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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3890 

ON POSSIBLE SIMILARITY SOLUTIONS FOR THREE-DIMENSIONAL 

INC OMPRESS IBLE LAMINAR BOUNDARY L.I\.YERS 

III - SIMILARITY WI TH RESPECT TO STATIONARY POLAR 

COORDINATES FOR SMALL ANGLE VARIATION 

By Howard Z. Herzig and Arthur G. Hansen 

SUMMARY 

Approximate solutions are obtained describing mainstream flows con­
fined to regions of small angle variation over flat surfaces for three­
dimensional, l aminar , incompressible, thin boundary-layer flows having 
similarity with respect to stationary polar coordinate systems. The solu­
tions, summarized in a table, include accelerating or decelerating flows 
and stagnation- point, ?piral, or circular flows. An experimental compari­
son of limiting overturning at the wall showed good agreement for the 
first 100 of turning of circular mainstream flow. 

INTRODUCTION 

In addition to providing an insight into secondary-flow behavior 
associated with laminar boundary-layer flows, the experimental investiga­
tions of references 1 to 3 demonstrate that the information thus obtained 
for laminar flows can be used to interpret and to correlate flow measure­
ments taken in turbomachines at operational conditions. These experimental 
investigations thereby provide an important link between applied turbo­
machine research and the similarity-type boundary-layer analyses developed 
in references 4 to 12. The link i s further strengthened by the combined 
theoretical and experimental investigation of reference 13. I n reference 
13, boundary-layer similarity solutions are obtained for main flows con­
sist ing of streamline translates (i . e . , the entire streamline pattern can 
be obtained by translating any particular streamline parallel to the 
leading edge), and the theoretical predictions of boundary-layer over­
turning (more than mainstream turning) near the surface are in close 
agreement with experimental results obtained by traCing the boundary-
layer streamlines with smoke flow- visualization techniques. 

------~ 
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Using a generalized similarity variable ~,reference 14 extends 
these results analytically to obtain all possible flows with boundary 
layers having classical similarity with respect to stationary rectangular 
coordinates . The dimensionless boundary- layer velocity components in the 
plane of the surface are assumed to have similarity with respect to their 
respective coordinates . This similarity is expressed by means of two 
suitably defined functions of the similarity variable . 'rhe boundary-layer 
equations are then transformed to equations involving the mainstream flow 
components, their derivatives, the similarity functions, and their deriva­
tives. All the mainstream flows are then determined f or which the trans­
formed boundary- layer equations reduce to ordinary differential equations 
in the similarity functions and their derivatives. Four distinct fami­
lies of such mainstream flows are obtained in reference 14, including 
cases of accelerating or decelerating flows for quite general streamline 
paths. The main- flow streamlines are not required to be translates, nor 
are they restricted to regions of small turning in reference 14 . 

In reference 15, solutions are obtained for the mainstream flows 
whose boundary- layer velocity components in the plane of the surface have 
similarity with respect to the corres ponding polar coordinates. Thus, 
exact solutions are obtained for spiral, circular, and stagnation-point 
flow configurations with no r estrictions on mains tream turning. For the 
solutions thus obtained, however, a proper leading edge cannot be defined. 
(A proper leading edge, which corresponds theoretically to a real physical 
leading edge , would be a line or curve of zero boundary-layer thickness 
on the surface, downstream of which the boundary layer develops.) 

The present investigation extends the analysis of reference 15 by 
consider ing the flows in a sector-region of small central angle e. The 
purpose of this investigation is to determine mainstream flow solutions 
for which the transformed boundary-layer equat ions reduce to ordinary 
differential equations . Solutions are obtained for four new families of 
mainstream flows with boundary l ayers having similarity with respect to 
the polar coordinates in the plane of the surface. Included here are 
cases for flows over well- defined leading edges . It is important to note 
that experimental investigations (refs . 1 to 3 and 13) indicate that in 
typical turbomachine configurations a large portion of the end-wall 
boundary l ayer at the inlet to a passage has completely crossed from the 
pressure to the suction side of the passage when the mainstream has been 
turned less than 300 • Thus, in describing physical flow, it appears not 
unreasonable to restrict the analysis to small central-angle sectors . 
The regions where this assumption might be considered r easonable are ~ 

established by a theoretical and experimental comparison of the boundary-
layer limiting flow deflection (ref . 13) in a circular two-dimensional 
channel. 
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g,g (r,e) 

11 (8) 
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U,W 

u,v,W 

y 

v 

Subscripts : 

Superscripts : 

3 

SYMBOLS 

constants 

function of similarity parameter, u - UF'(~) 

function of s imilarity parameter, eq . (45) 

arbitrary functions of r 

a rbitrary function of rand e 

function of similarity parameter, w e WG'(~) for W f 0, 
w = WG'(~) for W = 0 

function of coordinates rand e 

function of 8 

constants 

cylindrical coordinates 

constant 

mainstream velocity components in e and r direc­
tions, respectively 

boundary-layer velocity components in 8, y, r direc ­
tions, respectively 

function of coordinates rand 8, w = WGI( ~) for 
W = 0 

boundary-layer deflection at surface 

similarity variable ~ = yg(r,8)/~ 

coefficient of kinematic viscosity 

index numbers 

Primes denote differentiation 

- ---- --- --- -- J 
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ANALYSIS 

Boundary-Layer Equations in Stationary Cylindrical Coordinates 

The three- dimensional laminar incompressible thin boundary-layer 
equations i n cylindrical coor dinate form f or flows over flat (or nearly 
flat) surfac es with stationary coord inate axes as shown here 

U,u 

v 

WJw 

e 0 

ar e given by 

(la) 
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in the tangent i al direction and 

U2 U oW oW 
+ - ~ + W r r ae dr (lb) 

in the radial direct ion, where u, w, and v are the boundary-layer 
velocity components in the e, r, and y directions, respectively. Con­
sistent with the restriction to thin boundary-layer flows over flat (or 
nearly flat) surfaces as required for the formulation of the boundary­
layer equations (eq. (1), the mainstream velocity components are 

u U(r,e) 

W == W(r, B) 

The equation of continuity for the boundary-layer flow is 

1 ou ow w ov 
0 rde+dr+ r +dy 

The appropriate boundary conditions are 

u == w == v == 0 for y 0 

u ~ U} 
as y ~oo 

w ~W 

Similarity with Respect to Stationary Polar Coordinates 

The boundary-layer equations may be transformed by the us e of a 
generalized space variable 

1') == ---L- g(r,B) 
VV 

and by defining 

(2a) 

(2b) 

(Ic) 

(ld) 

(le) 

(3) 

(4a) 

(4b) 

to a new system of coordinates r, B} and 1') . The definitions (4a) and 
(4b) are the r equirements for similarity of the boundary-layer velocity 
components in the plane of the surface with respect to their corresponding 
polar coordinates. 

~- --- -- ------------- -------~- J 
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The choice of polar coordinates (as in ref. 15) requires an additional 
precaution beyond those needed for similarity with respect to rec tangular 
coordinates . In rectangular coordinates when either U or W is zero 
(see ref . 14), the mainstream flows are straight, there is no secondary­
flow overturning in the boundary layer, and complete similarity solutions 
have been obtained for the equations of the resulting two- dimensional 
boundary- layer flows (refs. 4 and 5). I n the present case, however, when 
the mainstream radial component W z 0 , there is curvature of the main­
stream flow, U I 0, and three- dimensional boundary-layer overturning 
results (i.e., w f 0, for W = 0) . Under these conditions, equation (4b) 
does not apply. Instead , a new function W(r,e) is defined for 

w == WG ' (TJ), W f 0 (4c) 

Accordingly, it is convenient to treat W I 0 flows separately from 
W = 0, W f 0 flows. 

W f O. - When the mainstream flow has both U and W components, 
the corresponding boundary-layer velocity components are defined by 
equations (4a) and (4b) as functions of the similarity parameter TJ . 
Corresponding to the conditions of no flow at the surface ( eq. (ld)), the 
boundary conditions on F ' and G' are 

F' (O) = G' (O) = 0 (5a) 

Corresponding to the condition (le) that the u and w 
components merge smoothly i nto main- f l ow components U 
respectively, 

boundary-layer 
and W, 

lim F ' (TJ) = l } 
TJ -+- 00 

lim G I (TJ) 1 
TJ -+- 00 

(5b ) 

Now v may be det ermi ned by integration of the continuity equation 
using (4a ) and ( 4b ): 

Q 0 In g) F + (ow _ W 0 In g + -rW) Gl _ 
r de dT dr ~ 

Q 0 In g yF ' _ W 0 In g yG ' + f(r e) 
r de dr ' 

( 6) 

where f(r, e ) i s an arbitrary function arising from integration . 
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In order that v = 0 for y = 0 as required) it is possible with­
out loss of generality to set the boundary conditions 

F(O) = G(O) = 0 , and I(r,e) = 0 (5c ) 

(See appendix C, ref . 14, for a discussion of the necessary and sufficient 
boundary conditions. ) 

Upon substitution of equations (4a), (4b), and (6), equation (la) 
becomes (for W f 0) 

~ (F r G' - G F" - 1) + ~ ~ ( F ' 2 - FF" - 1) + W d g~ U (F r G I - 1) + 

U 0 ln g2 FF" W 0 ln g2 GF" 
2r de + 2 dr 

oW GF" _ g2F"' = 0 
dr (7 ) 

and equation (lb) becomes 

2 
~r (1 - F' 2) + ¥ d g~ W (F r G I - 1) + ¥r (G' 2 - GG 11 - 1) - ~ ~ FG" + 

(8) 

As in references 14 and 15) the purpose of this investigation is to 
determine mainstream flow solutions for which the transformed equations 
(7) and (8) reduce to ordinary differential equations. As an extension 
of reference 15; the present analysis considers flows restricted to a 
sector-region of small central angle e. The mainstream flow conditions 
are sought which make the coefficients of the functions of ~ 

proportional . 

The most general approach would be to rewrite (7) and ( 8 )) grouping 
the coefficients of like terms in G,F and their derivatives, and then 
to require proportionality of these grouped coefficients. It can be 
sho1Vll) however) that no cases arise beyond those obtained more simply by 
requiring proportionality of the individual coefficients in (7) and (8) . 
Under these ordinary differential equation conditions (abbreviated to 
o . d.e. c onditions), the common variable terms in the equations may be 
divided out, leaving ordinary differential equations for F and G. The 
actual numerical solutions of the ordinary differential equations are not 
attempted herein. 
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For convenience, the coeff i cients for the funct ions of ~ in equa­
tions ( 7) and ( 8 ) are presented here in the order of their appearance . 
With W f 0, they are 

0) W ® oW 
r dr 

® 1 oU CD g2 
rde 

W 0 ln U U2 
® ® dr Wr 

CD U 0 ln g2 
® U 0 ln W 

2r de r de 

® W 0 ln g2 
"2 dr 

The o . d .e . cond i t ions r equire these nine coeffi c i ents to be pro-
portional to each other . 

W = O. - When W = 0, the corresponding boundary-layer equat i ons 
(la) and ( lb) become 

u ou ou ou ,, 2 U oU uw o u 
r + r de + w d"r + v dy - v oy2 = r de ( 9a) 

u2 u ow ow ow o2w U2 
+ - de + w d"r + v 6y - v oy2 = -r r e r 

(9b) 

The equat i on of continuity for the boundary-layer flow rema ins unchanged: 

1 ou ow w ov 
0 rde+d"r + - + dy r (lc) 

The boundary conditions now are 

u = w = v = 0 for y 0 

u ~ U} 
as y -+ co 

w -+ O 
(9c) 

of:> 
N 
(N 
,p. 
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For main flows such that W = 0, define 

u == UF ' (1']) 

w == WGI (1']) 

(4a) 

(4c) 

where W = W(r, e) f O. The boundary conditions on F' and G1 required 
to satisfy boundary conditions on u and w in equations (9) (W = 0, 
W(r,e) 1= 0) are 

F ' (O) = G1(0) = 0 (lOa) 

lim FI (T] ) = :} 1'] -+ 00 

lim GI( T]) 
1'] -+ 00 

(lOb) 

The expression for v obtained by integration of the continuity 
equation (lc) i s the same as (6), ~ ith W being replaced by W: 

v = ~ ~1: cU _ Q c ln g) F + ( CW _ W C ln g + :R) Gl _ 
g ~ r dB r de dr dr r J 

Q C ln g F ' _ -w C ln g Gt I( e) 
r de y dr y + r, ( 11) 

As before, the boundary conditions chosen as sufficient to provide 
that v = 0 for y = 0 ar e 

F(O) = G(O) 

I (r,e) 
= O} 
= 0 

Substitution of equations (4) and (11) into (9a) and (9b) produces 

~ (F I G I _ G F") + ~ ~ (F 12 - FF" _ 1) + W C a~ U F t G S + 

U C ln g2 
FF" We ln g2 

GF" CW GF" g2F'" = 0 
de + - dr 

- -
2r 2 dr 

u2 
(1 - Fs2 ) U C ln W FIGI CW (Gt2 - GG") 

1 CU ro" =- + - +dr" - "ide + 
Wr r de 

U d ln 2 +I!d ln 2 
~ GG" g2GIII = 0 

2r de 
g ro" 

dr 
g GG" -

2 r 

(lOC) 

(12) 

(13 ) 

~_J 
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The argument concerning determination of the o.d.e . conditions by 
means of relations between the coefficients of the functions of ~ in 
(12) and (13) remains unchanged . These coefficients, it may be noted, are 
the same as the coefficients for equations (7) and (8), respectively, with 
W replaced by W. 

Solutions for Small Variation of e 

As the flow is considered restricted to regions of small variation 
of e (i.e., regions that are narrow sectors having small central angles), 
coefficients will be neglected that are of second and higher order in e 
relative to the other coeffic ients . I n order to do this, it is assumed 
that U(r ,e), W(r,e), and W(r,e) are expressible as 

W(r, e ) 

Wer, e) 

f;(r )h2 (e), W 1 0 

f~(r)h2(e), W = 0 

and that, in the region of interest chosen for convenience about e = 0, 
hl (e) and h2(e) are adequately represented by 

Hence , U, W, and W in the neighborhood of e = 0 are considered to be 
defined by 

U(r,e) = fl(r)et 

W(r,e) f2(r)em (14) 

W(r,e) 

As will be seen later, in some cases this assumpt i on further results in 
solutions that have properly defined leading edges. Solutions are ob­
tained for the main flows in the following manner. 
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By substitution) the coefficients of the functions of F and G 
in equations (7) and (8) for W f 0 or in equations (12) and (13) for 
W = 0 become 

11 

(15) 

® f 2(r)em 

(j) g2 

® 
(fl (r)) 2 

e2t- m 
rf2(r ) 

® fl (r) et - l 9 m --r 

As before (refs. 14 and 15)) the objective is to find conditions 
(o . d . e . conditions) that make these coefficients proportional to one 
another . Then the common rand e factors may be divided out) and the 
transformed equations reduce to ordinary differential equations. Here) 
however) with e small) it is assumed that terms of second and higher 
order in e relative to the rest are negligible. 

The procedure will be to establish the relations between constants 
m and t (the powers of e i nvolved ) or the assumptions concerning 
fl(r ) or f2(r) that will lead to proportionality among the terms . The 

follm,ring possibilities are suggested . 
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m = t - 1 . - When m = t - 1, em is a common factor of all the 
coefficients listed in (15) except (j) and may be divided out, yielding 

CD 
fl d ln g2 
2r de e 

® 
f2 d ln g2 
2"" dr (16) 

® f l 
2 

(j) g2e- m 

f2 

® 1 e2 
rf2 

® 
fl 

m -r 

Coefficient <V is the coefficient of the F'" and Gill terms in the 
transfor med boundary- layer equat i ons . I t must not be permitted to vanish, 
for that would reduce the order of the transformed equations, and the 
number of boundary cond i tions on F and G would then exceed the order 
of the equations . Consequently, CD is made proportional to ®, with 
the result that 

(17 ) 

Coeffic i ent @ is therefore independent of e. Coefficient ® is of 
second or der i n e relative to the rest and is therefore neglected . 
Fromo . d . e . condi tions on CD and ®, 

(18) 
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and, from 0 and ®, 
a 

f - a r 4 2 - 3 (19 ) 

Therefore, combining (14), (17), (18 ), and (19) and redefining the 
constants a i for convenience results in 

W :::: brnem, W r 0 

g2 :::: ern-lem 

(20) 

The correspond i ng ordinary differential equations are obtained by 
substitution in equations (7) and (8): 

b(n + l)(F ' G'- 1)_b(n
2
+3) GF" +a(m+l) ~F')2_~_a(m2+2) FF"-cFIII

:::: 0 

(21) 

am(F'G' - 1) + bn 8 G,) 2 - IJ - ben 2+ 3 ) GG" - a (m 2+ 2) FG" - cG'" :::: 0 

(22 ) 

with equation (5) glVlng the boundary conditions. When W:::: 0, 

W :::: brnem f 0; and substitution into equat ions (12) and (13) yields 

b ( n + 1) F ' G' - b ( n 2+ 3) G F" + a ( m + 1) [ ( F I ) 2 _ ~ _ a ( m; 2) FF" - c F'" :::: 0 

(23) 

am(F' G') + bn(G ,)2 - ben 2+ 3) GG" - a(m 2+ 2) FG" - cG'" :::: 0 (24 ) 

with equation (10) giving the boundary conditions. It is important to 
note that the boundary conditions on G' are different for W f 0 in 
equat ions (21) and (22) from those for W:::: 0, W f 0 in equations (23) 
and (24 ). While a more general case appears to be 

m :::: t - k , k :::: 1,2,3 

- ___ J 
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only the cas e d i scussed here ) k = 1) has any prac tical signifi cance for 
thi s a nalysis . When k ~ 2, then , for sma ll e, U is negligible when 
compared with W) and the resultant flows are cases of U = o. 

ill = t + 1 . - When m = t + 1) substituting into (15 ) and d ivid ing 

t b em- 2 . a ll erms y g lve 

0) 
f2 e2 
r 

® m - 1 
fl ---

r 

® 
f2 f 1 e2 
f l 1 

@ 
fl d ln g2 
2r de 

e 

® 
f2 d ln g2 2 

(25) 
2 dr 

e 

® f ' e2 
2 

(j) g2e2- m 

® 
(fl )2 
---
rf2 

® m r fl 

From the o . d . e . conditions on G) and ® it can be seen than g2 

has the f orm 

b 
g2 = rl fl em- 2 (26) 

~ 
~ 

~ 
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Coefficient ® is therefore independent of e and so CD, ®, ®, and 
QD are considered negligibly small. The modified coefficients are now 
written 

(Do 

® m -
r 

® 0 

From the o . d . e . conditions ® and ® it can be seen that 

(27 ) 

(28) 

and no further restrictions on the form of fl or f2 are required, as 

all coefficients are proportional. Then using (14), (26), and (28), U, 

W, and g2 are written 

U = af(r)em- l 

W = bf(r)em, W f 
2 c f(r)em-2 g = r 

and equations (7) and (8) become 

a (m - 1) G F I ) 
2 - ~ - ~m FF" - c Fill = 0 

- - - - - - --- ~- - - ---~ 

(29) 

(30) 
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- ~ 8Ft)2 _ ~ + am( F'G' _ 1) - ~m FG" - cG'" = 0 (31) 

The boundary conditions are given by equation (5). 

(13 ) 
When W = 0, W = bf(r)em f 0, substitution into equat i ons (12) and 
produces 

a (m - 1) [(F')2 - ~ - a2m FF" - cFm = 0 (32) 

_ ~2 EFt)2 _ ~ + am(FtG') _ ~m FG" _ cG'" = 0 

Again, while 

m t + k, k = 1,2,3 

appears more general, only k 1 actually applies here . When k ~ 2, 
W = 0 under the present as sumptions , and the resulting flow is equiva­
lent to taking b = 0 in equations (20) or (29). 

m = o. - When m = 0, from o . d . e . conditions Q) and ® and the as ­
sumpt ion that terms of second or hi gher order in e relative to other 
terms may be neglected, t = 1, - 1, or O. The case t = 1 corresponds 
to the case of equation (20) and t = -1 to the case of equation (29). 
I f t = 0, U = U(r), fl is proportional to f2' and therefore 

W ( or W) (34) 

This case and the resulting ordinary d ifferential equations are the same 
as were obtained by taking U = U(r), m = 0 in the exact solutions 
(ref. 15). 

t = 0 . - When t = 0, examinat i on of the o . d.e . condit i ons d i scloses 
no cases not already obtained by the analysis . 

fl (r) = a or f2(r} = b. - Where fl(r) is taken to be a constant, 

a, U = u(e) alone and the coefficients in (15) become 
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CD 
f2 

em 
r 

® .! et - l 
r 

® 0 

® 1 d In g2 t 
2r dB e 

f 2 d l n 2 
® "2 dr 

g em 

® f ' em 
2 

(j) 2 g 

® 1 e2t- m 
rf2 

® ~ et - l 
r 

Just as before , two signi ficant pos s ibilities 
m = t + 1 . When m = t - 1, equation (18) applies 

This corresponds, of course, to n = 0 ( eq . (20) ) . 
analys i s leading to equat i on (28) applies, and the 
respond t o f er ) constant in equation (29) . 

17 

(35 ) 

occur, m = t - 1 and 
and f2 is a constant . 

When m = t + 1, the 
resultant flows cor-

When f2(r ) is constant , the same results are obtained and fl(r) 

must l ikewise be constant . 

RESULTS AND DI SCUSSION 

The analysis of three- dimensional, laminar, incompressible boundary­
layer flows havi ng similarity with r espect to polar coordinates has led 
to two d i fferent categor i es of solutions . In the first are the solutions 
for mainstream flows descr i bed in reference 15 . In the second category 
are perturbat i on- type solutions obtained here whose val i dity i s restricted 
to regions of small variat i on of angle e . The mainstream flows for the 
latter category are described by equations (20), (29) , and (34). 

-----~ ---~--- --- -- --
_1 
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The flows represented by equat i on (34) are actually a special case 
of the exact solut i ons of reference 15 and will not be discussed further. 
As a result of these analyses, table I has been prepared, which summarizes 
the four new cases obtai ned here of mainstream flows over a flat or 
slightly curved surface for which the boundary- layer flows have similarity 
with respect to polar coordinates. 

The cases are as follows: 

Case I: U = arnem+l 

w= brnem b , r 0 

Case II: U = arnem+l 

W = 0 

W= brnem , b -:/ 0 

Case III: U af(r )em- l 

W bf(r )em, b -:/ 0 

Case I V: U = af(r )em- l 

W = 0 

W = bf(r)em, b -:/ 0 

As descr ibed earlier, secondary flows exist even though the radial 
component of mainstream flow vanishes (W = 0 ). For such cases, a function 
W = W(r,e ) t 0 is defined, and the boundary-layer radial component of 
flow i s expressed as 

(4c) 

The Mainstream 

When W r 0, the mainstreams are spiral flows. For W = 0, circular 
mainstream flows are obtained. 

u, W, W. - In regions where the thin-boundary- layer theory is ap­
plicable, the mainstream is very nearly parallel to the surface; U and 
Ware functions of rand e only . 

The analysis for the exact solutions for boundary-layer flows having 
s imilarity with respect to stationary polar coordinates (ref. 15) showed 

"" N 
IN 

"" 
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that only one form of U and W (or W) is possible, that is 

U = arnem8 

19 

(36) 

The present analysis results in obtaining a much wider variety of flow 
solutions, represented by equations (20) and (29). In particular, there 
are no restrictions whatsoever on the functional relation of U and W 
(or W) to r in cases I I I and IV (eq. (29)). An example might be 
chosen of circular main- flow streamlines where the inlet velocity U at 
the leading edge 8 = 0 varies in a sinusoidal fashion. The secondary­
flow overturnip~ would then cause the boundary layer to pass through 
regions where the main-flow velocity is alternately increasing and de­
creasing. As will be seen later in the discussion of the boundary-layer 
thickness and g(r,e), the boundary layer will correspondingly become 
thinner or thicker. 

The small- angle solutions were obtained by assuming that second and 
higher power terms of 8 could be neglected . In all these cases, U and 
W (or W) are obtained as products of powers of rand 8. In cases I 
and 11 wju (or wjU) is proportional to Ij8 . In cases III and IV, wju 
(or wjU) is proportional to 8. 

Projection of main- flow streamline on surface. - The equation for the 
projection of the main- flow streamline on the surface for W f 0 may be 
obtained by integrating 

W dr 
U = r d8 (37) 

Whenever W f 0 and UfO, spiral mainstream flows result (cases I and 
III) . For W = 0, circular main-flow streamlines result (cases II and IV). 

Slope of projected streamlines . - The slope of the projected stream­
line with respect to 8 = 0 (the tangent of the angle between the tangent 
to the projected streamline curve at a point and the line 8 = 0) may be 
obtained from 

dr dB tan 8 + r 
slope = 

dr 
de - r tan 8 

(38) 

It is found by substitution into equation (38) that the slope is inde­
pendent of radial position r for all cases. 
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Irrotationality. - For mainstream flows considered here and in re­
gions of thin boundary layers, as required for this analysis, only the 
component of vort icity normal to the surface 

U 
r (39a) 

can be much different from zero (ref . 14) . The values of the constants 
specified under the listing "Irrotationality" (table I) were obtained in 
each case from 

o (39b) 

These values set the conditions for nearly irrotational mainstream flows . 

The Boundary Layer 

As d iscussed in references 14 and 15, the physical interpretation of 
the bound~ry- layer behavior that the mathematical representations describe 
is best found by examining the behavior of ~ and in particular g(r,e) . 

The boundary- l ayer thickness on the surface at a point r,e is in­
versely proportional to g (r, e ) at the point . In order for the theoreti­
cal boundary layer to have a beginning at a leading edge with zero thick­
ness, as in a real fluid, there should be a line along the surface for 
which g(r,e) is i nfinite while the velocities remain finite. In the 
exact solutions presented i n reference 15, this occurs in the finite part 
of the pl ane only at the point r = 0 for values of n < 1 . For n > 1 
the boundary layer in r eference 15 may be considered to have a "beginning" 
only at r = ~. However, the mainstream velocities there take on 
" infinite" values. 

In the present report (flows for small angle e), for cases I and II 
when - 1 ~ m < 0, g(r,e) and hence ~ becomes infinite along the line 
e = 0, while U is finite as required. In case I , however , W (and w) 
are unbounded, so a proper leading edge does not exist there . I n case 
II, W = 0 but W is unbounded at e = O. In cases III and IV, for 
1 :S m < 2, there is a properly defined leading edge at e = 0, where 
g(r,e) takes on infinite values and where U, u, W, and w remain 
finite . For 1 < m < 2, in cases III and IV, U = W = 0 at the leading 
edge. For m = 1, U is independent of e and may be different from 
zero at the leading edge . 
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I n cases I and II for m > 0 , and in cases I I I and I V for m > 2, 
along the line e ~ 0, the mainstream and the boundary- layer velocity 
components are all zero . Even though the boundary- layer velocities match 
the mainstream in these Situations, a proper leading edge does not ex i st 
there because g(r,e) equals zero, corresponding to an "infini tel y" thick 
boundary layer. As in reference 14, such accelerated- flow cases may be 
considered appropriately by conf i ning the discussion to regions where the 
requirement of thin boundary layers is satisfied. 

The Ordinary Differential Equations 

The actual numerical solut i ons of the ordinary differ ential equa­
tions are beyond the scope of the present investigation . The literature 
contains examples of numerical solutions for particular val ues of t he 
constants . Some of these examples are noted in the listing " Comments and 
References " associated with each case in table I. 

The present a nalysis simply derives the ordinary differential equa­
tions that can be obtained with the underlying assumptions . In any 
particular case of interest for which the equations are appropriate, the 
existence of the numerical solution and its computation must be obtained 
individually . Nevertheless , some general remarks (in part repeating 
material from ref. 14 here for convenience) can be made here (as in ref . 
11) concerning the numerical solutions . 

Separation of F and G. - Under certain choices of the free con­
stants involved, the functions F and G are separable; that is, one 
equation of the pa ir of ordinary differential equations will contain 
terms in only one of these functions and its derivatives. Numerical 
solutions are much more readily obtained in such cases than when the 
functions are not separated. 

An example is provided when a = 0 (case I), so that equation (22) 
then contains terms only in G and its derivatives . In all cases where 
the functions can be separated, the equation is thereby reduced to a 
Falkner- Skan type equation . The complete solutions to Falkner- Skan equa­
tions have been obtained in references 4 and 5 . Thus, equation (30) (case 
III) and equation (32 ) (c ase IV), in which the functions are already 
separated, are all Falkner- Ska n equations. 

Although it is not a pparent from the equations in the table a lone, 
when a = 0, then u = 0 and equation (la) and therefore equations (21 ) , 
(23), (30), and (32) disappear . In cases I and III (W I 0), when a = 0, 
the flows are straight tyro- dimensional flows along r adial lines out from 
a stagnation point. In cases II and IV (W = 0), a = 0 is the trivial 
case of no mainstream flow. 

_J 
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In case III , when a = b, F = G. If, in addition, m = 0 and 
c - a , equation (30) becomes equation ( 9 .12) of reference 16: 

Flit _ F I 2 + 1 = 0 (40) 

As pointed out in reference 16, thi s is one of the few cases when the 
boundary- layer equat ion can be solved in closed form . The solution is 

F ' 
u 3 tanh

2 (~ + tanh-
1 '14) -2 

U (41) 

When c a b and m 0 , equation (30) becomes 

FIll + F , 2 _ 1 = 0 (42 ) 

Letting 

ff( - 11) = F ( 11 ) ( 43 ) 

then by differentiation of equation (43) and substitution, equation (42 ) 
becomes 

ff"' - ff' 2 + 1 o 

a nd the solution thereby is seen to be 

U 
ff' = U (

- 11 1/\ (2) A/2 + tanh- 'V3 - 2 

( 44 ) 

( 45) 

Linearity in u or w. - As d iscus sed in reference 14 and applied 
in r eference 13, an ext ens i on of the solutions beyond strict similarity 
of t he velocity component can sometimes be made by addit i on of solutions 
where the boundary- l ayer equat i ons a r e linear i n u or w. Apparently 
s uch extensions are not poss ible for the boundary- layer flows investi­
gated here, because equat i on (1) is always nonlinear in u and in w 
except for the typi cal ca se of no mainstream flow . Nevertheless , there 
i s the complete fr eedom fr om specificat ion of the form of f(r) in cases 
III and I V. Accordingly, if 

and 
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are possible solutions for mainstream flows, then 

likewise represents a possible mainstream flow, although solutions for 
u and w cannot be superimposed. This fact (the reasoning is the same 
for W as for U) is evident also from the ordinary different ial equa­
tions for cases III (eqs. (30) and (31)) and IV (eqs. (32) and (33», 
which are independent of the form of f(r). 

Comparison with Experiment 

An experimental investigation was made to determine whether the 
theory provides a reasonable approximation of the limiting flow deflec­
tions for the particular case of circular flow over a flat plate. Of the 
cases presented, this case is the one most likely to be encountered in 
actual practice. 

Theoretical prediction of limiting deflection. - The case that will 
be investigated is case IV with m = 1. Under this assumption equations 
(32) and (33) become, respectively, 

FF" FltI = 0 2+ 

FG" 
-F' G' ' - (F,2 - 1) + -2- + GI11 = 0 

(46) 

(47) 

where the following relation between the various constants has been 
chosen: 

c = a = - b 

Equation (46) is the Blasius equation, and values for 
in reference 13. Reference 12 shows that the function 
(47) is expressible in the form 

G' 

where p(~) is the solution of the equation 

FP' 
p" + -- - F I P = -1 

2 

--~-----

F are tabulated 
G' in equation 

(48) 

(49) 

__ I 
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with the boundary conditions 

1, p(o) o 

The solution of equation (49) , however, is presented in reference 13, and 
the values of p(~), (Pl(~) in ref . 13) are presented in tables. 

Now the angle of flow deflection of the boundary layer at the plate 
surface is determined by 

= arc tan 
( 

. G
I

) llm F' 
~ -+ 0 

As G'(O)/F t (O) is an indeterminate for.m, application of L'Hospitalls 
rule gives 

y arc tan ( . G") llm F" 
~ -+ 0 

( 
. pI _ F") arc tan llm y' 

T) -+ 0 

The value of P ' (O)/F"(O), however, is determined in reference 12 to be 
4 . 270. Hence , 

y = arc tan 3.270 (50) 

From equation (50), the equation for the limiting deflection line on 
the plate surface can be found as the solution of the differential 
equation: 

ldr r de = tan y 3.270 (51) 

Equation (51) has the solution 

r = (const.) e3 . 270 e (52) 
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Experimental determination of limiting deflection. - The experimental 
determination of limiting flow deflection was made by means of smoke flow 
visualization (apparatus and procedures described in ref. 1) in a Lucite 
two-dimensional circular channel of rectangular cross section. Tests were 
conducted on a plate parallel to the base of the channel and fastened to 
the channel walls at a distance of approximately one-third the channel 
height. With a maximum Reynolds number of about 6xl04, the flow for these 
tests was well within the laminar range. 

Figure lJ a view through the Lucite top of the channel , shows smoke 
introduced into the mainstream at approximately a midchannel position. 
On the test plate shown in the photograph, the circular white lines cor­
respond to the theoretical mainstream flows. The straight lines orthogo­
nal to the circular lines represent 100 increments in 8. The dotted 
lines appearing on the plate are the theoretical limiting deflection lines 
based on equation (52). The main-flow streamlines as depicted by the 
smoke trace were found to follow closely the theoretical main- flow stream­
lines well beyond the region of interest near the leading edge of the 
plate, although this is somewhat obscured by parallax in figure 1. Near 
the exit of the channel, some deviation of the smoke trace from the cir­
cular arcs occurred because of secondary- flow accumulations. 

Figures 2(a) and (b) show limiting flow deflection determined by 
introducing smoke directly on the plate surface. The photographs show 
that the theory predicts limiting deflection very well in the range 
o ~ e ~ 100 • Beyond 100 the theory predicts a greater overturning of 
flow than that indicated by the experiment . These results give an order 
of magnitude to the range of values of e where the small-angle approxi­
mation appears to be reasonable . 

Prediction of limiting deflection based on translate flow. - Refer­
ence 12 presents an analysis of three-dimensional boundary-layer flows 
when the main-flow streamlines are translates (i.e., all streamlines are 
obtained from a single streamline by propagation of the streamline par­
allel to the plate leading edge). As a matter of interest, this theory 
was also used to predict limiting deflection for the present case. 

In effect, a comparison can be made between the results predicted by 
two distinct kinds of approximations . In the small-central-angle varia­
tion method the approximation is made in the solution of the boundary­
layer equations while the description of the main flow is exact. In the 
streamline-translate method the approximat ion is made in the representa­
tion of the main-flow streamlines while the solution to the boundary-layer 
equations obtained is exact. 

For the streamline-translate method, a mean value between the radius 
of the inner wall of the channel and the radius corresponding to the 
starting point of the outer limiting line sh01Vll plotted in the photographs 

~---~ 
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was chosen as the defining radius of a typical circular-arc streamline in 
translate flow . Since circular- arc translate flow is analyzed and the 
limiting flow deflection is determined in reference 12 (see fig. 5) ref. 
12)) the results could be applied directly in the present investigation. 
The basic assumption underlying such an application is that circular-arc 
translate flow of the type described is a reasonable approximation of the 
concentric-circular- arc streamline flow that actually exists in the 
channel. 

The results of the analysis are presented in figure 2(c) . A 300 sec­
t ion of the channel is sketched) and the theoretical limiting deflection 
lines for both the translate- flow analysis and the small-angle analysis 
are indicated . The circles appearing on the sketch repres ent points on 
the smoke flow pattern as measured from the photographs. It can be seen 
from figure 2(c) that the translate-flow analysis is less accurate than 
the small- angle analysis up to about 100 ; but) from 100 on) the agreement 
between theory and experiment improves for the translate analysis . After 
200 it appears that the predicted limiting line and the actual limiting 
line are very nearly parallel up to the point where wall interference 
causes the boundary layer to deflect in a circumferential direction. 

CONCLUDING REMARKS 

Exact solutions were obtained in reference 15 describing the main­
stream flo ws over a flat or nearly flat surface for which the thin laminar­
boundary-layer flows have similarity with respect to stationary polar co­
ordinates . The solutions thus obtained were of the form 

By suitable choice of the constants a) b) n) and m) the main flows may 
be stagnation- point) spiral) or circular flows . The boundary layers for 
these exact solutions have no properly defined leading edge in the finite 
part of the plane) resulting in some awkwardness in relating these theo­
retical flows to real physica l flows . 

The present analysis is restricted to regions of small central 
angle e. The appropriateness of the restriction in physical situations 
has been established experimentally (refs . 1 to 3 and 13) . The mainstream 
flows obtained herein are 

(cases I and II) 
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U = af(r)em- l } 

W (or W) = bf(r)em 
(cases I II and IV) 

In cases III and IV for 1 ~ m < 2, a properly defined leading edge can 
be obtained along the line e = 0 where the boundary layer has zero 
thickness and the mainstream velocity components do not become infinite . 
Although different velocity distributions are obtained here, the projected 
main- flow streamline configurations possible are the same as those of ref ­
erence 15 ; that is, (1) stagnation flovlS along radial lines from a stag­
nation pOi nt , (2) spiral flows out from (or in toward) a central point, or 
(3) circular flows . 

Actual numerical solutions of the transformed boundary- layer equa­
tions ar e not attempted here. Particular examples are noted, however, 
for which solut i ons have been obtained elsellhere . 

An experimental comparison of limiting overturning at the wall under 
circular mainstream flow using smoke flO1v- visualization techniques showed 
good agreement for the first 100 of the mainstream turning. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, OhiO, September 26 , 1956 
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TABLE I . - SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES FOR SMALL ANGLE VARIATION 

( a ) Case I 

U ar nem+l 

W brnem, b I- 0 

1 1/2 1/2 1/2 
(cr

n
- em) ( cU ) ( cw ) c I- 0 n y '01 = Y yare = y ybr ' 

Ordinary ( 2l ) b (n + 1 )( F ' G' - 1) - b ( n;- 3 ) GF" + a (m + 1 ) [( F ' ) 2 - 1] _ a ( m 2+ 2 ) FF" - cF '" = 0 
differential 
equ ati ons 

_ 1 ) + bn [(G,) 2 _ IJ - b (n + 3 ) GG" _ a (m + 2 ) FG" - cGIII = 0 ( 22 ) am (F 'G' ~ 2 

Boundary conditions F ' (0 ) = G' (0) = F(O ) = G(O) = 0 , lim F '( n )= lim G'( n ) = 1 
n .... oo n-+ oo 

Projection of main- r = ceb/ a 
spiral flow streamlines (a I- 0) stream on surface 

Slope of projected E. tan e + e streamline with a 
respect to e = 0 E. _ e tan e 

a 

Irrotationali ty m = a(n + 1) = 0 

Linearity in g~ ~ Not possible for this case u and w 

Separ ation of ~ ~~ ~ Not possible for this case 
F and G a = 0 

Comments and a = 0 , stagnation flow : eq . ( la ) and eq . (21 ) vani sh and eq . (22 ) becomes a 
referenc es Falkner- Skan equation with solution completel y known , r efs . 4 and 5 . 

Ref . 8 : a = c = n = - 1, m = b , b = - c from ref . 8 . 

s; 
(") 

:t> 
f-3 
~ 

VJ 
OJ 
<.0 
o 

N 
<.0 



TABLE I. - Continued. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES 

FOR SMALL ANGLE VARIATION 

(b) Case II 

U arnem+l 

W 0 

VI brnem, b -J 0 

1/2 1/2 
T/ (crn-l e

m
) = ~ cU ) c -J 0 y v y \l arB ' 

Ordinary (23) b(n + 1) F'G' - b ( n 2+ 3) G F" + a ( m + 1) U F' ) 2 - lJ _ a(m
2
+ 2) FF" _ cF'" = 0 

differential 
equations 

(24) 9.m (F'G') + bn(G,)2 _ b (n; 3) GG" a(m + 2) FG" 
- 2 - cG"t = 0 

Boundary condit i ons F'(O) = G'(O) = F(O) = G(O) = 0, lim F'(T/) =1, lim Gt(T/) = 0 
T/ "'a> T/ "'a> 

Projection of main- r = C, circular -flow streamlines stream on surface 

Slope of projected 
streamline with - Cotangent e 
respect to e = 0 0 

Irrotational1ty (n + 1 ) = 0 

Linearity in ?~~ ~ Not possible for this case u and w 

Separation of ~ ~~ ~ Not possible for this case F and G 

Comments and a = 0, no f low 
refer ences 

7£27 
L-_~ 

IJ.I 
o 

~ 
~ 

~ 
IJ.I en 
c.D 
o 
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TABLE I . - Continued . SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES 

U 

W 

1) 

Ordinary 
differential 
equation 

Boundary conditions 

Projection of main-
stream on surface 

Slope of projected 
streamline with 
respect to e = 0 

Irrotationality 

Linearity in 
u and w 

Separation of 
F and G 

Comments and 
references 

FOR SMALL ANGLE VARIATION 

(c) Case III 

af(r)em- l 

bf(r)em, b I 0 

m 2 1/2 1/2 1/2 
(cf(r)e - ) ( cU ) ( CW ) I y vr = y vare = y vbre2 ' c 0 

(30) a(m - 1) [tF,)2 - ~ - ~ FF" - cF '" = 0 2 

2 
(31) - ab ~F,)2 ~ lJ + am(F'G' - 1) - am fG" - cG '" = 0 2 

F'(O) = G' (O) = F(O) = G(O) = 0, lim F'(1) ) = lim 
1) .... 00 1) .... .. 

r = cebe2/2a, spiral flow (a I 0) 

a e tan e + 0 

e - % tan e 

E! b f (r) - af' (r) - .§:. f (r) = 0 r r 

~i~ ~ Not possible for this case 

(30) Separated 
(31) a ~ m = 0 (see comments and references) 

G' (1) ) = 1 

Eq . (30) is a Falkner-Skan equation, completely solved 
in refs. 4 and 5 . 

If a = 0, eq. (la ) and eq . (24) vanish, stagnation flow , 
boundary conditions not achievable . 

If a '" b , F .. G: if m = 1, F = Blasius F 
Ref". 16 , eq . (9 :12 ): a = b = - c < 0 , m = O. 

~ 
~ 

~ 
~ 
CD 
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TABLE I. - Concluded. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES 

FOR SMALL ANGLE VARIATION 

(d) Case IV 

U af (r)em- l 

W 0 

W bf(r)em, b I 0 

1/2 1/2 

n (cf(r)e
m

-
2

) _ ( Cu ) c I 0 y vr - y vare ' 

Ordinary (3 2) a(m - 1) ~FI)2 - ~ _ am FF" _ CF"I = 0 
differential 2 

equation 2 
(33 ) - ~ ~ FI)2 - IJ + am(F'GI) - T FG" - cG '1I '"' 0 

Boundary conditions F' (0) = G' (0) = F(O) = G(O) = 0, lim F I (n),.. 1, limG'(n)=O 
n-. .. n-' '' 

Projection of main- r = C, circular-flow streamlines stream on surface 

Slope of projected 
streamline with - Cotangent e 
respect to e = 0 

Irrotationality fl(r) +} f(r) = 0 

Linearity in ~i~~ Not possible for this case 
u and w 

Separation of (32~ Separated 
F and G (33 a = 0 (See comments and references) 

Comments and Eq . (32) is a Falkner-Skan equation completely solved in 
references refs. 4 and 5. 

If a = b, FIG (see boundary conditions) 
If m = 1, F = Blasius F 
Ref. 9: c = a = b, m = 1. 
If a = 0, no flow . 
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Figure 1. - Smoke flow visualization of main streamline in circular channel. 
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(a) Boundary-layer streamline near pressure surface at inlet. 

Figure 2. - Limiting f low deflection in circular channel. 
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(b) Boundary-layer streamline near midchannel at inlet . 

Figure 2. - Continued. Limiting flow deflection in circular channel. 
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(c) Compar ison of translate solution with small-angle solut ion and smoke pat t ern . 

Figure 2. - Concluded . Limiting flow deflection in circul ar channel . 
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