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SUMM\RY 

An experimental investigation of stall propagation in a stationary 
circular cascade in which high- speed schlieren and interferometer photog­
raphy is used is described. 'This investigation suggests an analytical 
approach to the study of stall propagation which is valid only for an 
isolated blade row in an infinite flow field but which is not restricted 
to small unsteady perturbations or to an assumed simplified cascade 
geometry . Conditions necessary for the existence of the assumed type of 
stall cells are described and equations are derived for the velocity of 
stall-cell propagation . 

The propagation velocities predicted for the theoretical potential ­
flow model correlate with all the experimental values measured in an 
isolated rotor within l5 percent. 

Analysis of the flow model leads to the prediction of a tendency 
for the assumed type of stall cell to split with increasing incidence 
of the mean flow through the blade row. This tendency appears to corre ­
late with the experimental observation of a trend for increasing numbers 
of cells in the rotor. 

I NTRODUCTION 

The objective of the analytical and experimental work presented 
herein is the development of a theory which will enable the prediction 
of the flow through a cascade of rigid airfoils, or an isolated blade 
row of an axial compressor, when the incidence of the fluid on the air ­
foils is high. It was discovered in the early days of British jet ­
engine development that the flow can be unstable under these conditions 
and that self-induced periodic disturbances on the flow can develop . 
The disturbances are caused by the propagation along the cascade, at 
approximately the relative tangential component of main- stream velocity, 
of r egions where the flow is badly separated from the airfoils. These 
regions where the blades are severely stalled are generally called stall 
cells . Stall-cell propagation in axial compressors has continued to 
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receive considerable attention since the pioneering analytical treatment 
by Emmons (ref. 1) because of its importance as a cause of blade fatigue 
failure. 

The appearance of stall propagation in aircraft gas turbine engines 
generaJ l y occurs in the early stages of the axial compressor during any 
off-de~ i operating condition in which these stages operate at inci­
dences uch higr.er than design. This condition can arise because of 
restri c~iQn of flow associated with engine acceleration or because of 
operation at lower than the design value of reduced engine speed N/yrr. 
Several mechanical devices are in use which tend to prevent the occur­
rence of rotating stall by lowering the incidence in the first few 
stages during such off-design operation. However, there are weight pen­
alties Rnd/or aerodynamic losses associated with these devices. 

A satisfactory stall propagation theory might lead to (1) prevention 
of unsteady flow due to stall propagation when the incidence of the mean 
flow is high, (2) alteration of the stall-cell pattern and/or its veloc­
ity of propagation so that, for a given cascade geometry and mean flOW, 
the forcing frequency of the blade loading can be chosen by the deSigner, 
or (3) predicti on of enough information about the unsteady flow so that 
blades can be designed to withstand the unsteady aerodynamic loading. 

However, before such a theory can be achieved, it appears that more 
facts must be known about the detailed nature of the flow during stall 
propagation in a blade row than have appeared in the literature. Experi­
ments were run in a radial-outflow circular cascade installed in a 
closed-circuit wind tunnel in order to take high-speed schlieren and 
interferometer pictures of the flow through a portion of the cascade 
during stall propagation. Further experiments were run with an isolated 
rotor of an axial flow compressor . The data taken in these two test 
rigs suggest certain approximations to the flow which aid in the subse­
quent analytical treatment of the problem. 

The analysis of the general problem of stall propagation in axial 
compressors is obviously difficult since an ~teady, rotational, three­
dimensional flow of a compressible fluid is involved. In order to retain 
the essential features of the flow but to simplify the problem as much 
a s possible for analytical treatment, the flow is assumed to be two­
dimensional and incompressible and to be limited to the case of an iso­
lated blade row. It is believed that further analysis of this problem 
is necessary before the much more difficult three-dimensional and multi ­
stage flow problem can be successfully attacked. 

There have been several analyses of the problem with the restricting 
assumptions given above. (These analyses are given in refs. 1, 2, 3, and 
4. A brief summary of each is presented in ref. 4.) The main reason 
for attempting another analysis of the same problem is the fact that all 
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of the known previous theoretical work has been further restricted by 
the assumption that the unsteady velocity perturbations are small with 
respect to the mean flow velocity . From the exper imental data presented 
herein and in the references, t his assumption does not appear to be a 
good approximation; thus the present analysis is not restricted to small 
unsteady perturbations . Moreover, the previous analyses have been based 
upon rather restrictive represent ations of an isolated blade row, either 
as a lifting line or as infinitesimally spaced flat plates ; wherea s, in 
the present analysis, the chord, spacing, shape, and detailed stall 
characteris tics of the blades are not specified . Finally, none of the 
theories, except that given in reference 4, have offered apparent physical 
causes which determine the number of stall cells . The analytical flow 
model used herein appears to present ~ualitative information in this 
regard . 

From information available at present) it appears that the desirable 
features of a stall propagation theory ar e predictions for a given cas ­
cade geometry of : 

(1) mean flow incidences at which stall propagation is possible 

(2) the number of stall cells 

( 3) the veloCity of stall- cell propagation 

(4) the magnitude of unsteady aerodynamic forces on the airfoils 

Such a theory is the goal toward which t he work presented herein is 
directed . 

This report summarizes the results of an investigation in which many 
members of the M.I.T. Gas Turbine Laboratory staff have participated . 

Profs . E. S . Taylor and A. 
Edgerton generously lent one of 
in its use during the project. 
miniature piezoelectric crystal 
during the project. 

H. Stenning guided the project . Prof . H. E. 
his experimental light source s and advised 
Prof . E. L. Mollo- Christensen provided the 
pressure pickup and advised in its use 

This investigation was conducted at the Massachusetts Institute of 
Technology under the sponsorship and with the financial assistance of 
the National Advisory Committee for Aeronautics . 
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SYMBOLS 

discharge coefficient, cos 'Pi/cOS 13 2 Vi - Cp 

vortex spacing along stall cell downstream of blade row 

number of stall cells 

absolute velocity 

static pressure coefficient of cascade, 

blade lift coefficient, Lift/Area 
1 pW1

2 
2 

blade normal-force coefficient, 
Aerodynamic force normal to chord 

! pW12 
2 

F frequency at which each airfoil stalls 

f( ) function of 

i 

K 

L 

M 

m 

N = 

n 

p = r/ro 

incidence, 13 - A, {:l 

defined by equation (7) 

blade chord 

length of cascade or circumference of rotor 

Mach number 

length of stall cell in vortex spaces a 

width of stall cell downstream of blade row in vortex spaces a 
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p 

R 

Re 

r 

s 

s 

t 

u 

static pressure 

radius of cylinder in picture plane, 

Reynolds number based on blade chord, 

radius; polar coordinate 

Time mean Po - p 

1:. pW1
2 

2 

cascade blade spacing 

time 

L 

4 

pWL 
~ 

rotor velocity at mean radius , Wel for isolated rotor 

u , v velocity components in x, y directions 

v 

W 

x 

y 

z 

transport velocity of vortex downstream of blade row 

velocity of vortex r along lines (b) and (c) in figure 10 

velocity induced by stall cell, ria 

velocity of stal l propagation relative to blade row 

absolute velocity of stall propagation, U - Vp 

velocity relative to cascade or rotor 

f raction of downstream periphery covered by stall cells, 
na 

L cos ¢ 
complex coordinate in phys ical plane, x + iy 

angle of flow from axial direction in absolute coordinate 
syst em 

5 
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angle of flow from axial direction in coordinate system fixed 
to blaqe row 

strength of shed vortex 

strength of bound vortex 

complex coordinate in picture plane, ~ + i~ 

polar coordinate; blade camber angle 

cascade stagger angle from blade chord to axial direction 

density of fluid 

cascade solidity, L/s 

T period with which stall cells pass a fixed point 

¢ angle of stall cell from axial direction 

, velocity potential 

( ) complex conjugate 

(0) d( )/dt 

Subscripts: 

i 

o 

1 

2 

inside stall cell 

stagnation point; outside stall cell 

far upstream; upstream measuring station in circular cascade 

far downstream; downstream measuring station in circular 
cascade 

C, E, F, FG, G, K measuring stations along axis of rotor shown in 
figure 35 

r radial component 

x axial component (note, Cx ~ Wx ) 

9 tangential component 
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BACKGROUND 

Conditions reQuired for the existence of small-perturbation stall 
propagation and a mechanism by which the stalling of rigid airfoils in 
cascade can propagate have been clearly explained in references 1 and 4, 
where the cascade is a s sumed to consist of infinitesimally spaced flat 
plates of finite chord which stall at or near their trailing edges and 
between which the flow is one-dimensional. It is apparent that, as is 
described in these references, the diversion of flow around a stalled 
airfoil tends to stall the adjacent airfoil on its suction side and to 
unstall the opposite adjacent airfoil. However, in order to apply the 
analys i s of reference 4 to calculate the velocity of stall propagation, 
it is necessary to know an "eQuivalent chord length" if the airfoils 
do not stall locally at their trailing edges. In general, from the data 
presented herein, it appears that the separation of the boundary layer 
associated with stalling occurs more nearly at the airfoil leading edge 
during stall propagation and that the flow in the blade passages is 
rather far from one-dimensional for typical values of cascade solidity a. 
It was further assumed in reference 4 that the performance of a blade, 
that is, the "discbarge coefficient A," or blade boundary-layer dis­
placement thickness, was a function only of local incidence. A result 
of the analysis based upon these assumptions was that the harmonics of 
the small perturbation traveled at different velocities and it became 
necessary to restrict the velocity perturbation upstream of the cascade 
to a pure sine wave in the analysis in order that it should maintain its 
shape as it propagated. The sine-wave shape does not agree well with 
experimental data, particularly for small numbers of cells. 

In all the previous analyses, the eQuations of motion were solved 
for the irrotational motion of the fluid upstream of the cascade with 
the cascade as a boundary and the cascade characteristics appearing in 
the boundary conditions. Since the time-dep~ndent differential equa­
tions are nonlinear, the assumption of small unsteady perturbations was 
necessary in order to linearize and solve the eQuations. Furthermore, 
in order to make the boundary conditions continuous , it was necessary 
to restrict the cascade geometry to infinitesimal blade spacing. The 
analyses based upon the assumption of small perturba tions have yielded 
valuable information about the Qualitative nature of stall propagation. 
Undoubtedly this assumption is valid for the prediction of the onset of 
propagation; however, its validity for the prediction of propagation 
velocities of large amplitude perturbations appears uncertain. 

In reference 3 an analysis based upon represent ation of the cascade 
as a distributed vortex sheet (infinitesimal blade chord and spacing) 
led to the prediction of infinite velocity of propagat ion for some values 
of incidence unless an arbitrary "boundary layer phase lag" was included. 
This difficulty did not arise in the analyses of references 2 and 4, 
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where the assumption of infinitesimal blade spacing was made also. From 
the analysis herein, where the two-dimensional flow between finitely 
spaced airfoils is considered in representing the cascade during stall 
propagation, it appears that the propagation velocity must be of the 
same order of magnitude as the free-stream velocity even if the boundary­
layer phase lag of the airfoils is zero. As the dimensions of the cas­
cade shrink to zero, similitude reQuires that Vp remain finite. The 
present analysis indicates also that the stall cells must be regions of 
high los ses and low stagnation pressure in a coordinate system fixed to 
the stall-cell pattern, which is contrary to the assumption of constant 
stagnation pressure in the section "Airfoil Theory" of reference 3. 

Information derived from high-speed interferometer pictures of the 
flow through a portion of a cascade during stall propagation suggests 
an analytical approach which does not necessitate the direct integra­
tion of the eQuations of motion, which is not limited to small perturba­
tions, infinitesimal blade chord, or infinitesimal blade spacing, and 
which does not reQuire arbitrary assumptions regarding the location of 
separation of the boundary layer from the airfoil or the time reQuired 
for separation. 

ANALYSIS OF STALL PROPAGATION IN A BLADE ROW 

Development of a Vortex Flow Model 

Experimental and mathematical justification.- It is noted in the 
interferometer pictures of rotating stall in a circular cascade (figs. 1 
to 4) that the vorticity shed downstream from the cascade airfoils 
appears to be concentrated largely in discrete vortices which accumulate 
at and depart from the leading and trailing edges of the airfoils as 
they periodically stall and unstall. Furthermore, the pictures indicate 
that t he airfoils shed a large part of their bound vorticity when they 
stall out. This appears to be true for all the circular cascade con­
fi gurations, Reynolds numbers, and Mach numbers tested. Experimental 
data and calculations which support these conclusions and which suggest 
that they may be valid also for the flow through a research compressor 
assembled a s an isolated rotor are presented subseQuently. In general, 
the data suggest that the airfoils which were tested, both in the rotor 
and in c~sc~de, shed vortices during stall propagation similar to the 
Karman vortex str~et shed from a flat plate and that the vortices formed 
in a manner similar to the vortices formed at the edge of a flat plate 
moved impulsively from rest normal to surface of the plate, as in the 
analySiS of reference 5. 

However, the first suggestion that there might be a strong connec­
tion between stall propagation and vortex shedding was in reference 4, 
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where it was observed experimentally that, as the solidity of the circu-
lar cascade was reduced, 
the Karman vortex-street 
m~ntally in reference 6. 
the circular cascade are 

the frequency of stall propagation approached 
frequency for an isolated plate as r"ound experi­
Similar · data for a different configuration of 

shown in figure 5. 

With the above experimental evidence as a basis, it is assumed that 
during stall propagation all the circulation downstream of the cascade 
is about discrete potential vortices which are shed from the airfoils 
when they alter their circulation upon entering or leaving a stall cell. 
The experimental evidence suggests that with this assumption, it should 
be possible to devise a vortex flow model of stall propagation in a 
blade row where the vortex shed from the leading edge of a blade moves 
across the passage and stalls the adjacent blade before moving on down­
stream with undiminished strength. 

There are several advantages which arise from the fact that the 
hypothetical flow model is irrotational except at discrete singularities. 
The most important advantage is that the flow, even though it is unsteady, 
is "kinematic;" that is, the equations of motion need not be integrated 
to solve the flow, since the assumed conditions of irrotationality, con­
tinuity, and incompressibility alone are sufficient. This may be shown 
from the vector identity 

v2V == grad di v V - curl curl V 

The continuity equation, 

op dt + div pV 0 

shows that div V == 0 since p is assumed constant. Stokes' and Kelvin's 
theorems are not affected by time variation of flow and are sufficient 
to determine irrotationality. Since all vorticity is assumed to be con­
centrated at singular points and inside airfoil surfaces, curl V == 0 
everywhere in the flow field because the singular points are excluded 
from the field. Consequently, V2V == O. Laplace's equation is satisfied 
at every instant of time, and the flow may be built up by the superposi­
tion of the unsteady potential flows about the vortices which are assumed 
to be shed from the airfoils and convected downstream. 

If the effect of a single potential vortex upon the flow about an 
isolated flat plate is studied, qualitative information is obtained which 
i s useful in the subsequent analysis of a complete cascade of airfoils. 

Effect of a vortex on flow about a flat plate.- To find the effect 
of an adjacent potential vortex upon the circulation about a flat plate 
of chord L in streaming flow, the method used in reference 7 to estimate 
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biplane wing interference is extended. The two-dimensional flow about 
a circular cylinder which by the Joukowski transformation can .be altered 
to the desired flow is first cons~dered. 

Let S = s + i~ be the complex coordinate in the circular plane 
and f( S) be the complex potential of the flow before the "disturbance" 
of the flow by the introduction of the circular cylinder, l si = t· 
Then after the cylinder is introduced, by the circular theorem of refer­
ence 7, the complex potential is given by 

W(s) = f(S) + f(L2 ) - iro log s 
16s 211: e 

where f denotes the complex conjugate of f and ro/211: is the circu­
lation about the cylinder. 

If So is a stagnation point on the cylinder, 
dW 
- = 0 when 
dS 

( _L4)ei80, L2 L2 S = So so(Io) = 16' So 16
so

' fl(So) = Uo - ivo, and 

fl(Io) = Uo + ivo where u and v are the velocity components at S 
in the "undisturbed flow," that is, before the cylinder is introduced. 
Thus, 

ro 
- = 

2iSo ~ ' (SoU = 2i(So + i~o)(uo - ivo) 

= 2i(Souo + ~ovo) + 2(sovo - ~ouo) 
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Therefore, 

L t . i~ th e Uo + lVo = ~e , en Uo ivo f'(So)' Substituting 

into the above e~uation gives 

= 2 ~ ~ sin(So - ~) 

where Vt is the velocity tangent to the circle at So in the undis­

turbed flow . 

To apply the above result to an undisturbed flow consisting of a 
uniform velocity W at the angle ~ and a potential vortex r at 
(rl,Sl), one takes the trailing edge of the cylinder to be a stagnat ion 

point and places it at the origin; ro/2~ gives the circulation re~uired 
to maintain the Kutta condition, and 

The e~uation above indicates that if the Kutta condition is satis ­
fied the loci of the vortex r for constant cylinder circulation fo/2~ 
form a bipolar system of circles . When the Joukowski transformation is 
applied to the flow, the cylinder becomes a flat plate of chord Land 
the circles are transformed into curves which pass through the trailing 
edge of the plate. The dashed curves in figure 6 are the loci of the 

vortex f for constant plate circulation [Q which is given by 
2~ 

fo = ~LW sin ~ + nr 

if the Kutta condition is satisfied . The curve for n = 0 is labeled 
the neutral line. When the vortex r is on the neutral line it induces 
no velocity at the trailing edge of the plate and has no effect on the 
cylinder circulation . 
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The effect of plate camber may be estimated by assuming the plate 
to be a circular arc which transforms into a circle di splaced from the 
origin as shown in reference 8 and indicated in figure 7. It can be 
seen from figure 7 that, if 8 is the camber of t he plate and if e 
is the displacement of the circle from the origin, then in the not ation 
of figure 7 

R - 2e R cos 8 
2 

2a R sin 8 
2 

2a 2a _ 2e 

sin(~) tan(~) 

1 _....::1,,=-.,- ::: e ::: tan a. 

tan(~) a sin(~) 

- 1 r- 1 1 ~I 
tan LSin(~) - tan(~)J 

The solid curve in figure 6 is the neut ral line for a plate with camber 
angle 8 = 300

• The displacement of the neutral line indi cates the man­
ner in which the other curves are displaced by the effect of plate 
camber. 

From figure 6 it can be seen that if a vortex r is in the vicinity 
of a plate) the plate circulation is greatest when r is near the 
trailing edge. Therefore, if a vortex r is shed from the leading edge 
of one of a cascade of airfoils, the circulation about the adjacent air ­
foil should go through a maximum value just after the vortex passes under 
its trailing edge . Although this describes the effect of only one shed 
vortex) figure 6 indicates that this is the dominating effect, since the 
vortices shed from the other cascade airfoils do not approach the 
trailing edge of the airfoil in question so closely. The effect of the 
vorticity shed from the airfoil itself as its circulation changes is 
neglected also in this simple quasi-steady analysis . However) it appears 
that one may conclude that there is little tendency for a cascade air ­
foil to stall until the adjacent shed vortex approaches its trailing 
edge . Since a certain amount of time is required for the shed vortex 
to move to such a location, infinite propagation velocity is precluded 
even though the time required for boundary- layer separation and accumula ­
tion of vorticity is neglected. 
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This ~ualitative description of a mechanism by which stalling can 
propagate along a cascade of airfoils indicates t he direction in which 
the stull will propagate and shows that the velocity of propagation must 
be of the same order of magnitude as the free-stream velocity. Experi ­
mental verification of the description appears in figures 1, 2, and 4. 

Trajectory of a shed vortex. - With the effect of a vortex r on 
plate circulation as determined in the previous section for ~uasi -steady 

flow, it should be possible to estimate the velocity of stall propaga­
tion along a blade row if the trajectory of the shed vort ex can be cal ­
culated and a stall criterion can be established to determine when the 
succeeding vortex is shed. Although difficulties are encountered which 
appear to be insurmountable, the attempts made to calculate the shed­
vortex trajectory are presented briefly so that these difficulties may 
be pointed out and so that some qualitative information can be derived 
which is used in the succeeding analysis. 

In the first attempt, the cascade is assumed to be represented by 
an infinite series of potential vortices as described in reference 9 
where it was shown that the conjugate complex velocity vector given by 
the geometry of figure 8 is 

is where z == re 
velocity vector. 

x + iy == Complex coordinate and u + iv == Complex 
Values of the real and imaginary parts of the function 

are tabulated for various values of x in reference 9. By plotting 
s 

these data into graphs, (u + iv) can be ~uickly calculated at any point 
z == x in the field near a vortex street at arbitrary angle A, with 
the vortex at the origin missing. If it is assumed that the vortex at 
the origin is a free vortex, having been shed from its airfoil) its 
trajectory can be calculated by a stepWise numerical procedure for a 
flow geometry approximately the same as the experimental geometry of 
figure 9 . 

If it is assumed further that blade (a) in figure 8 stalls when 
the vortex is nearest the corresponding position in figure 9, the cal -

culated velocity of stall propagation is ~ == i~. Similar results are 
x 

obtained when the calculation is made assuming that alternate blades 
stall Simultaneously (which corresponds approximately to the stall-cell 
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pattern of figure 9 for 16 stall cells and 27 blades), and t he calculated 

value for ~ is ~o, about twice the experimental value . I t is con-

cluded that this representation of the cascade is too simple to give 
good numerical answers and that t he effect of the presence of a blade 
after its circulation is shed should be included in calculating the 
trajectory of its shed vortex. This effect is t o r educe the t ransport 
velocity of the vortex when it is near the blade so as to give smaller 
values for Vp/Wx . The neglected boundary- layer time delay further 
reduces Vp/Wx . 

In reference 10 expressions are derived for the path of a vortex 
in streaming flow over a flat plate and for t he transport velocity of 
the vortex . It is shown that the path of a vortex near a flat plate 
is not simply the Joukowski transform of the path in the circular plane 
but is given by the Routh stream function . For the case of one vortex 
near a plate with no Circulation, a finite -difference method could be 
us ed to determine the time re~uired for the vortex to move between 
given points on its path . However, difficulty arises from the f a ct 
that when the vortex is near the plate, just after being shed, the 
a s sumption of potential flow gives very erroneous results. Near the 
plat e , the calculated transport velocity vector of the vortex becomes 
infinitely large and points in an upstream direction . Therefore, the 
i nitial point of the vortex trajectory cannot be taken near the leading 
edge of the airfoil, and the calculation must be started from some 
point away from the airfoil surface. The shape of the trajectory and 
t he time required for the vortex to be convected downstream is found 
to depend critically upon the initial point chosen. The location of 
the initial point and the time required for the vorticity to be shed 
f r om t he airfoil surface and to accumulate at this point is determined 
for a special case in reference 5, but the method used appears to be 
t oo i nvolved for the problem at hand . 

Examination of the expressions derived in reference 10 indicates 
tha t near the plate the shed vortex moves downstream more slowly than 
when it i s away from the plate. This information is used in the sub ­
se~uent analysis, which circumvents the difficulties mentioned above 
a nd whi ch has been devised to deal with the problem of the convection 
of a serie s of vortices shed from a cascade of airfoils . 

Analysis of a Vortex Flow Model of Stall Propagation 

Derivation of expre s sions for propagation velocity .- Velocity meas ­
.. lYl?ment s taken during stall propagation indicate that for a given oper ­
~Ling condition or mean f low, the unsteady velocity perturbation trans ­
l~t~s at constant ve locity Vp along the cas cade, and to a first 
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approximation, the shape of the velocity profile of the unsteady per­
turbation is maintained constant. In other analyses, previously men­
tioned, it was assumed that the profile is constant, and it is also 
assumed to be constant here, although data which will be presented sub­
sequently indicate that this is not always strictly true . With the 
approximation that each cascade airfoil sheds a discrete potential 
vortex r when it enters the stall cell and another -r of opposite 
sign when it leaves the cell, it follows that all the trajectories of 
vortices (of same sign) shed from the cascade airfoils must be trans­
lates of the same curve and separated by the blade spacing s along 
the cascade. 

The vortices which have been shed downstream must be arranged in a 
pattern as shown in figure 10. The dashed lines indicate the trajec­
tories of the vortices shed from two succeeding blades. The r vortices 
must lie on a line (b) which eventually becomes straight downstream of 
the cascade and the -r vortices must be located along a line (c) which 
becomes straight and parallel to line (b) downstream of the cascade. 
The region between lines (b) and (c) is called the stall cell. Lines (b) 
and (c) are of constant shape in time and move relative to the cascade 
with the velocity of propagation Vp. 

In a coordinate system which is fixed to the stall cell, the blades 
move down (fig. 10) with velocity Vp ' and the shed vortices move down­
stream along the stationary path lines (b) and (c). The flow is steady 
in time except for the effects due to the finite spacing of blades and 
shed vortices . It can be seen from equation (1) that these are local 
effects confined to an area within approximately one blade spacing of 
the cascade and one vortex spacing of lines (b) and (c). Flow is diverted 
to each side of the stall cell which has the nature of a thick wave. 

After they are far downstream of the cascade, the shed vortices 
are spaced uniformly by a distance a along lines (b) and (c) and move 
with transport velocity V. The symbol ¢ is defined as the angle 
between each street and the cascade aXiS, and n is defined as the 
number of vortex spaces between the streets as indicated in figure 10. 
In figure 11 are indicated the velocity triangles associated with the 
stall cell . The velocity at any point far downstream of the cascade 
is W2 plus the induced velocity due to the stall cell (which is the 

velocity induced by two infinite vortex streets) . 

If the blades stall out completely when they enter the cell, the 
strength of the shed vortices will be of the order of magnitude 
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From reference 11, for a single infinite row of equidistant vor­
tices, each of strength r (plus clockwise) at distances a apart, 
with the origin at a vortex and the axis of x along the row, the 
velocity components induced by the vortices are 

u 
r sinh(2rry/a) 
2a cosh(2rry/a) - cos(2rrx/a) 

v == r sin(2rrx/a) 
2a cosh(2rry/a) - cos(2rrx/a) 

and one may calculate the maximum value of v for y Constant ~ 0 
as follows: 

~ 2rr rt(COSh 2rry _ cos 2rrx)cos 2rrx _ sin2 
2a a ~ a a a 

cosh 2rry cos 2rrx _ 1 0 
a a 

2rrx cos 
a 

sin 2rrx == 
a 

== 

1 

2rry cosh -
a 

_ cos2 2rrx 
a 

JCOSh2 ~ - 1 

cosh 2rry 
a 

tanh 2rry 
a 

2:X] 

(1) 



NAeA TN 4134 17 

r 
v max = -2-a- s l-' n- h- (-;-2-1{-y-j-;-a--:-) 

Therefore) far downstream) the maximum lateral velocity (normal to 
lines (b) and (c)) that the vortex streets can induce on each other is 

r v = ------
max 2a sinh 21{n 

where na is the distance between lines (b) and (c) . If n > 1 

and may be neglected. 

The basis for taking n > 1 is derived from the hot-wire data 
taken downstream of the isolated rotor where it is noted that the cells 
always cover at least two blade spaces. This appears to be true) in 
general) for stall cells in rotors. In the interferometer pictures 
from the circular cascade) figures 12) 2) and 1) it is noted that n ~ 1; 
howeve r) the downstream flow field extends only 2 or 3 blade chords from 
the c ircular ca scade ) so that the initial assumption of an infinite down­
stream field i s not valid for the circular cas cade. 

Mor e than a distance a from the vortex streets the longitudinal 
ve l oc i ty induced by them may be neglected outside the cell) while inside 
the cell) from equation (1)) Vi = rja. 

The resultant transport velocity of each downstream vortex is V 
as shown in fi gure 11. Solving for the velocity of propagation Vp 
f r om figure 10 g i ves 

This same result can be obtained easily by noting the parallelogram 
in t he veloc i ty diagram of f i gure 11 and solving for the equal and oppo ­
s i t e side fr om Vp' One advantage of the assumed vortex flow model is 
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that Vp can be calculated away from the cascade without solving for 
the detailed nature of the flow in or near the cascade except insofar 
as this affects the angle ¢. It is observed that Vp and the angle ¢ 
are uniquely dependent if the downstream velocity W2 is given and if 

n > 1. The velocity of propagation Vp does not depend explicitly on 
the physical size or shape of the stall cell or on the magnitude of the 
velocity perturbation. Since the angle ¢ has been observed experi­
mentally to be small in many cases, equation (2) indicates that the 
fair experimental agreement between Vp and We2 which has been noted 

by other observers is an immediate consequence. However, in the analy­
sis to follow, no assumptions regarding the angle ¢ are made. 

To continue the analysis, the following variables are defined: 

N = Vi cos ¢ 
W~ 

P = rlro :::: 
Shed vorticity 

Bound vorticity 

Y = fraction of downstream periphery covered by stall cell, 
nalcos ¢ 

2 

The circulation around a blade away from the cell is given by 

Then, 

Vi r pro 
P ~(we - We ) 

NWX2 
( 4) :::: == == 

a a a 1 2 cos ¢ 

and s N - == 
(3 2)cos a p (x tan f31 - tan ¢ 
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The time-average continuity equation gives 

( na ) ~(wx - Vi ¢) 1 7,Wx 7. --- w + cos 
1 cos ¢ X2 cos ¢ 2 

X 1 = Y(l - N) - Y 

f X 1 - YN 

Solving fr om figure I I f or the velocity with which t he vortices move 
along lines (b) and (c) gives 

w~ 
---
cos ¢ 

Si nce t he frequency with which vortices pass downstream points on 

19 

lines (b ) and (c) must be the same as the frequency with which vortices 
are shed ont o t he lines, 

Vp WS 2 - w~ tan ¢ (tan 132 t an ¢ )cos ¢ s = = = 
a Va WX2 _ Vi N 1 

(6) 

cos ¢ 2 2 

Eliminating s /a from equations ( 4) and (6) gives 

(tan 132 - tan ¢ ) cos 2¢ N - (N2/2) 
==K p(x tan 131 - tan (32) 

From the velocity diagram for an isolated rotor in figure 13 it can be 
seen that 

X tan 13 1 - tan 132 = tan ~2 

for a n isolated r ot or wi t h no upstream whirl velocity (Cel = 0). 
It i s not ed that since the shed vortices are convected downstream, 

N < 2 . Also, t he range of P must be limited t o 0 < P < 1. The curves 
of K ver sus N f or p(x tan 13 1 - tan (3 2) assumed constant are parab -

ola s . Curves of K ver sus tan ¢ for 132 assumed const ant are almost 

straight for tan ¢ > -0 .2, a s shown in figure 14, which is a plot of 
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K against tan ¢ for 

for the i solated rotor 
500

• ) 

~2 ~ 300 and 500 . (Experimental values of ~2 

from which data were taken fall between 300 and 

A diagram of K plotted against Nand K plotted against tan ¢ 
with the intercepts and peaks labeled is shown in figure 15. It is indi­
cated that for a given value of K there are either two or zero solutions 
for the angle ¢ (and Vp )' However, solut ions which are physically 
possible appear to lie on the positive side of the peak of the curve of 
K against tan ¢, ( tan ¢ > tan ~2 - sec ~2 in fig. 15), since experi-
mental values of ¢ presented herein fall between -150 and 190 and 
since all known experimental values of Vp are less than Wel. Quali-

tative reasoning based on the results given in the section entitled 
"Effect of a Vortex on Flow About a Flat Plate" indicates that a blade 
has little tendency to begin to stall until the vortex shed from the 
preceding blade approaches the trailing edge. Since time s/Vp is 
re~uired for the vortex to be formed and shed from a blade and to 
approach the trailing edge of the succeeding blade when it begins to 
stall, s/Vp is also the time re~uired for the vortex to move from 
points (1) to ( 2 ) in figure 10. Since it has been shown that the veloc­
ity of the shed vortex is less when it is near the blade than when it 
is downstream (for an isolated blade and vortex) and since there is a 
boundary-layer time delay re~uired for the vortex to be formed, it 
would appear that large negative values for ¢ are impossible for typi­
cal cascade geometries. This precludes the possibility of infinite 
propagation velocity, s ince from e~uation ( 2) for Vp ~ 00, ¢ ~ -900 • 

For the reasons above, only the solution giving the smaller value of ¢ 
and Vp < Wel (as indicated in fig. 15) will be retained. 

Therefore, tan ~ 2 - sec ~2 < tan ¢ < tan ~ 2 and K plotted 

against tan ¢ can be roughly approximated by a straight line which 
passes through the intercepts tan ~2' 0 and (0, tan ~2). It can be 

seen from the geometry of figure 15 that within this approximation 

( 8) 

or, for an isolated rotor, 

, 
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Vp rv N - (N2/ 2) 

WX2 P tan ~ 

l ~ N - (N2/ 2) 
Ce2 - P tan2Cl.2 
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If N ~ 1, there is small net axial flow through the blades in the stall 
cell since lines (b ) and (c) in figure 10 are path lines and the mass 
flow into the cell through the blades must be e~ual to the axial flow 
in the cell downstream . It i s assumed that the blades in the stall cell 
must lose most of their circulation if N ~ 1 and, as a result P ~ 1. 

Experimental values of N appear to be close enough t o unity to 
assume that N = 1, since the variation of K with N is small for 
values of N near unity as shown in figure 15 (if 3/4 < N < 1, then 

0.47 < _K_ < 0.50). 
tan Cl.2 

For an isolated rotor Cel = 0 and for P N 1 e~uation ( 8) 

becomes 

E~uation ( 9) is based upon t he approximation that K plotted 
against tan ¢ is linear . However, if P = N = 1, equation (7) can be 
solved for tan ¢ explicitly without recourse to this approximation. 

If P = N = 1, equation (7) becomes 

tan 132 - tan ¢ 
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-(x tan ~l - tan ~2) ± 

[(x tan ~l - tan ~2 ) 2 - 1 + 2 tan ~2 (X tan f31 - tan ~2TI 1/2 

tan f32 - X tan f31 ± IT X tan ~l tan 13 2) (x tan f31 + tan f32) _ ~ 1/2 

= tan ~ 2 - X tan 13 1 ± V X2tan2~1 - tan2132 - 1 

tan 13 2 - tan ¢ 

= tan ~l -+ 
2 tan2~2 + 1 

tan ~l - ---=--­
X2 

(10) 

The plus sign f or the radical in eQuat i on (10) i s dis carded s ince it 
implies t hat tan ¢ < tan ~2 - sec ~ 2 and Vp > WS

1
" 

Therefore, 

Vp 
1 - 1 - (~y WSl \ WS l 

(11) 

For an i s olated rot or, 

~= 1 - (W2 r U WSl 

If it is assumed that the flow outside the stall cell is loss free 
and that an isentropic pressure coefficient Cp may be used outside the 
st a l l cell, then 

• 
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C
p 

= 1 _ ( W_X....:2=--C_O_S_13_1 \ 
2 

_ 1 1 _1_+_t_a_n_2_13_2 

WXl cos ~2) - - X2 1 + tan2131 

1 + tan2132 

1 + tan2131 

Therefore J substituting in equation (10) gives 

tan ~l -

of the type 

23 

(12) 

Equations (11) and (12) indicate that for stall cells 
assumed (P = M = 1 and 0 < Vp < WS1 ) real values of Vp are possible 

only if W2 < WS1J Cp > cos2~lJ and ~l > 45°· 

If W2 = WS1J then Vp = WS1J tan ¢ = tan ~2 - sec ~2J as indi­

cated in figure 15J and Cp = cos2~1' It is interesting to note that 

this corresponds to the propagation velocity predicted in reference 4 
for a simplified cascade geometry and an entirely different type of 
stall cellJ where the upstream velocity perturbation was assumed to be 
a sine wave of small amplitude and many blade chords wave length . In 
reference 4 J for this type of cellJ it was shown that 
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2 sin2~1 
------- = tan 131 
2 sin ~l cos ~l 

where Vp = We
l

• The preceding analysis indicates that this is a 

limiting value and that, for the assumed type of finite-amplitude stall 
cells to exist, Cp > cos2131. 

It is assumed in the preceding analysis that all the downstream 
circulation is about concentrated vortices. The implication is that 
the wakes shed from the blades outside the cell are thin enough or mix 
soon enough to be neglected and that this is also true for the blade 
wakes in the cell (or that the velocity through the blades in the cell 
is small enough for the vorticity shed inside the cell to be neglected). 
The assumption of P = 1, together with that above, implies that the 
blades outside the cell have no drag and those inside the cell have no 
lift. It is assumed that the analysis is valid for more than one cell 
if they are spaced far enough apart so that equation (3) remains valid, 
since the cells induce no velocity on each other except for their block­
age effect on the main flow which is considered in the analysis. 

Since in a coordinate system fixed to the stall-cell pattern of 
figure 10, the flow is steady and the streamlines are straight and 
parallel downstream, the static pressure is constant downstream. There 
is a "head loss" in the stall cell determined by the velocity defect 
there, just as in the case of a bluff body wake; and the fraction of 
the downstream periphery covered by stall cells could be expressed by 
a time average loss coefficient of stagnation pressure. The qualita­
tive nature of the flow for (p = N = 1) is similar to the flow about a 
flat plate translating along the cascade at velocity Vp and blocking 
the flow through a portion of it. 

Analysis of Model for Small Perturbations 

It is noted that equation (7) gives a relationship between the 
three parameters (p, N, and ¢) and was developed without any assumptions 
regarding blade stall characteristics other than the assumption of dis­
crete vortices downstream. If another independent equation can be 
derived between P, N, and ¢, by specifying the dynamic blade stall 
characteristics, Vp can be determined as a function of N only or of 
the stall-cell amplitude. 
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For small perturbations, M and N can be related to lift and 
drag coefficients since for an isolated airfoil 

and 

Cr,W 
ro = -- L 

2 

The assumption is made, as in reference 3, that also for a cascade of 
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CLW 
airfoils ro = ~ L, where W is the local mean velocity and ro is 

the bound vorticity at an airfoil. If CL is a known function of local 

mean air angle ~ as determined by the local incidence, M(N,¢) can 
be determined independently of equation (7). 

It is difficult to determine W and ~ at the airfoils near the 
stall cell for arbitrary values of N because the shape of lines (b) 
and (c) in figure 10 must be known. However, if N« 1, lines (b) 
and (c) must be straight even near the cascade, and it becomes possible 
to determine W and ~ by restricting the amplitude of the stall cell 
to a small perturbation. 

For the velocity induced by a straight vortex street of finite 
length, equation (1) .indicates that, except in the immediate vicinity 
of the street, it may be considered as a distributed sheet of strength 
per unit length I; therefore, with the notation of figure 16, the a 
velocity components induced by an element of length dx are 

du = -~ dx sin 8 
2rca r 

dv = ~ dx cos 8 
2rca r 

For a sheet of f inite length, as in figure 17, 
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v = r 
2:rra 

xdx 

x2 + y2 

u = 

v = 

-r 
2:rra 
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5 

It follows that the velocity induced at the blade in the center of the 

stall cell Vi' as shown in figure 18, is parallel to the streets and 
c 

equal to ~ if m» n. For various assumptions of CL(~)' it might 
2a 

be assumed that the blades in the stall cell have a circulation corre­

sponding to W and ~ at the blade in the center of the cell and Vp 

can be calculated as a function of N. 

However, values of P which correspond to values of N as deter­

mined by the dynamic stall characteristics of the airfoil restrict the 

curve of K against N to an "operating line" similar to the dashed 

curve of figure 15 . As N ~ 0, P~ ° and equation (8) becomes indeter­

minate . However, if it is assumed that ¢ must remain small as N ~ ° 
for the reasons given previously, then from equation (7) P ~ 2N « 1 . 

It appears, therefore, that for small perturbations, and small angles ¢, 
the percentage of vorticity the airfoils shed upon entering a stall cell 

must be approximately equal to the percentage of downstream axial veloc­

ity defect in the stall cell . Therefore, the reason that small­

perturbation stall cells are not commonly observed may be that a com­

pressor blade generally is thin, stalls from its leading edge during 

stall propagation, and must shed a large percentage of its bound vor­

ticity upon stalling . This description appears to apply to the dynamic 

stall characteristics of the airfoils used in the experiments although 

in quasi - steady flow the airfoils exhibit a continuous curve of CL 

against i even in stall as indicated by figures 19 to 22 . It is shown 

in the section entitled "Determination of Flow Properties From 

Interferograms" that the airfoils display stall characteristics during 

stall propagation which depart conSiderably from their quasi - steady 

stall characteristics . It is felt that the sudden increase of i as 

the airfoils enter a stall cell causes them to stall abrupt ly from 

thei r leading edges for the reason given in the sect ion entitled 

"Correlation of Analytical and Experimental Results," even though they 

stall "gently" with a slow (quasi - steady) increase of i. 
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A ~ualitative reason that a compressor blade should not shed a 
small vortex from its leading edge during stall propagation is indicated 
in reference 5 where it is shown that, for a flat plate moved impul­
sively from rest normal to its plane, vortices must form at the edges 
of the plate (if infinite velocity is precluded) and that, during the 
initial formation of these edge vortices, similitude of the flow 
re~uires them to grow until they are not small in proportion to the 
width of the plate. Of course, the stronger the vortex shed from a 
cascade blade, the greater is the tendency for the adjacent blade to 
stall as the vortex moves past it and the greater is the tendency for 
stall propagation; however, there is no apparent reason why propagation 
of small perturbations should not occur except that this appears to be 
precluded by the dynamic stall characteristics of the airfoils. 

Since small -perturbation stall cells which are two-dimensional (hub 
to tip in a rotor) and stable have never been observed experimentally to 
the knowledge of the author, the analysis is pursued no further. The 
discussion above is offered as a ~ualitative speculation (not an attempt 
to prove) that for two-dimensional stall cells large perturbations are 
more likely to occur as a stable flow pattern than small perturbations. 

Prediction of a trend for the number of cells.- The vortex-flow 
model used in the analysis appears to offer an explanation for the gen­
eral trend toward larger numbers of cells with increasing throttling of 
flow as indicated by the experimental data. The experimental results 
indicate that with further throttling of the flow through an isolated 
rotor after the formation of one stall cell the cell first grew wider 
(n increased in fig. 10), then two cells appeared and grew wider, 
and so forth until four cells appeared and surging flow began. The 
vortex flow model indicates that if m is finite in figure 18, the 
velocity induced by the stall cell at the blade in the center of the 
cell, (Vi)c' decreases as n/m increases. This effect can be shown 

~ualitatively by assuming the lines (b) and (c) to be entirely straight. 
Then from e~uation (13), if m » n 

As n/m increases, (Vi)c decreases faster than near the edges of the 

cell, there is more flow through t he center of the cell than near the 
edges, and the blade at the center of the cell tends to unstall, thereby 
splitting the cell into two cells which become distributed axisymmetri­
cally around the rotor. 

It does not appear possible to predict when a stall cell will split 
as n/m increases without detailed information regarding the dynamiC 
stall-unstall characteristics of the airfoils and the shape of the cell 
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( l ines (b) and (c) in f ig . 10). The estimated relationship between 
n/m and (Vi)c does not indicate much effect on (Vi)c until 

n/m > 1/3. The measured effect is much greater and is described 
subseCluently. 

Summary of Analysis 

By making use of experimental data in order to develop a simplified 
analytical flow model) a t heory of stall propagation in an is olated 
blade row has been developed which appears to be based upon fewer 
restrictive assumptions than some of the earlier analyses. In the analy­
sis of the present paper) a restriction is imposed upon the nature of the 
stall cells. Although the approximation to the actual observed flows 
appears to be valid for all the blading) geometrical configurations) and 
f l ow conditions for which the experiments described herein were run) it 
is unknown how valid the approximation is in general. It is speculated 
that t he approximation regarding the nature of the cells might be widely 
applicable to continuous cascades of thin airfoils where the flow extends 
many blade chords downstream of the cascade. 

It should be noted that in the preceding analysis no proof of exist­
ence) e Cluilibrium) or stability is given for the assumed flow model. 
The experimental data are offered in lieu of mathematical proof. 

EXPERIMENTAL INVESTIGATION OF ROTATING STALL 

Investigation in a Circular Cascade 

Description of apparatus and procedure.- With the sponsorship of 
the NACA) a circular radial-outflow cascade was designed and installed 
in the closed-circuit wind tunnel at the Gas Turbine Laboratory during 
1953. The cascade was designed specifically for investigation of rotating 
stall and is described in detail in reference 12. In figure 23 is shown 
a schematic view of the test section which includes a ring of variable ­
angle guide vanes with which the air inlet angle to the test cascade ~l 

can be continuously varied . Some dimensions of the test cascade are: 

Radi us to guide vane trailing edges 
( varies ,-lith ~l)) in. 

Radius t o blade l eading edges and measuring 
and 2) respect i vely: 
For configuration A) in. 
For configuration B) in. 

7.2 to 6.7 

stations 1 

7. 91) 7.69) 8.94 
8.66) 8.44) 9.69 
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Blade chord, in. 

Blade span, in. 

Blade profile NACA 65 (12)10 as changed by circular 
transformation 
Number of blades 
Nominal solidities, cr 

Simulated linear cascade 65(8)10 
Mean line a. . ... 

Some advantages of the cascade geometry are: 

29 

1. 71 

54, 27, 18, 9 
1, 1/2 , 1/3, 1/6 

1.0 

(1) The flow is two -dimensional through the cascade neglecting the 
wall boundary layers . 

( 2 ) Optical measurement of the flow through a portion of the cas ­
cade is possible . 

(3) A continuously rotating stall pattern can be established, which 
is not po·ssible for a finite - length linear cascade . 

Some disadvantages are: 

(1) Because of the radial flow, the pressure distribution about 
the airfoils is not precisely the same for a given pressure rise through 
the cascade as in a rotor or linear cascade . As described in reference 12 , 
a correction was made for this effect by designing the cascade through 
the conformal transformation of one linear cascade so that the adverse 
pressure gradient on the suction side of the airfoils in the transformed 
circular cascade was approximately equal to that for a second linear cas ­
cade which was simulated. It was found that the circular transformation 
of a linear NACA 65 (12 )10 cascade gave approximately the same adverse 
pressure gradient on the circular cascade blades at the design point as 
was obtained for a linear NACA 65 (8)10 cascade . The data for the linear ­
cascade pressure distributions were taken from reference 13. The degree 
of success of this procedure is indicated in the section "Determination 
of Flow Properties From Interferograms" where the pressure distribution 
about the circular - cascade blades is calculated and compared with the 
distributions from reference 13 for one value of i . 

(2) The flow field downstream of the cascade is necessarily rather 
short which appears to have a pr onounced effect on the rotating stall 
cell pattern as discussed in the section "Correlation of Analytical and 
Experimental ReSUlts . " 
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In reference 4, an experimental investigation of rotating stall 
in the circular cascade is described, which was conducted to determine 
the detailed nature of the flow and to ascertain the effects of Mach 
number, Reynolds number, mean incidence, and cascade solidity on the 
propagation of stall cells in the cascade. The experimental work 
described herein is a continuation of this investigation. The proce­
dures and instrumentation are largely the same as those described in 
reference 4 except for the use of 'the Gas Turbine Laboratory portable 
Mach-Zehnder interferometer and a piezoelectric crystal pressure pickup 
described subsequently. 

The purpose of the present investigation is to extend the data of 
reference 4 to include the effects of lower cascade stagger angle, of 
higher mean incidence to the cascade, and of increased clearance between 
the guide vanes and test cascade. Quantitative measurement of the pres­
sure field in a portion of the cascade during stall propagation is also 
attempted by means of high-frequency interferometer pictures. 

All of the tests in reference 4 were made with a cascade stagger 
angle A fixed at 430

• The highest angle to which the guide vanes 
could be turned gave an entering air angle ~l to the cascade of 69°; 
therefore, the highest mean-flow incidence angle i possible was 260

• 

stall propagation started at i = 200 . In reference 14, it was observed 
that stall propagation existed in a rotor-plus-guide-vane axial compressor 
stage for 340 < i < 470 (relative to the rotor at mean radius). There­
fore, it was deemed desirable to alter the linkages to the guide vanes 
to permit greater incidences to the circular cascade. It was noted in 
the schlieren pictures presented in reference 4 that, during stall prop­
agation in the circular cascade, when an airfoil stalled some of the 
fluid from the separated boundary layer was washed around the leading 
edge of the succeeding airfoil before it stalled. In hope of decreasing 
this effect and in order to increase further the incidence on the cas­
cade airfoils and to observe any other effects on the nature of the flow, 
the stagger angle of the cascade was changed from 430 to 310. For the 
altered guide-vane linkages and reduced stagger angle, the range of i 
was from 130 to 530. With these two alterations, the following data, 
similar to those presented in reference 4, were taken at the reduced 
stagger angle and over a greater range of incidence during stall 
propagation. 

Throughout the investigation in a circular cascade, Cp is defined 
as the ratio of time-average static pressure rise through the cascade 

to the dynamic pressure of the flow entering 
P2 - Pl 
----, where 
1 2 
2' P1Wl 

and 

Pl are wall static pressures as measured by the average of three equally 



NACA TN 4134 31 

spaced taps at measuring station 2 and three at station 1. It was deter ­
mined that each of the boundary layers on the cascade walls was less 
than 1/8 inch thick before the onset of stall propagation and t hey are 
neglected henceforth. 

In all the series of schlieren and interferometer photographs such 
as figures 1 and 2, time is from right to left. Flow is from left to 
right in each frame. All the schlieren photographs were taken at 5,000 
per second and all the interferometer photographs at 6, 000 per second . 

Experimental results - configuration A.- Pressure coefficient Cp 
as a function of ~l for cascade solidity of unity is shown in figure 19 
for two levels of Reynolds number Rel. The conventional (Cp)max is at 

~l = 460 in figure 19 . Subsequent hot-wire data and schlieren pictures 

indicate that periodic stall propagation occurred at the peaks in the 
curve where ~l was 540, 620, and 680 and where values of ~l were 

greater than 790 . On each side of the peaks the stall cells gradually 
became intermittent and of lower amplitude, and between the peaks the 
flow was relatively steady in time. Visual observation of the flow 
through the schlieren apparatus for values of ~l between the peaks of 
figure 19 showed that the flow was completely separated from the suction 
side of the airfoils. 

As ~l wa s varied , the mass flow through t he test section wa s held 
approximately constant; therefore, Reynolds number and Mach number 
increase with ~l for each curve plotted, as indicated in figure 19 . 

It is noted in figure 19 that there was a distinct effect on Cp 
caused by change of Reynolds number for 580 < ~l < 740 • At the lower 

Reynolds numbers propagation no longer occurred at the band of ~l cen­
tered at 620 and the band at 68

0 
became narrower. When the Reynolds 

number was decreased to 50,000 both of these bands disappeared, but 
propagation at the 540 band became more violent and periodic, and the 
band at 790 was not affected noticeably. 

Schlieren photographs of the flow were taken in each of the bands 
of ~l for which there was stall propagation. The same equipment was 
used as in reference 4 with the 5-inch portable schlieren apparatus of 
the Gas Turbine Laboratory altered to use an Edgerton, Germeshausen, and 
Grier type 501 stroboscopic light source and a General Radio Corporation 
35~illimeter camera. Sections of each of these four films are shown 
in figure 24. 

The velocity of propagation and the number of cells in each band of 
~l were determined from these films _and hot-wire velocity measurements 
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made upstream of the cascade at a radius of 7 . 69 inches. These data 
are presented in figure 25 together with values of Vp/Crl predicted 

for a circular cascade by the equation on page 42 of reference 4. 
(Values for ~2 used in this equation were determined by extrapolat ion 
from the values measured in schlieren photographs before the onset of 
stall propagation as was done in ref . 4 .) 

Traverses of the hot -wire probe across the span of the cascade air­
foils indicated that the flow was two- dimensional for all the bands except 
for values of ~l greater than 790 where the velocity fluctuations 
were about twice as great near the walls as in the center of the blade 
span. Typical hot -wire traces taken at r = 7 . 69 inches for the four 
bands of propagation are shown in figure 26 . The hot-wire eqUipment 
used was a Flow Corporation model EWB hot -wire anemometer and another 
similar unit with hot wires of 0 .003 -milli meter diameter and 0.04 - inch 
length. 

By careful examination of the negatives from which figure 24 was 
made, one can discern the wakes from the upstream gui de vanes. It was 
attempted to make one wake more visible QY heating a turning vane with 
soldering iron filaments brazed to each end . However, no effect could 
be noticed in the pictures . In figure 24 ( a ) , during the first band of 
~l for which there was propagation, neither these wakes nor t he fluid 
from the adjacent separated airfoils were washed over the leading edges 
of the airfoils during stall propagation . I n figure 24 (b), a turning ­
vane wake just barely flicked over the leading edge of each blade before 
it stalled and not much of the separated fluid from the adjacent blade 
was washed over . I n figure 24 (c), the same wake as in figure 24(b) 
crossed back and forth over the leading edge of each blade and more of 
the separated fluid was washed over. In figure 24(d), the wakes cannot 
be detected . It is probable that the wakes and separated fluid injected 
into the blade boundary layers had an effect on the time required for 
the blades to stall . This may have caused the great increase of propa­
gat i on velocity from figures 24(a) to 24 (b). This effect is more evident 
when Vp!CS

l 
is calculated rather than Vp!Crl . For the bands in order 

of increasing values of ~l' Vp/CS1 was 0.13, 0.28, and 0. 25 , Thus, 

Vp!CS l increased by a factor of 2 from the first t o the second band 

and then remained virtually constant . 

Because the stall cells were not all precisely the same size and 
shape for a given mean flow, there is an uncertaint y in measuring Vp 
and the number of cells . It is believed that the uncertainty in det er ­
mining the number of cells was less than five for the first band, three 
for the second and third, and zero for the last band at 710 . The 
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uncertainty in Vp is about 12 percent for the last band, 8 percent for 
the first, and less than this for the other two as indicated in figure 25 · 

When half the blades were removed from the cascade, this being the 
only alteration, the following experimental results were obtained for 
configuration A, at a value of a = 1/2. Pressure coefficient Cp is 
plotted against ~l in f i gure 19 so that comparison can be made with 

the data for a of unity. It is observed that for a = 1/2 there was 
a mean pressure drop through the cascade for some values of ~l ' Hot-

wire traces showed that the first band of ~l for which there was stall 
propagation was at 540 and was very narrow. The signals were never 
periodic but were intermittent with occasional lapses to high-frequency 
turbulence. For 600 < ~l < 640 a periodic signal was observed as 

shown in the photograph designated E in figure 26 . For 64
0 < ~l < 790 

there were low-amplitude unperiodic fluctuations in the flow which 
became more distinct for ~l < 790 • Traverses of the hot wire indicated 

that the velocity fluctuations were two-dimensional and periodic only 
for 600 < ~l < 640 • In the 540 band, velocity fluctuations existed 

only in the center third of the blade span and for ~l < 790 only in 

outer thirds of the span near the walls. 

Schileren pictures were taken for ~ = 600 and a section of the 
film is shown in figure 9. From the film and hot-wire traces the num­
ber of cells and their velocity of propagation were determined and are 
indicated in figure 25. In figure 9, the wakes from two of the guide 
vanes are visible. (They have been darkened to aid in reproduction.) 
From the motion of these wakes it is apparent that the unsteady fluctu­
ations in the flow are large. It is observed that the wakes briefly 
cross over the leading edges of the cascade blades as they fluctuate. 
In figures 24 and 9, the boundary layer appears to separate from near 
the leading edges of the airfoils when they stall and to reattach when 
they unstall. 

When the Reynolds number was lowered below 50,000 for a value of 
a = 1/2, the velocity fluctuations became nonperiodic and of very low 
amplitude for all the bands of ~l where stall propagation had existed 

at higher Reynolds numbers. 

In figure 12 is seen a section of an interferometer film taken for 
configuration A with a = l/2 and ~l = 600 ; Rel and Ml are 333,000 
and 0.47, respectively. The bands in figure 12 indicate lines of con­
stant mean air density, which correspond to lines of constant pressure 
if isentropic flow can be assumed and lines of constant velocity magni­
tude also where the time rate of change of velocity can be neglected. 
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The striking feature of figure 12 i6 the distinct appearance of the 
vortices shed from the leading and trailing edges of the airfoils. 

Experimental results - configuration B.- To determine the effect 
of interference between guide vanes and test cascade, the radii of the 
test cascade and the static pressure taps for measuring Pl and P2 

were increased three-Quarters of an inch to configuration B. This 
effectively doubled the clearance between the blade rows and shifted 
their relative angular position approximately 30 about the axis of the 
test section. 

In figure 20 Cp is plotted against ~l for configuration B and 
o = 1. Comparison with the corresponding Cp curve for configuration A 
from figure 19 indicates that the increased clearance had no pronounced 
Qualitative effect upon Cp , although values of Cp were generally 
greater for configuration B. The bands of 131 where stall propagation 
existed were shifted a few degrees, which was probably caused by the 
angular shift of the blade rows from configurations A to B through the 
effect of the turning vane wakes on the dynamic stall characteristics 
of the cascade airfoils. There were also detailed effects on the flow 
caused by the increased clearance. Periodic two-dimensional stall prop­
agation existed at ~l = 570 and 630 • Low-amplitude, low-freQuency, 

unperiodic fluctuations existed for 500 < ~l < 530 and for ~l > 780 • 
Flow was relatively steady between the peaks of ~l in figure 20, as 
was described for figure 19. Figure 27 shows three interferograms of 
the flow at incidences where the flow was comparatively steady. Inter­
ferometer pictures were taken at ~l = 570 and 640 and are presented in 

in figure 1. The number of stall cells and their velocity of propagation 
as determined from these pictures are shown in figure 20. 

When the cascade was assembled with 27 blades (0 = 1/2), it was 
found that stall propagation existed for 530 < ~l < 680 • However, the 

perturbations were two-dimensional and periodic only for 560 < ~l < 660 . 
It was found that decreasing the Reynolds number made the fluctuations 
less periodic and of lower amplitude. Interferometer pictures were 
taken for ~l = 580, 610, and 640 and are presented in figures 2(a) to 
2(c). (The pictures for 131 = 610 are used to calculate the pressure 

field during one cycle of the motion described in the following section.) 
The following data apply to figure 2: 



NACA TN 4134 35 

Figure ~lJ deg 
Number of Vp/Crl Vp/C8 1 Cp Re l Ml cells 

2(a) 58 15 to 16 0.78 0.42 0.25 266,000 0 . 30 

2(b) 61 19 to 20 . 87 .43 . 15 235,000 ·37 

2(c) 64 14 to 15 1.00 .45 .13 200,000 · 31 

The cascade was reas sembled with 18 blades (0 = 1/3) and it was 
found that periodic two-dimensional stall propagation existed only for 
narrow bands of ~l about 570 and 700 Interferometer pictures at 
these two values of ~l are shown in figure 3 and the following data 

apply to them: 

Figure ~l' deg 
Number of Vp/ Crl Vp/C81 Cp Rel Ml cells 

3(a) 57 7 to 8 1.27 0.83 0 .15 255,000 Q.31 

3(b) 70 18 1.47 .91 .058 264,000 · 32 

When the cascade was assembled with nine blades (0 = 1/6), it was 
found that hot -wire traces upstream of the cascade indicated only 
varying -amplitude high-frequency velocity fluctuations as ~l was 

increased. At ~l = 570 , however, the fluctuations appeared to be inter ­

mittently periodic and interferometer pictures were taken as shown in 
figure 4. The frequency with which the blade stalls in figure 4 is 
approximately 790 cps, Rel = 250,000, and Wl = 292 ft/sec . 

In reference 6 is described an experimental investigation of the 
Karman vortex shedding of a flat plate at high incidence i. It was 
found that for 200 < i < 600 

where F 

the plate . 

0.164 < FL sin i < 0.150 
W 

is the frequency at which vortices were shed from one edge of 

The result of calculating FL sin i from the preceding data 
W 

for configuration B and plotting it against 0 is shown in figure 5. 
Although there is considerable scatter in the data, it is observed that, 
as was shown by a similar plot for A = 43 0 in reference 4, the frequency 
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with which a blade stalls during stall propagation in the cascade appears 
to approach the KBrman vortex shedding 'frequency of the isolated flat 
plate as the solidity of the cascade is decreased. 

Determination of flow properties from interferograms.- From inter­
ferometer photographs of a two-dimensional flow, it is possible to deter­
mine the pressure field by conventional procedures. The purpose here 
is to determine the pressure distribution around the circular-cascade 
airfoils and to estimate the strength of the shed vortices during stall 
propagation. Also, the pressure distribution before the onset of stall 
propagation in a circular cascade is compared with that of the simulated 
linear cascade. 

The use of interferometry to obtain quantitative information about 
two-dimensional pressure fields which are unsteady in time is no more 
difficult in principle than it is for steady flows, but practical dif­
ficulties are encountered in the photography and direct pressure measure­
ment required. As used herein, the properly adjusted interferometer 
produces fringes or bands, such as those in figure 2, which indicate 
lines of constant density. No indication is given in the interferogram 
of the density level but only of the absolute value of the density dif­
ferences between fringes. The sign of the density change between fringes 
is determined from the schlieren pictures and from a qualitative knowl­
edge of the flow. It is necessary to determine independently the value 
of density at some point in the interferogram at the instant the picture 
is taken. This is done by the determination of two other independent 
fluid properties at the point which are pressure and entropy. The 
entropy is assumed constant everywhere in the interferogram (except in 
the cores of the vortices) and is evaluated upstream of the cascade 
where the flow is relatively steady and fluid properties can be measured 
conveniently. The static pressure fluctuations with time are measured 
at a point in the interferogram with a miniature crystal pressure pickup. 

Interferometer: A portable Mach-Zehnder interferometer with 5-inch­
diameter optical elements was used in this study. A detailed discussion 
of the design and operation of this instrument is given in reference 15. 
Only brief mention of its use will be made here with special reference 
to the present application. Apertures of 1/16- and 3/32-inch diameter 
were used at the focal point of the collimating lens causing the light 
to emerge from the lens as a parallel beam. At the first splitting 
plate the beam is divided into two halves which pass respectively through 
and around the test section before being recombined at the second 
splitting plate. The fact that one beam does not traverse the test­
section window is compensated for by including in its path two glass 
plates which are optically similar to those of the test section. The 
resulting beam is focused on the filru. The image produced on the film 
depends on a comparison between the two optical path lengths. 
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With no flow in the test section and a small angular displacement 
between the splitting plates, a series of parallel interference fringes 
results. If these bands are originally spaced infinitely far apart, by 
setting the mirrors exactly parallel, any fringes which appear in the 
flow picture will be lines of constant density. Some loss of accuracy 
results from imperfections in the optical elements precluding infinite 
band spacing. The interferometer optics, test-section Windows, and 
compensating plates combined gave a minimum of one fringe instead of 
the zero number of fringes implied by perfect optics and exactly par­
allel mirrors. 

A concentrated light source is required to expose the film. The 
source used was an experimental xenon-filled lamp, a photograph of 
which is shown in figure 28. It is capable of flashing for approxi­
mately one microsecond at rates of 60 to 8,000 per second when used 
with the Edgerton, Germeshausen, and Grier type 501 stroboscopic modu­
lator. ·,Its small size, large amount of light flux, reliability, and 
long life make it very satisfactory. The light was filtered to give 
the monochromatic light necessary to the interferogram evaluation using 
an interference filter which passed a band of wavelengths 100 angstroms 
wide centered at 4,500 angstroms. 

Pressure measurement: A miniature crystal pickup capable of sensing 
high-amplitude, high-frequency pressure fluctuations is shown in fig-
ure 29. It is a piezoelectric, barium-titanite crystal in the shape of 
a hollow cylinder 0.12 inch long by 0.09 inch outside diameter. It is 
inserted in a drilled hole in one of the optical flats at a measuring 
point midway between two airfoils shown in figure 2(b). It is mounted 
flush with the inner surface and senses the wall static pressure. A 
drop of glue in the end of the cylinder acts as a safety valve and seals 
the crystal so that, when the test-section pressure is applied to its 
outside surfaces, hoop tension stresses are produced which cause mechan­
ical strains and the accumulation of electrical charge on its inner and 
outer cylindrical surfaces; a voltage results which is sent through a 
high-impedance amplifier and displayed on an oscilloscope. Since the 
impedance of the circuit is not infinite, the charge produced on the 
crystal faces "leaks off" which prevents its use in measuring low­
frequency pressure fluctuations. 

To determine the rise time of the pickup to a step change in pres­
sure, the pickup was mounted in the wall of a shock tube which is 
described in reference 16. The rise time was less than 0.05 milli­
second, very adequate for the intended use. The pickup may be cali­
brated by determining its sensitivity to temperature and observing how 
quickly electrical charge leaked from the faces of the crystal; a device 
described in reference 17 was used rather than the shock tube because 
of its convenience and reliability. The device makes use of a rotating 
valve to switch a small test chamber between two large tanks of air at 

--- - -- -------
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different pressure levels. It was concluded that t he distortion due to 
charge leakage and temperature sensitivity could be neglected . 

A convenient method of synchronizing the pressure trace on the 
oscilloscope with the interferometer photographs is to project both on 
the same film as in figure 2(b). With the oscilloscope set so as to 
suppress the time (horizontal) axis and with the film stationary, the 
pressure trace is focused on one - half the film and set above a conven­
ient reference line in the interferogram, the wire which connects t he 
trailing edges of the blades. With the film in mot ion and the t ime 
axis thus provided, synchronization is complet e . The amplitude of the 
pressure fluctuation at t he measuring point in an interferogram is given 
by the intersection of the wire and trace. Since the crystal does not 
record a steady pressure, this fluctuating component of pressure must 
be added to the time mean static pressure measured with a wall static 
pressure tap directly opposite the crystal location (a 1/8- inch-diameter 
hole drilled in the opposite optical flat). The scale in figure 2 (b) 
indicates the value of the mean pressure and the magnitude of the fluc ­
tuating component at the measuring point . 

For pressure variations small with respect to the mean pressure, 
(in the present case 0. 9/18), the maximum error incurred in assuming 
the pressure at the measuring point to be equal to the mean pressure 
is small (5 percent) . Of course, it was necessary first to measure 
these fluctuations to determine whether they could be ignored . Pressure 
distributions other than those for figure 2(b) were calculated neglecting 
the pressure fluctuat ions at the measuring point . 

Measured pressure distributions: The most common ordinate in use 
in the presentation of pressure distributions from steady flows in cas -

cades seems to be S = Po - Plocal That this is also a meaningful ! pW12 

parameter for use in unsteady flows may be shown as follows : 

pv2 
In an unsteady flow * + p + --- = Constant = (po)~ where 

2 * = Velocity potential . If one integrates with respect to time over 
one cycle and requires that ~ make no net contribution for this period 
(otherwise the time mean value of (p + ~ pv2) monotonically increases or 

decreases), 

! pv2 dt = CT ( ) T = Po_co 
2 
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Therefore, for an unsteady flow, 

S 
~ + .1 pv2 

2 

Although in a steady flow S must always be positive, the preceding 
discussion shows that in an unsteady flow S may be negative in certain 
regions and periods in which * is a large negative quantity . 

The pressure distributions corresponding to each of the ten frames 
of figure 2(b) for one period T of the motion are shown in figure 30. 
Generally, they bear little r elation in form to the conventional graphs 
of pressure distribution. This is to be expected, however, for not only 
is the flow unsteady, but the effect of vortices in the field represents 
a major departure from conventional flow. Figures 30(c), 30(h), and 
30(i) show negative values of S. The circled data points in figure 30 
are obtained from the interferogram fringes of figure 2(b) and by inter ­
polating half fringes. 

At the beginning of the cycle (frame 1 of fig. 2(b)), the blade has 
shed a counterclockwise vortex from its trailing edge, and the vortex 
shed from the leading edge of the preceding blade is coming into view. 
The latter vortex should have a strong effect upon the blade circulation 
according to the analysis presented previously. One would expect from 
this analysis that, in order for the Kutta condition to be maintained, 
the circulation around the blade in frame 3, figure 2(b), would be large. 
This is verified qualitatively from the pressure distribution of fig ­
ure 30(c) and from figure 31, a graph of Cn against tiT as deter­
mined from the pressure distributions of figure 30. On the other band, 
the blade circulation decreases as a shed vortex leaves its leading edge 
and the effect on the blade pressure distribution is clearly indicated 
in figure 30. 

Local incidence angles at the blade were estimated from the schlie ­
ren pictures of figure 9, which show the wakes of the upstream nozzles 
darkened somewhat for reproduction purposes . These estimated values 
of i are plotted in figure 32 against tiT . The error ca used by the 
motion of the wakes and the difference in clearance between blade rows 
in figures 2 and 9 is neglected. Using a common time axis tiT, one may 
plot CL, as calculated from figure 31, against i from f i gure 32 to 

obtain information about time lags between local incidence and CL ' Such a 
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plot is shown in figure 33 which indicates that a phase lag does exist 
between i and C1' This is the usual result, and the explanation 

seems to be that the presence of a counterclockwise vortex near the 
trailing edge has a negative effect on the blade circulation compared 
with its effect after having been washed downstream; the reverse is 
true for the leading-edge vortex as shown previously. 

The pressure trace in figure 2(b) clearly shows the presence of the 
shed vortex . At the beginning of the cycle, when vortices are oriented 
so as to cause low velocity at the measuring point, the trace indicates 
high static pressure . At about the fifth frame, when a vortex is quite 
close to the pressure pickup and oriented so that the velocity is high 
there, the trace indicates low static pressure . 

The magnitude of the blade force calculated from the sequence of 
figure 30 varied from 3 to 7 . 5 pounds . Although the blade force in the 
chord direction was calculated, these forces were small enough to be 
neglected . Hence the normal force is approximately equal to the blade 
vector force. 

With the above experimental information, one can also show the 
"Baen effect," which is that in the unsteady growth of lift on a wing 
accompanying a sudden increase in the angle of attack an increase in 
the value of maximum lift occurs. In reference 13 a graph of lift 
coefficient against incidence is given and the results may be compared 
with those of figure 33. At an incidence angle of 200 (for which the 
steady state CL is a maximum of 0 . 68 from ref . 13), figure 33 gives 

values of 0.71 and 1.45 for CL during the unsteady flow. The maximum 

value of CL from figure 33 is 2.1. There is some error involved in 

this comparison since both CL and CN are based on the average 

upstream dynamic head rather than on the instantaneous local value; 
however, the above calculations appear to demonstrate that there is 
considerable departure from their quasi-steady stall characteristics by 
the airfoils in question during stall propagation as speculated previously. 

In order to verify the design technique used to simulate a linear 
cascade with the circular cascade, the airfoil pressure distribution was 
calculated for ~ = 46 . 40 from figure 27· The pressure distribution 
for the equivalent linear cascade (NACA 65(8)10) is given, for certain 
combinations of solidity, inCidence, and other factors in reference 13 . 
To compare the two distributions it is only necessary to reduce the 
circular cascade distribution to that of a linear cascade, using the 
transformation given in reference 12 . Of course, the comparison must 
be made for equal values of G, A, i, and so forth. Thus, in fig -
ure 34, the transformed pressure distribution corresponding to ~l = 46 . 40 

has been compared with the appropriate distribution of reference 13 . 
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This comparison indicates some success in the attempt in designing the 
circular cascade to duplicate the pressure gradients on the suction 
side of the blades. The apparent difference in blade loading is to be 
expected from the circular transformation. 

Estimation of strength of shed vortices: It is possible to esti­
mate the strength of a vortex moving past a point where the pressure is 
measured as in figure 2(b). Advantages of this method are that no 
measurement is required near the core of the vortex where losses are 
high and that the strength of an "equivalent potential vortex" can be 
estimated. 

The variation of p, static pressure at the origin, when an isolated 
vortex r moves along a line (y = Constant) with the free-stream veloc­
ity C in an infinite field, can be determined in a coordinate system 
fixed to the vortex and is given by 

where the coordinates of the vortex are (x, y = b). 

An estimate of the circulation about an airfoil can be made by 
using the Kutta relationship L = pwro and substituting approximate 
measured values of L, P, and W. Applying these two relationships to 
the ninth frame of figure 2(b), in which the blade circulation is nearly 
minimum (and neglecting the effect of adjacent blades), gives an esti­
mated ratio of blade circulation ro to shed vortex strength r of 
0.19. However, because of the inaccuracies involved in this calculation, 
a direct examination of the interferometer pictures probably yields as 
good an answer. In figures 1 and 2, it is observed that after the air­
foils stalled there was virtually no difference in fluid density at 
points which are at the same chordwise position on the airfoil but on 
opposite sides. Neglecting the local time rate of change of velocity 
and losses, this indicates that the pressure and velOCity were almost 
equal at these points and that the circulation about the airfoil must 
have been small. Therefore, it appears that the circular cascade air­
foi ls shed nearly all of their bound vorticity when they stalled as 
assumed in the analysis. 

Discussion of results.- The experimental results from the circular 
cascade indicate that stall propagation occurred for narrow bands of 
mean incidence during which the blades periodically shed nearly all 
their bound vorticity i n the form of discrete vortices. It appears 
that the airfoils conSistently stalled from their leading edges during 
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stall propagation and that between stall cells the flow reattached to 
the suction side of the airfoils. 

Although the washing of the guide-vane wakes over the cascade air­
foils had an influence on the flow as discussed previously, this does 
not appear to be the reason for the distinct bands of ~l at which 

propagation occurred. The effect of Reynolds number on stall propaga­
tion was pronounced at some mean incidences but not at others. There 
was no pronounced effect on Cp caused by the increase of clearance 
between blade rows for 0 of unity but Vp increased and the number 
of cells decreased. 

The analysis of reference 4 predicts that the effect of increased 
clearance is to decrease Vp but that Vp should increase for fewer 
cells. The present analysis indicates that the effect of decreasing 
the extension of the flow field downstream of the circular cascade, 
which was associated with the increase of clearance, should have caused 
a tendency for the number of cells to increase. The fact that the num­
ber actually decreased indicates that the effect of increased clearance 
was more important than the effect of decreased downstream field in 
determining the number of cells in this case. 

It is noted that for configuration B, Vp/CSl was essentially con­

stant for each value of 0 but increased as 0 decreased. It is prob­
able that this increase was caused in part by the effect of a decreased 
number of boundary-layer time delays (associated with blade stalling). 
Furthermore, from figure 8 it can be seen that the induced effect of 
the circulation about airfoil (a) upon the shed vortex r tends to 
decrease its transport velocity. This effect tends to increase Vp as 
o decreases independently of the effect of boundary-layer time delay. 
The frequency of stall propagation appears to have approached the KRrman 
vortex frequency for an isolated plate as 0 decreased. 

It was observed during the experimental work with the circular cas­
cade that some of the stall-cell patterns were sensitive to small dis­
turbances in the flow. For instance, in one case (for 0 = l)} stall 
propagation could be prevented by the insertion of a 1/8-inch-diameter 
hot-wire probe upstream of the cascade. On the other hand, at one time 
during the testing, 8 of the 54 cascade blades failed and were washed 
downstream and no pronounced effect was observed on stall propagation 
except that the flow was slightly less periodic than it was with uniform 
blade spacing. Therefore, the stability of the stall-cell patterns and 
the effect on stall propagation of destroying the axial symmetry of the 
flow appears to vary a great deal with mean flow condition in the cir­
cular cascade. No hysteresis or time-delay effect could be discerned 
between the stall-cell patterns in the circular cascade and the guide­
vane setting (incidence). 
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I nvest igation in an Isolated Rotor 

Descript ion of apparatus and procedure.- This investigation was 
undertaken to extend the available experimental information about the 
detailed nature of flow through an isolated rotor during stall propaga ­
tion. The e~uipment used was virtually the same as that described in 
reference 14, where a similar investigation was made for a guide -vane 
rotor and a guide -vane rotor - stator combination. Figure 35 is a sche ­
matic diagram of the research compressor showing the measuring stations. 

The essential dimensions of the single-stage axial compressor used 
in this investigation are: 

Hub - tip ratio . . 
Tip radius, in .. 
Mean radius, in. 
Blade chord (no taper), in . 
Camber angle 8, deg . 
Linear twist, root to tip, deg 

0. 75 
11.63 
10 .27 
1 ·51 
30 .3 
9.7 

The blades wer e a circular-arc camber line, with an NACA 0010 thickness 
distribution (10 per cent maximum thickness at 30 percent chord) . 

The rot or blades were unshrouded, and their bolt type of fastening 
allowed the stagger angle to be easily changed. The constant a rea 
annulus extended 29 .8 inches upstream and 36.5 inches downstream of the 
rotor. Radial air - flow entrance was through screens . The outflow 
annulus was a diverging cone . The inner wall cone could be traversed, 
thereby varying the exit annulus area and throttling the flow . 

The following three rotor configurations A, B, and C were tested : 

Mean-radius stagger, Mean- radius solidity, 
Configuration A, deg a 

A 30. 2 1.02 

B 30. 2 . 51 

C· 52·7 1 .02 

Except where indicated, the rotor was operated at 1,500 rpm 
(U 134 ft/sec at mean radius) for all configurations. 
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The relative inlet velocity during stall propagation was 140 to 
160 ft/sec, which resulted in a Reynolds number based on the blade chord 
of 110, 000 to 150,000 . 

The conventional instrumentation consisted of inner - and outer -wall 
static pressure taps at five axial positions (C, E, F, FG, and G in 
fig. 35), kiel probes, a five - hole probe which was used for yaw measure ­
ments, and sphere-static probes . The pressure measurements were read 
on an inclined water manometer . The five -hole probe was nulled with 
the use of a statham gage . 

The probes used for measuring unsteady velocities were tungsten 
hot wires 0.00015 inch in diameter and 0 . 044 inch long . The direct ­
current circuits of two constant - current hot-wire anemometers were used . 
The voltage signals from the hot wires were applied directly to a Dumont 
304 dual -beam oscilloscope . The amplifier and standard calibration pro ­
cedure of the anemometer (model HWB, manufactured by Flow Corporation) 
for high-frequency fluctuations was not usable, since large low- frequency 
fluctuations were being investigated. Drift in the direct - current cir ­
cuitry caused differences in the hot -wire calibrations immediately before 
and after a run of 1/2 hour length as great as 25 percent. The calibra­
tion which came closest to being consistent with the steady- state 
readings before stall propagation started was used . I t is felt that 
the accuracy obtained is sufficient to indicate certain trends in the 
data which will be discussed . 

Since the hot -wire signal indicates only the component of velocity 
normal to it (over a wide range of angles within a small percentage 
correction), total velocity, axial component, or tangential component 
was measured by orienting the wire along radial, tangential, or axial 
direction, respectively (assuming that the radial velocity component 
can be neglected). 

An unsteady angle -measuring probe was developed during this inves ­
tigation. As shown in figure 36, it consists of a tube which slips 
over a standard hot -wire probe . The tube is sealed at the end and has 
two small holes drilled 1200 apart at its midsect i on similar to a stand­
ard cylindrical yaw probe. A thin wall is soldered inside the tube 
near the hot wire to reduce turbulence . 

If the probe is not nulled in a streaming flow, there is flow 
through the probe which the hot wire senses . This probe is sensitive 
to low velocities and it can be nulled within ±2° . Its response is 
fast enough to indicate stall cells passing by i t. Since the downstream 
velocity profiles during stall propagation were approximately square 
wave shapes, one could null the probe by observing the scope trace and 
thereby measure the angle of flow, either inside or outside t he stall 
cells. 
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To obtain permanent records of the oscilloscope traces, a Polar oid 
Corporation camera and a strip - film camera were used. The latter is a 
camera without a shutter but with a constant - speed film drive . The 
number of stall cells or ¢, the angle at which the cells extended d~Nn­
stream, was determined by the relative displacement of two traces, 
recorded on strip film, of hot- wire probes located at different axial 
stations. 

The stall -cell frequency was determined by synchronizing a sine ­
wave voltage from a frequency generator on the x -axis input with the 
hot-wire velocity signal on the y-axis input of the oscilloscope . 

All probe readings except wall static pressures are values at the 
mean radius unless a radial traverse is indicated . Unsteady static 
pressure readings are at the outer wall and were measured with two 
inductance-type electrical pressure gages described in reference 18. 

Experimental results - configuration A.- The time average pressure 
coefficient Cp as determined by the average of the inner - and outer -
wall static pressures and the upstream relative head is plott ed in 
figure 21 against ~c' where 

C 
_ PG - PC 

PCG 1 
PWc

2 
2 

Cp 
_ PF - PE 

EF 1 
PWc

2 
2 

Pressures were measured at the stations indicated. The factors Wc and 
~c were determined by measuring Cc with a sphere stat ic probe . 

The number of stall cells and their velocity of propagat ion are 
given in figure 37, together with values of Vp predicted in reference 4, 
for no downstream pressure fluctuations by 

sin 2~ + 1 
( 

LBn ) 
c l cos f3G 
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where B = Number of cells. The values predicted in reference 2 are 
the same as in the "channel theory" of reference 3 for no phase lag) 

In figure 38 are shown unsteady wall static gage pressures measured 
at stations E and FG. It is observed that the upstream fluctuations are 
conSistently several times as large as those downstream. 

A series of hot-wire traces corresponding to measurement of CSG 
and CXc is shown in figure 39. Traces for CXc and C~ are shown 

in figure 40. The apparent difference in the average values of CXc 
and CXE in figure 40 is probably due to error in calibration of the 

hot wires caused by "direct-current drift" in the hot-wire circuitry as 
discussed previously, since these values must be constant because of 
continuity. 

In figure 41 are given the results of calculating (WSG)o and 

from the hot-wire traces of figure 39. In figure 42 are 

as calculated from figure 40 and CXc from sphere static 

probe readings. 

The measured values of are less than those of for 

~c < 580 in figure 42. This does not appear to be physically possible 

because of the blockage effect of the cells. It is felt that again this 
is a calibration discrepancy since CXc must be the average value of 

CXc because of continuity. Using this fact, the value of e sti-

mated for the hot-wire trace at ~c = 56.,0 is 95 ft/sec. Since all 

the data indicate that (Cxn)o is essentially constant with throttling 

except for extremely high values of ~c' it is probably a good approxi­

mation to take (Cxn)o as constant and e~ual to 95 ft/sec as indicated 

in figure 42. 

The flow angle (~G)o as measured by the hot -wire angle probe, 

~G as determined by a standard five-hole yaw probe, and (~G)o are 
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plotted against ~C in figure 43. The flow angle in the coordinate 
system fixed to the rotor (~G) was calculated from an average value of 

o 
(ac)o' 400

, and (CXG) 0 taken as 95 ft/sec. 

From figure 41 it is determined that (WeG)i was greater by 4 to 

increases). This result correlates 18 percent than (WeG)o (as ~C 
with the experimental observation that the stall-cell angle ¢ was 
negative and smaller than -150 for all the stall-cell patterns of 
configuration A. 

Experimental results - configuration B.- To determine the effect of 
blade spacing, half the blades of configuration A were removed resulting 
in configuration B. The number of cells and their propagation velocity 
are shown in figures 44 and 45 which indicate that periodic one- and two­
cell patterns existed for only a narrow range of high incidences for 
configuration B. 

Experimental results - configuration C.- To ascertain the effect of 
blade stagger angle, the stagger was increased 22~0 from configuration A 
to configuration C and comparative data were taken. The measured results 
are indicated in the following figures: 

Figure 

22 
46 
47 

48 

Results plotted against ~C 

CPCG and CPEF 
Number of cells, Vp ' and predicted Vp 
Hot-wire traces of CXE and CXQ 

(1) CxC measured by sphere static probe 

(2 ) (CXQ) o and (CXQ)i as calculated from 

as calculated from 

figure 49 
(4) ~G as determined with standard five -hole 

yaw probe 
(5) (ac) o as measured with hot-wire angle 

probe 
(6) ( ~G)o = 45.30 calculated taking average 

(~G) o = 37.50 and average 

(CXQ) o = 76 ft/sec 

Corresponding 
figure for 

configuration A 

21 

37 
40 

42, 43 
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Figure 49 shows a strip-film record of a hot-wire trace of axial 
velocity measured at station G while the throttle was continuously 
opened so that .the compressor operating condition changed from two, to 
one, to zero cells. For (CXc)o' the trace is at the top edge of the 

film for the entire strip. During this strip film, which took about 
5 seconds, direct-current amplifier drift was negligible. (The calibra­
tion was checked immediately after the run, and it had not changed during 
the run.) The value of (CXc)o is observed to be almost constant and 

is calculated to be 76 ft/sec, which compares well with the average of 
the values from the hot-wire traces of figure 47. 

For configuration C, the angle ¢ between the stall cells and 
rotor axis was determined from the measurement of phase lag between two 
traces of hot wires inserted at stations G and K. It was determined 
that for the one-cell pattern ¢ = 190 and for the two-cell pattern 
¢ = 160 . The error of measurement probably was less than 10 percent. 

Comments on compressor operation.- Just before rotating stall 
started, as the throttle was closed, a "mushy" flow, as it has been 
called, was observed near the hub and tip as indicated by a "hasby" hot­
wire trace. A very weak rotating stall might have been present at the 
hub for configuration C. The relative magnitudes of the mush at 
1/4 inch from the hub and rotating stall of one cell can be seen f~om 
hot-wire traces of figure 50 for configuration C. The mush was less 
than one-fifth the amplitude of rotating stall and was not investigated 
further. Rotating stall measurements were taken through the operating 
range until surge started. Although unperiodic propagation could still 
be observed along with the surge (since the surge was of much lower fre­
quency), no attempt was made to take data and separate the two effects. 
The variation of velocity fluctuation with axial distance from the rotor 
was measured at one operating condition for configuration A as is shown 
in figure 51. It is noted that the amplitude of the velocity fluctua­
tions decreases rapidly with distance upstream but that the fluctuations 
persist much farther downstream. At station K, 26 inches downstream, 
the amplitude of the fluctuations is about one-half that at station G. 

Upon throttling the flow, rotating stall always started as two 
cells then, as the flow was increased, the two cells changed to one. 
However, if the axial symmetry of the flow was destroyed by placing an 
obstacle (such as the observer's hand) in the inlet or outlet of the 
compressor, the one-cell pattern could be forced to appear before the 
two-cell pattern as the flow was throttled. 

If the compressor were operated at a value of ~C where the number 

of stall cells changed, the cell pattern sometimes shifted back and 
forth between the two numbers of cells. 
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Radial traverses of the hot-wire probe during stall propagation 
indicated that the flow was fairly two-dimensional for all the observed 
stall- cell patterns) although in some cases an estimated 25 percent 
smaller fluctuation in velocity was observed at the hub. 

To determine the effect of Reynolds number on rotating stall char­
acteristics) the rotor speed was held at 500) 750) 1)000) 2)000) and 
2)500 rpm and the flow was throttled . A comparison of the number of 
cells and propagation velocity at three speeds is shown ,in figures 52 
and 53 as functions of I3c ' "Constant geometry" runs were made for two 
constant throttle und rotor settings. The results of these runs and the 
previous one are shown in figure 54) which is a plot of the number of 
cells and 0C as a function of ReC. As indicated in these figures) 
there is a hysteresis effect between the number of cells for some values 
of ReC and I3c. The data points at minimum values of I3c indicate 

the onset of stall propagation and the points at maximum values of I3c 
indicate the end of periodic stall propagation. (For higher values of 
0C high-fre~uency velocity disturbances and surge existed .) The data 

plotted in figures 52) 53) and 54 indicate that there was not much 
effect of Reynolds number above 100)000 or 1)500 rpm but that for lower 
values the range of I3c for which periodic propagation existed is 

shifted up . As Reynolds number was lowered) the one-cell and then t he 
two-cell patterns disappeared) but there was not much effect upon prop ­
agation velocity . It was found that there was virtually no difference 
in CpCG at corresponding values of I3c for 500 and 1)500 rpm. 

Axial velocity profiles as determined from measurements made with 
a standard five -hole yaw probe for configuration C are shown in fig ­
ure 55 . They indicate that there is some error involved in assuming 
!~ean radius measurements to be representative but that this error is 
less during than before the onset of stall propagation . The difference 
in 3.rea under the profiles measured during stall propagation indicates 
the error inherent in using a standard five -hole probe in an unsteady 
flow . 

Discussion of experL~cntal results.- The hot -wire measurements of 
figures 40 and 47 indicate that the downstream axial velocity profile 
can be approximated with a s~uare wave which changes with throttling 
only along the abscissa . That is) (CxG)o and (CxG)i in figures 42 

and 48 remain essentially constant with I3c and maintain approximately 

a 4:1 ratio) bu~ the number of cells and the width of the cells change 
so that their blockage effect increases continuously with throttling . 
The data appear to correlate with those from reference 19 in indicating 
that during stall propagation the Velocity triangles outside the stall 
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cells were nearly the same as those for C
Pmax 

(before the onset of 

stall propagation) . 

The unsteady pressure measurements of figure 38 indicate that the 
fluctuations were several times greater 1 inch upstream of the rotor than 
they were 5 .6 inches downstream. (When a pressure gage was inserted 
7 inches downstream at station G, virtually no fluctuations could be 
observed in the trace.) As a stall cell approached the upstream gage, 
the static pressure at this point rose to a value greater than the 
absolute total head far upstream but less than the total head relative 
to a coordinate system fixed to the stall-cell pattern. The static 
pressure then dropped as the stall cell passed by the gage . There was 
a pressure drop through the rotor in the stall cells . This qualitative 
description of the pressure field is predictable from the flow model 
used in the analysis from a consideration of the velocities induced by 
the stall cell in a coordinate system fixed to the stall - cell pattern. 

The hot -wire traces for CXE in figures 40 and 47 indicate that, 

as ~C increased, the cells grew wider and that the axial velocity pro ­

file just upstream of the rotor changed shape as they grew wider. The 
"sag" in the profile caused by the blockage of the stall cell changed 
from a spike form for a thin cell to a double spike indicating that 
there was more flow through the center of the wide cell than near its 
edges. Since the trace did not ever go to zero (the minimum value being 
25 ft/sec), in no case was there flow reversal at station E during stall 
propagation . This fact was verified independently of the calibration of 
figures 40 and 47 by quickly pulling the hot-wire probe at station E out 
of the compressor and observing that for zero air velocity the trace went 
considerably lower than the minimum displacement for the double -spike 
wave form during stall propagation. A check was also made by quickly 
turning the wire 900 from a tangential to axial direction and observing 
the same result as above for zero velocity normal to the wire. The 
number of cells is observed to increase after the double -spike form 
appeared) which suggests that the double - spike form split into two cells, 
a tendency predicted by the preceding analysis. From the strip-film 
trace of figure 49, it is observed that the opposite sequence occurred 
when the flow was increased through the rotor running at constant revolu­
tions per minute. At first there were two stall cells 1800 apart, then 
the cells gradually moved together forming a double -spike pattern and 
then a single - spike pattern . 

The hot -wire traces of figures 4Q, 47, and 49 show that the shape 
of the stall-cell pattern is not perfectly constant in time or axisym­
metric (as assumed in the analysis for a given mean flow and even number 
of cells). This fact appears to explain why one cell of a two -cell pat ­
tern might split and thus form a three-cell pattern as the flow is 
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throttled instead of both cells splitting simultaneously. However, the 
trend for the observed shapes of the stall-cell pattern with throttling 
appears to correspond ~ualitatively with the trend predicted by the 
analysis. 

In figures 44 and 45 Vp and ~ as functions of ~C are com-
CXC U 

pared for configurations A, B, and C and for data from reference 19. It 
is noted that all stall-cell patterns observed herein revolved at 
0.48u < Vp < 0. 59U, or approximately half wheel speed. In figure 44, 
Vp increased slightly when the solidity of the cascade was reduced in 
agreement with the trend observed in the circular cascade . 

Not much effect on propagation velocity occurred with the change of 
stagger angle or with Reynolds number change above 100,000. However, 
the number of cells was greatly affected by the change of solidity, of 
stagger, and of Reynolds number below 100,000 . 

The propagation velocities predicted by the small perturbation 
theories of r eferences 2, 3 (no phase lag), and 4 as shown in figures 37 
and 46 appear to overestimate the experimental values by as much as 
50 percent. The correlation of the data with the theory of reference 4 
appears to be well described by the correlation given on page 24 of that 
reference "the values of propagation velocity predicted when the boundary­
layer delay is neglected should be larger than those obtained experimen­
tally, with the difference most pronounced for the case of disturbances 
covering only a few airfoils when the boundary-layer delay will have an 
important effect . An increase in the wave length of the stall cells 
should be accompanied by an increase in propagation velocity, if other 
variables are unchanged." 

The effect of number of cells on propagation velocity as predicted 
above appears to be borne out ~uite conclusively by the data plotted in 
figures 37 and 46. 

In figure 56 the function 

A = Discharge coefficient 
cos ~C 

is plotted against ~C ' The values of ~G were those determined with 

the standard yaw probe . In r eferences 5 and 4 it was predicted that 
small perturbation stall cells may form when the slope of this curve 
passes through the origin . There seems to be fair agreement from fig ­
ure 56 with this prediction. 
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It is observed in figures 21 and 22 that the slopes of the curves 
of Cp against ~C for configurations A and C both approached zero 
when stall propagation occurred. 

In reference 19 tests were made with a rotor of solidity = 1, 
28 .50 stagger, NACA 65(12)10 airfoils, and hub-tip ratio of 0. 9 . As 
shown in figure 45, there is overall qualitative agreement between the 
data for configuration A and those in reference 19. stall propagation 
started at nearly the same incidence and VQ/U was nearly the same, 

but there were diff erences in the number of cells and the measured pres­
sure fluctuations. In reference 19 it is reported that the pressure 
fluctuations downstream were about 60 percent of those upstream. In 
t he present investigation, t hey are found to be three to five times as 
gr eat upstream as they are downstream; however, the gages are closer 
t ogether than they are i n reference 19, and the cells extend more uni­
f ormly from root to tip t ha n the two- and three-cell patterns of 
r eference 19 . 

Correlation of Analytical and Experimental Results 

Verfication of the assumptions made in the analysis appears from 
the following experimental results: 

(1) From figures 1, 2 , 3, 12 , a nd 23, it is observed that during 
stal l pr opagation the blades in the circular cascade shed vortices upon 
entering or l eaving stall cells and lose nearly all the ir bound vorticity 
when t hey ent er the cells. 

( 2 ) From t he approximat e square wave shape of the velocity profiles 
downstream of t he rotor during stall propagation, as i ndicated by the 
hot -wire traces of figures 40 and 47, it appears that the vortex flow 
mode l may be us ed to represent the actual flow through the rotor. Fur­
t her more , t he square wave shape of the downstream velocity profiles tends 
t o support t he idea t hat the rotor blades stalled from their leading 
edges as t he blades in the circular cascade are observed to have done. 
I n refer ence 11 , page 66 , it is s hown that the rate at which vorticity 
i s shed from an a irfoil is W2/ 2 wher e W is the free-stream velocity 
a t the separ ation point of the boundary layer. Since immediately down­
s tream of the rot or blades t he vorticity is observed to have been con­
centrated along the stall - cell boundaries, it might be argued that, in 
order for t he blades to have shed vorticity quickly enough to have 
established t his pat t ern, the point at which t he boundary layer separated 
must hhve bee n located where W was large, near the l eading edge. The 
validity of thi s speculat ion is not essential, however , since the pres ent 
analysi s is independent of the l ocation of s eparat i on. 
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(3) 'rhe observation from the section "Investigation in an Isolated 
Rotor" that the ratio of downstream axial velocity outside the cell is 
about f our times as great as that inside indicates that the approxima ­
tion of N = P = 1 in the analysis IllD.y be a reasonable one in view 
of the discussion in the section "Derivation of Expressions for 
Propagation VelOCity" which indicates that this approximation is not 
critical to the resulting prediction for Vp' 

In the present analysis, an approximation is made for the flow far 
downstream of a continuous blade row during stall propagation. The 
results of the analysis indicate why some observers have found incongru­
ous experimental results from linear cascades of finite length. It 
appears that, as was first described in reference 3, the blade stall­
unstall characteristics depend strongly on the nature of the unsteady 
flow induced upon them by the downstream flow pattern . In a linear 
cascade of finite length, the downstream flow pattern is quite different 
from that for a continuous circular cascade or a rotor . Even though 
there may be many blades in the linear cascade, a fully developed, trans ­
lating, downstream flow pattern as described in the analysis is precluded 
by the end wall effects . Therefore, the present analysis is valid only 
for an infinitely long linear cascade, or an isolated rotor, where the 
downstream flow field extends far from the cascade . 

The tendency for the stall cell to split into two as its width 
increases, as predicted by the analytical flow model, appears to be 
supported by the measured axial velOCity profiles just upstream of the 
rotor given in figures 40, 47, and 49 . Furthermore, this tendency might 
explain why smaller stall cells (greater numbers of cells) existed in 
the circular cascade than in the rotor. Since the two -dimensional - flow 
field of the circular cascade extended only a few blade chords downstream 
of the cascade, the discussion in the section "Prediction of a Trend for 
the Number of Cells" indicates that the cells should be thinner (smaller 
n values in fig. 10 ) than they are for the rotor. This fact, together 
with the assumption that there must be enough total blockage from the 
cells to cause (W2)o to be nearly the same as it is for Cp (as 

max 
observed for the rotor), implies that there should be a greater number 
of cells in the circular cascade than in the rotor. 

Equation (12) shows that, for the vortex flow model assumed in the 
analYSiS, stall cells can exist only for Cp > cos2~1 ' In figure 57 
this minimum value of Cp is plotted against ~l ' Measured values of 

Cp are plotted for increasing values of ~l until the onset of stall 
propagation . Propagation started afteor Cp > cos2~1 in the three 

rotors tested. (This was not always true for the circular cascade . ) 



NACA TN 4134 

Equation (11) shows that for the assumed type of propagation to 
exist Wel > W2 . If it is assumed that CXl = C~ and ~2 = A, this 

condition becomes cot 01 < cos A, giving a minimum value of 01 for 

which stall propagation can exist in a cascade of stagger A. This 
minimum value of 01 and the corresponding measured values of 01 

where stall propagation started in the test rigs are plotted in fig-

( 
Wel 

ure 58. Also plotted is cot 01 0.866 cos A which gives Vp = ~ 

from eq. (11) if CXl = C~ and O2 = A). It appears that this latter 

curve correlates rather well with the values of 01 where stall propa­

gation actually began in the test rigs . 

Predicted values of propagation velocity for the vortex flow model 
are given by equations (11) and (12). Correlation of the rotor data 
with equation (12) is shown in figures 37 and 46 where CPCG from 

figures 21 and 22 was used. Correlation of the data from reference 19 
with equation (12) is shown in table I where Cp from that reference 

3-7 
was used . It appears that the predicted values of Vp from equation (12) 
are considerably greater than the measured values. It is felt that the 
reason for this trend lies in the fact that P2 - Pl was assumed to be 

given by isentropic flow outside stall cells in developing equation (12). 
The presence of blade wakes in the actual flow outside the stall cells 
causes (02)0 to be less for a given measured value of ~ than it is 

in the assumed ideal flow. Therefore, for a. measured value of ~p, the 
value of Vp should be less than that predicted by equation (12) . 

Using the average measured values for (0G)0 and (Cxo) 0 indicated 

calculated from equation (11) is 0.57 in figures 42, 43, and 48 , vQ/u 
for configuration A and 0 . 60 for 
the measured values of VQ/U as 

configuration B. The correlation with 
shown in figure 45 appears to be good 

considering the accuracy of measurement, the departure of the flow from 
two-dimenSionality, and the simplifying assumptions in the analysis. 
Equation (11) appears to predict propagation velocities more closely 
than equation (12), probably because it is less sensitive to the effect 
of blade wakes outside stall cells. 

In table I is shown the correlation of data from reference 19 with 
equation (11) using C from reference 19 and assuming that 

P3-7 

Constant = 28 . 50 = A 
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for the two- and three-cell patterns and that for the 

one -cell pattern, which are estimates based upon the data presented in 
reference 19. In table II is shown the correlation of data from the cir­
cular cascade with e~uation (12). It is observed that e~uation (12) over­

Vp 
CXl 

estimates the measured values of considerably for the circular cas-

cade. However, good correlation cannot be expected since the assumption 
in the analysis that the flow field extends infinitely far downstream of 
the cascade is not a valid approximation for the circular cascade. Fur­
thermore, the analysis is not valid for a radial flow field. 

In table III is shown the correlation with e~uation (12) of data 
from reference 14 for a guide-vane rotor stage relative to the rotor. 

CONCLUDING REMARKS 

Using approximations suggested by visual observation of the flow 
through a circular cascade, a vortex flow model of stall propagation in 
an isolated blade row has been developed. The e~uation derived from 
analysis of the vortex flow model (e~. (11)) appears to predict the prop­
agation velocities measured in an isolated rotor within 15 percent. Stall­
cell configurations observed in an isolated rotor were found to be nearly 
two-dimensional and to propagate at approximately half wheel speed. 
The stall cells consisted of regions where the axial velocity was small 
and extended downstream from the rotor in a direction parallel to the 
rotor axis within ±20o . 

The number of cells increased as the flow through the rotor was 
throttled. A ~ualitative prediction of the analysis is that a stall 
cell of the type assumed should have a tendency to split into two cells 
as it grows in peripheral extent . This tendency may be the reason for 
the observed trend in the number of cells. 

Massachusetts Institute of Technology, 
Cambridge, Mass.) August 13, 1956. 
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131' C 

deg 
P3-7 

55 0.46 
56 .43 
58 ·33 

TABLE I 

CORRELATION OF DATA FROM REFERENCE 19 

WITH EQUATIONS (11) and (12) 

Number of ~~~tasured (~~l).q. (12) cells 

2 0·53 0.80 
3 .48 .87 
1 .89 1.19 

NACA TN 4134 

(~~l)eq. (11) 

0.58 
·54 
.87 
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131 J 

deg 

63 
64 
66 
68 

TABLE II 

CORRELATION OF DATA FROM CtRCULAR CASCADE 

WITH EQUATION (12) 

(a) Data from reference 4; a = 1 

Cp Number of (~~1easured (6~Jeq. cells 

0 .48 9 0.60 0.80 
.46 9 .64 .86 

a.41 10 to 12 ·70 1.03 
a. 36 12 ·70 1.22 

(~) 

aExtrapolated from data. 

(b) Configuration A; a 1 

131 J Cp 
Number of (~~Jmeasured (~~lt deg cells ( 12) 

55 0·33 15 to 20 0.24 1.4 
60 . 29 13 to 14 .54 1.3 
68 . 25 16 ·75 1. 6 
81 .12 5 I 

1.6 4.3 

(c) Configuration B; a 1 

131 J Cp 
Number of (~~ leasured (~~lL. (12) deg cells 

58 0.45 9 to 10 0·55 0.82 
64 .36 11 .83 1. 6 

59 
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TABLE III 

CORRELATION OF DATA FROM REFERENCE 14 

WITH EQUATION (12) 

131' 
Number of ( ~l)measured (~XJeq. deg 

Cp cells (12 ) 

67 · 5 0·30 8 0·9 1.4 

72 . 5 . 25 9 1.1 1.8 

75 ·0 a. 23 1 2 . 3 2 . 2 

77· 5 a. 20 1 3·0 2.8 

80 .0 a.16 3 3·0 3·6 

aExtrapolated from data. 
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Figure 1.- Interferometer films. Configuration B; a 1; time is from right to left. 
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Figure 6.- Loci of vortex r for constant plate circulation. 
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Figure 7.- Joukowski transformation of circular arc. 
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Figure 10 .- Pattern of vortices i n stall cell 
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Figure 13.- Velocity triangles for isolated rotor. 
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Figure 16.- Velocity induced from element of vortex sheet. 

Figure 17.- Velocity induced from finite -length vortex sheet. 
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Figure 18.- Velocity induced from two finite vortex sheets at angle ¢. 
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Figure 26 .- Hot -wi re traces upstream of c i rcular cascade. 
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Figure 28.- Photograph of light source. 

Figure 29 .- Photograph of piezoelectric crystal pressure pickup. 
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Figure 36.- Hot-wire angle-measuring probe. 
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Figure 49 .- Strip-film record of hot-wire trace showing Cx as throttle 
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Figure 51 .- Hot-wire traces of Cx · Configuration A. CxV; ~C = 70°. 
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Figure 55 .- Velocity profiles before and after rotor. Configuration C. 
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