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NATTONAL. ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 3178

CHARACTERISTICS OF TURBULENCE IN A BOUNDARY
LAYER WITH ZERO PRESSURE GRADIENT

By P. S. Klebanoff
SUMMARY

The results of an experimental investigation of a turbulent boundary
layer with zero pressure gradient are presented. Measurements with the
hot-wire anemometer were made of turbulent energy and turbulent shear
stress, probability density and flattening factor of u-fluctuation
(fluctuation in x-direction), spectra of turbulent energy and shear
stress, and turbulent dissipation. The importance of the region near
the wall and the inadequacy of the concept of local isotropy are demon-
strated. Attention is given to the energy balance and the intermittent
character of the outer region of the boundary layer. Also several
interesting features of the spectral distribution of the turbulent
motions are discussed.

INTRODUCTION

The statistical theory of turbulence introduced by Taylor and
elaborated upon by Kérmén, Howarth, and Dryden has played an important
role in providing a sound basis for the study of turbulence. In the
main, this advance has been confined to the domain of homogeneous and
isotropic turbulence. At present turbulent shear flows present diffi-
culties so formidable that statistical theories have made little
progress. The older semiempirical and phenomenological theories still
constitute the most tangible theoretical methods. It is now generally
believed that experiment should be called upon whenever possible to
furnish information on the actual behavior on the grounds that such
information 1s needed to acquire an insight into the turbulence processes
and to form the basis for a sound theoretical approach.

Experimental investigations in shear flow have made encouraging
progress, largely because of the increasing number of statistical prop-
erties that may be measured by improved hot-wire techniques. Measure-
ments have been made in the jet, wake, two-dimensional channel, pipe,
and boundary layer (e.g., refs. 1 to 8). These have shown that the
basic assumptions of the phenomenological theories are inconsistent
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with the experimental evidence as to the nature of the turbulent motions.
-The work of Corrsin (ref. 1) revealed the intermittent character of
turbulent flow near a free boundary. This was later studied in some
detail by Townsend (ref. 2) and is now recognized as a phenomenon asso-
ciated with a sharp .but irregular-division between turbulent and nontur-
bulent flow. The recent theoretical contributions of Kolmogoroff

(refs. 9 and 10), Heisenberg (ref. 11), and others dealing with the
‘concept of local isotropy and the spectrum of turbulent energy have
‘glven added impetus to experimental work in shear turbulence and have
encouraged the point of view that some of the propertles of isotropic
-turbulence may be applicable. The application of isotropy to shear
flow has been rather extensively studied in wakes (ref. 3) and found to
- .be-useful, but its usefulness in a boundary layer is still questionable,
especially in the region near the wall. At best, isotropy belongs to
- the final or dissipation stage of shear turbulence and here can throw

- little light on the mechanisms pertaining to shear flow. Any attempt to
investigate the turbulence mechanism is hampered by the lack of an
experimental technique for measurement of the pressure fluctuations.
However, it is possible to obtain information pertaining to the energy
balance, the study of which may be considered a proper approach to the
problem. An important step in this direction in the investigation of
“the boundary layer was made by Townsend (ref. 6). With respect to this
point of view the present work attempts to provide additional informa-
tion, especially for the region close to the wall, and to obtain a more
direct measure of the dissipation without relying completely on the
concept of local isotropy.

Attention here is given to the boundary layer with zero pressure
gradient under conditions as favorable as practicable for the use of
hot-wire technique. The method of obtaining the boundary layer is
described in reference 8, and the present work may be regarded as a
continuation of the former work in which use is now made of an artifi-
cially thickened layer as a research tool. While there are many impor-
tant features of boundary-layer turbulence, the present investigation is
concerned with three major phases: The intermittency and its effects
at the free boundary, energy balance, and the spectral distribution of
turbulent energy and shear stress. Since the boundary layer is a complex
flow combining the effects of a free boundary on the one side and those
of a solid wall on the other, no one part of the layer could be deempha-
sized. This makes it an interesting subject if not a simple one.

The present investigation was conducted under the sponsorship and
with the financial assistance of the National Advisory Committee for
Aeronautics. The author wishes to express his appreciation to
Dr. G. B. Shaubauer for his active support and constructive criticism
- and to acknowledge gratefully the assistance of Miss Z. W. Diehl and
Mr. T. J. Kelly. He also wishes to thank Dr. C. M. Tchen and Dr! J.
Laufer for their interest and stimulating discussions.
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SYMBOLS

y/s alv/s)| 4 w@ 4+ v2 4 w2
d(y/s) 2 .

coefficient of skin friction, To/l pUl

Fy (k)
£u(ky)
favlki)
£y (k)

three-dimensional spectral function associated with k
voltagé fluctuation

signal produced by u-component

signal produced by v-component

flattening factor

percent of turﬁulent energy ;é_ aSSOCiatéd with ky
turbulent energy u2 associated with kq

turbulent shear stress UV associated with k-
turbulent energy v2 associsted with Iy

three-dimensionsl wave number

kg = (3X?e/8v5)l/h

ky

n

P(u)
P(u/u')

_swau
(Pr) = 03 W

one-dimensional wave number
frequency
probability density of u

probability density of u/u'
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mean static pressure

mean static pressure at x = 10.5 feet
instantaneous pressure fluctuation
reference dynamic pressure ahead of plate

longitudinal space correlation coefficient of
u-fluctuation

lateral space correlation coefficients of u-fluctuation
skewness factor
time

X-component of mean velocity

mean velocity in free stream

instantaneous turbulent velocity fluctuations in X-, -
Y-, and z-directions, respectively

root-mean-square values of u, v, and W
mean-square. values of u, v, and w
turbulent shearing stress

y-component of mean velocity

g, o v a2 /u2 + V2 + Wl
1 2

) Ui3 déé\
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b < distance along surface from leading edge of plate
x', y', z' intervals in x-, y-, and z-directions
Xo distance along surface from virtual origin of boundary
' layer : . _
N &iStance normal to surface measured from surface
o = WUr
v
z direction perpendicular to xy-plane
b intermittency factor
o) boundary-layer thickness
© 2
Be boundary-layer energy thickness, \/P U 1-(ZL dy
: U U
, 0 1 1
€ dissipation'of turbulent energy in isotropic turbulence
o1 :
¢ = (Vao/s)™ [(v/8) - 0.78]
6 angle between velocity vector and normal to wire
- longitudinal microscale
v kinematic viscosity
p density of air
(o] standard deviation

shearing stress at wall
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X absolute Qonstant

x-component of vorticity

Zl#

mean value

PROCEDURE AND RESULTS

Experimental Arrangement

The present 1nvestigatibn was conducted at the National Bureau of
Standards in the h— foot wind tunnel shown in figure 1. The turbulence

level of the tunnel was 0.02 percent at 30 feet per second and 0.04 per-
cent at 100 feet per second. The low level of turbulence was obtained
by damping screens placed in the settling chamber. The boundary layer

was developed on a smooth, flat, aluminum plate 12 feet long, h%-feet

wide, and‘% inch thick with a symmetrical and pointed leading edge. The

plate was mounted vertically and centrally in the test. section of. the
tunnel.

The scheme of artificially thickening of turbulent boundary layers
developed in reference 8 was applied here in order to realize the
advantages of a thick boundary layer, namely, the larger scales of mean
and fluctuating flow fields which decrease errors due to the finite size
of the hot-w1re probe and the limited upper—freqpency response of the
equipment. In addition high Reynolds numbers are afforded without high
speeds. The thickening was achieved by covering the first 2 feet of the
plate with sand roughness consisting of No. 16 floor-sanding paper. At

the working station lO— feet from the leadlng edge the boundary layer

was 3 inches thick. All of the measurements were made at this position.
The free-stream speed was 50 feet per second. The elaborate tests
described in reference 8 showed that the boundary- layer was the fully
developed, smooth-wall type, having an apparent development length of
14.2 feet of .smooth surface. The corresponding length Reynolds number

based on values of x measured from the virtual origin was 4.2 x 10°.

In order to obtain a condition of zero pressure gradient along the
plate, the passage between the tunnel wall and the plate was made suf-
ficiently divergent to offset the natural fall in pressure due to
boundary-layer growth. This was accompllshed by a flexible side wall
which could be positioned by screws threaded into the tunnel wall. The
final pressure distribution is shown in figure 2. From 2 feet on down-
stream the pressure is seen to be constant on the average with variations
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about 1/2 percent of Qo about the mean. These variations were asso-

ciated with the inherent waviness of the surface and could ‘not be
removed by the adjustable wall.

Instrument Mounting and Traversing

The positioning and moving of an instrument from point to point
was always done in the manner that best suited the instrument and the
purpose. For example, the pressure distribution along the plate was
determined by means of a static tube mounted from a carriage that could
be moved and positioned by remote control. Since all other types of
 measurements were made at the 10.5-foot station, the various measuring
probes were supported on rods extending through the plate to a micrometer-
screw traversing device on the opposite side. This provided adequate
rigidity and negligible interference and permitted movement by known
amounts to and from the surface. Initial distance from the surface was
-obtained by using a prism to reflect the images of the surface and the
probe on the calibrated scale of a microscope.

In special cases such as the measurements of the and Ry

correlations, small manually operated traversing units that could be
mounted to the rods were employed. In all cases adequate rigidity and
freedom from interference rather than convenience of operation dictated
the arrangement. :

Measurement of Pressure and Mean Velocity

Nickel tubing 0.04 inch in diameter and 0.003 inch in wall thick-
"ness was used for the impact and static-pressure tubes. The static-
pressure tube was made according to the conventional design for such a
tube, and the pressure distribution was measured by traversing longitu-
dinally at a distance 1/4 inch from the surface. The impact tube was
flattened at the end to form a rectangular opening 0.01l4 inch wide and,
together with a static tube similar to that used for the pressure
distribution, was used to measure the mean-velocity distribution.
Velocity distributions were also measured at 10 inches above and below
the center line. These agreed well with the distribution at the center
line and thus confirmed the two-dimensional nature of the flow. No
correction was made for the effect of turbulence on the measured values
nor for the effective geometric center of the impact tube.

Close to the wall, O <y < 0.05 inch, the mean velocity was
measured with a hot-wire. Platinum wire 0.0003 inch in diameter and
approximately 1/2 inch long was used and operated at low-temperature
1oad1ngs in order to minimize the influence of the wall on the heat-
loss characteristics of the wire. A correction was made for the effect
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of the turbulence level on the measured hot-wire values. This was done
by a graphical method using the mean-velocity-voltage calibration curve
and the measured root mean square of the voltage fluctuations. The
corrected mean velocity was higher than the observed, with a maximum
correction of about 10 percent. The hot-wire values were in good agree-
ment with the pitot-static-tube values.

The velocity distribution is shown in figure 3. The dashed line
denoting the velocity gradient at the wall was computed from the shear
at the wall and is in satisfactory agreement with the measured values.

Turbulence Intensities and Shearing Stress

The hot-wire equipment used is described in detail in reference 12.
The frequency response of the uncompensated- amplifier was flat from
2 to 50,000 cycles and was down 17 percent at 70,000 cycles. A number
of cut-off, filters were provided to cut out frequencies above the range
needed in a particular measurement so that unnecessary noise was elimi-
nated. By this expedient the input noise level was held down to the
order of 2 to 4 microvolts. Compensation for the time lag of the wire
was determined by the square-wave method and was accomplished by a
resistance-capacitance network in the amplifier. Platinum and platinum-
rhodium (90 percent platinum and 10 percent rhodium) wires 0.0001 inch
in diameter and 1/2 millimeter long having a time constant of approxi.-
mately 0.25 millisecond were generally used. In cases where the signal-
to-noise level presented some difficulty, 0.00005-inch-diameter wire was
used. This was wire drawn by the Wollaston Process and the method of
attaching the wire was to etch away the silver and to soft-solder the
wire to the supporting prongs. Fine sewing needles were used as the
prongs for the u-holder and fine jeweler's broaches were used as prongs
for the X-wires. No wire-length corrections were applied to any of the
data. The method of measuring the turbulence intensities u', v', and
w' 1s described in reference 13. The u', v', and w' distributions
are shown in figure 4. The value of u' was obtained as close to the
wall as 0.00k4 inch, but because of the comparatively larger size of the
probes necessary for the measurement of v' and w' it was not possible
to measure these closer than about 0.045 inch. The extrapolated values
of v' and w' were obtained by comparing the boundary-layer values
with those obtained in a pipe (ref. 5) on a basis of U; against y*.
Good agreement existed within the measured range and consequently the
pipe data which contained values corresponding to distances closer to
the wall (because of the lower Reynolds number) were used as a basis for
extrapolation.

The measurement of TV was made by the conventional X-wire method
described in reference 13. Use was made of the experimental data for
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the angle response found by Newman and Ieary (ref. 1k4), namely,

(cos 9)0'1’L57 rather than the customary (cos Q)l 2 where O is the
angle between the velocity vector and the normal to the wire. The
signals to be dealt with are e and e, produced by the u- and

v-components, respectively. In principle, one wire of an x-wire probe

— . -
contributes the output (el + e2) and the other contributes (el - e2)2.
The difference between these two outputs gives ele, from which uv

may be calculated by employing the experimentally determined factors of
proportionality.

The results are shown in figure 5. Since the viscous shearing
stress reached only 2 percent of the total at the point nearest the
wall, the turbulent shearing stress UV shows the characteristics of
the total. It approaches the wall with zero slope as it must when the
pressure gradient is zero and is in excellent agreement with the value
at the wall calculated by the method of Squire and Young (ref. 15).

Spectra of u°, v, and uv

The mean-square values of the u-fluctuation between frequencies n
and n + dn were obtained by feeding the signal from the compensated
amplifier into a General Radio wave analyzer having a frequency range
from 10 to 16,000 cps and a fixed band pass. The signal from the
analyzer was then fed into a thermocouple circuit for measuring the
mean-square output. In reading the output, averages were taken for a
period of 1 minute. The mean-square voltage associated with the hot-
wire signal passed by the band was obtained by feeding in a known sine-
wave input at the proper frequency to give the same output reading. The
mean-square voltage per unit frequency was. then obtained by dividing by
the effective band width. The effective band width had a value of
5.36 cps and was defined as the rectangular band width having the same
area as the experimentally determined band shape. The results presented .
in figures 6 and 7 are normalized and

f Fu(ky) dk; = 1
0

and the wave number ki is given by

21m
=5
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Over most of the range the accuracy was on the order of %10 per-
cent. The accuracy is somewhat less at the two extremes because of i
large-amplitude fluctuations at low frequenc1es and because of low
signal-to-noise ratio at the high frequencies. The error due-to finite
length of wire increases as the scale of the turbulent motions decreases
and becomes significant at the higher wave numbers. However, because
40f the lesser accuracy .of measurement in this range no wire-length

‘correctlons were applied. The over-all value.of u2 served as a check
and,wae in good_agreement'with that calculated from-the spectrum. -

The same signals as those involved in the measurement of the over-
all turbulence shear were passed through the same analyzer to obtain the

spectra of uv shown in figure 8. Values below 10~ -2 should be. taken
with some reservation since they involve the small differences of two
nearly equal 51gnals. .

'The spectra of . v2 shown in flgures 9 and 10 were calculated from
the data taken during the measurements of the shear spectra. This
method, in principle, is perhaps not so accurate as a direct measurement
of the v-spectra, but a check on the reliability of the measurement was
afforded by comparing the u-spectra calculated from the same data with
that directly measured, and in general the agreement ‘was good

' The data for the shear and v2 spectra are not normalized 50 that

Ul.- :
and
‘_ . L _
f £,(ky) dky = v2
0 S

Probability Distribution,  Skewness, and
Flattening Factor of u-Fluctuations

The distribution of amplitude of u-fluctuatlons was determlned by
passing the voltage signal through a conventional gate circuit which
conducted when the signal was above the level of the gate. The signal
was preamplified so that the gate width could be considered negligible
with respect to the root-mean-square value of the signal and the pulses
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produced by the gate were a series of square waves of constant amplitude
of varying duration dependent on the time the signal was above the gate.
The percent of the time that the signal was above the gate with the
gate set at different levels gave an integral curve from which the
probability density P(u) was determined by graphical differentiation
vhere P(u) du 1is defined as the fraction of the total time the fluc-
tuation spends between u and u + du. A counting procedure similar
to that described in reference 16 was found to offer the best means of
measurement and averaging. Briefly stated, by means of a coincidence
circuit the pulse from the gate permitted passage of- a- 100,000-cps
signal for the duration of the pulse and the resultant. 81gnal was. then
counted by means of an electronic counter. ' The ratio of "the: number of
counts to the total number of cycles during a specified time: gave- the
desired fraction. The counting interval varied with the level of the
gate and ranged from 1 minute at the 50-percent position to 5 minutes

at the edge where the pulses were short and infrequent.

The midpoint was defined as the position about which the average
signal was zero and is obtained from the first moment of the probability
distribution, which by definition is

T [ ) an o

The . distributlons of the probabillty den51ty at various p051tions
across the boundary layer are shown in figure ll and dre expressed in
values of “u relative to u', so that

, At most of the pos1t10ns the distrlbutlons closed 1n rather well '
end permitted the.calculation with reasonable accuracy of the skewness
and flattening factors, where

f”--uBP(u; au

S«: _=® - - u

o e W @2
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and

wa uhP(u) du

F= =

\\ d/\m u2P(u) du : (£§)2

-0

|

<]

At y/6 = 0.8 and y/& = 1.0 the limbs of the curves were uncertain,
and no attempt was made to calculate the higher moments at these posi-
tions. The flattening factor was also measured directly. Since this
involves the nondimensional ratio of the same voltage signal, that is,

i

it was not necessary to calibrate the hot-wire, but the correction for
the difference in gain involved in the processing of the divided signals
had to be determined by calibrating with a known sine-wave input. The
fourth power was measured by feeding the signal from the campensated
amplifier into an instantaneous squaring circuit, which consisted of a
series of diodes properly biased to give the square of the input

(ref. 12), and then squaring again with a thermocouple. The distribu-
tion of flattening factors across the boundary layer measured in this
mamner is given in figure 12.

It is seen from figure 11 that from y/8 = 0.4 to the wall the
usual safety factor of three times the root-mean-square value for
determining the operating point of the equipment is quite satisfactory.
In the outer region of the layer, at y/5 = 0.8, this factor is exceeded
in the direction of negative values of u. Here measurements were taken
at varying gain-control settings to make sure that the equipment was not
overloading. ' : ‘

Measurement of Derivatives

The usefulness of the concept of local isotropy lies in the hope
that the rate of turbulent-energy dissipation in shear flow can be given
in terms of the dissipation expression for isotropic turbulence. This
would simplify the experimental procedure by requiring only the measure-
ment of the mean-square derivative of the u-fluctuation with respect
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to x. A fuller discussion as to the ddaptability of the concept of
local isotropy is given in the section entitled "Energy Balance," but
it may be stated that the use of the isotropic relation in determining
the dissipation is inadequate, especially in the region near the wall.
It thus becomes necessary to measure all of the following_nine mean-
square derivatives appearing in the dissipation term of the turbulence
energy equation

& @ E) - G -3

In the present investigation, because of the practical limitations
of hot-wire techniques it was possible to measure only the first five
of the above terms. The first three were evaluated by taking the time
derivative of the signal by means of a resistance-capacitance network
and obtaining the mean-square value with a thermocouple and meter. The
practical use of a differentiating circuit involves a compromise between
attenuation and the extent of linear response with frequency. In the
present measurements the differentiation was linear to 10,000 cps and
was down 12 percent from linearity at 16,000 cps. This was considered
adequate for the frequencies under investigation since no significant
change in the measured values was obtained by varying the cut-off
filters in the amplifier. The time derivative was converted to the
space derivative by assuming the accuracy of the space-time transfor-
mation ‘

_ ‘The remaining two terms were obtained by measuring the correlation
coefficients Ry and R, for a small distance of y and 2z and using

the'relations'given by Taylor (ref. 17)

u(y)uly + y') =1 - L(@>2(y')2
W'y +y') o2 »

oy

y'—> o0
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and

. - u(z)u(z'+'z') -;"l_ —l—-(f_ ;,
8 u'(z)uf(z + z')',"l Cope \O ) ( )

z' —> 0

" The correlation coefficients were measured by the method descrlbed
in reference 18 for varying distances of y' and 2' ranging from
0.004 to 0.04 inch.

The distribution of the various derivatlves across the boundary -
layer are’ glven in flgures 135 and 14y

An’ attempt to-assess the validity of ‘the’ space-time. transformatlon
was made at y/8 = 0.05. 1In figure 15, . the longitudinal correlation
coefflclent Ry obtalned by measuring “the correlatlon between values -

of u at the same instant for varying distances :in the x-direction is
compared with that calculated from the spectrum using the Fourler
transform

5]

Ry = -/; Fﬁ(kl) cos (kpx') dk;

The latter gives the spatial correlation from a time correlation
using the space-time relation. The microscale Ax calculated from the
spectrum is defined by

% = % f k1 2Py (k1) dkp
A 0

It is seen that for values of x' less than 0.2 inch the two are
in good agreement. They yield the samé microscale, and the space-time
transformation is apparently valid for the Small-scale motions respon-
sible for the dissipation. For large values of x' +the two begin to
diverge and the space-time relatlon becomes progressively worse for the
larger scale motions. At x' = 0.4 inch the mijor contribution to the
correlation comes from those wave numbers below 1.3 per centimeter. It
seems therefore that the adequacy of the space-time transformstion
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depends on wave number and gives rise to the interesting speculation
that the large-scale. motions have their own characteristic velocities -
different from the mean speed. Still closer to the wall; the space-
time assumption does not become a serious obstacle to the calculation
of the dissipation since the magnitude is given mainly by derivatives
in the y- and z-directions.

Although no wire-length eorrecﬁions were applied to any of the data,
it should be mentioned that an .estimate of the correction was made for

2
(%§> at y/& = 0.005 by the -method given in reference 19.: It was .

approximately 10 percent and consequently wire- length correctlons may
be considered negligible across most of the boundary layer.

.. DISCUSSION

Intermittency -

In. shear flows that have a free boundary, 1t has,been repeatedly
observed that as the free stream is approached the turbulence becomes
intermittent, that is, that for only a fraction y of the time is the
flow turbulent. This on-and-off character of the turbulence has been
definitely established as being a manifestation of the irregular outline
of the boundary layer as it moves downstream. The intermittency is
easily observed by oscilloscope records of the u-fluctuation in the
outer region of the boundary layer, and the records can be used to give
a quantitative estimate of the factor y and to discern some qualitative
aspects of the flow. Representative sections of oscilloscope records
taken at various positions across the boundary layer are given in fig-
ure 16. It is seen that in the outer region of the layer y/5 > O.k4
there are intervals of time when the flow is not turbulent and that this
time increases with increasing distance from the wall. Thus, the outer
regime is divided into a turbulent part and a relatively nonturbulent
free-stream part, and the hot-wire at a given position responds to
alternate turbulent and nonturbulent flows as the pattern is swept down-
stream. A vorticity meter which responds to the vorticity that exists
only in the turbulent region and suppresses the low-frequency. fluctua- -
tion was used to obtain a sharper division between the turbulent and
nonturbulent regions. Typical samples of the vorticity trace w, at

different positions across the boundary layer are shown in figure 17.

The first medsurements of the intermittency factor 7 were those
obtained by Townsend (ref 5)‘ where 7y 1is ‘taken as the ratio of the .
flattening factor (of U or ~du/dt) in the wholly turbulent region to.
that in the 1nterm1ttent region. From flgure 12, 1t is. seen that the
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flettening factors in the region near the wall y/8 < 0.4 are quite con-
stant with a value corresponding closely to the Gaussian value of 3.0.

By considering the intermittency as an on-off process the value of vy
is given by i

g
u
7y = 3.0 —

(2)
The intermittencies calculated in this manner together with those calcu-
lated from the oscilloscope records of the u-fluctuation and the vorticity
are given in figure 18, Values of y obtained from the flattening
factor are consistent with those obtained from the film only up to
y/8 = 0.9. As seen in figure 12, the flattening factors reach a maximum
and then begin to decrease. This is not too surprising because for low
values of y the turbulence of the free stream would be expected to
make itself felt. The result is probably a weighting of the probability
density for the turbulence of the free stream with that within the
boundary, which depends on the relative turbulence levels and the degree

of intermittency.. The curve in figure 18, which closely represents the
variation of »y with y/5, is a Gaussian integral curve given by

J

7=%(1-erty)

where

and

— \-1
g =
(Zg)y" -
The standard deviation o is

o = 0.145

Such a distribution indicates that the instantaneous position of
the edge of the boundary layer has a random character with a mean posi-
tion at y/6 = 0.78. The edge rarely extends outside the region
¥/8 = 0.4 to 1.2, While the position of the edge fluctuates over a
large fraction of &, the mean velocity is near that of the free stream,
being down by at most about 15 percent.
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Several interesting features can be gleaned from careful study of
the oscilloscope records. Although it may be difficult to see from the
short sections given in figure 16, it was noticed that in the strongly
intermittent region, for example at y/8 = 0.8, the trace had somewhat
of a square-wave appearance. Increasing velocities are in the direction
of the timing signal. The nonturbulent regions seem to bé at a constant
level corresponding to that of the free stream, while the turbulence
regions are seen to be centered about some lower level. The difference
between the velocity of the outside potential flow agd that existing in
the turbulent region seemed to depend on how far past the measuring
position the instantaneous edge of the layer extended at the particular
instant. At y/S = 1.0 and 1.2 there is very little evidence of the
shift because the edge does not extend to any great distance beyond these
positions. There is then a step as well as the on-off process which was
assumed in the calculation of ¢y from the flattening factor. The
agreement with values obtained from the film is probably due to the lack
of sensitivity of the flattening factor to this shift. However, the
skewness factor can be expected to be extremely sensitive.

A sketch of the boundary layer is given in figure 19. The boundary
between the turbulent flow and the free stream is quite sharp, and the
properties of the shear layer are comparatively distinct from those in
‘the free stream. The boundary layer travels downstream with an outline
constantly changing in an irregular manner, and the intermittency is
characterized by a large-scale diffusion process, carrying with it small-
scale turbulent motions. From the film taken at y/5 = 0.8 it was also
noticed that the average frequency of the occurrence of periods of no
turbulence seemed to be approximately 100 per second, and, since the
pattern is moving with nearly the free-stream speed of 50 feet per
second, a rough estimate of the average wave length for the irregular
outline of the boundary layer would appear to be approximately 25
or lig.

The effect of the intermittency on the probability density is
clearly seen from figure 11. In the nonintermittent region the distri-
butions are very nearly Gaussian and the values of skewness and flat-
tening factor calculated from the measured probabilities are given in
the following table:

y/% F S
0.001 2.52 0.09
.05 2.75 -.08
.2 2.62 -.08
A 3.19 -26
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Calculations of the higher moments of the probability densities
from the distributions tend to be inaccurate because of their emphasis
on the higher values of u. However, the values of flattening factor _
agree fairly well with the directly measured values. Values of skewness
should be taken with some reservation because'they are extremely sensi-
tive to the accuracy of the midpoint. Also in the region near the wall
where turbulent fluctuations are large the nonlinear response of the
hot-wire tends to skew the signal. At y/5 = 0.8 the probability
density is very strongly negatively skewed because of the lower veloc-
ities within the turbulent regions. At the same time the large percent
of time that the nonturbulent regions exist causes the maximum to be
displaced to the positive side of the midpoint. The distribution at
y/6 = 1.0 has a flattening in qualitative agreement with the trend of
the flattening factor to reach a maximm and then to decrease. The
distributions of skewness show the same general trend. The maximum of -
the probability distribution for y/B = 1.0 1is displaced slightly to
the left of u = 0, and it is uncertain whether this is experimental or

a consequence of the weighting effect previously mentioned in connection
with the flattening factor.

By .assuming that the free stream regions’ contribute little to the
measured mean-turbulence quantities, an allowance may be made for the
effect of intermittency by dividing by the factor . The distributions
of turbulent energy and shear stress divided by 7y are given in fig-
ure 20. The distribution of turbulent energy within the bounded flow
1s strikingly similar to that for channel and pipe flow (refs. 4 and 5)
 as is the distribution of turbulent shear stress which is approximately
< lipear from y/& = 0.1 to . y/s = 1.0. -

- Intermittency is, of course, absent from fully developed turbulent
flow in pipes and channels because there is no free stream. It is well-
known that the mean velocity for pipe and channel does not deviate as
much from the logarithmic distribution as does that of the boundary
layer, and a major factor in this discrepancy is the intermittency. The
influence of intermittency on the mean-velocity distribution is difficult
to ascertain, being in the nature of a complex time-averaging problem.
Although something may be done in a semiempirical fashion by introducing
7 into the mixing-length theories, it contributes little to the basic
understanding of the problem. Since the turbulent stress is apparently
confined only to the turbulent portions of the flow, there arises the
question as to the actual mean-velocity gradients in which the shear
stress exists. In figure 21 the measured mean velocity is plotted in
the form suggested by the velocity-defect law, and it is seen that the
characteristic logarithmlc law exists only in a limited range from about
y/6 = 0.01 to y/8 = 0.2. The direct viscous dissipation (fig. 22) is
negligible at y/8 0.01. This corresponds to a value of y* = 27.6,
which is in good agreement with the usually observed -value of 30 for
pipe and channel. An interesting point to note is that in the range of
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y/8 = 0.1 to y/d = 0.8 +the ratio of shear stress to turbulent energy
is approximately constant, as is also evidenced by the constancy of the
shear correlation coefficient in figure 5. This would tend to indicate
some degree of "KArmAn similarity" existing in the range where the
distribution deviates from the logarithmic law. In addition Kirmén
similarity requires that the large-scale motions responsible for the
shear stress be free from the effects of viscosity, which, as will be
seen in the section on spectra, is much more justified in the region
where the logarithmic law is not obeyed than in the region where it is
obeyed. Although any correction for the effect of intermittency is in
the direction of minimizing this deviation, it is pointed out that the
mean-velocity distributions for pipe and channel also deviate in this
region. It is difficult to attach any particular significance to the
logarithmic law which exists for so limited a range of the boundary
layer, except that it is a region where the direct influence of the
wall may still be present. It is not apparent that a degree of validity
can be assigned to it on the basis of the various forms of the mixing-
length theory. With respect to the mean velocity, the boundary layer
can be divided into three regions, namely, a viscous region extending
to a value of y¥* = 30, an intermediate region where the influence of
the wall still exists, and an outer region characterized by
intermittency.

Energy Balance

After the usual boundary-layer approximations are made, the equa-
tion expressing the energy balance for the turbulence at a given cross
section in a two-dimensional boundary layer is given by

P
ay+

uv

The respective terms from left to right have the following physical
interpretation:

1) Production of turbulent energy from the mean motion

2) Turbulent energy diffusion

%) Pressure diffusion

L) Convection of turbulent energy by the x-component of the mean
motion

(
(
(
(
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(5) Convection of turbulent energy by the y-component of the mean
motion

(6) Dissipation of turbulent energy

The convection of turbulent energy 1s negligible near the wall and
is significant only in the outer region of the layer where similarity
on the scale of & has been experimentally observed., Consequently,

. by using the continuity relations

.a_U-l-a—V:O
ox Jy

§ « xou/5

the convection terms can be trénsformed into the single term which may
be written in the nondimensional form :

Yy_ 5 y/a_LL. 4 <;§ £ 24 ;§>
> rrPne j; Ul.d(y/ﬁ) /5y >

where X, 1is the distance from the virtual origin of the boundary layer.
The dissipation term is not in a form that lends itself to measurement
by hot-wire techniques. However, it can be rewritten in the following.
more suitable form;

e N CRERCROREORTR
dy2 - ox ox ox oy oz oy

(2 (2) (%)

All of the pertinent terms in the energy balance can be calculated
from the measurements previously discussed except the diffusion terms
which are treated as one and obtained by balancing the equation. The
distributions of the various energy terms are given in figures 23, 2k,
and 25 in nondimensional form using & and Ul. The turbulent shear

stress in the region 0 < y/8 < 0.05 was obtained by subtracting the
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viscous shear stress (calculated from the mean-velocity gradient) from-
the constant value of total shear stress as given by the shear at the
wall. The second derivative term is important only in the region near
the wall. TIts calculation is quite uncertain and is given mainly to
show its order of magnitude. The finite intercept at the wall is a
consequence of the arbitrary linear extrapolation of the turbulence
intensity to zero. The dissipation term is the most difficult to deter-
mine because of the importance of the region near the wall. The applica-
tion of the concept of local isotropy is strongly conditioned by the
local similarity of the eddies responsible for the dissipation, the
verification of which is dependent on the dissipation derivatives obeying
the isotropic relation

() -2(z) -1

From figures 13 and 14 it is seen that only in the outer region of
-the boundary layer, y/S > 0.7, is this condition satisfied and that
the derivatives become increasingly divergent as the wall is approached.
2

2 .
The terms (%3) and (%E) are equal across the layer, and at
. Z

X

This illustrates the very small scale nature of the turbulent motions
in the transverse directions as compared with the longitudinal in the
region close to the wall. The inadequacy of local isotropy 1is strik-
ingly seen from the over-all energy balance obtained by integrating

the energy equation across the boundary layer. The integrals of the

diffusion terms and the second-derivative term are each zero, and the
total production is balanced by the total dissipation plus the total

y/8 = 0.005 their ratio to (?—) is 10 times that given by isotropy.

2
convection. Using the isotropic relation l5v(§5> for the rate of
>4 S ,
dissipation of turbulent energy, the result is out of balance, with the
dissipation being too low by a factor of 2.1. Hence, in order to obtain
an accurate measure of the dissipation, it is necessary to measure all
nine derivatives. Since it was possible to measure only the first five,
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the remaining four were obtained by the arbitrary assumption that deriv.
atives with respect to y and 2z are given by the isotropic relations

) )
ERGEC)

This considerably improved.the total energy balance. As seen from
figure 23, the dissipation calculated in this manner was obtained as
close to the wall as y/S = 0.005, and if it is assumed in order to
close in the dissipation curve that the dissipation is equal to the
production in the region 0 < y/8 < 0.01, the disparity is 15 percent.
This can represent a significant difference in the point-to-point bal-
ance as manifested by the diffusion term. When the diffusion term is
compared with that obtained by Townsend (ref. 6), the same general trend
is observed although there is a considerable difference in magnitude.
The necessary balance. cannot be achieved by the gain in energy due to
diffusion in the region 'y/8 > 0.6 ‘unless it is extrapolated to an
unreasonably long distance. Consequently the conclusion is that the
turbulent-energy dissipation is greater than the production in a very
thin region next to the wall in order to provide the dissipation needed.
This means a diffusion of energy toward the wall. Townsend's values for
the kinetic-energy-diffusion term require a movement of kinetic energy
away from the wall. Therefore, if energy goes toward the wall it must
be due to the action of pressure forces (pressure diffusion). This
intense dissipative region for the turbulence apparently coincides with
the viscous region for the mean flow. The magnitude of the diffusion
term illustrates the weakness of the mixing-length theory which has the
implicit assumption that what is locally produced is locally dissipated.

1l

This flow of energy against the energy gradient is rather surprising
and contrary to what is intuitively expected. It does not seem possible
that such a result could be brought about incorrectly by the questionable
assumption made regarding those dissipation derivatives that could not
be measured. Neither does it seem reasonable that these derivatives can
be distributed in such a manner as to make the production equal to the
dissipation at all points across the layer. However, it is felt that
the situation is complicated by the phenomenon of intermittency. The
energy-balance equation as used does not include the effect of inter-
mittency, in particular its effect on the production term. Perhaps the
results should be accepted as tentative until a fuller understanding of
the role played by the intermittency is available.
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The energy balance for. the mean motion is conveniently expressed
in terms of the energy thickness 8¢ such that

. - |
25 w W, (AU - e
25 ‘]Q [:v @ +.v(dy)‘] a(y/s) = 2 (1)

where

1 2
be = 8\/2 %ﬁ 1- (ﬁ%) d(y/s)

Similarity of the mean-velocity distribution permits treating the
integral in the expression for- 8¢ as a constant. If & is given by

8 = 0.37vl/5U1'1/5x01‘/5

then

1 2
e 1/5.. -1/5 —1/5k/" U U
20 . 0.296v1/ %y U ir - (LY aly/s
ax v T % o U1 (Ul> (v/8)

Equation (1) states that part of the loss of kinetic energy of .
the mean motion goes directly into heat through the action of viscosity
and the remainder goes into the production of turbulent energy. The
energy balance was found to be satisfied to within a few percent and
served as a welcome check on the accuracy of the measurements. The
production of turbulent energy and the  viscous dissipation are compared
for the region near the wall in figure 22. This emphasizes the impor-
tance of the region near the wall. In fact, almost 40 percent of the
loss in kinetic energy of the motion is directly dissipated by viscosity
in the region 0O < y* < 30, and of the remaining 60 percent which is

- converted into turbulent energy 30 percent is produced in the same
region. Thus, if the conclusion drawn from the turbulent-energy balance
is correct, 85 percent of the total dissipation (viscous and turbulent)
takes place in y* < 30.
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Energy and Shear-Stress Spectra

It is possible to gain some further insight into shear flow by
examining the spectral distributions of turbulent energy and shear
stress. A significant advance in dealing with the energy spectrum has
been made in the domain of homogeneous and isotropic turbulence (refs. 9
and 10). The basic concept underlying this advance is that energy
enters the spectrum through the large eddies and is then transferred
through the spectrum to the smaller eddies where it is finally dissi-
pated. If the lower wave numbers are excluded there exists a range in
which the eddies are in a state of equilibrium, governed by the rate
at which they transfer and dissipate energy. When the Reynolds number
is high enough, inertial forces will predominate in the lower wave
numbers of this equilibrium range, and a relatively pure transfer region
will exist. By dimensional reasoning it can be shown that the spectrum
will vary as k=7/3 in this range. Heisenberg (ref. 11) extended this
concept by assuming that the transfer of energy at wave number k was
caused by a turbulence friction produced by eddies with wave number
greater than k. He represented the energy balance in the equilibrium
range for homogeneous and isotropic turbulence as

o - k
— E k" [1] [] 1] 1 °
¢ = v+xfk é;%dk _/;) 2(3)2E(k)dk (2)

The second term within the brackets represents a turbulent viscosity
and X 1is an absolute constant. The solution of this equation gives
the spectrum in the following form

/3 e

E(k) =(g_;)2 /3 11 4 (T{k;)4 (3)

where kg is a wave number in the‘intermediate range given by

1/%
' X €
Ks = <Zv3 )

For low wave numbers E(k) varies as k'5/3, and for fhe high-wave-
number end where viscous forces predominate, as k-7,

Although equation (2) involves an assumed mechanism that may not
entirely represent thé facts, it seems to be a reasonably.goad .approxi-
mation. Where the Reynolds number is sufficiently high, there is
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evidence of a k'5/5 range and a transition to higher negative powers
approaching -7 as k increases. There is some doubt as to whether -7

is the correct value in the limit. The concept embodied in equation (2)
provides a rational basis for an approach to the problem of shear turbu-
lence. However, the extension to shear flow is complicated by the
presence of such factors as production, diffusion, convection, and the
absence of isotropy and homogeneity. Any conclusions as to the effects
of the diffusion and convection are difficult to draw. It may be assumed
that such effects are confined to the very low wave numbers which lie
outside the equilibrium range. In addition, the convection may be con-
sidered negligible across most of the layer. An attempt to assess the
influence of the production term in the equilibrium range of the spectrum

was made by Tchen (ref. 20). By considering the influence of the mean-
velocity gradient the conclusion is reached that a range of k"l will
exist in the wave-number region where k'5/5 normally exists when there
is no gradient.

An experimental test of theoretical predictions is rendered difficult
by the fact that only the one-dimensional spectrum can be measured. In
isotropic turbulence this 1s not too restrictive a factor because the
transformation from the three-dimensional spectral function such as
" appears in equation (5) to the one-dimensional spectral function is
known (ref. 11). In shear flow this relation is not known, and one has
to be content with the qualitative inference that in some unknown manner
the one-dimensional spectrum is still an integral effect of the three-~
dimensional. Despite the aforementioned complications the measured
spectra are of interest, and several interesting features can be noted.

The spectra of u? at various cross-sectional positions are given
in figures 6 and 7. The trend, in going toward the surface, is for the
higher wave numbers to have a greater percentage of the turbulent energy.
This is in accord with the trend of the shear-stress spectra (fig. 8)
also to extend to higher and higher wave numbers as the wall is approached.
It is noted that nearly all of the turbulent energy lies within the
stress-producing range. The spectrum of shear stress at y/6 = 0.2
‘shows an increase over that at y/6 = 0.05 1in the lower wave numbers.
This may be indicative of the influence of the wall becoming negligible
at y/5 = 0.2. For y/8 > 0.2 the decrease in shear stress across the
boundary layer takes plo~e for the entire spectral range. All of the

energy spectra indicate the existence of a region varying as kl'7 at

the high-number end, but because of the lesser accuracy of the measure-
ments in this range no direct comparison has been made. In the outer
region of the layer at . y/8 = 0.58 and 0.8 there is an extensive region

where the spectrum of u® varies as kl-5/5 corresponding to the

inertial subrange. The effect of intermittency in this region is dif-
ficult to ascertain except to say that it may be confined to the
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low-wave-number end of the spectrum. Also the maximum in the spectrum
at y/8 = 1.0 1is apparently a consequence of -intermittency. There is
a gradual transition in the shape of the spectrum from y/5 = 0.58 to
y/b = 0.05 where there is a wave-number range with the slope kl'l as

predicted by Tchen. The small-scale nature of the turbulence near the

wall is shown by ‘the spectrum of u?  at y/8 = 0.0011. The dip in the
spectrum at the low-wave-number end as indicated by the dashed curve
may be due to experimental error. However, it was repeatable and atten-
tion is drawn to it because it may be a result of some characteristic
phenomenon associated with the laminar sublayer.

Empirically the isotrqpiﬁfrelation for the dissipation is in fair
agreement with that giggn/in figure 24 from y/6 = 0.05 to 1.0. By
assuming that the second moments of the spectra (fig. 26) are a fair
representation of the total dissipation, it is seen that in going toward
the wall the shear penetrates deeper and deeper into the dissipation
spectrum. For example, at y/S = 0.58 the wave-number range up to

‘where _lg fﬁv(kl) has fallen to lO"5 contains approximastely 10 percent

Uy ,
of the dissipation. At y/8 = 0.05 this figure is 30 percent. It is
reasonable to expect this trend to continue, with the result that very
close to the wall the turbulence produced is directly dissipated and
there is no significant transfer of energy along the spectrum. This
conclusion is consistent with the small-scale turbulence near the wall,
and the rapidly decreasing spectrum at y/6‘= 0.0011. .

' ~The shear speétrum is a’'direct test of local isotropy, and it is
evident that the range of wave numbers for which local isotropy exists
becomes progressively smaller as the wall is approached. The transfer

range, as evidenced by kl'5/3, has not yet become locally isotropic

since the shear spectra approach zero at some higher wave number. How-
ever, the energy spectrum is apparently insensitive to the small amount
of shear stress which does exist. In figures 9 and 10 the measured

spectra of Vv© at y/8 = 0.05 and 0.58 are compared with those calcu-

lated from the measured uZ spectra using the isotropic relation

which, strictly speaking, is valid only for the range of local isotropy.

It is ‘seen that the measured v< spectra agree with the calculated at
the higher wave numbers. . This is consistent with the range of local
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isotropy indicated by the spectra of shear, and the difference between
the over-all u? and v2 - is confined to the lower wave numbers.

From the turbulent-energy equations for the individual vélocity
components it is seen that the terms responsible for the exchange of

energy among the various components are the pressure terms pi %E,
' >4
Py gz, and Py %E. The spectral range of such transfer is unknown but
y Z
a reasonable speculation would be that the pressure term P4 %I respon-
' Y

sible for the transfer of energy to v2 exists in the same wave-number
range as the shear-stress spectra. There is little evidence in the

measured v2 spectrum of a range of kl'5 5 as observed for-the'spectrum

of u2. This may be a consequence of the spectral distribution of the
pressure term being different from that of the shear stress with a
weighting more to the higher wave number end of this range.

CONCLUSIONS

The following conclusions were obtained from an investigation of
characteristics of turbulence in a boundary layer with zero pressure
gradient. Here y 1is the distance normal to the surface measured from
the surface, y* is y times the square root of the shearing stress at
the wall divided by the density of air over the kinematic viscosity

(yUr/v where Ur =\/7o/p), and & is the boundary-layer thickness.

1. The turbulent boundary layer can be considered to be divided into
three regions: A viscous region extending beyond the laminar sublayer
to a value of y* = 30, an intermediate region from y* = 30 to approxi-
mately y/& = 0.2 where the influence of the wall still exists, and an
outer region characterized by the phenomenon of intermittency.

2. The turbulent boundary layer has a sharp outline constantly
changing in an irregular manner. The turbulent regions travel with a
velocity lower than that of the free stream. A rough estimate of the
average wave length of this irregular boundary would be approximately 25.

5. The position of the edge of the layer with respect to the sur-
face is gpproximated closely by a Gaussian distribution centered at
0.785 with a standard deviation equal to 0.148.

4. The probability density of the u-fluctuation is very close to
Gaussian in the region y/8 <O0.k.
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5. The importance of the region near the wall has been demonstrated-
in fact, approximately 85 percent of the total. dissipation (viscous and:
turbulent) takes place within y* < 30. The production of turbulent
energy and the turbulent-energy dissipation reach a sharp maximum within
this region, and there is an inward flow of energy toward the wall
because of the action of pressure forces.

6. The concépt of local iSotropy is inadequate for obtaining the
turbulentjenergy dissipation, especially in the region near the wall.

T. In the outer region of the boundary layer where. the mean-velocity
gradient is small the existing theories for the energy spectrum in iso-
tropic turbulence can be applied. As the wall is approached the
nonisotropy becomes significant with a resultant change in the spectrum.
Very close to the wall, the turbulent energy produced is directly dis-
sipated with no s1gn1f1cant transfer of energy through the spectrum.

8. As close to the wall as y/S 0.05 it has been shown that the
space-time transformation is valid for the smaller eddies responsible
for the turbulent dlss1pathn but becomes invalid for the larger eddies.

National Bureau of Standards,
Washington, D. C., May 8, 1953.
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Figure 6.- Spectra of u2 in inner region of boundary layer.
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Figure 7.~ Spectra of u—2 in outer region of boundary layer.
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Figure 8.~ Spectra of turbulent shear stress.
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Figure 1lk.- Distribution of dissipation derivatives away from wall.
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Figure 22.- Comparison of direct viscous dissipation with production of
turbulent energy near wall.
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