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NA!I!IONAL ADVIS&RY COMMITTEE
#

I?OR AERONAUTICS

“TECHNICAL NOTE NO. 871

STABILITY OF ELASTICALLY SUPPORTED COLUMNS

By Alfred S. Niles and Steven J. Vlscovich

SUMMARY

.—

-.

-.

A criterion is developed for the stiffness required -.
of elastic lateral supports at the ends of a compression
member to provide stability. A method based on th~8”&ri-

——— :-

terion is then developed for checking t-he stability of a
.

continuous beam-column. A related method is also devel-
oped for checking the stability of a member of a pln-
jointed truss against rotation in the plane of the truss- _~~

INTRODUCTION ....-

One important task in airplane structural design is .. .
the investigation of the elastic stability Of a contin-.
uous member subjected to axial compression and provided

— -.

with elastic support against lateral buckling. A typical
member of this class is a longitudinal fuselage stiffener .“ ...=
with. the transverse fuselage rti~ acting as the elastic
transverse supports. If the supports are assumed infi-
nitely rigid, and they are not too nu,merous, the critical
load can be determined by the methods of reference 1
(art. 14:6).

..~
When, however, as in actual structures, the

supports are not infinitely rigid, the critical load ?o~_
the, continuous member ie reduced, but the problem. of de- —

termining its magnitude becomes much more complex. Prac- ‘-- , ,

tical solutions of the problem have teen obtained ,for a~-
few simple-cases like those investigated by Klemperer and ‘-”–-
Gibbons (reference 2) and by Schwartz and Bogert “(refer-

X

ence 3) ,
-----—...——

but no satisfactory procedure has been developed _. ._
for determining the critical loading for a continuous
beam-column with elastic supports of arbitrary numtor,- 10-=
cation, and stiffnesses. Convorsoly no satisfactory pro-

.-,

v
ceduro has been dovelopod to determino tho stiffnesses r9___
quirod of arbitrarily located supports to ensure that the

.-

critical load of the suyported member will exceed some de-——.-—
● sired minimum value. -.....
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Schwarz has shown (r9fe,rence..3) that, wi~h a single
elastic sup-port, i“f;~he ‘Btif$nqss of the snpportis but
slightly in excess of th~t r~quir~d f,or.,stability and.
there i’s:initial “deflection of the support point or play
in the connection, the supported member is likely to de-
flect excessively and to fail. plastically. It appears
reasonable to assume that thi$ condition would be just as
likely to be present with more than one elastic support,
and in practice the sttffneeses of such supports should be
considerably in excess of the, theoretical minimum require-
ments. Tram”the practical point of View, .the~efore, it is
not essential t’ha% the criterion ,for..eupp,ortstiffmess in-
di~cate t~e” theoretical” mf:pi-rnum”a’Ilow,ablevalues. The for-
mulation- of ~a c-diterion “indicating st.i~f.nessps definitely
on.the safe side would, .furtiish the designo,r with ari appre-
ciated too-l o-f%rrmlysis, providod that it did not prove
excessively and needlessly conservative. The chief pur-
pose of this paper is .to-.~how, ho.w:sgch a criterion c~n b_I
developod and applied, tftho actually continuous beam-
column-is treat;~ as a series of rigid links mutually
pin-connocted at the locations.of Iatoral support.

,,,.,..“ ,.
Tho chief ’ip~arbit””:tio-fdctof th~,.6iit.~r~Oq:..Q6P@10Pod

on this basis :fs:tihqtthe stiffnos.s~s ~tt7ibutQd.to the.
supporting. mamb”6v”sard. e“f?octi.vo sti,ff,n”Qssosthat -RTO in-
fluo,nccd by tho .r~gi”ditiyof ‘wha’tovor i,’s~pro,v”~od to supp-
ort .thoso support.i”rig”members. “F.uT~hc.r,invost,~tion is
thoro~foro -roq,uirod to .improvo f.ts prr+,ctl.c.abil.ity.Tho
probl,~m appears cap~blo of solution ud it ‘is oxpocted
that, tho basic pr-ocod”uro outlinod in this paper can b.o
adapted. to tho solution of various im~ortant practical,.
probloms. Thb’ only” extension that has boon carried out
thus far is that of developing t-he procodure described I.R
this paper for ckeckihg the $t-abil$ty of a pin-ended truss
member against rotation in” the plan-e of the truss. Steps
~re being taken to dbtain qn experimental vfllidation of
this ..extension, but progress along, ibis line is as yet in-
suff’ici~nt to justify a report . ,

,.. .
..
,. STA~ILITy OF LINKS ELASTICALLY SUPPORTED AT ONE “END

,, ,.
AND .RIGIDLY ‘SUFPORT@D AT THE OTHER : . ..”

,,
. .

The simplest type of elastically supported member is
that represented by the link AB, shown in figure 1, which
is completely restrained from both horizontal and vertical

4

L
1“ ;. -—

..-——

.—
:<
—
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movement, though free to rotate, at its left end A and
restrained from vertical movement at its right end B %y
the spring BC. This link is obviously in equilibrium
when in the indicated horizontal position, regardless of
the magnitude of the axial compression p. Whether that
equilibrium 3s stable, neutral, or unstable depends on
what would happen if the link were slightly displaced, and
this condition would depend on the magnitude of the axial
compression. If the system remained in equilibrium in
spite of the displacement, it would be in neutral equilib-

.-

rium. The magnitude of P associated with thie condi-
tion is called the critical load and may he designated
P If, however,cr” Pc Per, the displecemont would de-

velop forces tending to restore the original- conditions!
and the equilibrium would be stable. On the other hand,
if P > Per, the forces developed by the displacement
would tend to cause increased displacement and the equi-
librium would be unstable. The practical problem is
therefode to determine the critical load, and that load
may be defined as the load under which the syeten would be.
in equilibrium in spite of a very small change in the YO- ~
sition of AB.

d For any practical structure there will be a critical
load asmciated with each geometrically possible type of “- ““–-
change in shape, but attention will be limited to that se--

. sociated with rotation of the link AB in the vertical #
plane . This critical load can be most readily determined.
by the method described ,by Timoshenko in reference 4, based
on the proposition that when P = pcr no change In the

potontial energy of a system would result’ from a snail
change in its configurati~n. Since that no~hod-is to be
extended to i.nvestigationscf more conplex systems, it is

— —

dosirablo to raviow it at this point.

.s

If the link AB were to rotate in the vertical plane,
there would be no movonent of A, on account of the rigid
support assumed at that point . End B, however, would
move both vertically and horizontally. If the-angle of.
rotation a is assumed small, it is permissible to assune
sin a = a and Cos a4 = 1- c&2/2. Then 8, the vertical
novenent of B, will be oqwal to L al and y, the hori-
zontal novenent of that point, will be .-

.- (1)
—
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a

Therefore’, ‘one result o,f the rotation of.l%nk ~B-
would be to cause the qxial load. P to m~ve through the
distance Y and do the work -

.
+

(2)

If the,link .AB $nd the suppor”t at O be assumed rigid~ .
equation- (2),’is also a measure of the strain” energy that
must ,bp stored in the spring BC f?r t,henet change 0? ~Po- .. ._
tdntial, energy bf the system to be zero. An alternative

.-

measure of the strain energy of the spring is. Provided bY
K, the “spring constant of tliat mein?)er:and the magnitude
of its changci in l~tigth. The last-menti.on’ed.quantity is
identical with 6, -the vertical movement of B, so the
strain, energy of the spring may also be.writlqn “ _. ._ __ _

-(3)Ui + , . ‘:,

,.
The equating of the~e alternative. meaSUre”S..Of the ‘strain.. , ._
energy of the spring and the simplifying of them ‘gives

Pcr = KL “,,,,

as tho relation that must be saktsfi.ed~if~ th”~ .l.inkis, to
be in neutral equilibrium. ., ,_f_—.---- . . .,.

In t-he previous dis”oussion it; i~. assuued.thfit tho l$nk
AB is rigid, but equation (4) ‘would still ,be, obta:ined a@
the criterion for neutral .equi;libr”iumwith respect to rota-
tion in the vertical piano ev6n tho”ugh.t.ho .chqngo in length?
AL = PL/AE whore A i.e the c.ross-soctian~l area and ~ iS “~;

the modulus of elasticity, woro tnken Into account. If it
should happen that,. Pcr as obtained from equation 14) wore

groatcr than tha,Ilulor load, P. = m2E-I/L=, actual failuro

would tako placa ‘by buckling’ unncoompan$od. ~Y.”rO.ta!iOn of.
the link as soon as. th;e axial load

..—
P llocazioOqunl.,to Po. –

If, howovor, Pcr < Po, failure would bo by rotation under

the former load. . .

In design t-he proble~”is oft.on to dokor?nino.the stiff- ..V
noss roquircd for stablQ oquilibri.um when the axinl .>oad ~S___~._—_

of”a specified magnitudo P, lees than Pe, rather than to

detormino tho critical load Pcr associated with a spring “~
of known stiffness. Tho value of K associated with neutral
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stability under a given load P may” be c~lled the critical
spring constant for that load and he designated Kcr.

Then by rearrangement o,f equation”(4), the critical spring
—

constant for the system of figure 1 is obviously

Kcr =P/L “ ““’ (5)

Tho critical spring constant for tho two-link system
of figuro 2 can be obtained in the sape manner as that for
a single link. AS the result of smaIl,6imul-t-aneo”uS rota-
tions of the two links, point C would move horizontally
through the”distance ““-

.

and the force P would do work equal

—.
. ——

.

(6) “–

to

(7)

wo’uld again be rey-while the str’ain energy of the spring
resented by equation (3). The equating of equatigns (3) _ _
and (7) gives for the critical spring. constant , — —

K
c:=++)., .. . .. .,-.

(8)
.-

—

From inspection of equatfon (8) it” cati be seen that
the stiffness required of a single spring to maintain s~a-

_———_ ._.

bility of the two-link system is the sum of the stiffness-
es that would be required of the springs i= the two single-
link systems into which it might be resolved. In other ‘“-
words, the single syring at B might he assumed to te . —
composed of a pair of associated springs with the same to-

--

tal stiffness, one of these partial springs being’~s=~gned” ‘--
to act with each of the links, and, each link being inves-
tigated separately a.s though it were part of a system like
that shown in figure 1. Thus, if the axial load P were
specified, th,e oritical spring constants for links Am
nnd BC would be computed. separately and then added to de- ““‘-

s termine the minimum allowable spring constant-for a single
spring located at B. -.

,’,
.U*
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CRITERION F-OR THE STABILITY OP A IiI,I?K .‘...

ON TWO EEASTIC SUPPORTS. ...
,,,

In the preceding seot’ion it 3s assumed that one end
of each link is rigidly supported against tr~nslation
normal to the axial load, but.in practice.iti is more likely
that the restrain,ta gainst, $uch movement.will be elastic

“ in character. In order to extend the method..of attack
foreshadowed in that section~ it is thhre?ore necessary to
develop a criterion for the stability of a link elastical-
ly supported at both ends, such as the link AB shown in
figure 3.

In this system when the link AB rotates about any
point along its length the work done by the axial forces
P is

The resulting strain energy “of the springs is

K1612 X2822
uf=— +

2 2
.,.

(9)

%

(10) ;

t’

where KI and Ka are the spring constants of the ~lastio ~

supports at A and B, respectively. When the right-hand
sides of equations (9) and (10) are equated

From t-he geometry, pf figure 3
-, . .

. . ,, ““6; -.--b,,
‘~=x=n

and 62 =n~l
.. ,,

(11) “’

(12)_ . .
.

“Also, S-incs equation ,(,11).‘~uplies ‘that the link, though ro-
tated slightly,, remains in” equilibrium, K181 = K=~a =

n K261. Therefore
.. . +

n= K1/K2 (13)
“

.
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-.
substitution of equations (12) and (13) in equation (11)
produces ,- ——-—..— —

..——

(1.4)

which simplifies to

P=
n KaL

l-l-n
(15)

Again, the substitution of equation (13) in equation (15)
and the simplifying of the equation obtained results in

KZK2L.
P cr = KI + Ka

-(16)

Equation (16) expresses the criterion for the criti-
cal load of a link supported at both ends$ the supyorts
being of either equal or of unequal stiffness? If thq~
happen to be. of equal stiffnesses, K1 = K= and tho equa-
tion reduces to

Pcr = KL/2 (17)

If one of the supports is rigid, its spring constant 39.
infinite and eauation (16) reduces,

-—
as would ho expected,

to equation (41. This result can,be proved by the divis-
ion of tho numerator and the deno~inator of the right-

—

hand side by Kl, which giVOS

P cr =
lK:L*

1

(18)

which -beconios Pcr = K2L when K1 is equal to infinity.

It is of interest to visualizo the effect on the crit-
ioal load resulting from increasing tho stiffness of one
of the supports. Let PI be the critical load when
n= K1/K2 = 1. As the ratio n increases, Por increases

until it becomes equal to 2 PI when n is infinite.
This result can be seen from comparison of equations (4)
and (17). The character of this variation of Pcr with

n is shown graphically in figure 4.
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-If i-t 3.s desj. red tO find thb”ml”n’imum kll’owa~le ~tlff -
ness for the support at B when the sttffness of the sup-
port at A and the axial load P are given, this CFl~CU-
latien can be mkde.by Bolving ‘equation (16)-:for Ka. The
result is

KIP “ ., - ,.
Ka =

KZL - P
‘ “(19)

STABILITY OF TWO LINKS ON THREE ELASTIC SUPPORTS
.

..- .

The same method can be extended to obtain a criterion
for the stability of the.structure indicated in figure 5
whero two pln-connectgd links are subjoctod to the.axial
lends PI and P2 and are restrained against rotntion by
elastic supports at A, B, and C. Rotation of the links
would be associated with relative horizontal movements of
A, B, and C md ‘tho “forces PI and Pa would do work

equal to

(20)

$;u~;ot~ame time tho supports would storo strain onorgy
...

(21)

l’or tho system to bo in noqtral equilibrium, it is neces-
sary that U. = Ui, or that

Lot . .

Equat~on, ‘(2.2) then r“educbs t~,... ., --. .

(23)

--

PITa (m+l)a”
z

+ p2L1. (n+l.) = (Kzrn2i&+K3n2)”LxLa “(24)
. .

A

a
t

I

(

.—

—.

.
.
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+

●

✎

In order to satisfy the requirements of equilibrium

Tho combining of equations (23) and (25) and the simplify-
ing of tho result will give

.—
..

Klm + K3n = Ka (26)

Lot the total stiffness K2 of the support at B be

rosolvcd into two portions, p x~ =mK1 nnd ~ K2 = nK3,

whor o p+q=l. Then —

m= p IC2/Kl I?i+l = (pKa + Kz)/Kl (2:7a)

n= q %/K3 n+l= (qKa + K31/K3 (27b)

By substitution of the relations of equations (27) in ,~Ua-
tion (24)

PZL= (pK2 i-Kl)’/Kla + P2LI (qK2 + K3)2/K3a

(28)= (p2K22/K1 + K2 + q2Ka2~K3) LILa . ,
*

If Pa =rPl this oquatfon reduces to -.——

KZK3LIL2 .[pK2K3(K1 + pK=) + qKlK=(K3 + qK2.)1
PI = (29)

a
K32L2(pKa + Kz) + rK12Ll(qKa + K3)

2

If Ka is rosolvod into its components PK2 and

qKa , tho criterion for tho critical valuo of PZ becomes

KZK3LZL2 [pK2K3(Kl + PK2) + qK1Ka(K3 + qK2)1 ‘
Pz = (30)

K32L2(pK2 + Kl)2 + rK12L1(qK2 + K3)=

l!ho same procedure could bo used to determine the
critical loading for any number of links, but even .Kor two
links the expression for the critical loading becomos too
unwieldy for practic?.1 uso.- In the development of that
expression it may be notod that the stiffness of the cen-

-—
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.

tra,l support ISa 1s di~ided “Snto two portions. This di.vi- .
L

slon is equivalent to assuming th~% the ‘suppatrt is composed ,
of two springs; (one attached to the link AB, nnd the F
other , to the link BC) in effect changing the system under
consideration from that shown in figure ,5 to. thnt of. figure
6, if the short link shown at B ,is assumed to be of zero
length. In the system of figure 69 if each link is treated
independently, nnd if PI is to be the critical load for
span AB, and Pa,, the. cr>tical load for span BC$ from
equation (19) .. --—-—

KIP1 K3P2 ,
PKa = ~ ~ p gKa = KL -p

11-1 32 2
(31) ‘

Substitution of equations (31) in equa,tton (30) leads. to
an identity. This result means that if equations (31) are -
satisfied, eq,uation (30) is also satisfied, and, so far
ns stability against rotation of the links is conoerned,
the systems of flguros 5 and 6 ~ro equivalent.

THE SUCCESSIVE LINK METHOD OF INVESTIGATING STABILITY

,

In the investigation of the stability of a serie,s of
pin-covnected links the most common problem is to deter- ~
mirie whether the syetem iS stable when the axial loads “in
the links and the spring constants of the e.laatic sup-
ports have specified values, This problem can readily be
solved if each elastic support at the junction of two
links is assumed to be composed of two supports, one at-
tached to ,each of the links, between which the stiffness
of the actual single support” is partitioned. This set-up
is. illustrated by the” analysis of the system shown in
fi-gure 7, in which five links aro assumed” rigidly sup-
ported against translation at tho ends of the cha~n and
elastically support”od at ‘the into.rmedia$o joints. Y 03?
simplicity it is askumod that PI = Pa”= P3 = P4 = PE = P

and L1 = L2 = La = L4 = L~ = Lo’. It is also assumed that

P < fraEI/L2, so ther~ will.bo no IfEuler bucklinglf of tho
individual M.nki.botweon supports.

,, ..
B6ginhi.ng.at the,.lof% supp~rt, from equation (5) tho

j.

minimum allowablo stiffness of the support at joint 1 is
l?/L, or e

I
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K P 10.00
l-o=~= — = 10 -pounds per inch (32)

100 .“

T!herOf ore, if KI is less than 10 pounds per inch, the
system is o%viously unstable; hut if KI exceeds that
value, there-will be surplus stiffness tha,t can be util-
ized to restrain’ rotation of link 1-2. -If KI = 20-
pounds per inch, this surplus is Kz-a” = 20 - 10 = 10
pounds per imch, which is the value “of K.l to be used in

the investigatioti of the second. link. For that purpose
eo.uation (13) may be written

K’P””
.K=_l = l-a

K1-2 L - p

or

10 x 1.000
K2-I = 10 x 100 - 1000

.,

In other words, if K1 is only 20 pounds per i~ch, the
support at station 2 mu,st be rigid. If that support is to

. he elastic, “Kl must have a spring constant greater t~an

20 pounds per inch.
.. .

If Kz = 46 pounds per inch, Kz-a =

30 pounds per inch, end from equation (33) thk required.
‘value of Ka-z is .,,

K 30 x 1000.. a-1 = = 15 pounds per inch .
30 x 100 - 1000 .-

,.
If it is assumed that Ka = K3 = K4 = 40 pounds per

inch, the computations are as follows:

Ka-3 available =,40-15= 25pounds per inch

.,
K. 3_2.,requir”ed = 25X1OOO

25x1OO-1OOO

K3-4 available = 40 - 16.67

.

= 16.67 pounds per Inch

= 23.33 po:qds per inch..

.
.K4-3 required = =17.50 pounds per, inch23,300/1;833,,.... . - ..- ,., —

,“ .-—__
,...,.“ K

●
4_E available = 40 - 17.50 = 22.50 pounds per inch

K~_4 required = 22,500~1,250 = 18 pounds per inch
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●

!The support at statio’n 5, however, is rigid; that iss
its spring constant is infinite. Therefore, since the ?
actual stiffness of the 6upport at station 5 exceeds the
required value-, the system is in stable equilibrium. In

.-.

fact, there is an excess of support stiffness and the
structure would be s“table even though the stiffnesses of
some of the intermediate supports were reducod~

Zt should be notedm that while the assumption of equhl
lengths and axfal loads for the links and equal stiffmess-
es for the intermediate springs simplified the numerical
work of the example, it did not affect thb essential char-
acteristics of the computation method, which. would be
equally valid for any arbitrarily choson values for those
quantities. In the example’it was found that tha avail-
able spring constant at each stntion exceedo”d that re-
quired and tho system was therefore adjudged’ stable, Had
the available spring constant at any station been less
than that required, the s.ystom would have boon adjudged
unstable.

In practical problemsthe spring constante of the
various supports are usually. not known to a high deg?e~
of precision, and there may bo. i.ni.tialdeflections of the
statio,nsc ,.Therefore., it is desirablo to pr.ovido supports
with spring constant$ considerably in exc:ess of ~ho”s”e
theoretically call”od for. In mariy””pro%loms it would aleo
save labor and %G conservative to assume ‘that jUSt half
the’ spring constant at each intermediate support repre-
sented the stiffness available to each of.the links at
that station. This assumption would prevent. the accumula-
tion of errors due to lack of precision in the asmmed
valties for the suppomt .kipringconstants.

The chain of links shown in figure 7 is b’ot a cbmrnoi
practical structure:.: .The designer i.smqchgore likely to
be confronted with the pro.blern of” investigating the”’sta-
bility of a, continuous bOam-COIUm.~. If such a member is
considered.’ aS k’series of linkb With “Fin joints at, the
supports, the resistance to bfickllhg due to continuity of
the member is neglected and the application of this
“successive-link ‘me’thod‘1‘of:nnalysia g.iv&s.:conse~vetive
results. It is the belief of the writers, however, that
the deg’ree of conservatism 3s not excessive, and t~at the
actual effect of continuity is to provide an extra margin
of .s”afetyco,mpmahl.e to. that- require-d tq =Qsorh th~ possi-
blo effects of Initial defie”ct{oni and Ia”;k “’of’precision
in thq e.sti.rnat,ed.values .of the support sti.ffnesses.,. . ,. .,..
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J

Whothor or not this fact is tru~ can be determined only by
oxporionce and further study of the problem. ‘ .

.,

In the preceding sections criterions are developed
for the stability of a link with varying degrees of elastic-
support stiffness. A method is then shown for using these
criterions for investigating the stability of a series of
pin-connected links. This method, howbver, is based on
“the assumption that” the supports are independent and the
deflection of one has no effect on the deflections of the “–
others. While this assumption is true for some structures,
it is far from being generally true, and the method re-
quires modification if it is to be applied to =any practi-
cal types of structure. The rest of this report is there-
fore devoted to the development of a procedure by which
the basic method under study can be used to investigate

-.

the stability against rotation of a member of s,pin-jointed
trusst

“A pin-jointed truss, such as that shown in f~gure 8,
may be treatied .as a system of elastically supported links~
in which each link is restrained from rotatiou by the ax-

ial loads that would be developed in the truss members,
including the one in question. It differs from the link
of figure 3 in that the movements of its ends are not inde-
pendent but mutually dependent. On this account th-e cri-
terions developed previously cannot be applied directly,
but related criterions that take tnto ac~ount this mutual
de”pond’ence tire needed. Such criterions oan me jigv,eloped
for any syecific member in terms of two truss properties
thnt may be called the rotational spring constant and tih-e
induced rotational spring constant for. the m.eqber~
,.

The rotation of:= truss iiem~er with respect to a
line through the truss supports can be determined by es-
tablished methods. The use of t~e method of virtual work
(reference 1, ch. XII) to dotor.mine. the’rotation due to a
unit couplo applied to the raombor And resisted by a.unit
couplo composed of forces acting on the, supports, results

.. in the expression
●

(34)

—

. ----

..m_

—

—.

-----
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whero Pab is the- axial load producod in a member by the

specified external force system, L the length of the P
member, A its cross-sectional area, and E the modulus
of elasticity of the’ material. The ratio of the moment of
an imposed couple to the resulting rotation of a member,
which iS

(35)

can therefore be computed for any given member. This ratio
is what is here termed the ‘rotational spring constantll of
the member.

When a unit cou~le is aypliod to one member, each of
the other members will rotate, and those rotations may bo
expressed by tho relation

pabpxyL : >.

axy ‘kAE (36)

where is tho rotation of any arbit.rarily chosen mem--axy .

her, XY; I?xys t’he axial load produced iri a rnomber by a
●

unit couple imposed on member XY; and Yabs A, E! and
L arc tho samo as” in,’equati.on (3$). . ,’

.-.-.. .
If--tho rot.atio”n duo to ‘the “hypothetical unit couplo

nyplfe”d to momb.br “’AB is small, tho axial .l~ads produced
by tho actual lo”tidi-rigsystem ,on tho truss may be assumed
unchanged in magnitude””, t“hough slightly changed in diroc-
tiono If the actual axial-load in any member l)Q 2, it
may bo resolved into two components, F COS G parallel to
the direction of the member prior to the imposition of the
unit couple, and P sin m perpendlcular,to that direc-
tion. Since m Is Assumed small, these. components may
be assumed equal to P and Za,” respectively, -Since
each truss,member would be designed to wi.thst~nd its RX-

ial load P, and since 2P = O at each point, there is
no danger of instability ‘resulting fron the a.ctio~ of t’he
parallel components. On the other hand, since the rota-
tions of the various members entering a joint will not, in
general, be identical, it cannot be assumed that at each
joint Zl?a = O; but there will be a finite resultant of
the perpendicular components of the forces acting at each

joint. These resultants may be termed the induced loads

—.
---

.-

.
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since they are induced by the rotations resulting from ap-

j plfi~g the unit couple on member M?. These induced loadi
would t.~nd to produce additional rotations of the truss
memb’e,r”s.,~which qay be termed the ‘induced rotations.1~ .

.-,.

The magnitude of the induced rotation of member A3
nay be obtained fron

%bf = ~

where ~a~s L9 A, and E“

,,..,-- —._

l?ahPindL —.—
(37j-

AX

are the sane as previously
given and Find is the axial force in a neuber yroduced

.

by the inducett loads. From equation (3~) the ratio of l.n-
tluced loading to resulting rotation, which may be termed
the lfinduced spring constantl’ of a mem%er A3. would be

1k—ab* = ~ I . . .
ab ,,

(38)

The rotational spring constant of”a member may be in-
P terpreted physically as a measuse of the resistance of-

fered hy”the.truss to the rotation of a member due to a
unit cou~l.e ,a~plled to that member. Similarly, the 122-

* duced”rotat.iontil spr.ing,.constant may be interpreted as a.: “’
measure’ of tho,gesi”st~rice offered by the tru”ss to rotation
of the m?m%ei as a “result of-%he inauced loads.

., -.
!l!herefore, it may ~e ‘deduced that if kal :

.
“6=8 ds

kab so that the resistance t~ rotation c’au”sed by the in-.-. .
ducea loads is-greater than the resistance to rotation

caused by the unit couple that would produce those induced
loaas, ..the.me.mb,eris in -stable equi.llhrium. ‘Vice versa, .:
if kabl is less than kab, indicating that the. resist-

snce to rotation caused by the induced 10a&s is smaller
than the resistance to ro%at”ian caused by the ‘original unit-

couples the me~ber is in unstable equilibriuti and the struc-
ture would collapse.

Thie criterion may be applied to the truss of”fig-i~8,
●

which is simple enough to show clearly anti completely the
steps involvod in such an analysis, ,and yet is of such de-

% sign that by study of this’ approac& it can be seen how the
criterion can bo applied to more complex structures, %’urel.y

.....

.



for convoniincb “in.bklculation and prosontation, all men-
bers are assumed.to.he of the. same material.and of tho-smae

i
cross:soctional area.’ Theex%arnal loading assumed con-

. sf8tE of a vertical load W applied .atjoint T and tho
nccossary reactions at D and H, but the conditions un-
do?? any other loading”.chuld be treated i~.ossenti~lly tho
same manner. ,.,, ..

~y application of.equation (34) the rotation, with re-
spect to a line through tho supports”, of member A3 duo
to a unit couple applied. to that member is found to be

.aab =,,, ‘*~~g,6.r~dians per inch-pound”

., ,.

Therefore, the. rotati&&l spring. cofi~tan~ of nem~er A3, as
de.f3.nedby equation (35) is ‘.

kab = AE
inoh-pounds per radian

0.1296

By successive use of equation (36) the associated ro-
t~tions of the other ‘menbqr-s wltlr respect to the line
through the ‘supports can-be computed..’ The multiplying of t
each rotation by th”a load ‘inVosad- ozrthe nember %y the ex-
ternal fore> k{, ;~he resolving of the: products into hor-
izontal and: v’eiiical c“ornponent.s,“arid:the’ conbining of those d

conponerits, pr:oduc-e the: itiiuc”ed‘loads shown in figure 9.
Values of ‘t’he‘tiota+i’o’niand khe:correspanding induced loads - .
are listed in table 1. !Tho rotation ~f nonber A3 that
woul”d be ‘p”roduced by” the ‘induco”d”-load “s.ystox of.figure 9

“i’s.found by application of oquat.ion, (37) to.be

.,. ,
~abl = 0.3274 w radians” po~..inch-pound

AaEa ...
. .

Fron equation (38) the induced rotational spring constant
is thoroforo

..-/,
.,,., —.

.,
A%z

..
,..

kab~ = inoh-pounds Per radi~n . .
0.3274 W

If it be &ssuned that ,“” . .

A. = 2.0,0” squ~ro inc$;s’
,

.,

E = 30$000,0”00 poundk per” square inch

Q = 80,000 pounds

r-

?
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ka% =
2 x 30,000,000

0.1296
= 463,000,000 inch-potinds per radian

kabl = 4 x 900,000,000,000,000
0.3274 X 80,000

= 137,400,000,000 inch-

pounds per radian

since kahl > kab it may be concluded that member A3 iS

in stable equilibrium. 1

T!A3LE I

Member I AEa I AE I?a

AB
‘“3C

DE
EF
FG
GH
AD
m
Al?
BF .
CF
CG
CH

0.1296
-.0648
-.0230
.0852

-.0204
-.0418 . “

.-.0692
.0094
● (3433
“.0322

-.0065
.0094

-.0279 ‘

0.0972W
-.0486W

●0086W
-.0319W
.0073X
.0157W

““-.0057W
,0000

-.0272W
.0000
.0041W
.0000

- .0175W

. .
A positive value. of a indicates that the member ro-

tated in the same direction as the applied unit couple,
with respe,ct to “the”reference line. ,.,. ..

A negktive value of a iBdicates.that the mdmber ro-
tated in a direction oppostto to that of the applied unit
couple with respect to the refererice line.

:.
.’‘ A negative-value of Pa indicates. that, they form a

.clockwise couple on the member.
,’!

.
A positive value of Pa indicates that they, form a

counterclockwise couple on tho mem%er.

* ‘“ . -<

—

. .,. . .,?
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If in this example it were desired to deternrfne the.
magnitude of the load at which member AB w“ould become
unstable, that .co:uld”he done by equat,ing,the. expressions

r
w

for, ,,.akb and kab i and solving for W. l?his would give

AE A?8a
0.1296 = 0e3274 W

whence

~ . 0.1296 AE = o 396 ~
0.3274

● = 23,750,000 pounds

.

In this example the critical value of “W’ for member
AB is nearly 300 times as great as the as.su~ed load of
80,000 pounds, yet that assumed load subjects the member
to an average unit stress of 30,000 pounds per squi?re inch.
If the material were any known variety of steel, member A3
would fail in direct compression long before instability
of the member against rotation became an important factor.

In a practical truss, however, the monbors would. sel-
dom be of equal aoss-sectional area, and with the design
of figure 8, In,particular, since the load W imposed at 4

F . would prod’uce no axial load in that member, BF would
normally be nade much lfgh’t~r,than All. At times It night ;
theroforo be suspected that BP was so lightly designed
that nenbor All was in danger of experiencing rotational
instability failure, and a check by t.he.neth.,odjus,t out-
lined would bo in ordor.

An alternative ’method of investigating the stability
of. truss members against rotation is described by Timoshenko
.(referen,ce.4 , ..art. 28), who credits it to vop Mises and.
Ratzarsdorfer. The system of attack .jus,toutlined, how-
ever’,’appears to the writers to be “more easiZy appli”ed to
the investigation oktrusses of’arbitrary proportions and
loading, particularly if the work must be. done by personnel
of “only r,oderate experience. .. .

—

In the.development of this criteripn for the stability
of a truss3 it i$, implicitly .,absuqed that elastic-failure
would be the result of the rotation of a selected “member.

.-

The critical load thus obt~i.ned might not, therefore, be e

the mini’mum critical load, since there might be a smaller
critical load associated with rotations of somo other mem- f
ber or group of members. It would be desirable to continue
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the study of this criterion to find out if the critical
load obtained by its use is likely to be significantly in
excess of the critical load obtained by the method of
von Mises and Ratzorsdorfer that is not subject to this
defect. It would a?lso be desirable to investigate various
possibilities by which the criterion of this paper, or i~_s
practical application, could be simplified for use in rou-

-———

tino design work.
—

Gugeonhoim Aeronautics Laboratory.

1.

2.

3.

4.

Stanford University, Calif., March 23, 1942.
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L

0.0263 !

0.0046+
!

0.010s-
f f“

0.0140

0.0052 0.0406 0.0!$80. 0.0064 0.005Z —

Loads shown should be multiplied by W/AE to obtain
actual values of resultants of induced loads.
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