+o

It should be noted that the stability derivatives are evaluated tien the
angle of attack is zero. This occurs when t = 0, so that, after taking
the required time derivative in equation (30), the rema~g terms multi-
plied by t may be eliminated. The results are,

.

s

.

.— —. -. —.

.

.

—
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.

& ){[!aF
~r

T2(1-A)

I

3(1-A) - 2(1- B=I-=)
31 T 111‘~ 4(1-~2#) -3(1 -A)(l-#) -

(1 -A)

}
)

+ (l-A)

1+ A+2T2 l+A+2#

- ~ (1 + T=)c~.
a

.

-+ 0, the above results reduce to the slender-body-theory

‘1- (50)

result,

(51)

Stability Derivatives for a Cone - Coribined
First- and Second-Order Theory

It has been shown byVaa Dyke (ref. 1) that a further improvement
in the first-order results for pressure and normal force due to inclined
fluw past a cone can be realized by making a second-order correction to
the axial-flow potential. This is called in reference 1 a “hybrid theory.n
The same idea can be incorporated in the other two cases considered herein,
since in all three, the axial-flow potential.has the same form. Moreover,
as in the purely first-order case, the resulting solutions are adaptable
to the calculation of the stability derivatives of bodies of general shape
by use of the technique outlined in reference 7. .Unlikethe inclined-flow
case, however, it is not assured that by makLng the second-order correc-
tion the solutions corresponding to uniform pitching velocity and uniform
vertical acceleration are necessarily @roved. In the absence of exact
numerical results with which to compare the solutions, it can only be
supposed that such an improvement is likely, again in view of the fact
that in the formulation of the problem no approximations are made beyond
those which also exist in the inclined-flow solution. There follows a
brief description of the method of applying the second-order correction
to the potential for the cone.

For the case of uniform axial flow past a cone, the potential %.,
correct to second order, as obtained from.reference 1 is,

.

. . . . -————--- .. .--—— — ..- _ .__..._ . ..——. —- ...—-.— ———--- . -- . ..—
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.

Kin’-(!9T’2]
where,

(l+ P-Q)#
D=

P=

Q=

.

A2-

$7

(N-l)j32T2A

(1- p%-q

cosh-l

(N+ l)f34T4 3 p6T4 “
—- .

(1 - $=+) 4 (j32 +A)(l - ~2#)

2

c )[

M -2~2A+$2
+ (1’J+l)p’+

(1 - p=%)
+ (N - l)~4#A

(1- $2+)

.

+ ~ 136(2+ f%=)
4 (P2+A)(1- ~2T2)1

(52)

.

.

.

.
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This result applies to the uniform axial-flow potential for each of the
three motions. The derivation of pressure coefficient and stability
derivatives then proceeds exactly as before, with the
egpation (52) is used in place of egpation (35). The
stability derivatives are,

exception that
results for the

( L ){[2M2 @2 T2(1 -A) 1[3(1-A) - 2(1- f32%)
cN&=~r2~~

1+l+A+2# 4(1- 132+)-3(1 -A)(l - <)1

(1 -A)

0

(1 - A)

1 +A +2+ + l+A+2#

‘%= -: (1 + T2)cNa

‘q = -~ (1 +T2)CNq

‘m& = - ~ (1 + #) ’N.
a

where

and

IJ (=1+ )~Q+P
P*

(53)

.—. . ..— — — -— —- —. --—-... -—- —.— .—
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Note that these results are
(eg,s.(40), (45), and (50))

derivable from
if the factor

NACATN 3788
.

the purely first-order solutions
132/(A+~2)is multiplied by K .

wherever it appears in the first-order solutio~.” Therefore)-since ‘~
goes to 1 as T + 0, these results also reduce to the slender-body-theory
results (eqs. (41), (46), and (51)) as T + 0= Note also in eqpa-
tions (53) that the pitching-moment coefficients are simple multiples
of their respective normal-force coefficients. For a given thickness
ratio, the centers of pressure are therefore invqriant with ~ch number.

Transfer of Axes.

The results for CNqj ~, ~q, and ~ presented h the precedx

sections are applicable ody to the case of a body whose center of gravity
is at the nose. These results maybe used, however, to calculate the sta-
bility derivatives for any other center-of-gravityposition, bymeaus of
the trsnsfer relations given below.

I

Here, X0 is the new center of gratity position,
from the nose, and the subscripted
calculated for w = O.

Newtonian

Results camnot be obtahed by

termsare the

JinpactTheory

the potential

(54)

measured positive rearward
stability derivatives as

theories used in preceding
sections above a lkch number for %ich the Mach cone from the body apex .

coincides with the body surface. For bodies of moderate thickness ratio,
this condition limits the applicability of the theories to the Mach number
range below about 3 or 4. For Mach numbers very much higher than this

.

limit, it may be expected that the underlying assumptions of the Newtonian

—- .- — —.- — -—-



lZMATl?l3788 23.

.

.

impact theory become increasingly valid. Therefore, in order to provide
some information on the nature of the aerodynamic forces, moments, and
stability derivatives at very high Mach numbers, the Newtonian theory is
adapted below to the derivation of these quantities for arbitrary bodies
of revolution.

Pressure, force, and mcment coefficients.- The assumption basic to
impact theory is that the flow, upon strildng the body, loses entirely
its component of momentum normal to the surface and continues along the
surface with its tangential component of momentum unchanged. The loss
of momentum normal to the body surface yields a pressure force that is
simply (ref. 9), —

(55)

where VN is the component of velocity normal to the body. It is to be
noted that only those portions of the body that “see the flow,’fthat is,
are under direct impact from the stream, wilJ-experience a pressure force.
The remainder of the body is generally assumed to be at the pressure of
the free stream, so that on these portions, the pressure coefficient is
zero. Therefore, when integrating the local pressures over the body sur-
face to obtain total forces end moments, the integration proceeds only
over the portion of the body receiving compression flow.2 The formulas
for normal force, axial force, and pitch~-moment coefficient then are,

‘N=-uxu’-r(x~sfi
o Y(--2

-o Yt--2

‘u

J’ J
(J)Jx)

%=$ [(’-’.)’(’) +tane R2(’)]d’ Cpsin

o m.-
2

(AIdw

(56)

2Actually, in addition to the impact forces, there should be consid-
ered the centrifugal forces which arise from the fact that the flow parti-
cles follow curved paths along the body after impact (ref. 9). Some grOSS
estimates of their magnitude have been made which tidicate that they are
negligibly small for the small changes in a, d, and q that are of primsry
interest here. A more precise estimation of their magnitude is a matter of
some difficulty, and in view of the approximate nature of the entire theory,
the effort required in this direction does not appear to be warranted. The
centrifugal forces are therefore neglected h the subsequent analysis.

-.—.-. ..-. .-- ——— —--- .—. . ——.- .—. —— . ——. ——. —- —————- -——--—-
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.

Sketch (d)

L
z,

x,

/

Sketch (e)

u= v- qr sin u

where the quantities ~(x),
Xu, and ~ are illustrated in
sketch (d). Provision has been
made in e~tion (56) for an
arbitrary axis of rotation X.
for reasons to be made clear in
the next section.

Combined angle of attack
and pitching velocity.- Since
the pressure coefficient
( eq.- (55) ) is proportional.to
the square of the normal com-
ponent of velocity, there arises
the possibility that the forces
and moments due to a motion ‘
involving both pitching and
angle of attack may not be
treated separately, as in the
case of the usual linear analy-
sis. Therefore, we begin by
investigating the forces due to
a combined motion. Further, for
the same reason, it is not imme-
diately evident that the trans-
fer relations given previously
(eq. (54)) remain valid, so that
rather than choosing a particular
axis of rotation, we shall con-
sider the body to be pitching
about an arbitrary sxis, Xo.
Referred to a fixed system of
coordinates, the situation is
as illustrated h sketch (e).
In the body system of coordi-
nates, the components of stream
velocity in the axial, radial,
and azimuthal directions are,

v= Vt.aasinu+q(x-xo)sinu I (57)

w= Vtanacosm +q(x-xo)cos w J

. . . —— .—.-. — —
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The components u and v are in turn resolved into the component VN
normal to the body surface by the relation,

25

‘N =ustie-vc0i3e (58)

80 tkt, .

VN =v(siII e - tanasinucOs e)- qsti W[(X - *)c08 e +r sti e]

(59)

Forming the pressure coefficient accord- to equation (55), substituting
into equation (56), and integrating once, we get,

1~G(x)cos ~(sin2~ +2) dx

Cx=: J’o
%(x)taae[A(x)(~ +$ - B(X)COS % +

J’
%

h :2=—
[[(x - ~)R(x) + tan e R2(x)] -A(x)cos ~ +

o

( J 1B(x) ~-@2~ +L -: G(X)COS ~(sin2~+2) dx

where

(60)

. . . .. ..—. .. . .. ...—. ——.- .— -—-—. — —.-. ..—. . ----- . .. ... —-— .. —.. —
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A(x) = 2 Bi1126

When the entire body experiences

+R~stie 1-2sti2et~a

1
2

}
cOse +tiacOse

compression f@w, the l~t of
integration Xu may be replaced by 7, and ~ by:, whereupon equa-
tion2 (60) simplify to,

z
CN=-; J’R(x)B(x)dx

o

2
Cx+ I R(x)tan6[A(x) +G(x)]dx

-o

I1
h J’=% :(x- ~)R(x) +tan6R2(x)]B(x)dx

o
J

The latter equations apply so long as the inequality given below is
satisfied over the entire body:

tan-=
[ 1tam++(x+ ~e(x)

1- qR/v

.

(61)

(62)

For bodies with continually growtng cross sections at small angles of
attack (essentially> a < e(x)), the inequality (62) will in fact be
satisfied; attention in this case can, therefore, be confined to the
smler set of ecivations(61). It is to be noted in eqqations (61) that
both the normal force and pitching moment depend only on B(x). Then,
since u must be small by v-e of equation (62), the small-angle
appro@nation becomes valid, so that B(x) may be written as the sum
of two terms? each linear in q or a alone. Therefore, CNand ~ are
expressible in terms of stability derivatives in the usual way; that is,

.

.

. . . . ——- -.. .
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.

Matching terms in equations (63) and (61), we find,

.

(!)cm L

z =%=-g J[fi(x)+ tan 6 R2(x)]sti 2e dx + ~
a+ o

z %a
o

0a% -1

% J’ [-~ [xR(x)+ tane R2(x)] : SillZ +
$==0

q+o

, 1 %2 X02z R(x) ~nze dX + ~ %qo
-T ()‘i%o - T cNa

.
Thus, comparing terms with the transfer relations, eqpations (54),
can be seen that under the same conditions for which equation (63)

(64)

it
is

. .— . . . . . _ .- _ _________ . ,—-. — —— .— . ...— ..- ----------



28

valid, the
last three

NACATN 3788

transfer relations are also valid, for the integrals in the
of equations (64) correspond to the stability derivatives
~ and-~ ~ as-may be ver-tiiedby letting ~- be zero in

c%@% %
equation (61).

Stability derivatives for large values of a and q.- For larger
values of a and qZ/V, for which the inequality (62) fails, it is nec-
essary to return to equations (6o). In this case, it is still.possible
to write a set of equations analogous to equations (63), although the
def~tions of the stability derivatives must be revised somewhat. Usu-
ally, in a stability analysis, one is interested in the small deviations
from some equilibrium condition. This maybe represented in equations
(60) by lett~ a and q be,

“=%+& 1 (65)
q=q+~

where ~ and ~ are the

Y
le of attack and pitching velocity corre-

sponding to the equilibrium trim) condition, end Aa and Aq are small
deviations in these quantities. Correspondingly, the normal-force and
pitching-moment coefficients may be written,

“ (66) “ -

were CN(~~ gT) ad cm(~, @) are e~tions (60) with sand q replaced
by ~and ~. Then, since &andAq are small, use of the small-angle

approximation is again permissible. Hence, retaining only first-order
terms in hand Aq, we maywrit.e the changes ACN and % as,

}

%=@i)+:+(%)%J
&+Po

(67)

,.-. -.. — .. ——____ ___ —“.-.. .
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The quantities in parentheses are the stability derivatives, corresponding
to the amdogous terms in equations (63). Now, however, they are to be
evaluated near the equilibrium condition, and their values will depend on
the angle of attack ~ sad pitching velocity ~ corresponding to that
condition; that is,

—

rd

%
Y

CN
cNa = — 2= .-

S 1
R(x)H(x, ~, @lx

Aa+o o

()

aCN ~%1
CNq = — =.-

S J
R(x)J(x, ~, qT)fi

aA~ o

Aq+o

%=(~ =&J’ [(X- XO)R(X)+tie R2(X)lH(X, ~, ~)dx
AsL+o o

()

a%
%lq= —

J
2%

‘E
[(x - ~)R(x) + tan e R2(x)]J(x, ~, qT)~

+
o

Aq+ o
.

.

The quantities Hand J are, from equations (60),

(

%1

J
H= ~-1sin2~+~--~ COSq@~+@&

iw3 &&z

(
J= ~-~

J
aB

sin2~+~ aG—-; Cos blJsin~+2) —

()

a 41

T ()
a ‘~

1

wherein

(68) “

(69)

. .. ...— ——_. . . .. . .. . ..-. -.. __ — - -------- -. ... . . .— ..-.-.: - — .-. _ _.. _ __ _____._ ... -. . ..-
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ai3—=
Ma

&—=
aAu

aB .

()

Aql
T

&—=

()

a A+

-2 sin 29 sec=ch

(~.ec2ctJ+
:2’+<%’””=’1+2 -

l?fwl TN 3708

apec=cqcos=e

[
-2 2

?sh2e’(%b2el

A few remarks maybe in order regarding the use of equations (68). First,
it can easily be verified that the transfer relations, eqpations (54), are
still valid, so that for a given trim condition, it is only necessary to
compute equations (68) for a single convenient axis position. Also, it
should be noted that equations (68)fiactuaUy contati (64), as may be veri- “
fied by putting ~= qT = 0, ~=~, and%= 7 tu equations (68).

Second, with regard to the dependence of the stability derivatives on ~
and ~: For any practical case it is not conceivable that the pitching
velocity parameter ~1/V can ever become very large; hence, the depend-

ence of the stability derivatives on ~ is probably not significant. On

the other hsmd, the equilibrium angle of attack ~ can conceivably be

very large; in this event, the stability derivatives as evaluated by equa-
tions (68) can differ significantly from those evaluated according to
equations (64) and should be used iu their place.

Uhiform vertical acceleration.- The impact theory, when applied to a
uniformly accelerating motion, gives zero for the force and moment pro-
portionalto the accelerationparameter,dZ/V. ‘1’hisresult is tobe
expected h view of the following considerations. It is known (ref. 10)
that ~ ~ is closely related to the build-up in normal force that occurs

following a step change in angle of attack; more precisely, it is propor-
tional to the axea enclosed by the indlcial response curve and the steady-
state ordinate of the indicial curve. Now, implicit ti the development
of impact theory is the assumption that the pressure response to the impact
of each flow particle is instantaneous. As a consegpence, the tidicial .

response h normal force to a step change in angle of attack is itself a
step, whence it follows that the area proportional to c~. is zero. Ltie-

wise, ~& is proportional to the area between the tidici~ pitching-moment , -

8

——. . ——... _——. .—.— . ———-. . .—___
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*

variation and its steady-state ordinate. Again, by impact theory this
variation is a step,”so that, for the same reason, ..

%
is zero.

Stability derivatives for a cone.- Finally, in order to complete
the set of stability derivatives obtained earlier by the potential
theories, the stability derivatives for a cone as derived from impact
theory are presented below. Calculations sxe based on equations (64)
with ~ = O, and apply only to the case wherein the independent varia-

bles (a, &, q) approach zero.

!2cNa = —
1++

%
=-(1++’)

c’N&=~=o
.

.

(70)

It is of interest to note (comparing eqs. (70) with ew. (@), (%),
and (53)) that the centers of pressure for the angle-of-attack and
pitching cases as derived from impact theory are identical to those
derived from the potential theories.

DISCUSSION 0FRESU121%

In order to indicate the nature of the results as obtadned from the
theoretical methods developed hereti, numericql calculations have been
carried out for two cones having semivertex angles of 10° and 20°.
Results for the variation with Mach number of the stability derivatives

cNa> CN%> a cN& are shown in figures 1 to 3. The pitching-moment

variations are not shown since iu all cases they are simple multiples of
the normal-force results (see eqs. w), (45), (50), (53), and (70)). me
curves obtained from potential theory have been terminated at the low end
of the Mach number scale slightly below the Mach number for which the bow
wave detaches (ref. n), and at the high end, at the Wch number for which
the Mach cone lies on the body surface.

.—..- .— --.—--- ----.----— .— .—- —--- -.-.. —.. .. ... .__ -_ ._. _ ____ ---
1
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As noted before, it is believed that the results for the stability
derivatives due to pitching velocity and to vertical acceleration,
obtained by use of a first-order and a combination first- and second-
order potential theory, are comparable in accuracy to the results for
CN= obtained by the corresponding theory. Therefore, in order to esti-

mate the Mach number range in which the results should apply, consider
first the results f~ CNa (fig. 1). Here, a comparison is made between.

the ~ious approximate results and the exact numerical result as obtained
from reference 2. The curves labeled “first-order, ~ct ~“ and “first-
and second-order, act ~“ are those obtained from calculations based on
equations (40) and (53). The curve Libeled “first-order, approximate ~“
is the result, when using the first-order potential solution, of retaining
only the first-order term in the expansion of the pressure relation, equa-
tion (28). It is clear from examination of the results that there is a
significant improvement in accuracy, even in the first-order solution, if
the pressure relation is not a~roxhnated. Even so, however, only the
“hybrid” solution Abe said tobe applicable throughout thellachnumber -
range for both cones. Therefore, in the subsequent results, figures 2
and 3, it is to be assumed that only the hybrid solutions are representa-
tive of the exact variations for all Wch numbers within the limits, the
Wch number for buw-wave detachment, and the Mch number corresponding
to pr = 1. Also shown in figure 1 are the results for CNa as obtatied

from the Newtonian impact theory (eqs. (70)). These results are useful as
a guide for estimating the amount by which the hybrid theory tends to over-
estimate the magnitude of the normal-force coefficient at the higher Mach
numbers. A fairing of the hybrid-theory result into the impact-theory
result is easily accomplished and may serve partially to compensate for
this tendency.

Consider next the results for ~q (fig. 2). It is noted that the

curves for the various approximations are in the same relation to one
another as were the curves for the corresponding approximations to CNaO

Also, as in the previous case, the hybrid-theory result approaches the
result obtained from impact theory h a manner which permits a judicious
fairing of the two.

Finally, consider the result for CN& (fig. 3). The interesting

pofit here is that, in contrast to the -–e of a wingj CNa as obtained

from potential theory is positive throughout the Mch number range. This
fact implies that at least for axes ahead of the center of loading due
to d, the damping moment ~ + ~ cannot be destabilizing} since the

destabilizing contribution CM only erise from a negative value of ~a.

Actually, it canbe shown that ~q+~. is not a destabilizing damping
a

moment for any position of the axis by operating with the transfer rela-
tions (eq. (54)) as was done in reference 10. It is also worthy of note .

in figure 3 that CN& vanishes when the Mach cone lies on the body

. . —.
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. surface. This result is consistent tith that obtained from impact theory,
and, as mentioned previously, implies that at this and greater Wch numbers
the indicial normal-force response to a step change in angle of attack is
itself a step.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Ma.y21, 1956
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AXTENDIX A

DERIVATION OF PRESSURE COEFFICDZNT

We derive here the pressure relationships used in the potential-
theory analysis for each of the three motions considered herein.

Consider a body which moves past an x=, y=, z= coordinate system
fixed with respect to still air. Then from Bernoulli?s equation for
unsteady irrotational flow, one has (ref..12)

Since the flow is isentropic,

P— = constant ‘
P7

so that,
1
= v-l

P Po’ -
-=—
P Po

P7

(Al)

(A2)

Substitut@ egyation (A2) in (Al) and solving for p,

7-1 7-1
7
P

{ -–T[’*.+*(’X: “y: ‘%91} “3)

Tl 7-lPO= P.
7

~t 7P0= ao2,where a. is the speed of sound in still air. Then
~

p=pop--&[%=+*(Tx:+’%:+’?z:)]}*
.

.

-— .- .—. —..---— -...——. .— -—-- —.
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A reference velocity V is now introduced; we define it to be the velocity
of the body in its axial direction, since this will be a constant for all
three motions. Then setting

we have,

This eqpation refers to axes fixed with respect to still air; we next
consider the transformations to body axes for each of the three body
motions.

S3~ng With Uniform Vertical Velocity “

As canbe seen on sketch (f),
the fixed and moving axis systems are—
related by,

x = xl + Vtl

Y=Yl

z = z= +Vtltan a

t=tl

(A6) ~

&
Then taking derivatives according to,

*= = ~x

%.=%

9.. = %

v’

L-
ZI

~vl,

z
xl

G+’ana“
ncz

Sketch (f)

J.

ax az%= = %~+~z~+~t

equation (A5) becomes, in the body x, y, z coordinate system,

,

-- . . --- - ...— . .- -.——— - —.— .—- —. -. -——.- ———. —.— --— -—
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Y

Finally, converting to cyltidrical coordinates by

x=x

Y =rcosa
z =rstiu 1

and letting ~ be zero for steady flow, we have
axis system>

the transformations,

(A8)

for ~ in the moving

~

1} )

Q)K2‘qr2 + (CpJr)2 7-1
-1

V2

.

(A9)

Pitching With Uniform Angular Velocity

The relation between the fixed
and moving axes in this case is
illustrated in sketch (g). The
transformation egpations are,

x= Xlcos qtl - zlsin q.tl 1
Y= Y~

}

(Ale)
z = g + X=sin qt= + z~cos qt=

t = t= I

Eqyation (A5) become$

Sketch (g)
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.

“

r

.

“

(All)

Changing,to cylindrical coordinates by eqpation (A8), and letting qt be
zero for steady

(%2=+ 1-

flow,

[

29XY-lp 2>._ (2X%
qrsinw+~~sinw+~

)
Cos w +

2 v V2

~= +cpr2+ (qJr)2

V2 1

Sinking With Uniform Vertical Acceleration

Here, the relations between the
fixed and moving axes are (sketch (h))

x= xl + Vtl
)

t = tl J

(U3)

The pressure equation (A5) then becomes,

(A12)

L
ZI

r

v t,

I

z
x,

-@-

vaf:/2
v x~

I
Vat

Sketch (h)

....- .-. — ——.— . ...— ____ ____ ..__ — -.. .——— -.-.-.-.———. .- .—.
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Converting to cylindrical coordinates by equation (A8),

(A15)

.

.

.

... —.--—. — —.—— ———— —— . —.—- -----
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