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A SIMPLE METHOD FOR CALCUIJTING THE CHARACTERISTICS

OF THE DUTCH ROIL MOTION OF AN AIRPW

By Bernard B. Klawans

SUMMARY

A simple method for extracting the period and dsmping and the ratios
of all variables of the Dutch roll motion of a airplane is found by
arranging the lateral equations of motion in such form and order that a
rapidly convergent iterative solution may be obtained. The method is
proposed in order to circumvent the necessity for the solution of the
classic biquadratic characteristic equation. Because of the simplicity
of this procedure, the iterative method is believed to be particularly
useful when no extensive computing facilities are available, though it
may be used to reduce computation time on any type of digital computing
equipment.

Primary effects of variation of the important Stability derivatives-K
on the period and dsmping can be seen more clearly from the iterative
method than from the fourth-order characteristic equation.

INTRODUCTION

The importance of the short-period lateral oscillation or Dutch roll
to the hs.ndlingqualities of airplanes is recognized. (See, for exsmple,
refs. 1 and 2.) Although the complete solution of the lateral equations
of motion to obtain transient response has long been possible by classi-
cal methods, the work involved was so great that most analytical studies
were devoted to describing the period and ds.mpingand defining the
stability boundaries of this oscillation (refs. 3 and 4). Through the
use of Laplace transformations, systematized, though still rather tedious,
solutions for the complete transient motion to a given disturbance have
been presented in references 5 snd 6.

,

Pilots have indicated (ref. 7) that Dutch roll characteristics are
adequately described if the period and damping and the smplitude of the
roll-to-sideslip ratios are known. The purpose of the present paper is to
present a simple iterative method for just such a description of the Dutch
roll that circumvents the ne$essity for the solution of the classic biquad-

d; ratic characteristic equation.
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procedures and uses of the iterative method are dis-
solutions for Dutch roll characteristicsof represents- -
given.
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differential operator, d/ds

altitude, ft

nondimensional radius.

nal stability axis,

nondimensional radius

of gyration in roll about longitudi-

of gyration in yaw about

stability axis, ~#)’cos2V+ ~~sin2q

nondimensional product-of-inertia parameter,

[-~~+ (~~]sinq .0s ,

vertical

radius of gyration in roll about principal longitudinal
axis, ft

radius of gyration in yaw

mass of airplane, slugs

rolling angular velocity,

yawing angular velocity,

about principal vertical axis, ft

d@/dt, radians/see

d$/dt, radians/see
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X,Y,Z

P

v

wing area, sq ft

nondimensional time parameter based on span, Vt/b

time, sec

airspeed, ft/sec

sideslip velocity about lateral axis,

weight of airplane, lb

stability coordinate axes (defined in

angle of sideslip, sin-l $, radians

inclination of principal longitudinal

ft/sec

fig. 1)

axis of airplane
with respect to flight path, positive when principal
axis is above flight path at nose, deg

relative density factor, m/pSb

mass density of air, slugs/cu ft

angle of roll, radians

angle of yaw, radians

A simple method for

DEVELOFMFJXTOF METHOD

Equations

extracting the period and damping and the ratios
of all variables of the Dutch roll oscillation is found by arranging the
lateral equations of motion in such form and order that a rapidly con-
vergent iterative solution may be obtained. In this section, the original
equations of motion are given in standard and then in modified form and
are operated on to yield the iterative equations expressed as

(1)

(2)

(3)

T!beratio of roll to yaw @/$ as a function of the operator D

The ratio of sideslip to yaw ~/$ as a function of @/$ and D

A quadratic in the operator D as a function of @/~ and ~/~

,.

.

.
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“
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Assumptions.- The usual assumptions of lateral-stability theory
are made:

(1)

(2)

(3)

There are only three degrees of freedom: sideslip 13,roll ~,

and yaw $.

All aerodynamic controls are fixed.

Small classic perturbations are allowed.

Modifications of standard equations of lateral motion.- The linear,

second-order, simultaneous differential equations of lateral motion
referred to stability axes (see fig, 1) for the con~tion of controls
fixed are as follbws:

Side force:

d?’-c%)+‘P’-$’pD)‘+’ -s’J’)‘0 (1)

Rolling moment:

2JJ2-
13(-czp)+ @@%% 2 P )(

%2 D + v -2pKxzD2 - z
)

~lr’ =0 (2)

Yawing moment:

In the process of solving these equations by classical methods (ref. 3),
the characteristic equation is obtainedby setting the determinant of the
coefficients of equations (1) to (3) equal to zero. The characteristic
equation is a biquadratic in the operator D, and it has been shown
(ref. 4) that the roots of the characteristic equation describe the
damping of any motion present and the period if the motion is oscillatory.

The operator D maybe considered a variable in the three standard
lateral equations of motion and still represent damping and the period if
the motion is oscillatory. On this basis, there are now foux variables:

P) @) ‘4>ad’ ‘“ However, the operator D in equations (1) to (3)
never appears except as a coefficient of.one of the other variables. If
each of the equations be dividedby one of the freedoms (e.g., $), the
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number of unknowns is again reduced to three: p/W~ @/$, and D. .

Dividing equations (1), (2), and (3) each by ~ yields the following
equations: *

Side force:

f+’D-C%)+?(-C’-M+ ‘“D- $y~’=0

Rolling mcment:

:(-c%) + f@K’f& - f’~D) - 2@”N -~zrD = 0

(4)

(5)

Yawing moment:

?(-c4+?(-2’K’’&- %D)+2@’f&-$~D=o “)

Equations (4) to (6) contain enough information to define adequately the
Dutch roll. (See ref. 7.) In this form, however, solutions admittedly
difficult.

.

Iterative equations.- The modified equations of lateral motion
(eqs. (4) to(6)) will be operated on to yield the iterative equations.
The first iterative equation, the ratio of roll to yaw @/W, may be
foundby solving the roll and yaw equations (eqs. (5) and (6)) simul-
taneously. Thus,

c ~
‘p 2 2r - C7,B 2 nr

&
(%

+ 2pD C! Km + C!Z‘&2
)

-c ~
( )

k + 2PD CnP’Xs2 + CZp’nn~27p+cZ~2~

(7)

It maybe noted that equation (7) is the simplest expression for any
ratio formed from ~, #, and ~ inasmuch as it is the only expression
in the lateral system that contains only first-order terms in the
operator D and constant terms. .
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The ratio of sideslip to yaw ~/~ may be found by rearrangement
of terms of the remaining lateral equation, the side-force equation
(eq. (4)). The ratio P/~ expressed in terms of the ratio @/~, the
operator D, and constant terms is

The remaining
of @/~ and j3/~,
yawing and rolling

$ -2pD + Cyn
P

(8)

step is to write the quadratic in D as a function
where D is the Dutch roll root. Since both the
equations contribute significantly to the Dutch roll

oscillation, writing both the rolling-moment and the yawing-manent
equations (eqs. (5) and (6)) as quadratics in the operator D and
adding yields the desired quadratic in D:

(2k Kxs2 #
% )] (

+ $ZPKXZ ;
)
P ~“- Cn Kxs2 + C2pKxz - =

P +
(9)

that before the addition the rolling-moment equation
K= and the yawing-mcnnentequation was multiplied by

It shouldbe noted
was multiplied by

Kxs2. This procedure simplified considerably the resulting expression

because it eliminated the complex parsmeter @/$ as a factor of & that
appeared in equations (5) and (6). In a somewhat arbitrary fashion, this
procedure also actually “weighted” the importance of the contributions of
the yawing and rolling equations to the Dutch roll roots. In the limiting
case of zero principal-axis tilt, the weighting factor K= is equal to

zero and equation (9) reduces simply to the yawing-moment equation, equa-
tion (6). Equation (9) also reduces to

K=

)

+ Clp —
KXS2

(lo)
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for two degrees of freedom (yaw and roll) where the system is undamped,
P = -W, and second-order terms are neglected. Eqpation (10) is identical

.

to the undamped natural frequency for two degrees of freedom as defined
in reference 8 and thus is further justification for the weighting chosen. ~

Method of Solution

The three iterative eauations derived from the lateral eaua,tionsof
motion are @/x interms~f D (eq. (7)), P/If
D (eq. (8)), and D in terms of @/~ end ~/~
p/$, and D are all complex quantities.

Computational procedure.- The ratio $/~ ie
tion (7) with an assumed value of D. The ratio

in terms of’@/~ and
(eq. (9)) wherein @/$,

estimated from equa-

13/$ is then determined
from e~&tion (8) with the assumed value of D and the estimated value of

@/$ fr~eqUtion (7) bei~used. Next, a new value of D is determined
from equation (9) through use of the estimated values of @/~ from equa-
tion (7) and @/$ from equation (8). This new value of D is used in
equation (7) in place of the original assumed value, and thus the itera-
tive process is well started.

A sugges%ed original assumption for the value of D is the undamped
.

period for the single degree of freedmn in yaw wherein the airplane center
of gravity travels in a straight line. This well-knuwn approximation is ~.

Fc
%D=i—

W%?
(11)

It has been found through e erience that the amplitude and phase angle

?’of the roll-to-yaw ratio @ ~ appear to be negligibly affected by
dsmping and are insensitive to the period of the Dutch roll above the
value of D gi.venby eqyation (11). Thus, the actual choice of the
initial D at the start of the iterative process is unimportant. Any
reasonable approximation that presupposes an oscillation should produce a
solution.

The Dutch roll roots of more than 70 airplanes were calculatedly
the iterative method and checkedby the conventionalmethod. Tdble I
gives some idea of the range of airplane variables investigated. As a
result of the experience gained from these calculations, answers of
engineering usefulness are found with the iterative method by merely
substituting an approximate value of D in equations (7) and (8) and
then solving equations (7) to (9) for @/~, p/lr,and D, respectively.
However, it is recommended that the process be iterated at least once
because, if the iterated values of @/$, 13/$,and D agree with the
values that were first calculated, the work is obviously numerically
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correct. Two possibilities exist if~;thevalues are not in close agree-
ment - that of numerical error and that of failure to converge.

Infrequently, convergence does not occw (e.g., static directionally
unstable airplanes and light airplanes that have extreme dsmping in yaw),
and the conventional method must be used to evaluate the variables.

The equations of the iterative method have been derived from the
conventional equations of motion without any additional.assumptions. As
a result, it is impossible for the iterative method to converge on
answers different from those calculated by the conventional method.

Uses for the method.- The proposed iterative method is designed to
circumvent the necessity for the solution of the biquadratic characteris-
tic equation. The biquadratic is in effect replacedby a quadratic with
complex coefficients (eq. (9)) that may be easily iterated. Thus, the
iterative method is somewhat simpler mathematically snd requires only
about one-third the computational time of the conventional method. In
addition, evaluation of the ratios of roll to yaw and sideslip to yaw
which are necessary to describe adequately the Dutch roll is inherent
with the iterative method.

Equation (9) may be rewritten as

1 (2P Kzs2Kxs2 - KW2)

( )Cn KY(S2+ CzPKn $p.
=0

I
-1

(I-2)

(2p Kzs2~s2 - 2
%)

Equation (12) is an extremely interesting equation in that it contains all
the terms in a thee-degree-of-freedom system that affect the Dutch roll,
expressed as a quadratic in the operator
of the important stability derivatives on
seen more clearly from equation (12) than
istic equation.

D. Primary effects of variation
the period and damping can be
from the fourth-order character-
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REPRESENTATIVE SOLUTIONS

NACA TN 3754

Table 11 presents the characteristics of four representative air-
planes. These airplanes were exsmined by means of the simple iterative
method to determine their Dutch roll characteristics.

Example solutions by the iterative method are given in table 111.
A conventional modern bomber, an extreme-altitude fighter, and a sonic
interceptor represent typical solutions for present and proposed air-
planes, and a hypothetical delta-wing light airplane in the landing con-
dition represents an atypical solution in which the iterative method
does not converge. The high rate of convergence of the typical
solutions of the Dutch roll characteristics is apparent. The atypical
case illustrates the smple warning (lack of convergence) that is present
when the iterative solution should not be used.

CONCLUSIONS

A simple method for calculating the characteristicsof the Dutch
roll motion of an airplsne has been obtained by arranging the lateral .

equations of motion in such form and order that an iterative process is
quickly convergent. The iterative method is believed to be particularly
useful when no extensive cumputing facilities are available, although it v
may be used to reduce co?rputationaltime on any t~e of digital cmnputing
equipment. Experience gained from the calculation of the Dutch roll
characteristics of more than 70 airplanes by the iterative method as
compared with the conventional method has indicated that

1. About one-third the computational time is required for the
iterative method as was required for the conventional method.

2. The arithmetical processes are shpler in the iterative method
because the need for the solution of a bi.quadraticequation is avoided.

3. In the iterative method the arithmetical processes are iterative
which permit running numerical checks.

4. Evaluationof the ratios of roll to yaw and sideslip to yaw is
inherent in the iterative process.
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5. Primary effects of aerodynamic derivatives on the Dutch roll
roots can be more readily seen by use of the iterative method.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., June 8, 1956.

11
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TM13LEI

RANGE OF AIRPIANE VARIABLES CONSIDERED FOR WHICH

SATISFACTORY SOLUTIONS WERE OBTAINED

BY MEANS OF ITEIUTIVE METHOD

Primary variable Numerical range

%s2—.. . ..O. 0.2 to 1.0
KZ~2

P“””””””” 12 to 275
q, deg...... -5 to 5
c -1.2 to 3.6
‘r*”””*””

C%***”””*
-0.70 to 0.90

Czr . . . . . . . -2.90 tO 3.10
cl . . . . ● . . -7.30 to 0.20
P

Cn . . . . . . .
P

0.03tO 0.25
cl , ● . . ● 0 ● -0.22 to o

P

.

‘4
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TABLE 11

CHARACTERISTICS OF IIEI?KESENTATIVE

AIRPLANES USED IN CALCULATIONS

NACA TN 3734

Kx~2 . . . . . . .

Kz~2 . . . . . . .

KXZ . . . . . . .

h, ft......
v, ft/sec , ● , .
b, ft . . .. . . .
Cy . . ● . . . .

P
c* . . . . . . .
P

Cyr , . . , , . .

C2P , . , . . . .

c~p . . . . ● . ●

cl . . . . . . .
r

C*P . . . . . . .

c%”””””””

c%”””””””

I Airplane

Bmiber

0.0311

0.072
0

31.83
0.443

35,000
700
116

-0.61

0

0

-0.14

-0,44
0 ● 149

0.12

-0.0276

-0.156

Extreme-
altitmde
fighter

0.0156

0.156
0.0020

182
0.49

50,000
776

-o .;:

o

0

-0.18

-0,33
0.23

0.25
-0,050

-0.069

Sonic
interceptor

0.010

0.065
-0.004

65.4
0.323

32,000
691

36.6
-0.28

0

0

-0.08

-0.15

0.40

0.028
-0.20

-0.40

~othetical
delta-wing
airplane in
landing
condition

0.030

0.0679
-0.030
11.85
1.0

99.:
38.1

-0.286

0

0

-0.0373

-0,02

0.60

0.0573
-o● 20

-1.10

.

. .

.
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TABLE III

REPRESENTATIVESOLUTIONS

Assumptions Aiqplene

Conventionalbomber

/

Cn
D=i ~. o.1620i

2&~2

w PI* D

Iteratedvalms

-1.755 - 1.253i -1.053+ o.o1317i -0.00491+ o.1679i
-I.840- 1.235i -1.053+ o.o177i -0.00441+ o.1679i
-1.825- 1.2k3i -1.053+ o.01692i -0.00452+ o.1679i

,
Exact values

-1.825- 1.242i -1.053+ ().016~2i -0.00447+ o.1679i

Extreme-altitudefighter

WY I NV D

/

Cn

D=i ~= o.0664i
2@Czs2

Iteratedvalues

-6.23 - 2.95i -1.c62+ o.mo%i 0.00271+o.0665i
-6.~7-2.84i -~.064+ O.O~i
-6.17-2.85i

0.00256+ o.0665i
-1.064+o.097’oi 0.00257+ o.0665i

Exact Vd.U.eS

-6.17-2.85i I -1.064+ o.0970i 0.00258+ o.0665i

I Sonic interceptor
I

I I m I D I

I Iterated values I

F
-2.58 - 2.27i -1.102+ 0.07001 -0.01393+ 0.11981
-4.41-2.54i

D = L ~= 0.0574i
-1.045+o.0775i -0.00852+ o.1N32i

-4.33-2.46i
WZS2

-1.047+ o.0749i -0.00886+ 0.u.8M

Exact values

I -4”33-2”46iI -1.047+0.075M l-o.00885+0.1181iI

~othetical delta-winglight airplane in landing condition

I W4 I PI* I D
1 I

Iteratedvalues

r -L.724+ 0.2253. -0.970+ o.323i
Cn

-o.H345+ o.u23i

~ = o.1887i
-1.411+ o.231i -0.78L+o.0862i -0.1498+0.0286i

D=i -1.039+0.234i -0.764- o.0227i -o.1389+ o.000617i
W7S2

Exact values

-1.722+ o.589i -0.451+o.385i -0.0647+ 0.0822L
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Principal axis 1

7
x+

●

Wind direction

Wind direction Y

*

Azimuth reference

Figure l.- Stability axes system employed with positive direction of
forces, moments, end displacements shown.
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