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TECHNI CAL NOTE 4147 

MEASURED AND PREDICTED DYNAMI C RESPONSE CHARACTERISTICS 

OF A FLEXIBLE AIRPLANE TO ELEVATOR CONTROL OVER 

A FREQUENCY RANGE INCLUDING THREE 

STRUCTURAL MODES 

By Henry A. Cole , J r., and Eucli d C. Hol leman 

SUMMARY 

The longitudinal frequency response of a large flexible swept -wing 
airplane , as determined from i t s measured response to el evator pulses , 
is presented over the operating Mach number range at alti tudes from 15, 000 
to 35 , 000 feet . Response quantities f or the nose , center of gravity, wing 
tip, and tail are shown f or frequenci es from the a i rplane short -peri od 
mode to the fuselage f i rst -bending mode . 

Comparisons are made between the measured responses and responses 
predicted by dynamical analyses with up to three structural degr ees of 
freedom . The forms of transfer functi ons needed to s i mulate the response 
over several frequency bands a r e shown . The dynamic response measured i n 
flight i s interpreted in terms of lines of low response , and compari sons 
are made with predicted lines of low response and node l i nes predicted by 
free - free analysis and measured i n ground vi brati on t ests . 

I NTRODUCTION 

The mass distribution and structural flexib i l i ty of some recent 
high -aspect - ratio swept -wing bombers and transports has resulted i n air­
planes with relatively low frequency structural modes . Consequentl y , the 
response of these airplanes to disturbances such as control inputs and 
gust loads consists of large s tructural deflections as well as motions 
of the airplane as a whole . Vari ous parts of the ai r plane , then , are 
subjected to widely different accelerations . These accelerations not 
only affect the local structural stress, but also influence the operation 
of mechanical and electroni c equipment . When the a i rplane is equipped 
with an automati c control system, the local dynamic response to control 
motion i s of particular s i gni ficance because structural vibrati on si gnal s 
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which are fed into the system by pickups (accelerometers , rate gyros , etc .) 
may either cause the system t o become unstabl e or limit the gai n allowable 
for system stability (refs . 1, 2, and 3) . 

In order to provide information on dynamic characteristi cs of flexible 
airplanes, the NACA has been evaluating measured and predicted dynamic 
responses of a Boeing B- 47 airplane to control surface motions . The 
dynamic response at frequencies below the structural mode frequencies 
has been reported in references 1, 4, and 5. Also , a l i mited amount of 
measured responses at structural mode frequencies was presented in these 
reports, but the analysis was limited to frequencies below the natural 
frequencies of structural modes . In the present report , measured dynamic 
responses to elevator control at structural mode frequencies are presented 
for a wide range of flight conditions , and an analysis is developed which 
includes three structural modes , wing first bending, wing first torsion , 
and fuselage first bending . Other analyses including s t ructural modes 
have been presented in references 6, 7, and 8. 

In the first part of the report, the measured responses of widely 
separated points on the airplane are examined for effects of altitude , 
Mach number, and dynamic pressure. In the second part, equati ons of 
motion are developed for three structural degrees of freedom and two air­
plane degrees of freedom . Finally, comparisons are made between measured 
and predicted structural response characteristics and results are i nter ­
preted to locate optimum points for automatic control system pi ckups . 

Data used in this report were obtained from flight tests conducted 
at the High Speed Flight Station of the NACA and the analysis and reduc ­
tion of data was a cooperative effort of HSFS and Ames Aeronautical 
Laboratory . 

Symbols used in this report are defined in Appendix A. 

TEST EQUIPMENT 

The test airplane was a Boeing B- 47A with General Electri c J47- GE -23 
turbojets and with wing vortex generators as shown in figure 1 . Wing 
deflections were measured by an optigraph mounted on top of the fuselage 
which recorded the movement of lOO -watt target lights . Elevator angle 
was measured by an NACA resistance - type control-position indicator . The 
pitching velocity at center of gravity was measured by a magnetically 
damped NACA pitch turnmeter, the acceleration at the center of gravity 
and tail by NACA air - damped accelerometers, and the acceleration at the 
nose and wing tip by Statham linear accelerometers . The locations of the 
instruments used in this report are indicated in figure 2 . 
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MEASURED FREQUENCY RESPONSE 

Measured frequency responses were selected which would define the 
complete motion of the airplane over a wide range of flight conditions . 
The measured quantiti es are pitching velocity at the center of gravi ty, 
acceleration at the center of gravity, acceleration at t he nose , accel ­
eration at the wing tip , and acceleration at the tail . Although these 
few points are not suffi cient to define structural deformations in detail , 
the most significant deflections which occur in the frequency range of 
interest are of the first -bending type and, hence , the principal deflec ­
tions of in -between pOints can be approximated by use of the assumed 
cantilever modes which are introduced later in the analysis . The flight 
conditions covered are plotted in figure 3 and are listed in table I. 

Frequency response data were obtained by the t1 pulse techni que tl which 
is described in detail in reference 4. Briefly, in this method, the pilot 
applies a pulse force to the controls and t he resulting motions are 
recorded. The time histories of the elevator angle input and the output 
response quantity are transformed to frequency form by the Fourier inte ­
gral . Corrections are made for the dynamic response of instruments and 
frequency response is cut off at frequencies where the level falls below 
values required for accurate results. 

In order to document the response and to show how the response varies 
with different parameters held constant , frequency responses are plotted 
with altitude held constant in figures 4, 5, and 6, with the aeroelastic 
parameter q/~ held constant in figure 7, and with Mach number held 
constant in figure 8. Discussion of these results f ollows. 

Frequency Response At Constant Altitude 

The frequency response is presented for three altitudes , 15 , 000 feet 
in figure 4, 25 , 000 feet in figure 5, and 35,000 feet in figure 6 . Cer­
tain trends are apparent from these figures . The peak of the short -period 
mode at a frequency from 1 to 4 radians per second increases in amplitude 
and occurs at higher frequencies as Mach number is increased. This trend 
is explained in reference 4. 

The peak in the acceleration responses due to the wing firs t-bending 
mode (approximately 9 radians/sec), which i s most apparent i n figures 4 (d), 
5(d), and 6 (d), decreases with increasing Mach number . Also, the valley 
or dip in the response which follows the short -period mode peak shifts to 
higher frequencies as Mach number is increased. 

The response i s very complex at frequencies higher than the wing 
first-bending mode , partly because of inaccuracies in t he data by the pulse 
technique and partly because of many vibrations , i nsignificant for present 
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purposes, which a re picked up by the accelerometers . However , the peaks 
which reach fairly high amplitudes are considered to be accurate indica­
tions of structural modes and only peaks which rise above 109 ' s per radian 
on acceleration respons es will be considered to be significant here . 

The next s i gnificant peak appears at frequencies from 14 to 17 r adians 
per second. On the basis of ground vibration t ests (ref . 9) and analysis 
(ref. 10), t his mode is believed to be of a wing second-bending type 
coupled with body translation and pitch . 

A very definite hi gh peak i s in evidence on all of the responses near 
a frequency of 30 r adians per second, which , according to ground vibration 
tests, is a mode consisting primarily of fuselage first bending. Unfor­
tunately, the frequency content of the pulse inputs was not high enough 
to define this peak clearly i n every case , but the peak amplitudes appear 
to increase \nth Mach number and tend to become less severe as altitude i s 
increased. 

A small blip or side band occurs i n many cases at a hi gh level of 
amplitude from 20 to 25 radians per second on the accele r ation responses 
of the ,nng tip . TI1i s i s believed to be due to the wing first - torsion 
mode as indicated by ground vibr ation tests and analys iS . Because of t he 
very close proxim~ity of the wing first - torsion mode to t he fuselage first ­
bending mode it i s difficult to note any separate effects . 

Frequency Re sponse With Aeroelasti c Paramete r q/~ Constant 

Frequency re sponses with aeroelastic parameter , q/~ , equal to 280 
pounds per square foot a re plotted i n figure 7 for the range of test 
a l titudes as indicated i n figure 3. All of the responses fall fairly 
close together in both amplitude and phase . The differences which do 
occur, near the short -period mode frequency , are explained by the pseudo ­
static theor y (refs . 1 and 4) when differences i n wei ght are i ncluded. 
The results i n reference 1 show that the s teady- state gain of the ratio 
of acceleration to elevator angle and the damping r atio of the short ­
period mode both dec rease with an increase in altitude at cons t ant q/~ . 
These trends have opposite effects on the amplitude of the frequency 
r esponse curves and tend to cancel each other when the frequency is raised 
to the short -period mode frequency . However, with the exception of the 
steady- state gai n , it appears that t he response could be considered essen­
tially unchanged for some practi cal purposes when q/~ i s held constant 
and other parameters are varied . 
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Frequency Response At Constant Mach Number 

Curves f or a Mach number of 0 .7 (fig . 3) are plotted in figure 8 . 
As altitude is decreased at constant Mach number , the aeroelastic param­
eter q/~ increases and,therefore , the frequency of the short-period 
mode peak and the general level of t he amplitudes i ncrease . 

The peak of the wing f irst-bending mode at a frequency of 8 to 9 
radians per second which is seen most clearly i n f i gure 8 (d) tends t o 
disappear as q/~ is increased. Although peaks are not well defined 
at higher frequencies , an opposite trend appears f or the modes at 16 
radians :per second and 30 radians :per second. These :peaks tend to 
increase with q/~ . I t should be noted here that in f orced oscillation 
tests the height of the :peak in the frequency res:ponse depends on the 
manner in which the driving force is coupled to the mode as well as on 
the damping of the unforced mode itself . Hence , in the interpretation 
of peak-amplitude trends, consideration should be given to changes in 
the coupling of the modes with the forcing as well as to changes in 
aerodynamic dampi ng and spring forces . 

ANALYTICAL METHODS FOR PREDICTION OF DYNAMIC RESPONSE 

I n the previous section, measured dynamic responses of the ai rplane 
were presented to document the response and to show the effects of various 
parameters . Of course, it is desirable to be able to predict these 
response characteristics for use i n rational design of the airplane and 
its control system . In the follOwing section , methods of analysis 
including structural degrees of freedom are developed . 

Equations of Motion 

Equations of motion of a flexible airplane for frequencies belOlv the 
structural mode frequencies were developed in reference 4. Also, equations 
of motion including structural modes have been presented in references 6, 
7, and 8. I n the analysis here , the equations are developed for two air ­
plane degrees of freedom and three structural degrees of freedom i n a form 
Ivhich lends itself to digital machine computing or hand calculations . The 
equations of motion of the airplane may be simply stated by Lagrange's 
e quation : 

(1 ) 
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where KE is the kinetic energy, FE the potential energy, qi the 
generalized coordinates, and Qi the generalized forces . To completely 
describe the complex dynamic system of a flexible airplane, an infinite 
number of coordinates (qi) are needed. However , in most practical prob ­
lems, the motions of the airplane occur within a finite frequency range , 
and these motions can be adequately described with a finite number of 
coordinates . The trick is to select the minimum number of coordinates 
which are needed for the frequency range of interest . 

Selection of coordinates. - The mode of deformati on of the structure 
at an instant of time represents a condition in which the structural 
spring forces are in equilibrium with the combined forces of all the 
loads . The individual loads, which include inertial , aerodynamic, and 
structural damping loads due to moti ons of the airplane as a whole and 
structural deflections, vary in accordance with the frequency range con ­
sidered. At low frequencies, loads due to motions of the airplane as a 
whole are of primary importance, while at higher frequencies , loads due 
to motion of the structure are of primary importance . Since t he total 
deflection results from various combinations of the individual loads, an 
insight to the coordinates needed to define the total deflection is gaineQ 
if the deflections due to the individual loads are known . 

To study the low-frequency range, pseudostatic deformations of the 
wing resulting from loads due to Q , B, n, and e were calculated through 
use of aerodynamic and structural i nfluence coeffici ents (see Appendixes B 
and C) . The deflection of the wing from the reference plane shown in f i g­
ure 9 is presented in figure 10 in components of bending of the elastic 
axis (38 -percent chord) and streamwise twist . All of the curves are of 
the wing first -bending type with various amounts of twist of the wing 
first-torsion type . Although fuselage bending is not shown on the figure, 
it occurs in various amounts in the same direction as the wing bending . 

At structural mode frequencies , the inertial f orces due to structural 
motion are apt to be of greatest importance. The i ndivi dual effect of 
these inertial forces was evaluated by calculating the vacuum vibration 
modes of the airplane as described in Appendix B. These modes are plotted 
about the space axes i n figure 11, but the deflections will be discussed 
as viewed from the deflection reference plane on the fuselage . 

The dominant mode is of the wing first -bending mode type. The first 
subdominant mode is primarily wing first torsion with some wing second 
bending. The second sub dominant mode is primarily fuselage bending with 
a curve of wing first -bending type i n the wing . At this frequency it is 
noted that there is little or no bending of the inboard portion of the 
wing which indicates a component of wing second bending is present . 

The i ndividual deformations in figures 10 and 11 i ndicate the 
principle deformations to be expected for frequencies up to 25 radians 
per second. In order to satisfy both the conditions of the pseudostatic 
frequency range (various amounts of wing torsion and fuselage bending 



NACA TN 4147 7 

occurring with wing first bending) and the structural mode frequency range 
(various amounts of fuselage bending with different types of wing bending 
curves), it is necessary to break up the deflection curves into components . 
This was done by selecting wing first bending, fuselage first bending, and 
wing first torsion for degrees of freedom (fig . 12 and table II) . Although 
wing second bending is evident in some deflections, it was neglected to 
simplify the analysis . It should be noted that the deflection coordinates 
in figure 12 are deflections relative to the deflection reference plane in 
figure 9 which represent the structural deflections which an observer would 
see from the rigid airplane center-of-gravity location . Also, coordinates 
of displacement of rigid airplane center-of-gravity location and pitch 
angle of the deflection reference plane were included to take into account 
motions of the airplane as a whole. 

There are other combinations of coordinates which could be used to 
describe these motions, but the component deflection breakdown used here 
has many advantages . The equations are put in a form which allows direct 
application of the pseudostatic prinCiple in any of the structural degrees 
of freedom . The calculation of generalized forces is simplified. The 
structural degrees of freedom correspond to deflections seen by an observer 
on the airplane and, hence, correspond to the optigraph measurements . 

APPLICATION OF LAGRANGE'S EQUATI ON 

By means of equation (1) and coordinates, displacement of center of 
gravity (Zcg), pitch angle of center of gravity (e), wing first bending 
(y), fuselage first bending (h), and wing first torsion (l), the equations 
of motion as derived in Appendix Care: 
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K1M + 
Cia, 

0 K1l:mi ai K1l:mi bi Kll: mi ci V 

- Cma, 
K2Iy K2Uni ai xi K2 Lmi bi xi K2l:mi ci xi V 

K1fuiai Kll:mi ai xi Kll:~ ai 2 0 Kll: ~ai Ci D2 + 

l:CIa.. bi 
Kll:~ bi 

2 K1l:mi bi + 1 K1l:mibixi 0 0 V 

Kll:mi Ci Kll: r;ti ci Xi K1l:mi ai ci 0 K1l:mi ci 
2 

Cru, 
Cru + CLe CLy CLh cLi V 

- CUb, 
- (Cnu + Cme) - Crny - Cmli - Cm · V I 

l:Cru,. ai 
;!. l:CL · a · l:CL · a i 0 l:CL· a · D + V ei 1 Yi I i 1 

l:Clu,.bi 

l: (CIui + CLei)bi 
1 

0 l:CLn .bi 0 V 
1 

r.c~ c · . 1 

l:Cr..e. ci l:CLyi Ci 0 l:CL · c· V 1 I i 1 

0 Cru, CLy CLh CLI Zcg - CLo 

0 - CIlla, - Crn Y - Cmh - CmI e Crno 

0 l:C~ai K1Wn 2l:m· a · 2+ 0 l:CL 2 · ai Y 0 all 
1 

l:CLyiai 
= a 

0 l:C~bi 0 2 2 
K1Wnb llii bi + 0 h - CLo 

l:CLh . bi 
1 

0 l:Clu,. Ci l:CLyi Ci 0 2l: 2 0 K1Wn m· c· + C 1 1 
1 

l:CLli ci 

(2) 
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Symbols are defined in Appendix A. Aerodynamic coefficient terms 
(e . g ., ~~. ai) were evaluated from aerodynamic 'influence coefficients 

l 

9 

which Ive re based on steady- state lifting line theory. The aerodynamic 
influence coeffici ents were further modified to include weighti ng terms 
so that the summations performed a r e quadrature soluti ons of the i ntegral 
of the product of the spanwise l i ft functi on and the deflection function. 

Equation (2 ) may be solved f or transfer functions Zcg/o , e/o, y/ B, 
h/B, and I/O . From these soluti ons the mot i on of any point on the air­
plane may be determined. The acceleration at a point (i ) f or exampl e i s 
given by : 

Equation (2 ) may be easily extended to include more degrees of 
freedom . Coordinates should be selected which are normal or nearly nor­
mal to avoi d ill- conditioned equations . In other words, the cross terms 
such as Emi aici should be approximately zero . If a suitable digital 
computing machine is available, then a large number of normal coordinates 
could be included in the equations of motion . However , for preliminary 
design use and for interpretati on of the dynamic response, the simplifi ­
cations attendant with a few degrees of freedom are desirable . 

The adequacy of the degrees of freedom selected can always be 
checked at a given frequency by comparing the deflecti ons predicted by 
the equations with the deflections computed from the applied loads 
(Appendix C). 

The Pseudostatic Method 

When only the dynamic response below structural mode frequencies i s 
needed, equation (2 ) may be simplified by eliminating terms in D2 and D 
which occur with the variables y, h, and I . This assumes that the iner­
tial and damping forces arising from structural motion are negligible . 
This is sometimes called the pseudostatic method because only the spring 
terms of the structural modes are included, but all of the dynamic effects 
of the rigid body degrees of freedom are included. Equation (2) may be 
written i n matrix f orm as follows : 

Zcg - CLo 

[cijJ 
e Cmo 
y = 0 0 (4 ) 
h - CLo 
I 0 
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in which the elements of [Ci j ] are quadratic polynomials in D, that is , 

cll = (KlM + C~) D2 + C~ D. Equation (4) may be partitioned into 

equations : 

and 

c 3 1. c 3 2 

c 4 1. c 42 {':g} + 

cSl. C52 

+ [ CLY 
- Cm Y 

2 2 
K1.Wna ~miai + 

~CLyiai 

0 

0 
2 2 

K1.Wnb ~ibi + 
~CLh bi 

i 

~CLyi ci 0 

Y o 

o h 

o 

(6) 

In the pseudostatic method, equation (6) is solved for ~} and 

substituted in equation (5) . The resulting equation then is only a func ­
tion of Zcg' e, and 5. The important condition in using equations ( 5) 
and (6) for pseudostatic calculati ons is that 

o 

o 

o 

o 

KlWnC2~mici2+ 

l:CLlici 

f 0 
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for this is the condition for existence of the inversion used i n solving 

equation (6) for {f} . The determinant, equation (7), becomes very small 

and approaches zero if two similar modes are selected as degrees of free­
dom. The best conditioning of equation (6) is obtained when modes are 
selected which are normal (~miaici = 0) . The pseudostatic analysis, as 
used in reference 4, used each of the control points on the wing as a sep­
arate degree of freedom. All of these degrees of freedom could be used 
in the dynamical analysis by expanding equations (2 ) to include more 
degrees of freedom, but this procedure is usually impractical. 

Pseudostatic method techniques can also be applied to the equations 
which include dynamic effects of structural modes . In these cases , che 
modes in the frequency range of interest are included as dynamic degrees 
of freedom, and the hi gher frequency modes as pseudostatic . For example j 

if the frequency response were needed through the wing first -bending mode 
frequency, then only terms in D2 and D associated with variables h 
and I would be neglected. 

COMPARISON OF MEASURED AND PREDICTED RESPONSES 

In the previous two sections , measured dynamic responses were 
presented to document the dynamic response for systems design, and ana­
lytical means of prediction of the dynamic response were developed. Com­
parison of the measured and predicted responses will now be presented to 
show how well the analysis represents the measured frequency response 
characteristics of the airplane (i. e ., which forms of transfer functions 
are needed to simulate the dynamic response in systems design) and how 
well the node lines or points of low response can be predicted by analysis 
or ground vibration tests . 

Frequency Response Curves and Related 
Transfer Function Forms 

Near the short -period frequency .- If the response is only needed at 
frequencies near the airplane short -period mode frequency, then the 
pseudostatic method should provide adequate predictions . In order to 
verify this, measured responses of wing tip deflection at several alti ­
tudes are compared with the predicted response in figure 13 . Wing tip 
deflection is used here for comparison because it i s the most direct and 
accurate measurement of aeroelastic effects on the airplane. From equa­
tion (6), solutions of yand I are combined in accordance with equa­
tion (C33) in Appendix C to form the transfer function for wing tip 
deflection which has the form 
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Zwt 
o 

( 
2 ~ 1 2) l +- D+ -- D 
W:n Wn

2 
2 
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(8) 

where the numeri cal values for ~ and Wn are determined f rom the equati ons 
of mot ion for a given flight condition . The subscripts 1, 2 , .. . are 
used to indicate that the ~ and Wn are different i n t he second-order 
transfer function terms . 

The forms of transfer functions of other quantities a/o , n/ o are 
the same as for a rigid airplane and are given i n reference 4. Solutions 
in the form of equation (8) were obtained for flight conditi ons at a Mach 
number of 0 . 7 and altitudes of 35,000 and 15,000 feet for the airplane 
weight configuration . These were then plotted in frequency response form 
through use of dynamic response templates pr esented in reference 11. The 
frequency r esponse function may also be obtained by substituting i w for D 
i n equation (8). 

The agreement between experiment and the pseudostatic predictions is 
quite good up to a frequency of 4 radians per second. At highe r frequen ­
cies , the r esponse rises sharpl y i n a dynamic peak due to the wing first ­
bending mode which is especi ally noticeable at the higher altitude 
of 35 , 000 feet. 

Including the short -period and wing first -bending frequencies. - I n 
order to take account of the dynamic effects of the lowest structural 
mode the wing first -bending mode needs to be i ncluded as a dynamic degree 
of freedom i n the equations of motion . This i s done by only neglecti ng 
the D2 and D terms associated with h and L i n e quation (2 ) . The 
transfer function f or z/o then takes on the form : 

z 
o 

Responses predicted by this method are also shown in figure 13, and 
it may be seen that the dynamic re sponse peaks agree well with the experi ­
mental ones . The deflection check , as described in Appendix C, indicated 
that the selection of coordinates was excellent f or describing the struc ­
tural deflections in this frequency range (up t o 15 r adians per second) . 
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An i nteresting r esult in f i gure 13 i s the disappea rance of t he large 
dynamic r esponse peak of the wing f i rs t -bending mode at an altitude of 
15, 000 feet. When t he airplane under goes f orced osci l l ation , t her e i s a 
frequency fo r whi ch t he generali zed f or ces of i nertial loa ds and aero dy­
namic l oads nearl y cancel. Thi s f re quency i s mar ked by the val ley i n t he 
f r equency response whi ch occurs around 5 r adians per second at an altitude 
of 35 , 000 feet . At 15 , 000 f eet , thi s condition occurs at nearl y the same 
frequency as the wing f i rst -bending mode frequency and hence lit tle or no 
drivi ng f orce i s t r ansmitt ed to the wing and the dynami c response peak 
remai ns small . 

The f orms of other transfer functions f or dynamic y and pseudo static 
h and 7. are : 

and 

e 
5 

(: 2S 1 2) (: 2S 1 2) 1 + - D + -- D 1 + - D + -- D · 
Wn (,\.... 2 Wn Wn2 

~l 2 4 

(10) 

(11) 

Including the short -period, wing first -bending , and fuselage f i rst ­
bending frequencies . - The predicted response may be extended to cover a 
wider range of frequencies by including another dynamic degr ee of f r eedom. 
In selecting additional degrees of freedom, consideration must be given t o 
the importance of the modes on the over-all response . I n l ooking at the 
free - free modes i n figure 11, it may be seen that the first sub dominant 
mode consists primarily of deflection of the inboard nacelle mass whereas 
the second subdominant mode consists pri marily of deflection of the tail 
mass . Fuselage bending was selected as the next most i mportant degr ee of 
freedom because it would be expected to have the largest influence on 
local fuselage responses . 

Because of the small deflections involved at the higher frequencies , 
structural deflection measurements, particularly of the fuselage, were 
not of sufficient accuracy to use for comparison wi t h theory . However , the 
accelerometer measurements were of sufficient accuracy over the entire 
frequency range of interest , and hence will be used for comparison here . 
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Equation (2) was solved f or e, Zcg, y , and h with the torsion-mode 
variable 1 neglected. Acceleration responses at the nose, center of 
gravity, wing tip , and tail were obtained through use of equation ( 3) and 
ar e plotted i n f igure 14. The f orm of these acceleration responses is 

K ( ) (1 + ~ D + ~ D2)l (1 + ~ D + ~ D2) 3(1 + ~ D + ~ D2) 5 

= 

(1 + ~ D + ~ 2 D2) 2 (1 + ~ D + ~ 2 D2) 4 (1 + ~ D + ~ 2 D2) 6 

(12) 

and the form of pitchi ng veloci ty at the center of gravity is 

e 
5 

( 2S 1 2) ( 2s 1 2) ( 2S 1 2) 1 + -- D + --- D 1 + -- D + --- D 1 + -- D + --- D 
Wn Wn2 2 Wn Wn2 

4 Wn Wn2 
6 

Comparable measured acceleration responses are shown i n figure 15 . 
The portion of the measured wing- tip response has been deleted between 
f re quenc i es of 12 and 25 radians per second because t he scatter in this 
region obscures the other response curves . It may be seen that the pat ­
tern of predicted ( f i g . 14) and measured responses (fi g . 15) a r e very 
s i milar in both amplitude and phase angle which indicates that the equa ­
t ions are of the correct f orm . Hence, transfer functions of the f orm of 
equations (12) and (13) should be adequate f or simulation of the dynamic 
response over this frequency range . 

A closer compari son of the responses can be ob t a i ned by plotting the 
accelerations at peaks of the various modes on an amplitude -phase plane . 
Discussion of the results a t the wing first -bending mode and the fuselage 
f irst -bending mode peaks follows . When values are compared, it should be 
kept in mind that errors should be evaluated on the basi s of absolute 
differences r ather than percentages because ampli tude ratios which are 
small and phase angles at points with a steep slope are difficult to 
measure accurately . 

The amplitude and phase angle of the various accelerations at t he 
wing first -bending mode frequency are plott ed i n figure 16. The agree ­
ment between measured and predicted values is considered to be good. The 
deflection check of Appendix C is shown in figure 17. The deflections 
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in phase with the wing tip are plotted in bending and str eamwise twist 
components for comparison. The close agreement indicates that the degrees 
of freedom were adequate to describe the mode shape . 

Comparison of the peak ampli tudes at the fuselage first -bending mode 
frequency near 30 radians per second in figures 14 and 15 shows a large 
difference between measured and predicted values . However , in both cases 
the damping ratio is very low and the height of this peak i s extremely 
sensitive to small changes i n damping ratio . Physically this means that 
the exact values of the peak are dependent on very small forces which are 
beyond the accuracy of the analys i s . It is quite possible that better 
agreement would be obtained if structural damping and unsteady lift forces 
were included in the analys i s . However , since the structural and mass 
characteri stics of the fuselage are not known accurately ( see Appendix B), 
it is felt that further refinements would be futile unless structur al 
properti es of the fuselage were measured. 

I n order to compare the modes of deformation , the accel erations at 
the fuselage first -bending mode frequency were normalized to the tail 
acceleration and are plotted in figure 18 . It may be seen that there are 
phase -angle differences between measured and predicted values as hi gh 
as 450 and that the relative wing- tip ampli tude measured i s much l arger 
than predicted. Hence , the coordinates of wing first bending and fuselage 
first bending are not adequate to define the motion with precision at the 
peak frequency, but are close enough to give the correct general form of 
the frequency response over the enti re range under consideration . For an 
analog Simulation, the damping of the fuselage first -bending mode would 
have to be increased to match flight values . 

The deflection check of Appendix C is plotted in figure 19 . Here , 
the deflections i n phase with tail deflection are plotted i n wing bending 
and streamwise twist components . I t may be seen that the appli ed loads 
in this condition cause much higher wing- tip deflections and more wing 
torsion than is predicted with simple wing first bending and fuselage 
first bending . A solution of the complete equations with dynamic y , h , 
and 2 was also made and the results indicated that the correct amount of 
torsion was obtained, but that wing-tip deflection was still too small . 
As seen in figure 17, the experimental values also indicate higher wing 
deflections than predicted by the simple wing -bending analysis . A wing 
first -bending type curve with more curvature near the root could be used 
in place of the wing first -bending curve used in the analYSiS, but this 
would compromise the results in the low- frequency range . I f a wing first ­
bending curve with more curvature near the root were included as an addi ­
tional degree of freedom, then the equations would probably be ill­
conditioned. Hence, it appears that a wing second-bending degree of 
freedom would have to be added to predict the wing deflections accurately 
over the frequency range considered here . 
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Node Lines and Lines of Low Response 

In many applications the adverse effects of a structural mode can be 
eliminated by locating control system elements on node lines, that is, 
points of zero displacement . Also the stability of a system or the effec ­
ti veness of a mass balance ,{eight often depends on which side of the node 
line the pickup or mass is located. The existence of node lines requires 
that all points on the structure vibrate either in phase or 1800 out of 
phase . This condition is satisfied in the free - free analysis and approxi ­
mately in ground vibration tests . 

Wing first -bending mode .- It may be seen in figure 16 that the nose, 
center of gravity, wing tip , and tai l accelerations ~o not fallon a 
straight line through the origin, but are close enough to determine points 
of low response in flight . Through the use of the assumed fuselage mode 
of deformation, parabolic bending to the rear of the center of gravity, 
points of low response on the fuselage were calculated for the measured 
and predicted values in figure 16 and are shown in figure 20 together 
with node lines from ground vibration tests and from the free - free analysis . 

The fuselage node lines or lines of low response from flight, free ­
free analysis , and dynamical analysis are in approximate agreement, but 
the ground vibration values obtained from reference 9 are considerably 
farther to the rear. Hence , support of the airplane on air bags is not 
representative of the manner in which the airplane is supported in flight 
at this frequency . A possible means of supporting the airplane on the 
ground to simulate coupling effects of the short -period flight mode is 
suggested by the moment of inertia tests described in reference 10 . The 
spring and knife edges support the airplane in a manner which very nearly 
corresponds to the mechanics of the short -period mode at frequencies near 
the wing first -bending mode frequency . As a result , the oscillations of 
the airplane on the moment - of- inertia rig correspond very nearly to those 
which occur in flight, except for the phase lag of the wing which results 
from aerodynamic damping forces in flight . 

Fuselage first -bending mode .- From figure 18 it may be seen that the 
predicted accelerations at the nose , center of gravity, and tail fall 
nearly in a straight line, and since nose and tail values are 1800 out of 
phase with the center of gravity, two node lines exist on the fuselage . 
The experimental points do not fallon a straight line , but are close 
enough to locate points of low response . The node lines are shown in 
figure 21 and it may be seen that they are in approximate agreement . 

It should be noted that the forward flight node line is somewhat 
farther forward than the others . In the evaluation of flight node lines 
it was found that considerable nose bending was taki ng place . As seen i n 
figure 18, the phase of the nose acceleration is shi fted toward that of 
the wing tip which indicates that nose bending would have to be treated 
as a separate degree of freedom to duplicate the motion accurately. 
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CONCLUSIONS 

The evaluation of the dynamic response of a large flexible ai r plane 
to elevator pulses over a wide range of flight conditions i ncluding Mach 
numbers of 0 . 5 to 0 . 8 and alti tudes of 15,000 to 35,000 feet and compari­
sons with predicted dynamic response at selected locations have led t o the 
follOwing conclusions : 

1. For practi cal purposes the dynamic response of a flexible airplane 
is invariant with the aeroelastic parameter q/0 . 

2 . At constant Mach number, the dynamic response peak of the wing 
first -bending mode tends to increase in amplitude as altitude is i ncreased. 

3. Dynamical analysis with one structural degree of freedom (wing 
first bending) and s teady- state aerodynamic theory adequately predicts 
the response through t he frequency of the wing first -bending mode . 

4. Dynamical analysis with two structural degrees of freedom (wing 
first bending and fuselage first bending) and with steady- state aerody­
namic theory gives a form of frequency response which approximately cor­
responds with measured frequency responses through the frequency of the 
fuselage first -bending mode . 

5. Dynamical analysis with three structural degrees of freedom (wing 
first bending, wing first torsion , and fuselage first bending) gives better 
predictions of the wing distortion than the analysis with two structural 
degrees of freedom , but components of wing second bending and fuselage nose 
bending will have to be taken into account to obtai n more accurate predic ­
tions of the response at frequencies above the wing first -bending mode 
frequency . 

6. Lines of small response of the wing first -bending mode and the 
fuselage first -bending mode measured in flight show fair correlation with 
those predicted by dynamical analysis . 

7. Node lines measured in ground vibration tests with the par t icular 
a irplane support used did not agree with the lines of small response 
measured in flight . 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif ., Oct . 7, 1957 
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APPENDIX A 

LIST OF SYMBOLS 

lift coefficient 

weighted lift coefficient at station i 

pitching-moment coefficient 

d 
differential operator, dt 

applied force at station j, positive downward 

2 longitudinal moment of inertia, slug- ft 

gain of subscript quantity 

total mass of airplane, slugs, or Mach number 

wing area, sq ft 

pitching velocity time constant , sec 

velocity, ft/sec 

airplane gross weight, lb 

NACA TN 4147 

vertical displacement of subscript station relative to space 
reference plane , positive downward, ft 

normalized coordinate of first structural mode 

aerodynamic influence coefficient, weighted lift coeffi cient 
at station i due to a unit angle of attack a t station j 

wing span , ft 

normalized coordinate of second structural mode 

structural i nfluence coefficient , deflection at station i, 
relative to reference plane , due to load at station j , ft/lb 
(Because of symmetry, stiffness of both wings is included. ) 
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c 

c· 1 

c 

wing chord, ft 

normalized coordinate of third s tructural mode 

wing mean aerodynamic chord, M.A. C., 

c.g. center of gravity, percent c 

g 

h 

q 

y 

f3 

e 

accel eration due to gravity, 32 . 2 ft/sec2 

deflection coordinate of second structural mode relative to 
reference plane, positive downward, ft 

deflection coordinate of third structural mode relative to 
reference plane , positive downward, ft 

mass a t subscript s tation, s lugs 
(Because of symmetry, mass of both wings at each wing station 
i s used.) 

normal acceleration at subscri pt station , positive downward, 
gravity units 

dynamic pressure , lb/sq ft 

longitudinal distance f rom center of gravity to subscript 
quantity , positive when center of gr avity i s f orward of 
subscript quantity l ocation , ft 

deflection coordinate of first structur al mode relative to 
reference plane , positive downward, ft 

total deflection of subscript station relative t o refe r ence 
plane , positi ve downwar d, ft 

angl e of attack, radians 

ratio of rigid wing lift - curve s lope at M 

wing slope at M, ( f3 ;; J 1 - M2 cos2 A ) 

o to the rigid 

elevator control defl ection , positive downward, r a dians 

damping r atio, dimensionless 

spanwise coordinate , fraction of wing semispan 

pi tch angle at center of gravity , radians 
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A angle of sweepback 

p mass density of air, slugs/eu ft 

<D0 ) phase angle of output quantity minus phase angle of input 
output quantity 
input 

w 

Wn( 

a 

b 

c 

cg 

n 

t 

wt 

frequency, radians/sec 

undamped natural frequency of subscript free-free mode, 
radians/sec 

undamped natural frequency of subscript pseudo cantilever mode 
used as coordinate, radians /sec 

Subscripts 

first structural mode 

second structural mode 

third structural mode 

center of gravity 

nose 

tail 

wing tip 

Dots are used to indicate differentiation with respect to timej for 

example 

{} 

[ ] 

z = dz 
dt 

column matrix 

square matrix 

MATRICES 
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square matrix with all except diagonal el ements equal to zero 

l J row matrix 

[J' transposed matrix 

column matrix with all elements equal to unity 

unit matrix 

inverse matrix 

~ 1 

I 
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APPENDIX B 

CALCULATION OF FREE-FREE MODES 

When an airplane vibrates at structural mode frequencies in flight, 
the aerodynamic and structural damping forces are ordinarily small com­
pared to the inertial forces . For this reason, it might be expected that 
the modes in flight would not differ greatly from those of the airplane 
suspended in a vacuum (the free - free modes) . Hence , a knowledge of the 
free - free modes is valuable in selecting degrees of freedom in the 
equations of motion . 

Equations for free - free modes are alGo derived in reference 12 , but 
the form obtained here is a parti cularly useful form . In figure 9, the 
vertical pos ition of the ith discrete mass is given by : 

where the center of gravity is taken as the reference point and small 
angles are assumed (e ~ sin e) . 

(Bl) 

If it is assumed that the airplane is vibrating sinusoidally in a 
natural free mode, the force due to inertia of the jth discrete mass is : 

(B2 ) 

Then, at an instant of time in accordance with D'Alembert ' s principle, 
the syst em must be in a state of equilibrium as expressed by the following 
equations: The sum of verti cal forces must be equal to zero , 

n 

~ mjZj + mcgZcg + ma (zcg+exa) 

j=l 

and the sum of moments must be equal to zero, 

n 

~ mjZjxj + IDa (Zcg+exa)xa ~ 0 

j~l 

o (B3 ) 

(B4) 

where moments are taken about the center of gravity and the masses llcg 
and IDa are introduced to t ake account of mass at the center of gravity 
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and any rigidly attached mass rna . The masses fficg and IDa are separated 
from ~mj . . . for conveni ence . I n the example a i rplane, t he influence 

coefficients of the nose of the ai rplane were not known . Hence the part 
of the fuselage forward of the center of gravity was assumed t o be rigid. 
The masses mcg and IDa are selected to satisfy mass and moment of i nertia 
of the a irplane as follows : 

n 

M == L mj + mcg + IDa 

j=J. 

n 

I y == L mjx/ + maXa 2 (B6) 
j ==l 

n L mjXj + IDaXa 0 

j==l 

The deflection of the system of masses i s given by the structural 
influence coefficient matrix whi ch was obt a i ned from load- deflection 
measurements of the wing (ref . 13) and an estimate of fuselage sti ffnes s 
whi ch was made f rom the r esults of t he ground vibration tests (ref . 9) 
and the known mass distribution of the fuselage; 

where i,j = 1, 2 , . .. , n . 

The structural deflections i n the f ree - free mode are obtained by 
substituti ng the appli ed forces from equation (B2 ) i nto equation (BS ) 

Using equations (Bl) and (B9 ), one obtains: 

(BS) 

(B9) 

(B10) 
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If equation (B10) i s premultiplied by l~J and combined with 

equations (B3) , (BS), and (B7), the following equation may be obtained 

(Bll ) 

Also , if equation (B10) is premultiplied by l~~J and combi ned with 

equations (B4 ), (B6 ), and (B7 ) , the following equation may be obtained 

Substituting equations (Bll) and (Bl2) into equation (B10 ), one 
obtains 

(Bl2 ) 

(B13) 

which is the equation desired. The modal columns {Zi} and natural fre ­

quencies wf are the free - free modes of the airplane when {Zi} = {Zj} 

This result may be achieved by iteration . When {Zi} is known , then the 

position of the reference plane through the original center of gravity 
may be determined from equations (B3) through (B7) with the f ollowing 
result: 

e 

where j = l,2, ... ,n. 

~mj ZjXj - Xa~jZj 

mcgXa 

ffiaXa~mj Zj - (mcg + ma )~mjZjXj 
2 

mcgIDaXa 

(B14) 

(B1S) 
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APPENDIX C 

DERIVATION OF EQUATIONS OF MOTI ON 

The equations of motion of a flexible airplane in forc~d oscillations 
about an equilibrium condition may be formulated through use of Lagrange ' s 
equation: 

d (ClKE) ClPE 
dt \~qi + dqi 

Q. 
l 

(Cl) 

The airplane is assumed to be flying at constant velocity, and all 
motions about this state of equilibrium are assumed to be small. I n order 
to calculate the kinetic and potential energies in equation (Cl), the mass 
distribution and elastic properties of the airplane must be known. It is 
assumed that these properties are known in the form of discrete masses and 
structural influence coefficients . 

The generalized forces (~ ) in the case of an airplane are the aero ­

dynamic forces arising from motions about equilibrium. The forces due to 
gravity, initial angle of attack , and initial structural deflection do not 
enter into the problem because they are in equilibrium and hence do no 
work. The generalized coordinates q . represent the degrees of freedom 

l 

of the dynamic system . In a specific application, the minimum number of 
coordinates which adequately describe the motion are selected. In this 
analysis, it is assumed that the motion of the flexible airplane can be 
described by the usual rigid airplane degrees of freedom, and three struc ­
tural degrees of freedom measured in the axis system of figure 9. Any 

arbitrary deflection of the structure {Zi} from the equilibrium position 

i s given by: 

where {ai }' {bi }, and {ci } are the normalized deflections at the mass 

stations of the three structural modes, y, h, and 2, respectively . 

In accordance with the coordinate system in figure 9, if the small 
angle assumption e sin e is made, the vertical velocity of a discrete 
mass, mi, is: 
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Expression for Airplane Inertial Forces in 
Terms of Coordinates 

The kinetic energy of the system of discrete masses about the 
equilibrium position is : 

KE = ~I "'iZi
2 

+ ~ mc,f-Cg
2 

+ ~ ma(ZCg + xaiJ)2 

i=l. 

( C4) 

where the masses mcg and ma have been introduced t o sati sfy equations 
(B5), ( ~6 ), and (B7). 

Using equations (C3 ) and (C4) and taki ng the par t i al deri vati ves of 
KE with respect to coordinate velocities , and also the time derivative, 
one may obtain 

dKE/ dZcg M 0 ~miai illibi ~~ci Zcg 

eKE/ee 0 Iy ~miaixi illibixi ~miCixi e 
d 

dKE/dY ~miai I.miaixi ~miai2 ~miaibi ~miaici dt 
y 

dKE/ dh I.mibi I.mi bixi ~miaibi ~mibi 
2 

~mibici h 

eKE/ di I.~ ci ~~ci~ I.~ai Ci I.mi bi ci I.mi ci 2 2 

( C5) 

Expression for Airplane Spring Forces 

The potential ener gy of the deflected airplane is given by : 

(c6) 

whi ch becomes 
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for the particular deflection in coordinate y. Taking the partial 
derivative with respect to y , o~e obtains: 

dPE 
dY 

27 

(c8) 

Since potential energy as used herein must depend only on relative 
displacements within an uncoupled mode, equation (c8) can be written in 
terms of the undamped natural frequency of a particular degree of freedom. 
From equations (Cl), (C 5), and (C8), the equation for free vibration in 
the coordinate y is: 

which has solutions y = A sin Wnat . Solving for Wna in equation (C9 ) 
and combining with equation (C8 ), one obtains: 

dPE 

dY 
(C10) 

Similar expressions for potential energy may be found for the other 
degrees of freedom . 

Use of Free -Free Mode in Calculation of 

The natural frequency Wna in equation (C10) may be calculated 

without resorting to [bijJ-l if the structural degree of freedom {ai } y 

i s obtained from the structural deformation of a free - free mode such as 
described in Appendix B. In this case the potential energy of t he free ­
free mode i s given by : 

PE (Cll) 

where the Zi' Zcg' and e are solutions of the ath free - free mode . The 

deflection about the deflection reference plane (fig. 9) is: 
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(C12) 

where y is t he deflection given by y = Z3R - Zcg - ex3R • If the 

structure is constrained to vibrate in the form {ai } with the deflection 

reference plane fixed in space, then the potential energy is : 

PE (C13) 

When equation (C12) is satisfied, the potential energy is the same whether 
the airplane is vibrating in the free - free mode or with the deflection 
reference plane fixed . Equating (Cll) and (C13 ) and solving for Wna 
gives: 

(c14) 

This equation expresses the characteristic difference in frequency of a 
free-free and a cantilever mode. Ordinarily, the free - free vibration of 
a given mode of deformation occurs at a much higher frequency than the 
cantilever one . When the fuselage bending is used as a separate degree 
of freedom, then the potential energy of fuselage bending in the free - free 
mode should be subtracted out of equation (c14) as follows: 

(C15) 

where PEf is the potential energy of the fuselage in the free - free mode 
which satisfies equation (C12 ). 
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Equations of Motion Wi t h Air Forces Unspecifi ed 

Using equations (Cl ) , (C5 ) , and (C1O ), one may obtain 

MD2 0 ~aiD2 EmibiD2 UniciD2 Zcg QZcg 

0 I~ DniaixiD2 Lmibixi D2 EmicixiD2 e Qe 

l:~ailf Lmiaixilf Emiai 2 (If+Wna 2) llniaibiD2 2 
~ EmiaiciD y 

Emibilf llnibixi D2 EmiaibiD2 Emibi2(D2+Wnb2) E~biciD2 h Qh 
2 

EIDiCiXilf 2 EmibiCiD2 E~Ci2(D2+Wnc2) Q7, Emi ci D EmiaiciD 

(c16 ) 

Expression for Aerodynamic Forces 

The generalized forces Qi in equation (c16) consist of the 
aerodynamic forces. For convenience in calculation of these forces, 
the angle - of- attack coordinate, ~,(fig . 9) is introduced here , and later 
in the report it is transformed to the coordinates of the preceding equa­
tions. The mass stations were originally selected to be compatible with 
the aerodynamic lifts . From reference 14, which is a development from 
Weissinger 1s steady- state lifting line theory, the aerodynamic influence 
coefficients may be obtained as follows 

v,n 1,2,3,4 

Solving for {Gn} gives 

The elements of {Gn} are the loading coefficients c Lc/2b at 

stations 1, 2, 3, and 4, respectively, due to any arbitrary angle -of­
attack distribution . The total lift on the wing is given by : 

L = b 2 q J1 G( TJ)dTJ 
o 

(C1S) 

(C19) 

where G(TJ) is the function taking on the value of Gn at the nth station . 
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This integration may be performed by Multhopp's quadrature method. 
In matrix form, the integration is performed by premultiplying equa­
tion (C1S) by a weighting matrix. Also, dividing by qS to obtain a 
coefficient form gives 

0 . 1502 o o o 

o o 

o o 

o o o 0 . 1964 

(C20) 

The column {CLn} is thus weighted so that a summation with deflection 

coefficients gives a quadrature solution of the integral of the product of 
the spanwise lift function and the deflection function . Also the summation 

of the elements of {CLn} gives the lift coefficient of the wing due to the 

angle -of-attack distribution {av} . 
In order to take account of chordwise loadings , the lift was divided 

into two components at each spanwise station, one component at the front 
spar and one at the rear spar . These were selected in such a manner as to 
place the chordwise center of pressure at the 25-percent chord line . This 
puts 80 percent of the lift on the front spar and 20 percent on the rear 
spar. Equation (C20 ) may then be written as 

(C21 ) 

j 1,2,3,4 

i IF,lR,2F,2R,3F,3R, 4F,4R 
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where 

0 . 8 0 0 0 

. 2 0 0 0 

0 0 . 8 0 0 0 . 1502 0 0 0 

[ aijJ = (oS2) 
0 . 2 0 0 0 0. 2776 0 0 

[avn r1 

0 0 0 . 8 0 0 0 0 . 3628 0 

0 0 . 2 0 0 0 0 0.1964 

0 0 0 0 . 8 

0 0 0 . 2 

which is the aerodynamic influence coefficient matrix in a form suitaole 
for calculation of generalized forces . Mach numoer effects in accordance 
with the Prandtl-Glauert rule are included in the values of avn from 
reference 14. This means that an aerodynamic influence coefficient matrix 
should oe calculated for each Mach numoer . However , in many cases, Mach 

numoer effects may oe adequately tqken into account oy multiplying [ aij] 

for a Mach numoer of zero oy l/~ . 

The moment coefficients a re given oy : 

(C22 ) 

A generalized force is the work done per unit displacement when the 
system undergoes a virtual displacement of one of the degrees of freedom . 
In the following equations for generalized forces, small angles are assumed 
so that lift forces can oe regarded as acting in the direction of the dis ­
placements . In a displacement of the Zcg coordinate, all of the lift 
forces do work. Hence : 
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where the terms C~, C~, CLe' CL5 are the rigid airplane derivatives . 

The terms CLy' CLy' CLh ' CLh' CLi' CLI were obtained by summing {CLi} in 

equation (C21) where {a.v} is the angle of attack at control points due to 

di splacements {ai}' {bi } , and {ci}' respectively. 

In a e displacement, work is done by all of the moments . Hence : 

% [(CIllQP+CIlb,)a. + CmeDe + (CmyD+Cmy)Y + (CIllhD+CIllJ:J.)h + (CmiD+Cml) I + Cm55 J qSC 

(c24) 

where Cmu' CIlh ' Cme ' Cmo are rigid airplane derivatives and the terms 

Cmy' Cmy, Cmn ' Cffih ' Cmi ' Cml are obtained by summing {Cmi} in equa -

tion (C22 ), using the appropriate respective angles of attack {a.v} as 

noted above . 

In a displacement of the mode y, work is done by all of the forces 
which are displaced. For example , the work per unit of y done by the 
lift due to a. is given by 

qS J:L C I ( T] ) a ( T]) d T] ( C25) 

o 

where CI(T]) and a (T]) are the distributed functions of lift coefficient 
and mode of deformation . This integral is similar to the one i n equa­
tion (C19) and is also amenable to solution by Multhopp ' s quadrature 
method. Since the integrating factors are included i n the aerodynamic 
influence coefficient matrix, then the work done by lift due t o a. is 
simply given by : 

or 

6.w 
6.y 

3r 

qS L c~ aia. 

i=:Lf 

(c26) 
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The generalized force i s 

(C27) 

and s imilarly for the other generalized forces 

(C28 ) 

(C29 ) 

Again using the small angle assumption , one may r elate the vertical 
acceleration to e and ~ by the following transformation of coordinates. 

z -v(e - ci) (C30 ) 

Equations (c16), (C23 ), (C24), (C27), (c28 ), (C29 ), and (C30 ) now 
define the equations of motion . Further development depends on the exact 
form in which the equations are desired. 

Final Equations of Motion in Terms of Specific Coordinates 

In the appli cation to the B- 47 airplane, the three structural degrees 
of freedom selected were wing bending (y), wing torsion (2), and fuselage 
bending (h ). The wing bending mode was obtained by removing the fuselage-



bending component from the first free - free mode . The torsion mode was 
fuselage- and wing-bending components from the second free-free mode. 

obtained by removing the 
Hence, terms ~mibici and 
forces at the tail, do not ~IDfaibi become zero . Also, the terms C~ and CLOi ' which represent 

enter into equations in y and 1 . Downwash at the tail from the l i ft due to wing structural modes 
was f ound to be small and was neglected. Equations of motion used in the analysis are : 

K1Mlf+ 0 K1Eml alif+ K1E~blif+ K1EmfClif+ 
CLct 2 Cru ( CLct +Cr.e ) D+CIu, Cr.yD+CLy CIflD+CLh CL oD+CL - D + - D 1 1 V V 

0 K2I?- ~ffit alx l if- K~~blxtlf - K~ffit cl xt if -
Cuu ~ 

(Cma.+Cme )D-CIIQ cmyn-cmy CmnD-CIIlt1 Cm · D-Cm - - if - - D 
V V 1 1 

K1Eml alif+ K1Effitalxiif+ K1E~~2(lf+Wna2)+ K1Effit~clif+ 

ECIutai 0 
ECIu, ~ +ECL ° ~ D ECLyla1D+ECLyiai DCLi1~D+ECLll~ D i e1 v 

K1Emi b1if+ K1Em1b1xlif+ K1Emibi
2 (if+Wnb2)+ 

Z:g) (-
CL

5 
Cm5 

y { - } 0 l 5 (C31) 

h -CL5 

EC~ bi ECIut bi 
ECru b1D+ 0 0 1 ECLh1b1D+ECLhibi if + D ECru b1+ECLo biD 

V V 1 e1 

0 

K1E~clif+ K1Effit cixtif+ 
2 K1EffitCi2( D2+Wn 2)+ K1Effit ai ci D + C 

re~C1 EC~Ci+ECL o CiD ECr.y Cl D+ECLy Cl 0 
ECLiiCi D+ECLliCi ei D 1 i 

V 

Ul 
+=" 

~ 
~ 

~ 
+=" 
I-' 
+=" 
---J 
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where l/qS = K1 , l/qSc = K2 and all summations, ~, are taken over stations 
IF, lR, 2F , 2R, 3F , 3R , 5, 6, and 7. The wing root stations, 4F and 4R , 
do not deflect in coordinates y , h, and r and, hence do not enter into 
the summations, but the lift at these stations is included in stability 
derivatives such as CLy, CLh' etc . 

The acceleration at any point i on the airplane is given by : 

Deflection check.- Because of the many terms involved, it is advisable 
to check the results obtained from the equations of motion . This can be 
done as follows: From solution of equation (C31), calculate the wing 
deflection for a particular frequency (make substitution D = iW). Usually 
a frequency corresponding t o a peak in the frequency response is used 
because these are the most important points. The deflection is given by 

Through use of the structural and aerodynamic influence coefficient 

matrices , calculate deflections due t o a , B, 8, neg, {Zi} ' {Zi}' {Zi}' 

and sum. The total deflections due to the loads should check with the 
initial deflection i n equation (C 33 ). Since the influence coefficient 
matrices are based on eight degrees of freedom, the deflection check indi ­
cates whether or not the three degrees of freedom selected are as adequate 
as eight degrees of freedom at the frequency considered. 
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TABLE I . - FLIGHT-TEST CONDITIONS 

Flight Run 
Altitude 

Mach Gross 
I Xl06 1 (3 

number number number weight y c. g . 

18 6 14,900 0 · 50 103, 400 1.23 22 . 8 0 · 91 
18 7 15,000 · 55 103,100 1. 23 22 . 8 . 88 
18 8 15, 100 · 59 102,700 1. 23 22 · 7 . 86 
18 10 15,100 .67 101, 600 1. 21 21.9 . 82 
18 11 15,100 · 71 100,700 1. 21 21. 9 . 80 
18 12 15,200 . 76 100,300 1.21 22 . 2 . 76 
11 19 20 ,000 · 59 106,100 1.25 21.2 . 86 
17 15 20 ,500 . 71 104,200 1.24 20 . 9 . 80 
15 7 25 , 500 . 49 118,700 1.36 20 . 8 · 91 
15 5 25 ,200 . 60 119,500 1. 37 21.2 . 86 
15 4 25 ,100 . 66 120,000 1.37 21.1 . 83 
17 10 24, 800 · 70 108,100 1. 27 19 · 9 . 80 
17 12 25 , 380 ·79 106,400 1.25 19 . 6 . 74 

3 6 29 , 900 · 71 125, 900 1.25 20 . 6 . 80 
5 18 34,400 . 60 110,000 1.29 21. 3 . 86 
5 15 36 ,000 · 72 111,100 1. 30 21.6 · 79 
5 13 35 , 300 . 80 111,900 1. 30 21. 7 . 74 

1Based on c~=o/c~ from reference 14. 
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TABLE II . - PHYSICAL CHARACTERISTICS USED IN ANALYSI S 

l8 .4 8.9 3·l 1.8 
4.6 2.2 .8 . 4 
3· l2 54.8 24 .4 4.4 

[~j ] = 8:'3 
.78 l3 · 7 6.l Ll 
.96 6.8 96 29 
.24 1.7 24 7 
. 4 . 62 l2 .8 54 

1 .15 3·2 13.4 

C4x, = 3·3 tail 

IF lR 2F 2R 3F 3R 5 6 7 
2.3486 2 .3840 Ll943 1.2934 0.2302 0.2730 0.l7l 7 1. 6315 0 
2. 4598 2. 5920 1.2430 1.4057 .2330 .2940 .l497 1.6970 0 
1.2134 1. 2490 .7419 . 7795 .1769 .2051 .1383 .9263 0 
1.3309 1.4300 . 788l ·9005 .l804 .23l8 .1l02 . 9916 0 

.2447 .2307 .l765 . l663 .0659 .0580 .0767 .2040 0 
·3057 ·3339 .2ll6 .2398 .0705 .093l .0396 .2464 0 
. l6l4 .0898 .l286 .0659 .0596 .0lOl · l273 .l444 0 

L6l37 l.6498 .9208 .9495 .2025 .2374 .1528 l.l859 0 
0 0 0 0 0 0 0 0 0.328 

lmiJ = l20 20 6l 6l l3° l30 484 206 264J 

lXiJ = l19.82 23·l2 10.86 15.06 -2·53 2.98 -10 .08 14.22 47 J 

l ai J = lo. 953 1 0.576 0.623 0.141 0.174 0.096 0. 718 0 
J 

lbi J = l 0 0 0 0 0 0 0 0 1 
J 

lei J = lO .32 -· 32 0·316 -0.316 0.267 -0.267 1 0·32 0 
J 

Change in stabilizer angle = 0 .0342° per 1000 lb tail load 

Iy = l,330,000 slug-ft 2 

M = 3,580 slugs 

ma = 274 slugs 

Illo = 1,930 slugs 

Xa = 47.3 feet 
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o Pitch turnmeter 

!:::. Accelerometers 

+ Optigraph targets 

259. 01l~ 
1-+---535.0"--~ 

14---486. 8"-----+~--- 558.2 " __ ----'H 

Optigraph 

Figure 2 . - Two - view drawing of test a i rplane . 
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40 ~------~--------'-------~r--------'--------'-------~ 
Numbers indicate fl i ght 

and run numbe r ( i.e. 5 - 13 

deno t es flight 5, runl3) 

3 0 ~-------+~----~4-~~~~~----~-+--------+-------~ 

M = ,8 

20 ~-------+------~4-~~~~~------~~------+-----~~ 

10 r-------_+--------;-----~~r_------_+~------~------~ 
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o ~ ______ ~ ______ ~ ____ ~~ ______ ~ ________ L_ ____ ~ 

o 100 200 300 400 500 600 

Figure 3.- Flight test conditions; 126 ,000 > W> 100 , 000 and center of 
gravity between 20 and 23 percent M.A. C. 



44 

u 
(l) 

ell 

'-
(l) 

~ 

-<DllO 
~ 

0 

0 
'-

(l) 

"0 
::J 

~ 

E 
<1 

01 
(l) 

"0 

-<D11.O 
t9 

(l) -
01 
c 
0 

(l) 

ell 
0 
J:: 
a.. 

6.0 

4.0 

3 .0 

2.0 

1.0 
.8 

,6 

.4 

.3 

.2 

-90 

-180 

-270 

-360 

-405 
.5 

/ 
/ 

-- --

NACA TN 4147 

M FI t Run 
--.50 18 6 " 
- -- .59 18 8 I' , 
-- .67 18 10 , -- "" 

I 
/~-.......... ' .... --- .76 18 12 

1 I 

1/ ~'\ 
'\. \ 11 

'\ \ I. i , , 
~\ [\\ \1\ 

II 

, : 
'\ I ........ \ ' T 

'" \ 
" I ~ I 

\ , , [\'-./ , IT IT , -
f\ ~' , ~/, .-J 1 

\ " 
\.',.~.: " l/ 1;1 I I 

"'V \ v \" !r~ r{ 

\I\V l~~: 
" II 
II 

1---

~ 

~ .... ~ 
~'", 

",: " " r I 
~ o ", 

"- IV r-, 
R v "/~~\J 
~ ''" !r/") 

~ M \J 

fT n Ii \ 1/"' 
II ~ 

2 4 6 8 10 20 40 

Frequency, w, radians/sec 

(a ) Pitchi ng veloci ty at center of gravity . 

Figure 4.- Frequency response at an alti tude of 15 , 000 feet. 



NACA TN 4147 

100 

80 

c 60 o 
"0 

~ 40 

o 

Q) 

U 
:J 
+-

30 

20 

10 

8 

6 

~ 4 
« 

0' 
Q) 

"0 

3 

2 

o 

-90 

-180 
Q) 

0' 
c 
o -270 

Q) 
(/) 

o 
L 
Cl.... 

-360 
.5 

45 

_I 

M FI t Run / 

.50 18 6 
/ 

I 
-- -- .59 18 8 I 

-- .67 18 10 I 

--- .76 18 12 rr~ 

-- , 

~ /" 
\ -----...... 

.- \ '\ 
I!V 

r- - -... 
...... \ AI 

~ ~ " '\ 
\ " 'l~ / I , 

I 

.,/ \. \ , 
.,/ \. \ I " :J 

\ '\ '\ A I ./! 

\ \ -, V I Y p.' I 
\ ", ........ J Y ) 

\ ...... _/ ~(\/ 
I 

\ r .1 
~ J 

~~ 
~ ~~ "~ 1'--.." ~ 

~ :::-.... I 
~ ~- ~ I 

--=:;y ~~..t:'_ ,.J 
./ 

\, 
V 
I 
I 

2 4 6 8 10 20 40 
Frequency, w, radians / sec 

(b ) Acceleration at center of gr avit y . 

Fi gure 4.- Conti nued. 



46 

c 
o 
"0 
o 
~ 

~ 

o 

Q) 

"0 
::J 

0-

E 
<! 

0' 
Q) 

"0 

Q) 

0' 
C 
o 

Q) 
(/) 

o 
L 
Cl.. 

200 

100 
80 

60 

40 

30 

20 

10 

8 

6 

4 

3 

2 

o 

-90 

-180 

-270 

-360 
.5 

-

-

NACA TN 4147 

M Fit Run ~ 
.50 18 6 II 

II 

---- .59 18 8 ' I I I 

-- .67 18 10 I 

--- .76 18 12 P, 
~ 

i 
! 

I 
~ n 

" ~ 

--r-- "', 

W '" \ ,fA \ ~\ 1/ --- , \ \ )JI~ ;l. -..... \ \ f\ r. II (! 
\ \ l IN I' II' 

\. \ \ \ f\ I 1,' I) 

\ \ \ '/Y' / 
\ \ 1\ ! / I f I 

\ I \ \. .r': 
II , 

! f\l f, 

\ II \ \ /f/ Y 
"J 

\ 

\ \ f1 ~I ·'1 

,-......, ~~ - ...... , ---- ~ , r'<- ~ ~ -....::::::: .... ~ 'T 
'.,' ;, I V -.....::, .... -,.J 1/ 

~ If- '\ , 
.I 

\ 

2 4 6 8 10 20 40 

Fre quency, w, radians/sec 

(c) Acceleration at nose . 

Figure 4. - Continued. 



NACA TN 4147 

c 
o 

"'0 
o 
~ 

~ 

o 

Q.) 

"'0 
:J 

0. 

E 
<! 

0' 
Q) 

"'0 

Q.) 

0' 

200 

100 

80 

60 

40 

30 

20 

10 

8 

6 

4 

3 

2 

o 

-90 

-180 

C 
o -270 

Q.) 

en 
o 

L 
a... 

-360 
.5 

--

--

47 

M Fit Run 

.50 18 6 

---- .59 18 8 

-- .67 18 10 
, 

--- .76 18 12 I 

,i" 
, f 
I 

I 

1\ 

// 
'--", 

..ful, 
/ 

\ 

/ ,/' -- .......... \ 

r 

I~ 
/' --, \ 

W' 
,,' , 

'" 
, , 

\ 

~\ \ rA ~1' - ~ 
\ 

\ 

"' \ \ I , \ r. r 

" , I e I .... , 
\ \ \ I r ' ,I I 
\ ' \ \ / I I:l t. A 

(' , !1 ~ 
1\ ~ ~\ { , " 

.\ I P "1 
'-" _.\ 

i.../ ~~ ~~ :1 ' , J 
\y \ ~/; 

"I \~ 

~ 1 '~ 0 
I \ 

....... 

~ -..... '\ \~ 
::"~' ... 
~ I ....... Ii 

~ ~\ \ \ ~ 1\\ 

'\ ", i 

I 
~v I 

2 4 6 8 10 20 40 

Frequency, w, radians/sec 

(d) Acceleration at wing tip . 

Figure 4.- Continued. 



48 

200 

100 
c 80 
o 

"D 60 o ..... 

C1l 40 

~ 

o 

o ..... 

0-

E 
<{ 

C1l 
<ll 

"D 

30 

20 

10 

8 

6 

4 

3 

2 

o 

~I<.O - 90 
t8t 

<ll -180 
C1l 
c 
o 

<ll 
(/) 

o 
.r:. 
a... 

-270 

-360 
.5 

/ 

-

NACA TN 4147 

M FI t Run 
-- .50 18 6 n 

I I --- .59 18 8 II 
~ -- .67 18 10 I 
t 

--- .76 18 12 I 

~ 

......--.. 
,V ____ "'" "- J ....... 

// ./ '"" 
, 

1---- - - ..... , 
~ / !'-.' 

-~ 
", 

"'" ,\1\ / , 1-.... 
~ , , 

\Jl '\ \..~ 
I 

'\ " /, - , \/Pt 
L ' -' t 

\ / \ . ~ 'J V 

\ / '--. 
v \ t\ I ' 

,\ 1, 1 
I ' , , 
I, I 

I 

~l 

..... , 

0\ r-- "-

~ ~ 
......... ' '--
~ ~ ~ lao.. -=- .... -...A ~;J~ I ,,- "''''. k, 

, I 

I 
I 
I" 
\J 
, 

2 4 6 8 10 20 40 

Frequency, w, radians / sec 

(e) Acceleration a t tail. 

Figure 4.- Concluded. 



u NACA TN 4147 

u 
(l) 

(/) 

'-
QJ 

0.. 

-<DI<o 
~ 

0 

a 
'-

(l) 

'D 
::J 

0.. 

E 
<t 

0" 
Cl.l 
'D 

-<D11.O 
t& 

(l) 

-
0" 
c 
a 

Cl.l 
(/) 

a 
.s::. 
a.. 

3 .0 

2.0 

1.0 
.8 

. 6 

.4 

.3 

.2 

. I 

-90 

-180 

-270 

-360 

-405 
.5 

-;/---
M FI t Run 

~ - ""'- r'- .49 15 7 
/ 

; \ "'- .60 15 5 

V1 \\ -- --, 

~ \\ \ ' "", 
-- .70 17 10 

J/ \.. --- .79 17 12 
1 L \. "-

-I":'~ \... \ \ . . ~ , 
-"1 " 

\ h " 

/ \ " .... 
\. 1\" ,\ / 1 

{ 

r\ 11\ 1'\'.- / rv I I , 

"" 
"' \ ifv"1 Irr~ I \ , " 

" 
, \ V 

" /" 
/ ~I 

~ If""', I ~ 

~ 1\ ~'/.\ 1~ ,/ 
~ , 

'v\f ~ V 

'"':::::: ---
~, --- "" " ~ " " -, 

~ f\ "- " 

" "\. " "-

~ ~ I , 1 
~ 

~ ... -... ~~~ ~ ril ....... I--'" -, 
~~t~ ~ /I 

1/ I 
~ ~ ,,'\ 

\\ 
~ 

2 4 6 8 10 20 
Frequency, w, radians/sec 

(a) Pitching velocity at center of gravity . 

Figure 5 .- Frequency response at an altitude of 25,000 feet. 

49 

40 



50 

c 
0 

u 
0 
~ 

"'" 0'> 

c~llD 

0 .-
0 
~ 

Q) 

u 
::l 

.--
Cl. 

E 
<! 

Q) 

0'> 
C 
o 

Q) 
(f) 

o 
J:: 
a.. 

100 
80 

60 

40 

30 

20 

10 
8 

6 

4 

3 

2 

o 

-90 

-180 

-270 

-360 
.5 

NACA TN 4147 

M FI t Run 
.49 15 7 

-- -- .60 15 5 

-- .70 17 10 

--- .79 17 12 
I 

II 
II 

,.,.--,"", II 

_.-----/ ", '\ I I - /' 1\ I -- \ 1 ~ - ..-/ - .- -- \ \ - '\ -- \ 

~ 
I -- , [\ \ 

\ 
I 

.- .- , \. I 
.- \ , I 

-.... \ , I I 

" , I"- ~ I 

'\ , \ )0 ~ /'-',U ~J I 

\ \ v II ,"J I 
\ I I 

\ I ~ I J ..... _-- ,. ,. ' ,I 

\ 
, 

/~' '-J II V \ 

" ~/ 

Y II V , " 

\ " " f\ V • Ij 

r\ 
v 

~ ::.-::-=--
~~-:: ~ 

" ~ ,\ 

"-")..., I 
~ " " I " -./ " 

,rv,; 
-
~ 

\ 
2 4 6 8 10 20 40 

Frequency, w, radians/sec 

(b ) Ac celer ation at center of gr avity. 

Figure 5.- Continued. 



NACA TN 4147 51 

100 
80 M FI t Run 

.49 15 7 

60 - - - - .60 15 5 r 
c 40 0 .-

"0 
0 30 
~ 

"" 0"> 20 

C
C 11.0 

~ 
10 

-- .70 17 10 I 

--- .79 17 12 I I 
i~ n 
I 

---- "' J 
, 

, 
/ :::::-.=-- ............ '\ 

......... , \ " / I '" "' \ 1 \1 I 
0 

8 .-
0 
~ 

6 
Q) 

"0 
::l 4 
0- 3 E 
<! 

2 

\ , 
\ /'\ I' I 

\ 1/ "" " I ............... 
......... \ , /1 f I 
~ 

, 
\ / : nV \ .-

~ 
\ \ I I V~ \ /' 

\ 
, 

'( ~'J 

~ \ Y V'\. /' 

\ \ ~ 
/ I 

0"> 
Q) 0 
"0 

~II.O -90 

t9 
Q) - 180 
-
0"> 
c 
0 -270 
Q) 

en 

2 4 6 8 10 20 40 
0 -360 ..c .5 a... 

Frequency, w, radians / sec 

(c) Acceleration at nose . 

Fi gure 5.- Conti nued . 



52 NACA TN 4147 

100 

80 M FI t Run , 
.49 15 7 f 

, 
60 I 

---- .60 15 5 f 

c 
0 40 .-
\J 
0 30 ..... 

"" 

-- .70 17 10 I 
I 

--- .79 17 12 ~ 
\ 

(Jl 

20 

JllD 
10 

0 .-
8 

0 

- "'~ - p<::::...7 """ .,.-..-'" "-
\ \ 

~ , 
,H r . . 'A • 

I\, h'\\ 1 
,\ • I I 11\1 , 

--....- -, \' II I'i ' , 'l' ~I 
..... 

6 
Q) 

- - - " , 
~ II " 

, I . 
\ 

, .... , II .... i I 
\J 
::J ...... 4 .-
0. 

E 3 
<I: 

2 

\ 
... :1: ' I, ,: ~ I r, , , I' A I Ii 'Ii 

\ 
, ft.J ~ ~f I~ /' /,11\ \ , 

\ 
, 

" 

\...../ \./\ , I J t I I I 
, 

, , 
I I 

, 
I I 

I dJ I II I , 
I I 

IW r~ ! I 

(Jl 
Q) 

\J 0 

JllD -90 
~ 

Q) -180 
(Jl 

c 
0 -270 
Q) 

rn 
0 -360 L 
(L .5 2 4 6 8 10 20 40 

Frequency, w, radian s / sec 

(d) Acceleration at wing tip . 

Figure 5.- Continued. 



NACA TN 

c 
0 

-0 
0 
~ 

"'" Ol 

;-ILO 

0 ,-

0 
~ 

Q) 

-0 
::J ...... 

, -

0. 

E 
<! 

Ol 
Q) 

-0 

Q) 

Ol 
C 
o 

Q) 

C/l 
o 

.I::. 
0.. 

4147 

100 
80 

60 

40 

30 

20 

10 
8 

6 

4 

3 

2 

o 

-180 

-270 

-360 
.5 

-;/ 
/ I 

/ 
/ 

I 

./ , 

--~ 

53 

M FI t Run 
.49 15 7 I ,I 

---- ,60 15 5 , I 

-- ,70 17 10 , 1 
~. 

--- .79 17 12 I 1 
',.-- .... 1" 1 

//-
~-, "', I 

" '\ \ I 

..----" \ 
'\ 

"'\ 
I 

/ , " ~\ ~ 
I 

" r'-'\.. Ix \ 1 
\ 

\ '\ \ nil , 
V '" \ I" , .... A I: I 

"" \ \ 'I 1'1 , 
'\. .., 

" 
v , I 

"- \ 
\ '\.' \ I \" 

~ \-, (\ \ " \ I 

'" t\ 1\ \ \ ' 
\J \ \ 

\ \ 1 

V : ' 
1 ' 
1 , 

~ 1 
1 
I 

~ ~~, I I j~ 
~ "', "~ 

~ 

, 
~ ~-~ ~ ~;:ii -..... 

~~ -

2 4 6 8 10 20 40 

Frequency , w, radians /sec 

(e) Acceleration at tail . 

Figure 5.- Concluded. 



54 NACA TN 4147 

1 

3.0 
M FI t Run 

(,) 2.0 (l) 
(j) 

~ 

(l) 

0-

1.0 

.- -~ .58 5 18 

VI \\~\ - - -- .72 5 15 

\ \ 
/ v/j \ \ ---- .7 7 5 13 

\ 
// 7 \. 

-<DIU) .8 // \ "- I 
--/ "- \ T 

0 .6 .-..... 
a 
~ 

.4 
(l) 

"0 . 3 ~ 

0-
.2 E 

,/ "\ \ \ f 
\ '\ \ ;' I 

'\.. \ 
V,. 0v. / 

\ V\ \'V'\-\ ,V 

\; h'J\ .~ 
A -" 

V '" <! 

· I 

-90r------r------r------r---r-,.-r------r----~ 

~:" ;1\.0 - I 8 0 I-------+--~'\.~ ,,-+ _,-'\-----+----+-~f--+------+-----~ 

'\ '\ " 

(l) 
(j) 

a 
L 
a... v 

-360L-----~------L-----~--~~L-L------L----~ 
40 .5 2 4 6 8 10 20 

Frequen cy, w, radians / sec 

(a ) Pitching velocity at center of gravity. 

Figure 6.- Frequency response at an altitude of 35,000 feet . 
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Figure 15. - Measured fre quency r esponses of ac celeration at various 
points ; flight 5, run 15. 
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Figure 16.- Amplitude -phase plot of predicted and measured accelerations 
at wing first -bending mode frequencYj W = 8.9 radians/ sec . 
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Figur e 17.- Deflection check of components in phase with ,rrng t i p at wing 
f irst -bending mode frequency, per radian of e l evator defl ection . 
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Figure 18 .- Amplitude -phase plot of predicted and measur ed accel erations 
at fuselage first -bending mode frequency ; w = 28 . 3 radians / sec . 
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Figure 20 .- Predicted and measured node lines and lines of l ow response 
of wing first -bending mode . 



l V NACA TN 4147 81 

Dynamical analysis 

- - - - - Free-free analysis 

------ Ground 

Flight 

vibration 

Figure 21 .- Predicted and measured node lines and lines of low response 
of fuselage first -bending mode . 

NACA - Langley Field, Va. 


