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ANAT,YSTS OF LAMINAR INCOMPRESSIBLE FLOW IN SEMIPOROUS CHANNELS

By Patrick L. Donoughe

SUMMARY

Perturbation solutions of equations for laminar incompressible flow
in a semiporous channel are presented, and the results are compared with
those obtained from a fully porous channel. The perturbation parameter
measures the amount of suction or injection (blowing) at the porous
wall; positive values denote suction, and negative values denote blowing.

In the semiporous channel, with a given value of the perturbation
parameter, blowing decreased the friction parameter at the porous wall
by 25 percent, and suction increased the wall friction parameter by 50
percent. For both semiporous and fully porous channels, the pressure in
the longitudinal direction decreased for zero and blowing values of the
perturbation parameter. Sufficiently high suction values resulted in a
pressure rise in the fully porous channel. Either suction or blowing
has more influence on the local dimensionless velocity profiles and the
wall friction parameter for the semiporous than for the fully porous
channel.

INTRODUCTION

Experimental results for flow in a rectangular channel with injec-
tion through a porous wall are given in reference 1l. Various porous
samples were installed in the lower wall; the upper wall was solid. In
the experiments, conducted with turbulent flow, the injection of air
through the porous wall markedly influenced the shape of the velocity
profile. The friction at the porous wall was obtained only qualita-
tively. The flow was developed with no injection, but not developed
when there was flow through the porous wall. Although additional tests
are indicated, it appears that some other geometry may be better suited
for the experimental investigation, and an analysis is needed to guide
the selection of the geometry. A significant turbulent-flow analysis
requires experimental data from the apparatus being sought, but laminar
flow may be treated theoretically. As part of the study to guide future
experiments, laminar flow in a semiporous channel is investigated here-
in. Results are compared with similar results in a fully porous channel.
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Such an investigation has intrinsic value. Where the flow is re-
stricted by the proximity of bounding walls, it falls in the category of 7
either channel or pipe geometry. Such flow and geometry are found inside
bodies such as turbine blades and the skins of high-speed missiles whose
wall temperatures are reduced by the transpiration-cooling process.

Another application is for the equipment used in the separation of iso-
topes by the gaseous diffusion process. The present study should be of
interest in these applications.

Laminar flow in a channel with fully porous walls was studied ana-
lytically by Berman (ref. 2). Although only suction through the wall
was considered, results may be calculated readily for injection through
the wall. Before the publication of reference 2, Berman pointed out the
similarity between the flows in porous and semiporous channels (ref. 3).
The solution, however, was not given for the semiporous channel.
Berman's results for the fully porous channel, obtained by first-order
perturbation solutions and, therefore, valid for only small suction or
injection, are extended to large values of suction by Sellars (ref. 4).

In the present investigation, a third-order perturbation solution -
for laminar incompressible flow in a semiporous channel is presented.
Two-dimensional flow is considered. Velocity distributions, wall fric-
tion, and pressure drop are obtained from the solution for both suction .
and blowing through the porous wall. A second-order perturbation solu-
tion is also obtained for the fully porous channel for comparison with
results from the semiporous channel.

SYMBOLS
LB constants of integration (eqs. (12) and (Al))
& o ow\ (1 _2
f friction coefficient, H(EEQW'Epu (x)
g dimensionless stream function (eq. (6))
g',g", first, second, and third derivatives of g with respect to A\
gl 158

1A different study of the flow in a fully porous channel with large
suction has been reported recently in an article by S. W. Yuan, entitled
"Further Investigation of Laminar Flow in Channels with Porous Walls."
Jour. Appl. Phys., vol. 27, no. 3, Mar. 1956, pp. 267-269.




Ci;l back

NACA TN 3759 5

Apx
Apy
Re

Rep

Re

R

=i

w,fp

Cw,sp

channel height

static pressure

pressure-change parameter in x-direction (egs. (27) and (A7))
pressure-change parameter in y-direction (eqs. (28) and (AB))
main-flow Reynolds number, 2u(x)h/v

main-flow Reynolds number, 2u(0)h/v

wall Reynolds number for fully porous channel, vwh/v

wall Reynolds number for semiporous channel, v, h/2v

velocity defined by eq. (7)

fluid velocity parallel to wall

fluid velocity normal to wall

channel width (fig. 1)

distance in main-flow direction

distance in normal flow direction

nondimensional stream function for fully porous channel

first, second, and third derivatives of I with respect to A
nondimensional normal distance for fully porous channel, Zy/h
nondimensional normal distance for semiporous channel, y/h
viscosity of fluid

kinematic viscosity of fluid, u/p

density of fluid

shear stress

stream function
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Subscripts:

b bottom wall

fp fully porous channel
max maximum

P porous wall

5 solid wall

sp semiporous channel
t top wall

W wall

X x-direction

y y-direction
Superscript:

average values

ANALYSIS
Laminar-Flow Equations

A sketch of the geometry and flow system for the semiporous channel
is given in figure 1. The following development parallels that of
Berman (ref. 2). The channel width is assumed much greater than the
channel height; therefore, only two-dimensional flow need be considered.
The Navier-Stokes equations for two-dimensional steady-state incompres-
sible laminar flow neglecting body forces are (e.g., ref 5 8D, 48)

du, du__13p (3% %
ug; + v y = o 5 e +—v(§X2 + 5y%> (l)
ov , v _ 13 [t o (2)
B Ty T T p oy St o2

&+Fy=0 (3)

9C0%
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The boundary conditions imposed on the system are

0 (solid wall), u=0; v=0

o
Il

(4)

h (porous wall), u = 0; v = v, = constant

<
Il

Transformation of Equations

The transformation of equations (1) and (2) is accomplished by the
use of the substitutions

3 =%’1 (5)
and
) § ¥
i 98 4 (6)
7 h[?(O) E Zﬁﬁ] hU
where
T ® () ot (7)

and U(0) is the average velocity at x = O, Since g = g(k) only, the
A will be omitted hereafter.

The continuity equation (3) is satisfied by the stream function ¥,

since
) S i
TR R e
and 5 (8)
N
X =i e 3
Use of equations (l),.(Z), and (4) to (8) yields
19 __VW " 10 _i_llt
'EB‘E"UEIT(gg—g)'hZ :I (9)
and

10 Moo
23 - 2o) L
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Since the right side of equation (10) is a function of A only

(Vw = constant),

§;§§ =0 (11)

Since U # O, on differentiating with respect to A, using equation (1)
and integrating, equation (9) becomes

Rew,sp(g'z -gg") +g''' = A (12)

where

v

Rew, sp = -

(@s)

The boundary conditions (egs. (4)) become

= 0 (solid wall), g' = 0; g = 0
(14)
A= 1 (porous wall), g' = 0; g = 1

Equations (12) to (14), in the present notation, are identical to those
given in reference 3.
Solution of Equation

For small values of Re the perturbation solution of equation

w,Sp’?

(12) is obtained by expanding g and A near Rey op = O:
= a 3
& = 8o + g1Rey gp + BgRey o + EzRey o + . . - (15)
- 2 3
A = Ay + ARey gp + AgRey sp + A3Rew.’Sp .o (16)

Substituting equations (15) and (16) into equation (12) and equating

like powers of Rew’SP yield
gy'' = 4o i)
g'' = A + gogl - g (18)
gy'"' = A, - 28)8] + o8] + 88, (19)

gL' = Ay - 280g) + BuEY + €8] + 8,8 - &7 (20)

9S0%
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subject to boundary conditions

for A

0 (solid wall), g) =0; g, =0
(21)
ROPINN

1 (porous wall), g} =0; g9 =1, g0 = O

Use of equations (15) to (21) yields the third-order solution of
equation (12):

Re
ol 2R R L T RS IR ol IR VS (R W S

70
4,527,600 (-5,327X - 41,006X + 206,976k - 243,628\ +

99,7927 - 24,255)8 + 21,5600% - 17,24800 + 3,136011) +

)

Re
W,SP 261 & L 5 i 6 _
1765, 764,000 (480,343 796, 742X 2,659,566\° + 6,649,916\

4,666,740\ + 2,162,16008 - 2,902,9002% + 3,107,104)10 -
2,255,526 ML + 1,729,455212 - 1,234,800015 + 446,8800% - 59,584)1°)

(22)

and

81 2,929 _ 2 398,371 3
= 12 + 8L o> 5 il
5 + 35 Rey,sp = 53°900 Rw,sp ~ 147,147,000 Rew,sp  (23)

Absolute convergence of the series given by equations (22) and (23) has
not been found. The perturbation solution, however, is compared with a
numerical solution of equation (12) in the section Accuracy of Results.

Formulas for Velocity, Pressure, and Friction

The average velocity at an x, location is given by

ill
ulx) =h/\ u(x,A) dA
0]
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Use of equations (6) to (8), (13), and (14) shows that

v Z2Re X
U =1u(x) = a(o)[} - E(%;ﬁ] = E(O)<% ; ——§§é§2—> e

where

2%(0)h
Reo = v

Then, from equations (8), (24), and (22),

Re
[u(x’)‘)]= g' = 6(A-28) + —25R (_z2 + B1A% - 105%F + 842° - 2836) +

T\ X 70
2
Re > 7 "
_Pewm oogam . )
e L SR DI AR RS0, e

349,2720° - 97,020N + 97,0200 _ 86,2400° + 17,248M0) +

3
Rey sp o 4
, = —
1,765, 764,000 (960,686\ - 2,390,226\ - 13,297,8301 +

39,899,496%° - 32,667,180%° + 17,297,280\ - 26,126,1000° +

31,071,04009 - 24,810,786M0 + 20,753,460M1 - 16,052,40002 +

6,256,320 X5 - 893,760\14) (25)
The velocity ratio given in equation (25) is a function only of Rey, sp

and position A\ Dbut not position x. Thus, the flow may be considered
to be developed.

Integrating dp(x,A) = %% dx + %% d\ and using equations (9), (10),
(12), (13), and (21) result in the pressure

2
A _ VX PVy&
p(x,2) = p(0,0) + %2 u(O)x[l - 5576 h] 3 vw<?g‘ = ; ) (26)

The pressure change in the x-direction may then be found from equations
(28) and (23):

9S0%
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— p(x,A) - p(O,A) _ 2% o4 4+ 162 g _ 2,929 , 2 )
APx, sp = 1 5%0) hRe o 35 WsSP T 26,950 WP
2
Re X '
796,74:2 R63 Q_ " W, Sp ) (27)
147,147,000 W, SD, Regh

Note that A\ does not appear on the right side of equation (27). Thig
is a consequence of equation (11) and results from the assumption of a
constant vy,. Similarly, the pressure change in the y-direction is

2
pp. = PO - p(0,x) | p(,x) - p(0,x)(1 R0 ) WA e
¥,8p L L 52(0) \& Rey op Rey sp
2w 2
(28)

The shear stress is given by
ou
T =il == 29

and the friction coefficient may be defined as

Tw

% oTiz(X)

Using equations (25), (29), and (30), the friction for the porous wall
is obtained as

Tsp,poe _ -g"(1) o, o o ABE028 S0 oo SRS e
8 2 70 "ew,sp * 1,527,600 " W,sp * 1,765, 764,000 ¥, SP

(31)

(The negative sign appears because y increases as the porous wall is
approached) and, for the solid wall, as

e a0} - 8.5, S Bl Baciie e BB, B
8 2 3% W,SD T Z,527,600 ¥»SP ' 1,765,764,000 = W,SP
(32)

where Re = 2u(x)h/v.
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Accuracy of Results

In order to estimate the accuracy of the solution for the fully
porous channel, the results from the perturbation solution are compared
with the results from a numerical solution in table I. The comparison
is made for Rew,sp = -4.0.

Equation (12) was solved numerically by desk computation using the
method of Picard (ref. 6, ch. XI). The characteristic values necessary
for numerical integration of equation (12) are g"(0) and A. The initial
guesses for these values were taken from the perturbation solution. Suc-
cessive trials finally gave the numerical results listed in table I. As
is customary in problems of this type, g"(0) and A must be obtained
more accurately than g' for a given accuracy in g's

Comparison of the numerical and perturbation solutions shows that
g"(0) from the third-order perturbation solution is accurate to within
0.13 percent, and g"(1) is accurate to within 0.4 percent. (It is
assumed that the numerical solution is correct.) This difference is
expected from equations (31) and (32). A 1is accurate to within 0.008
percent. For values of lReW,sp|< 4, the third-order perturbation solu-

tion should be accurate to within 0.1 percent.

RESULTS AND DISCUSSION

The effects of flow through a porous wall are presented and dis-
cussed for semiporous and fully porous channels. The third-order solu-
tion for the semiporous channel is given in the ANALYSIS section; the
second-order solution for a fully porous channel is given in the appendix.
Some of the pertinent results of these solutions are listed in table II
for different values of Rey gp-

Velocity Profiles

The local velocity ratio u(x,A)/u(x) in the channel is shown in
figure 2(a) for one porous and one soiid wall, and for the fully porous
channel. Both parts of the figure have Rew,sp as the parameter. For
Rew,sp = O = Rey,fp, both curves are ldentical and the solutions of equa-

tions (12) and (Al) are exact.

Blowing (injection) occurs for ReWJSp<1O and is shown qualitatively

in figure 1; suction occurs for Rew,gp"o' Positive values of Rew,sp

place limits on x/ Regh . These limits are obtained by setting
U(x) = 0. Then, from equations (24) and (A6a), since u(0) # O,

NGaAH
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b'd 1L
el 33)
(?eog)max 2Rey, sp (
for the semiporous channel, and
X it
(Feoh>max 4Rey, sp G

for the fully porous chamnel. For |Rew,sp|>(b there is a greater
effectrolf Rew,sp on the local velocity ratio in the semiporous channel
than in the fully porous channel. This may be seen by comparing both
parts of figure 2(a).

Although u/G(x) is not a function of x, the velocity ratio u/T(0)
is related to x. From equations (24) and (25),

Z2Re X
Ui e . W, Sp
T(0 (l Regh )g' =

and, from equations (A8),

4RewZSPX>[” (36)

u
(o) ( " " Regh

These velocity ratios are given in figure 2(b) for Rey, sp = O, 4, and
-4 with the dimensionless distance x/ReOh as parametef. The growth
(Rew)Sp = -4) and retardation (Rew,sp = 4) of the velocity ratio u/u(0)
are evident. These velocity ratios are influenced more by wall Reynolds
number in the fully porous channel than in the semiporous channel.

Note that, for a given value of Rew,sp: the general shape of the
curve is unchanged, even though the maximum values are different (fig.
2(b)). In a porous channel it is evident that fully developed flow de-
fined by the velocity invariable with flow direction cannot be achieved.
But, if fully developed flow is defined as a constant value of
u(x, N/u(x) for increasing flow direction (with A\ fixed), then there
is obtained analytically fully developed flow in both the semiporous and
fully porous channels when the suction Reynolds number is fixed {ef.,
eq. (25) and figs. 2(a) and (Db)).

Pressure Distributions
The dimensionless pressure parameter in the y-direction Apy aff:!

presented in figure 3. These results are obtained by use of equations
(28) and (A8). There is no pressure change across the channel when the
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walls are solid (v = 0). 1In figure 3(a), when there is suction, the
pressure parameter Apy (and hence p(y,x)) is higher than at the solid
wall over most of the channel. For injection (blowing), the pressure in
the channel is always less than at the solid wall. For either large suc-
tion or injection, APy,sp will always be less than at the solid wall.
This may be seen by letting Rew,sp'*“ in equation (28); since g2 is
always positive, APy,sp will be negative.

The pressure-change parameter Apy rp (fig. 3(b)) is referenced to
the pressure at the center of the channel. Negative values of
Rey,sp = ZRew,fp result in positive values of Apy’fp. Again it is
found that, for either large suction or injection, the pressure parameter
will be negative over the full channel, except at the center where it is
zero. Such a solution is given by Sellars (ref. 4).

The results in figure 3 may be used to estimate the static-pressure
drop across the channel. Equations (28) and (A8) may be expressed as

2

p(A,x) - p(0,x) =z Rew: SP Ap
k. Reo y
5 pU (0)

where Ap is given in figure 3. Use of this equation and figure 3 shows
that, when Apy is large, Rew,sp is small, and vice versa. Hence, for
the usual value of Rey gp/Reg (say 0.01), the pressure change across the
channel cross section should be small compared with the inlet dynamic head
(% pﬁz(O)). This pressure change is also small compared with the local

%
dynamic head 1 pu (x)) when there is blowing. With suction, however, the

change may not be small compared with the local dynamic head, especially
for large x/Reph (approaching (x/Regh) pax) -

The pressure-change parameter in the x-direction Apy 1s given in
figure 4 for O < x/(Regh) €0.25 and in figure 5 for 0<x/(Reph)<0.035.
For both the semiporous and fully porous channels these figures indicate
that Apy decreases for Rey gp<O (blowing) . When Rey, gp> 0, how-
ever, the analysis indicates a pressure rise Apy, >0  in the fully porous
channel for sufficiently high values of Rey gp (a similar result was
noted in ref. 3). The same situation should obtain if solutions for
higher values of Rey gp are available for the semiporous channel. An
explanation for this pressure rise may be as follows:

When solved for the pressure gradient, a momentum balance for a unit
width of a channel yields

h
gﬁ = - % (Tt + Tw,p) * %j; pu? dy (37)

).
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The wall shear stresses on the top and bottom walls are positive and of
the same order of magnitude. When there is fluid injection, the momentum
integral increases in flow direction; therefore, the pressure gradient
decreases in flow direction. For the impermeable channel with fully
developed flow, the momentum integral does not change in flow direction,
so that the pressure gradient is still negative. With fluid suction,
however, the integral term is negative. If the suction is sufficiently
large, the integral term overcomes the shear terms and a pressure rise

results (Ap, >0).

Friction

The effects on the friction parameter of flow through the walls of
a channel are presented in figure 6. The friction parameter is given for
both the semiporous and fully porous channels for -4$Rew’ sp <4. The
friction parameter at Rey gp =0 1is well established (ref. 7, p. 309;
ref. 8, p. 51). Since there is a different boundary condition at each
wall in equation (12), the effects of the flow through the wall are dif-
ferent at each wall of the semiporous channel. At the solid wall, blowing
increases the friction parameter; at the porous wall, blowing decreases
the friction parameter (fig. 6). The friction parameters at the porous
wall for the semiporous channel for Rey gp = 4 and Rey,sp = -4 are
50 percent above and 25 percent below, respectively, that of an imperme-
able wall. Corresponding numbers for the fully porous channel are 7 and
4.4 percent.

Although the friction parameter fRe/8 is not a funetion of X
(e.g., eq. (31)), the friction coefficient f 1is related to x, since
Re = 2U(x)h/v. The average velocity T(x) is increased by blowing and
decreased by suction. The effects of variations in the wall Reynolds
number Rew,sp: therefore, are greater on the friction coefficient £

than on the friction parameter fRe/B.

SUMMARY OF RESULTS

Analytical solutions for incompressible laminar flow in a semiporous
channel have been presented. A perturbation method was used to obtain
the solutions. Results were compared with those for a fully porous
channel. Some of the principal results are as follows:

1. Either suction or blowing is more influential on the wall fric-
tion parameter for the semiporous than for the fully porous channel. For
wall Reynolds numbers of 4 and -4, the friction parameter at the porous
wall of the semiporous channel is increased by SO percent and decreased
by 25 percent, respectively, from the value for impermeable channels.
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In the semiporous channel, blowing diminishes the friction parameter at
the porous wall and increases it at the solid wall; suction at the porous
wall acts conversely. The friction coefficient behaves similarly.

2. The pressure in the longitudinal direction decreases for zero
and for blowing values of the wall Reynolds number. This pressure drop
occurs in both the semiporous and fully porous channels. . A pressure in-
crease was found for higher suction values in the fully porous channel
and is indicated for the semiporous channel.

3. For both the semiporous and fully porous channels, the pressure
change across the channel is small compared with the inlet dynamic head.
Compared with the local dynamic head, the change is small for injection
but may not be small for blowing at large values of the dimensionless
distance X/Reoh.

4. For a given value of the wall Reynolds number, the local velocity
ratios are changed more in the semiporous than the fully porous channel.
The velocity ratio built with inlet velocity acts conversely.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 25, 1956

93507
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APPENDIX - FORMULAS FOR A FULLY POROUS CHANNEL

Small Suction or Injection

The equation for a fully porous channel corresponding to equation
(12) for a semiporous channel is given in reference 2 as, in the present
notation,

12 1 tre -
Rey rp 151 o g =B (A1)
where
vy Rey Sp.
Rey pp = 5y = —a =5 I'=T(4), A=2y/h

y Dbeing measured now from midchannel (fig. 2(a)), since the flow is
symmetrical about this plane. Boundary conditions are

A =0 (midchammel), T'=0;T =0

A= 1 “(porous weil), P= 1y T" =0

Il

The zero- and first-order solutions from reference 2 are

o -
I‘O—E(SA A”) \
I =-1. 3 _ 28 - A
1 280(3A i (A2)
By = -3
= 81
& B )

and the second-order equation is given as

r3'' = By + Tol§ + Iqr - 2lgTy \
subject to
A=0 r2=o=r; (A3)
A=l r2=o=ré
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Integration of the equation for TIj4'' and use of equation (Al) yield

3 2 a4 - ;D Rey fp 3 7
[h=aF et Rew’fp + FZReW)fP =5 (30- 1°) + —_536_ (N> - 28 B} +

2

Re
W, fD (_4,921A + 6,13203 + 1,386 - 2,6954° + 9gall
9,055, 200 (-4, ’ ? ’ )

(A4)

E _3 4+ 81 234
B = B, + ByR wa+B2Rew,fp 3+ Rewfp mewfp(As)

From these relations, the velocity, pressure change, and friction
may be obtained in the same manner as for the semiporous channel:

Re
U _mo=3(1.- TP (9p2 2 - A6
=T =2 (= s Sho- (94° -2 - A ) +
__ffiiiiL.(-4 921 + 18,3964% + 9,70288 - 24,255/8 + 1,078410)
9,085,200 * 7 d ’ g ’
(A6)
where
e u(O)K __W:_fp ﬁ) (16a)
NSRS CH VIS RS .8 L m] Qs i)k% £ 588 pe
X 7 % h h R
Lo T°(0)h 70 A
Re X
1,872 Rey, pp*
D il
13,475 Reg fP) (l - Reoh> &
2
A p(4,x) -p(0,%) _ p(4,x) - P(O,XZ/ 0 = A piipaiglespe
Py,fp = 1 2 i \4Re Rey, r
= pv = pl (O) w,fp »1IP
Tl a (A8)
f_. Re
fp o - _5_. __5_2&
g— = T"(1) =3+ 55 Rey, £p + 555 550 Rey £p (9)

9507
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TABLE I. - COMPARISON OF PERTURBATION AND NUMERICAL

SOLUTIONS OF EQUATION (12) FOR Rey pp = -4.0.

Perturbation Numerical
(Picard's method)
1756 g"(0) T TAT
-21.953 A -21.955
-4.508 (1) -4.525
0 g(0) 0
1.000 g(1) 1.000
g' A g
0 0 0
0.360 { .05 .367
.667 .10 671
1125 20 1.129
1.397 <30 1.400
1.509 .40 L5
1.486 .50 1.488
J..351 .60 1.351
12t .70 1.120
.810 .80 .808
4351 .90 A5
ezl .95 Sl
0 1.00 0

TABLE II. - VALUES FOR USE IN FRICTION AND

PRESSURE-CHANGE RELATIONS

Wall Reynolds Semiporous channel Fully porous
number, channel
Rey, sp -g"(1) | &"(0) A -r"(1)| -B
2 2
4 4.623 2.084 3.786 | 3.210 | -1.559
5 4,103 | 2.311 5.620 | 3.151 A32
2 3665 2.540 7 <610 3,095 <703
i 3.300 | 2i77L 9.742| 3,045 | 1.847
0 3 3 iz 3 3
-1 255 S22l 14 .37 2.960" | 4.161
=2 25554 3.450 16.82 2924 |1 543532
-3 2.391 | 3.668 191536 22895 8IN6R 510
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Figure 1. - Geometry and flow in semiporous channel.




Local velocity ratio, u/u(x)

(a) Local velocity ratio,

Figure 2. - Velocity distribution in porous channels.
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Velocity ratio, u/u(0)
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Figure 2. - Concluded. Velocity distribution in porous channels.
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Pressure-change parameter, Apy
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Figure 3. - Pressure change in y-diréction for porous channels.
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Pressure-change parameter, Apy
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