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EXPECTED NUMBER OF MAXIMA AND MINIMA OF A STATIOtiY -

RANDOM PROCESS WITH NON-GAUSSIAN

FREQUENCY DISTRIBUTION

J& llmnklin W. Diederich

suMMARY

A method is outlined for calculating the expected number of maxima
or minha of a random.process with non-Gaussian frequency distribution
from the statistical moments of the process and its first two derivatives.
This methcd is based on an estimate of the joint frequency function of
the process and its first two derivatives given by mesm of a generalized
form of ~geworth’s series; the procedure thus consists essentially in
applying a correction to the results for a Gaussian process. The func-
tions required in this procedure are calculated for the first two correc-
tion terms; therefore, the effects of skewness and kurtosis can be cal-
culated, provided the required moments are known. Expressions are given
for these moments in terms of multiple correlation functions and mul.ti-
spectra, and the relations between these functions for a random output
of a linear system smd those for the random input are tiicated.

INTRODUCTION

Many physical processes of interest in aeronautics and allied fields
are determinate only in a statistical same. Such processes sre referred
to as stochastic or random processes. lY the statistical characteristics
of such a process are invariant in time, it is referred to as a stationary
random process. The basic problem in connection with these processes is
usually either to predict the output of a dynsmic system which is subjected
to a random input (so that the output is also generally random in nature)
from the statistical characteristics of the input and the dynamic charac-
teristics of the system, or to estimate certain statistical characteris-
tics of a given process from others. (See refs. lto 6 for discussions
of several problems in camunications theory and aeronautics from the
point of view of random-process theory.)

One statistical characteristicwhich is frequently of interest is
the number of msxima or minima expected in a given ttie; that is, the
number of positive or negative peaks of the process within a certain
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range or exceeding a certain level that can be expected in that time.
The expected life ofian airplane, for instsncel depends on the expected
number of times in a given period of time that its “ulthnateload is
likely to be exceeded. (See refs. 4 and 5.) Similarly, the fatigue
life of a structure can in some cases be related t~ the number of maxhm
per unit time and their frequency distribution. (See ref. 6, for --
instance.)

For a stationary Gaussian process - that is, for a stationary random
process in which the stochastic variable md its derivative are jointly
normally distributed - Rice (ref. 1) has given a simple expression for the
expected number of maxima in terms of the second mdments of the process
and its first two derivatives. These moments can be obtained from the
correlation function or power spectrum of the process. Ih turn, if the
process represents the output of a linear system, the spectrum can be
related very simply to the correlation function or..spectrumof the input.

Ih the present paper a similar expression for..theexpected number
of maxima is obtained for a stationary process with.a joint freqLZencY
distribution of the process ~d its first two derivatives; this distri-
bution differs slightly from the normal. The appr~ch used herein con-
sists in expressing the joint frequency distribution of the process and
its derivatives in terms of its second and higher moments by means of a
multivariate form of Edgeworth’s series, so that the desired expected
number of maxima or minima can then be expressed in terms of these moments.
Again, these moments_can be expressed in terms of correlation functions
and spectra, and the correlation functions and spectra of an output can
be related readily to those of the input. Howeverl in this case more than
the ordinary (double) correlation function or power spectrum is required,
because the nth moments depend on the n-tuple correlation function or
the corresponding spectrum. Hence, some of the multiple correlation
functions or multispectra of the input must be kno.m if the number of
maxima of an output process with non-Gaussian frequency distribution is
to be predicted by this method.

Inasmuch as the terms of Edgeworth’s series represent, essentially,
corrections to a normal distribution, the approach_outl@ed herein also
furnishes, essentially, a correction to the results obtained for a
Gaussian process. Explicit expressions are given herein for the func-
tions required in the first two correction terms, which involve the third
and fourth moments. No such expressions are given for higher correction
terms, because the effort entailed in obtaining the required multispectra
soon becomes very large. The procedure given here@ f~ishes an esti-
mate of the effects of skewness and kurtosis on the results of interest
and is, therefore, best suited to distributionswhich differ by relatively
little from the normal one, that is, primariu in the third and fourth
moments but to a lesser extent in the higher moments.
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Consideration will be confined to a process with zero mean. This
trivial restriction implies that, for a process with nonzero mean, the
results given here apply directly to the process which is the difference
between the actual process amd its mean; they can, however, be modified
to apply to the actual process in a straightforward fashion.

SYMEOLS

an
operator —

atn

trivariate frequency-distribution function for a random
process * its first two derivatives

trivariate normal distribution (with zero means)

random input process

indicial-response function for linear dynamic system

frequency-response function for linear dynamic system

function used in expression for ‘(xo)9 defined in

eqwtion (17)

function used in expression for N(xO), defined in

equation (21)

reciprocal second moments (elements of inverse of

Jmnp(Xo)

Mij

‘(9

w%)
t
x(t)

i(t),~(t)

matrix of second umments)

expected number per unit time of maxima
sities in band of unit width centered

expected number per unit time of maxima

time

with inten-
on %3

above %3

given raudom process, which may be output of a linesr
system subject to random input

first and second time derivatives of x(t)
8

.
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corresponding t~ x, $, and 2,

J7J73/2parameter,

joint statistical moments of random
first two derivatives, defined in
or (6b)

joint statistical moments of random
first two derivatives, defined in

process and its
equation (6a)

process and its
equation (~)

determinant of matrix of second moments

dimensionless random variable, La

r
a~

(double) correlation function for x(t)

triple correlation function for x(t)

quadruple correlation f~ction for x(t)

power spectrum for x(t), Fourier_transform of $x

double power spectrum for x(t), Fourier transform
of *=

triple power spectrum for x(t), Fourier transform
of v~x

the displacement, argument of $x

circular frequency

a given stationary
expected tO_eX.C_Ced

ANALYSIS

Easic Relations

random process x(t), the number of maxima
the level X. per unit time will be

.

.

.
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designated by N(~) , aad the tiumber

unit width centered on X. that are

be designated by n (xo), so that

n (xo) = -

Ofmaxinla inan

likely to occur

dJmo)
%3

5

&tens ity band of

per unit time will

b)

In reference 1 the following expression is given for n(%) h
terms of the joint frequency distribution f(X@xl)xp) of the process

and its first two derivatives:

n(%) = J-: lx21f(%J@dx2 (2)

where f(~,xl>x2) is deftied by the fact fiat f(x0,xl,x2)dX&XldX2

represents the probability that at time t:

This function is invsrimt with
of the process.

For a Gaussian process this
simple form. For such a process

‘G(xo)xl)x4 =
1-

(a)%h e

t by virtue of the assumed stationsxi~

result can be expressed in an especially
the frequency function is

where A is the determinant of the second moments of the process, and

‘he coefficients Mij are the elements of a matrix reciprocal to the

matrix of the second moments and will be discussed further in a later
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section. Substitution of this expression for f(x0,xl,x2) in equa-
tion (2) yields an expression for n(Xo) in terms of the moments; hence,

integration over X. yields an expression for N(~)~ ~d thus also for
total number of msxha per unit time, which iS eqml tO N(-m). T&

expressions for
‘(XO)

and N(-.) me given in reference 1.

&

—

● –

For a non-Gaussian process a similar expressim. for-the joint
frequency distribution in terms of the moments can be obtained from a
multivariate version of Edgeworth’s series. This series is derived (see
ref. 7, for instance) on the assumption that the given process represents
the sum of a large number M of statistically independent random vari-
ables. Then, by expanding the characteristic function for the process
in a series, several asymptotic expressions csm be ~btained (dependtig
on the manner in which the terms are collected) for the given non-
Gaussian distribution in terms of its moments, the Gaussian distribution,
and its derivatives. As M tends towsrd infinity-all terms of the
series except the one which represents the Gaussian,psrt of the distri-
bution tend to zero. In EHgeworth’s series, terms are grouped according
to powers of M, so that-each group can be expected to contain the terms _
representing a given extent of deviation from the Gaussian distribution.

v
This derivation can readily be extended to multivariate distributions

by using the concepts of random-vector theory, such.as,the multivariate
form of the characteristic-functionand of the Gaussian distribution. .

(See ref. 7, for instance.) The results can be expressed for the case
of interest as

[ {.

~ijk

‘(XO’X1’X2) = 1 - m

loaUkaz~

6[

+ —

(k)

where aijkZ... represents the moments of the given process and the _
tndices i, j, k, . . . may have the value O, 1, or”2. In this e~res-
sion the summation convention is used, so that any index repeated in a
product implies a sunmation over that index. Terms associated (in the
derivation) with a given power of M are grouped within braces. Only
the first two terms beyond the Gaussian part are ligted here; from the
Edgeworthis series given in reference 7, one additional term can be
deduced by analogy.

—

.
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As used in

7

The Statistical Moments of the Process

equation

where the bar designates
designate the ith, jth,

(k), the moments are defined by

Di{x(tlD’{x(t)}Dk{x(t)}*● ●

(5)

a time average, and the symbols Di, DJ, . . .
. . . derivative with respect to time. The

reason for this definition is that it permits the application of the
summation convention and thus greatly simplifies the writing of equa-
tion (4), smd the reason for the superscript notation is that subscripts
will be used for the mcxnentsdefined in the manner which is more descrip-
tive and convenient for the purpose at hand, because it assigns only one
set of indices to any moment, namely

(6a)

or

The two sets of moments defind by equations (5) and (6) can be
identified with each other in the following manner: For an rth moment
the number of superscripts i, j, k, . . . is r,andm+n+p=r;
m, n, and p are, respectively, the numbers of O’s, 1*s, and 2*s smong
i, j,k, . . . . Thus, for instance,

and so
hlany
moment

on. Obviously,
manner, but any
referred to.

The first moments

=

the ijk...superscripts of a can be permuted
change-h the-subscripts of ~p ch-&ges the

(mean nlues) of the process ~oo ‘~, ~lo ‘~,
n

‘d %01 = x are‘ero; x is zero by stipulation and the others are

zero of necessity, inasmuch as the process is stationary. Of the nine sec-
ond moments, four are zero and two are equal to each other as a result of
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4
the assumed stationarity of the process; therefore, the following moments
are left:

—

%200 =
X2

%20

aoo2

%.01 xx

As pointed out in referenc~7, for instsnce, they
in terms of the (double)correlation function for
defined by

.

.. —

—
-.. ,. -—

can all be expressed
~(t), which iS

IJX(T) =x(t)x(t+T) (7)

or in terms of the power spectrum, which is defined by ‘
●

J
m

9X(4 =:
-m

The required relations are given in
sake of completeness in

The second moments
manner:

(in which

table 1).

’200

0

table 1.

e-i~lJfx(T)dT (8)
—.-

reference 7 and are repeated for the---- .......—.-

can be arranged

10 -ao20

%20 0

-ao20 0 I
aca2

in a matr.&in the following

-

the fact was used that ~ol = -~20, as may be noted from

The determinant of this matrix is

—- .-

—.

.
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A

and the inverse of this

~
%20 (%0%02 - %202)

matrix is

L

%1

%1

M21

H%O’2%2
%30%02 - %20

HM22
%20

%200%02 - %202

o

&

o

kth the determinant and the nonzero elemats Of ~ j

equation (3).

Of the 27 third moments only 10 are distinct, and
zero as a result of
and expressions are
function and double

and

stationarity. me remaining 8 are

9

(9)

%320

%0%02 - %20

!
o

%200 1%00%2 - %202

(lo)

Occur in

two of those are
listed in table 1,

given for tha in terms of the triple correlation
spectrum defined by

Vxx (W’2) = X(t)x p+q) x (t+%J (11)

(12)

These expressions can be derived readily from the definitions of the
moments, of the correlation fwctiony and of the sPect~ bY a strai@t-
forward extension of the proced~e used for the second moments; these
derivations were obtained by using integrations by parts, differentia-
tions under the integral sign, and similar elementary operations, and
by taking advantage of the fact that the ‘processis stationary. Some

of these moments have been calculated in reference 8 for the purpose
of estimating the frequency distribution of x(t) alone.
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&

Similarly, of the ~ fourth moments the 13 distinct and nonzero ones
are given in table 1, as are expressions for them in terms of the quad-
ruple correlation function and triple spectrum

.

VXXXp~jT2jT3) = x(t)X(t+T~)X(t+T2)X(t+T3) (13)

Expressions for the Expected Number of Maxima

If the expression for the joint frequency distribution given by
equation (4) is substituted into equation (2), the following expression

‘s ‘b’stied ‘or ‘(~):

[{. ( )}‘(xo) = ‘ 1 -_& li$k‘o +(#2Ji
f

.

where r is the number of tndices i, j, k, . . . .

As in the case of the moments, another definition of these functions
is more convenient for some purposes, namely,
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Jll%lnp(’o) = -: ‘2
~m+n+p

‘G(’0>0,’2)(~) 3/2!@ dxp (17)
a%maxlnax2p

These functions csm be identified with those
the msaner indicat~ for
respectively.

the moments defined
defined by equation (16) in
by equations (~) and (6),

These functions we
variable

and the psrsmeter

The functions E(z) and

and

●

listed in table 2, in terms of the dimensionless

N(z) in this table are defined by

(18)

(19)

.

.
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a

where erf and erfc designate the error functiciiiand the complementary
error function, respectively. The functions not listed in table 2 are
zero or not required because they are multiplied by a moment which is

.

zero. Also included in table 2 for the saks of
function for Gaussian distributions 1000“

h terms of these functions, equation (15)

cc&pleteness is the-

can be written as:

.
%xl - {* ~oo13m + %1%01+ 3%o%20+ 3%02%02+ %03%0J} + —

{*[ , ‘%0 -%oo%m + 4(% + 3“200%X)%01+&220 -“200%o)%cJ+
.—

=

(6 %202 - 2=0202 - ~20c%02) %32 + u (%.ZL + %202) %21 + 4 (%03 + 3%X&002)%03+

(%40 - )1%ZT32)%40+ q=w - “020%2) %22 + (%@ - 3%22 %04 +

x!
6, [?oo2b + %5&%011501+%@@!&~ + (%~-%02+ %012)1402+

-—
..

1%01%201321‘ (%00”005+ ‘%02’%1)150,+ %20’%0 + (1%M0~02+ ..-

3~~ %2 + (~ol~ + ~022)~ + ~~30~1141 + (~oyq20 +
*

%W2=024 1]+ %32%6 -

A corresponding expression
exceedjng the level X. cen be

over q) 9 inasmuch as

. . .

for the expected msxima
obtained by integrating

.

(a)
.—

per unit time
this expression

N(xo) ‘~m n(xo’) dxo’
Xo

(see eq,.(l)). The resulting expression for ~(%) has a form identical

to equation (20) but with all functions ~p (~) replaced by func-
tions Jmp(xo)

These functions
total number of

defined by
-\-,

(21)
.

sre also given in table 2. Finally, sn expression for the -
maxhna per unit thne csm be obtained by replacing ~p(xo)
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in equation (20) by J-P (-OY). For the sake
of Jmp (-CO) are also listed h table 2.

13

of convenience the values

lhput-Output Relations

~ x(t) is the output of a linear system subjected to sm input
F(t), the double smd higher order correlation functions and spectra
of x(t), which are required to obtain the moments when no other tiorma-
tion is available, can be related to the correspondingly defined function
for F(t). In this process either the indicial response h(t), that is,
the response to an impulsive input, or the trsnsfer function H(u)),that
is, the complex amplitude response to steady-state sinusoidal oscilla-
tions of unit amplitude, must be known. These two ch~acteristics of
the system are related by

f

m

H(o) = e‘i%(t)dt (22)
o

The double correlation functions are related by the expression

where

and the corresponding

VX(T) = jm~&-dfh(dda (23)
-m

J

m

~h(~) = h(t)h(t+]ul)dt (2k)
o

spectra sre related more simply by

where the vertical bars on H(u) designate the absolute value.

Shnilar relations cam readily be derived for the higher order
correlation functions snd spectra, the expressions for the spectra being

.

.
%x (%%) =‘(q) H(%)H*(%L+%)%F(%%) (26)
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%XX(WLJWJ5) = H(%.)H(%.)H(%5)‘*(%%%) %FF (% %’ ~) (27)

and so on, where the asterisk designates the ccmplex conjugate.

DISCUSSION

b the preceding presentation, attention has been confined to maxima.
However; the results can readily be modified to apply to minima as well,
because”the expected number of minima per unit time_in a band of unit
width centered on ~ is given by

.

A comparison of this
as

indicates that the
expected number of.

(28)
wo)=Jmx2f(%Jo~x2)~2. -

equation with equation (l), which may be written

n(xo) =Jmx2f(~j0,-x2]dx2 (29)

expected number of
msximaby changing

distribution function.

Consequently, as a result of the

minhna can be obtained for the
the sign of .x2 in the frequency-

definition of ~p(xo) a

41111p(xo)~the expected number of minima can be obtained by making the

following two changes in the results presented in @is paper for maxima:

(1)

(2)

which n

Replace ’02 by

Multiply those of

iS oddby (-1).

()-“02 wherever it occurs in table 2.

the functions %np(%) w Jinnp(%) ‘“r

Stiilarly, if the number of msxima per unit time below .0 is

desired, this number cube obtained by subtracting N(xO) fr~m N(-co);

and in view of the statements made in the preceding paragraph, the same
procedure can be used for the number of minima below X. if N(xo) i.S

.
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calculated for minti by changing the sign of %2 szldOf

functions. The total number N(-co) of msxima is also the
minima, because for each maximum there must be a minimum.

As may be gathered from the procedure outline herein,
joint frequency-distributionfunction is not Gaussian, the

15

the specified

number of

when the
computational

effort involved in obtaidng the desired expected number of maxima or
minima soon becomes quite extensive, particularly in view of the fact
that usually multiple correlation functions or spectra have to be cal-
culated first in order to obtain the required mawnts. Although equip-
ment exists to measure such functions directly or through analog-cmputing
devices (see ref. 9, for instance), this equipment has not reached the
perfection of the equipment used for the_measurement of ordtisry correla-
tions and power spectra.

The numetical calculations of these functions from time histories
also pose difficulties beyond those resulting from the greater number
of variables involved. The source of these difficulties may be described
by expressing the power spectrum corresponding to the nth correlation
function associated with a given process x(t) in terms of the Fourier
transform of the process

rT
a(u;T) s e‘ifix(t)dt (30)

-T

as

-... (%’%’”””%.d=’T’:ma(q;T)a(%;T)“ “ “a~-l;’)a’(~++...l;l)’)9 (31)

where the asterisk designates the complex conjugate. Hence, in the
ordinary spectrum (n = 2) only the absolute magnitude of a(m;T) occurs,
whereas in all higher spectra the phase enters as well. (See also
ref. 8.) Also, inasmuch as the Mm a(m;T) does not exist, the exis-

T +W
tence of the spectra stems from the fact that the product of the func-
tions a(m;T) is divided by T before the limit is taken. Consequently,
the higher the spectrum the more the effect of the single T in the
nominator is “diluted.” Consequently, in a practical case, for a given
reliability, a greater portion of a random process must be analyzed M
higher-order correlation functions or spectra are to be obtained them
if only the ordinary functions are of interest. (See also ref. 10.)
However, if the deviation frm a Gaussism distribution is not too large,
the higher order moments are likely to be small.compsred with the second
moments; therefore, a lower degree of reliability h their determination
may .beacceptable.
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In view of these difficulties the procedure outline&herein is
likely to find application primarily in problems whqre the expected
number of maxima of an output have to be estimated from knowledge con-
cerning the input, because then even the statistica~characteristics of
the process are not known. For a given process the.~procedureoutlined
herein is likely to become of advantage only once ~ equipment for
measuring higher order correlation functions and spectra is perfected,
because if the process itself is knowr.(ti tie form of a ttie history)
the expected number of.ma@ma csxibe established by direct count more
readily than indirectly through a calculation of the joint frequency
distribution or moments; and if the frequency function is known, a
direct calculation of the extrema from equation (2) or (28) is likely
to be more convenientihan an indirect calculation based on moments
calculated from this function by using equation (6b)i

CONCLUDING REMARKS

A method has been outlined for calculating the expected number of
maxima or minima of a random process with non-Gaussian frequency distri-
bution from the statistical moments of the process and its first two
derivatives. This method is based on an estimate-tithe joint frequency
function of the process and its first two derivatives by means of a
generalized form of Edgeworth’s series; the procedure consists essen-
tially in a~lying a correction to the results for a Gaussism process.
!lhefunctions required in this procedure have been c&lculated for the
first two correction terms; therefore the effects of skewness smd
kurtosis can be calculated, provided the third and fourth moments of
the process and its first two derivatives are known.

Expressions have been given for these -mom&ts-@ t&iis of multiple
correlation functions and multispectra, and the relations between these
functions for the random output of a linear system ~ those for the
random input have beeu tidicated. -—

Langley Aeronautical Laboratory,
—

National Advisory Committee for Aeronautics, .
Iangley Field, Vs., January 19, 1957.

.

L..

.

.-

.-

.—

.

.



NACA TN 3960 17

.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

~ES

Rice, S. O.: Mathematical Analysis of Random Noise. Selected Papers
on Noise and Stochastic Processes, Nelson Wax, cd., Dover Pub., Ihc.,
c.1554, pp. 133-294.

James, Hubert M., Nichols, Nathaniel B., and Phillips, Ralph S.:
Theory of Servomechanisms. McGraw-Hill Book Co., ~c., 1947.

Liepmann, H. W.: On the Application of Statistical Concepts to the
~fe%g Roblem. Jour. Aero.
PP. 793-~o, 822.

Fung;Y. c.: Statistical Aspects
“) vol. 20, no. 5, May 1953)

Sci., vol. 19, no.

of Dynamic Loads.
PP. 317-330.

Press, Harry, and Mazelsky, Eernard: A Study of the

U, Dec. 1952,

Jour. Aero.

Application of
Power-Spectral Methods of Generalized Harmonic Analysis to Gust
Loads on Airplanes. NACA Rep. 1172, 1954. (Supersedes NACA
TN 2853.)

Miles, JohnW.: On Structural Fatigue ~der Random Loading. Jour.
Aero. Sci., vol. 21, no. 11, Nov. 1954, PP. 753-762.

Cram<r, Harald: Mathematical Methods of Statistics. Princeton Uhiv.
Press, 1946. (Reprinted 1%1. )

Mazelsky, Bernard: Extension of’Power Spectral Methods of Generalized
Harmonic Analysis To Determine Non-Gaussian Probability Functions
of Random Tnput Disturbances and Output Responses of Linesr Systems.
Jour. Aero. Sci., vol. 21, no. 3, Mar. 1954, pp. 145-153.

Townsend, A. A.: The Measurement of Double and Triple Correlation
Derivatives in Isotropic Turbulence. Proc. Csmbridge Phil. Sot.,
vol. 43, pt. 4, Oct. 1947, Pp. 560-570.

Tukey, John W.: The Sampling Theory of Power Spectrum Estimates.
Symposium on Applications of Autocorrelation Analysis to Physical
Problems (Woods Hole, Mass.), June 13-14, 1949, pp. 47-67.
(Sponsoredby ONR, Dept. Navy.)

9

*



NACA TM 3960

.

TAm.E l.- EmFE?sIole2 FoRmEMcMm19 ~TERM20FC ORmIATIa F7Ew!mJN9 Arm 2PKmA

—

—

.—T- T1-T2- T ~ -* o. .- .

.



NACA TN 3960

1

.

19

ZAE.E l.- EXFFIFSIOR2PUR!EE~ lHmFMsoF CORRELATION FUR.7TIONSMD SP=- - COIICluded



20 NACA TN 3960

r

—

●

.

,

c



b

NACA - Langley Field, Va.


