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TECHNICAL NOTE 3757

TORSTONAL, INSTABILITY OF HINGED FLANGES
STIFFENED BY LIPS AND BULBS

By George Gerard
SUMMARY

Based on torsional instability theory, buckling charts are presented

for determining the critical strain of hinged flanges stiffened by ideal-
ized 1lip and bulb elements.

INTRODUCTION

The buckling of a stiffened flenge has been treated by several inves-
tigators (refs. 1 to 7). The results of all these investigations are
either for sections of specific shape or else In a form which cannot be
readily used by the stress analyst.

The primary purpose of the addition of a 1ip or bulb is to stiffen
the free edge of a flange in order to increase the buckling stress of
this member. If the 1lip is too large relative to the flange, it mey
buckle at a stress less then that required to buckle the stiffened flange.
If the 1lip is too small, torsional buckling of the stiffened flange may
occur at a stress less than that at which the flange would act as a plate
simply supported along both unloaded edges, for example.

In this report, interest is centered on the torsional buckling
behavior of simply supported flanges stiffened by relatively small
idealized 1lip or bulb elements. The lower limit is that of the
unstiffened flange and the upper limit considered is that of a
stiffened flange which acts as a long simply supported plate. Buckling
charts are presented which cover the range between these limiting cases.

This work was done at New York University under the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics.
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SYMBOLS

area, sq in.

flange width, in.

1ip width, in.

web width, in.

torsion-bending constant, :Ln.6
bulb diemeter, in.

modulus of elasticity, ksi
secant modulus, ksi

shear modulus of elasticity, ksi
polar moment of imertia, in.*
torsion constant, in. b

length, in.

thickness, in.

coordinates

critical strain

half wave length of buckles, in.
Poisson's ratio, 0.5

critical stress, ksi

1ip or bulb
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THEORY

The determination of the torsional buckling stress of lip- and bulb-
stiffened flanges with simple support along the unloaded edge 1s based
upon ‘the following assumptlions:

(1) The idealized configurations shown in figure 1 are used in the
analysis.

(2) The stiffened flange rotates about a hinge line at the base of
the flange in the torsional buckling mode. As shown in figure 2(a), this
mode Involves rotation of the stiffened flange about this axis with no
distortion of the cross section.

(3) Local buckling of the stiffened flange which involves distortion
of the cross section but no rotation, as shown in figure 2(b), is not
considered.

(4) The assumptions of the torsion-bending theory discussed in
references 4 and 8 are retained in this analysis.,

In reference 8, the torsional buckling stress of a stiffened hinged
flenge may be obta.ined from the following equation

2
o = E 4 T @

o rp®

The axis of rotation of the flange is at the origin of the coardinate
system. Thus, as a close approximation

( t/ ) + A b2 (2)
J = (bft3/ 3) + Jg (3)
vwhere for lips
Jg = bLt3/ 3

and for circular bulbs

[

[(}

a
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The approximation for J and Jg for lips introduces little error
for (be + br) /t > 5. By assuming that the stiffened flange is fixed

in the longitudinal direction at the hinge line, the major part of the
torsion-bending constant C i1s given by

C = Iy be? (%)

Furthermore, for a hinged flange the wave-length term A 1n equation (1)
may be replaced by the length IL.

By letting v = 0.3, equation (1) becomes

O = IE;<_2_JE + ’;ﬁg-) (5)

SOLUTION

For the idealized lip-stiffened flenge shown in"figure 1, the
constants of equations (2), (3), and (4) become:

I, = (bf31-, /5) + bytb,2 |

Jd= (bf + bL)t5/3 )

C = b the?(3 J

Substituting equations (6) into equation (5) gives

(7)

er

0.388 (1 + by fog) + x%(bp foe) (ve]t)2(bg/1)? g _1-._)2
1+ (3bL/bf) (Df

Similarly, for the idealized round bulb-stiffened flange of figure 1,
the constants of equations (2), (3), and (%) become:
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L = (bet/B) + (:rdzbfz/h) )
et + ()
abe2et s\ A\ 1(a)\2
a: 5(;) - (;) * 5(%)
Substituting equations (8) into equation (5) gives

el 2@l

o= (be/t) + (5x/4) (a/%)? V2

J (8)

N

Q
|

It can be observed that both critical-stress eguations contain an
L[ bp term. For many calculations, such as the determination of crippling

strength, 1t is convenlent to have design cherts from which the critical
stress or straln may be determined directly. In order to comstruct such
charts, however, a value of L/bf must be prescribed.

In order to construct design charts which will have application in
crippling-strength problems, a value of L['bf‘= 5.5 wes chosen. This
value was obtalined from the recommendstions of reference 9 which are
concerned with the desirable lengths of Z-~gections and channel sections
for local instabllity tests. Below lef = 3.5, an increasse in buckling

and crippling stress assoclated with short lengths of such section occurs.
Since the stiffened flange will generally be used in conjunction with
other web and flange elements, this value of L/bf appears o be

reasonable.

By substituting L]bf = 3,5 dinto equations (7) and (9) , the design
charts presented in figures 3 and 4 were prepared. The lower limit is
that of the unstiffened flange. The upper limit is associated with lip
or bulb dimensions which are sufficient to cause the stiffened flange to
act as a simply supported plete or web element.

The date presented in figures 3 and 4 are for elastic torsional
buckling. Since the buckling mode of the stiffened hinged flange is
predominantly rotation or twistling, the secant modulus should be a
good. approximation to the effective modulus when buckling is inelastic.
Thus, the buckling stress mey be computed from

Oopr = Bg€op (10)
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EXPERTMENTAT, DATA

In reference 4, experimental date on the buckling of lipped Z-sections
are presented. The proportions of the element tested were bflbw = 0.7

and b/t =29 and byfoe wes systematically varied between 0.18 and 1.00.
The mejority of the test points were above the proportional limit.

For the be = 0.18 date, it is quite clear that buckling of the
£

1lip-flange combination occurred in the torsional mode considered herein.
For all the other data, local buckling of the web or lip occurred.

The test data on torsional instability are shown in figure 5 in
conjunction with the theoretical criticel strain values obtained from
figure 3. Tt can be concluded that good agreement between theory and
test data exists.

Research Division, College of Engineering,
New York University,
New York, N. Y., May 27, 1955.
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(a) Iip-stiffened flange. (b) Bulb-stiffened flange.

Figure 1.~ Idealized stiffened flanges.
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(a) Rotation, no distortion. (b) Distortion, no rotation.

Figure 2.~ Possible buckling confligurations of lip-stiffened flanges.
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Figure 5.~ Buckling strain of hinged lip flenges. L/bp =3.5; v = 0.3.
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Figure 4.~ Buckling strain of hinged bulb flanges. L/bf = 3.5; v = 0.5.
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Figure 5.~ Comparison of test date on lipped Z-sections and theory for
lipped hinged flange. bf/t = 20.3.
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