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SUMMARY

A matrix solution for the spanwise bending moments and deflections
of a torsionally rigid rotor blade subjected to an arbitrary loading is
presented. The method includes the cantilever, teetering, and hinged
blades in hovering and in steady forward flight. The method is compara-
tively short, involves only standard matrix procedures, and does not
require that the mode shapes or natural frequencies be known.,

INTRODUCTTON

Numerous methods are available for calculating the uncoupled span-
wise bending moments and deflections of rotor blades in steady unaccel-
erated flight. Some of these methods (refs. 1 and 2) involve tabular
solutions of the differential equation of blade deformation. These
tabular procedures are very lengthy, particularly when numerous loading
conditions and rotor speeds are being investigated. Other methods
(refs. 3 and L) require the calculation of the natural-mode shapes and
frequencies of the blade. The calculations of mode shape and frequency
are laborious and either must be repeated for each rotor speed or an
approximate correction must be applied to account for the effects of
rotor speed. A matrix method which avoids some of the difficulties of
the tabular and modal solutions is presented in reference 5; however,
tabular solutions of the equation for blade bending moment under quasi-
static conditions are required before the method can be applied.

In the present method the differential equation for blade bending
moment is solved entirely by matrix procedures. The method permits the
determination of the bending moments and deflections directly without
preliminary quasi-static, mode-shape, or natural-frequency calculations
and, as a result, the method is shorter and much work is eliminated.
The method is adaptable to cantilever, semirigid (teetering), and fully
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articulated (hinged) blades in hovering and in steady forward flight and
is applicable to design calculations and experimental data analyses.

The differential equation for the blade bending moment is composed
of matrix expressions for the centrifugal inertia, vertical inertis, and
damping loadings, and the contribution of each term to the blade loads
and moments may be determined. The effect of blade structural damping,
which has been omitted in other methods, is included in the present
method. Comparisons are presented between the bending moments obtailned
by this method and the method of reference 3 for the first harmonic
loading on a fully articulated blade and the second harmonic loading on
a cantilever blade.

SYMBOLS

Some of the symbols listed in this section are illustrated in
figure 1.

A blade-element average aerodynamic damping coefficient,
1 pac Ar T, 1b-sec?
2 in.
a blade~element lift-curve slope, per radian
c blade chord (at center of blade element), in.
EI blade bending stiffness, 1b-in.2
F centrifugal force acting on mass of blade element divided

by Q?, 1b-sec?

g structural damping coefficient
h perpendicular distance from axis of rotation to flapping
hinge, in.

i imaginary component of complex number, V-1
1 blade running load, 1b/in.
L load on blade element, 1b

M bending moment, lb-in.
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Subscripts:

1b-secd

mass of blade element,
in.

number of blade elements for extended matrices

distance from center of hub to blade tip, in.

spanwise distance from center of hub (measured along
undeflected blade), in.

width of blade element, in.
forward velocity, in./sec

elements of an influence coefficient matrix (see table III)

blade deflection, measured from a plane of rotation per-
pendicular to shaft axis, in.

rigid-blade flapping angle, measured from a plane of
rotation perpendicular to shaft axis, radians

angle of flexible blade at hinge, measured from a plane
of rotation perpendicular to shaft axis, radians

blade slope due to blade bending, dz/dr, radians

rotor angular velocity, radians/sec

angular frequency of applied loading, radians/sec

Ib-sec2
4

air density,
in,

blade azimuth angle (measured in direction of blade rota-
tion from downwind position), radians

aerodynamic

cosine component

damping

due to forces parallel to plane of rotation

inertia
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L pertaining to a load station

r pertaining to a spanwise station

8 structural

S sine component

L,2,...n station number or number of harmonic

v due to forces perpendicular to the plane of rotation
w blade weight

4 deflection

f centrifugal loading

A dot over a symbol indicates first derivative with respect to time.
Two dots indicate second derivative with respect to time.

Matrix notation:
[ ] rectangular or square matrix

diagonal matrix

1
inverse of a square matrix

[ ]

{ } column matrix
[ I

L row matrix

METHOD

The differential equation for the structural bending moments of
hinged, teetering, and cantilever rotor blades is set up in matrix form.
Matrix expressions for the blade mcment due to the various blade loadings
are derived and added to form the blade-moment equation., The differen-
tial equation is first derived in a gemeralized form and is later adapted
to (1) the case where the rigid-blade aerodynamic loads are known from
design calculations and the flexible-blade structural moments or deflec-
tions, or both, are desired; (2) the case where the blade structural
moments are known from strain-gage tests and the total aerodynamic
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moment, including aerodynsmic damping, is desired; and (3) the case
where the aerodynamic loads have been measured and the structural moments
are desired. The procedure for obtaining the rotating-blade character-

istic matrix is also presented so that the natural modes and frequencies
may be determined.

Blade Loadings

In the calculation of spanwise bending moments, a torsionally rigid
rotor blade or its equivalent (an elastic blade for which the section
moments are zero and the aerodynamic center, elastic axis, and center of
gravity coincide) may be treated as a simple beam subject to numerous
superimposed loadings. If chordwise effects are excluded, the blade in
the forward flight condition is subjected to the following distributed
loads:

(1) The aerodynamic load Ly (excluding the aerodynamic damping
effect which is directly proportional to blade flexure plus flapping

deflection velocity; see item 5)

(2) The centrifugal load F

(3) The blade weight L,
(4) A normal inertia loading due to vertical accelerations Lyvy

(5) An aerodynamic damping load Lg, (defined by eq. (5)), directly

proportional to blade deflection velocity due to both flapping and
flexure

(6) The blade structural damping load Lgg

The combined moments of these six loadings are balanced by the blade
internal moment due to blade bending resistance.

Derivation of Blade Moment Equations

The blade geometry, the forces acting on an infinitesimal ele-
ment of the blade under forward-flight conditions, and the resulting
force system are shown in figure 1. From figure 1 it is seen that the
bending moment M,, at any station rp due to the loads acting on the
blade is given by:
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R R
My, = ly(r - rp)dr - 1z - zp)ar (1)
rn 'n

The matrix equivalent of equation (1) may be written in the form

{M} = [r] {iv} - 02 [F] {z} (2)

Equation (2) corresponds to a step-diagram representation of the
ly and 1y loadings of equation (1). The [r] matrix is an integrating

matrix with values that depend on the stations and integration method
used. The [F] matrix incorporates the values of the horizontal loads
{LiH} (dimensional with respect to rotor speed) as well as integrating

numbers, The [r] and [F] matrices are derived in the appendix.

Substituting the five components of {LV} enumerated previously

into equation (2) yields the following bending-moment equation of the
combined loadings:

{Mr} = E{La} + F1Ey) + [ {Lda} + [r) {Liv} + [r] {Lds} - 02[F] {z}
(3)

Equation (3) is the general form of the equation for blade bending
moment used in this study and pertains to hinged and cantilever blades
in hovering and forward flight. 1In order to obtain the blade bending
moment for any specific loading condition, the matrix expressions for
the various loads acting are substituted into equation (3).

Loading matrices.- The expressions for the various component loads
in equation (3) become quite simple if equation (3) is restricted to the
expression of the moments due to loadings of a single frequency. The
total aerodynamic loads on the blade may be broken down into components
which are of a sinusoidal nature, and the standard procedure is to
develop equation (3) for the moment due to a single frequency. Super-
position may then be used to obtain the total moments due to all of the
harmonic components on the blade. The loading matrices which appear in
equation (3) are given by the three following equations.

For a particular frequency o of the applied sinusoidal load, the
vertical inertia loads {LiV} are given by



NACA TN L4304 T

[Liv} = 0?2 Fm ] {2} (1)

where the elements of the EHIJ matrix are the masses of the blade
elements,

The aerodynamic damping loads {Lda} are given by

[Lag) = 100fa] {2 (5)

where the diagonal matrix [A] is equal to [—% pacr Ar]

The elements of the [A] matrix can be deduced from steady aero-

dynamics for the 1ift on a section of chord ¢ and length Ar rotating
at unit angular velocity and with a unit normal velocity.

The structural damping moment |[r|{L is given b
ds Y

[r]{LdS} = -ig [1.0 ] {Mg} (6)

Moments and deflections at a single frequency.- The blade }oadings
at a particular frequency ® (eqs. (&%), (5), and (6)) may be substituted
into equation (3) in order to obtain the equation for the blade moment in
terms of the structural moment, the aerodynamic moment, and the blade
deflections as

[1+ ig]{Ms} = [F]{La} + 10 [r] [A] {2} + 2[¥][m]{z} - 02[F]{z}
(7)

The deflection {2z} in equation (7) is composed of the flexural

bending and the effects of blade-root rotation. The flexural bending
is defined in the appendix as

{z} = [ZM]{MQ} (8)

The total blade deflection including root rotation is, therefore,
given by

{2} = [ZM] M} + {r - h} tan By (9)
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For small angles tan By, = By, and in the equations to follow, which are
based on assumptions of small angles, By 1is assumed equal to tan By.
Fquation (9), therefore, becomes

@ - (i - 9]t (10)

Substituting equation (10) into equation (7) yields the following
relation between the aerodynamic loads and the structural moments for
the flexible blade:

[(1.0 + ig) -[6]_;---- + Q2[F] [[ZM] v - h}] 2 [Mzy] U:ZM] {r - h}] -

iwa[r][4] [[z] fr- h}ﬂ fug =[] fLa} (11)

where

ﬁnzi] (x](m ]

The partition lines of equation (11) effectively separate structural
moment effects from root slope effects, both of which act to balance the
aerodynamic moment. If the root slope B, is set equal to zero, the

terms pertaining to the root slope drop out and the resulting equation
is the equation for a cantilever-blade bending moment. The cantilever-
blade equations are given in detail in a subsequent section.

Equation (11) may be inverted in order to obtain the reciprocal
matrix relation

o [ - 1] - w1 e

(12)
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where

{Ma} = [x] {La}

Equation (12) gives the structural moment {Mg} and root slope By
on the rotating hinged blade in terms of the applied aerodynamic moment -
{Ma}. The equation includes the effect of the aerodynsmic damping, which
is proportional to the total deflection velocity.

When calculations are to be made for many rotor speeds, it is advan-
tageous to put equation (12) in the form

i%ﬁl = [(1.0 + 1g) __-93 {gi

+ Q2[N] {Ma} (13)

where the matrix [NJ is evaluated for each harmonic, and
0 - [ (i - o] - 250 (it - o)) -

i %{p]EKJ[EZMJE{r - hi[] (14)

The matrix Eﬂj need be evaluated only for each harmonic number.

Hovering condition.- Equation (12), which was derived for the
forward-flight condition, would also apply to the hovering condition if
the terms which pertain to the blade vertical velocity and accelersation
are omitted. Because the hovering aerodynamic loads are steady, g =0
and o = 0; and the equation for hovering becomes

=1
%Ii}- - %31 ‘ﬁ‘.’} + 02[F] [[zMjg {r - hH {Ma} (15)

Cantilever-blade equations.,-~ If the blade-root angle is zero

B
h
in equations (12) and (15), the result is the equation for the cantilever
blade in forward flight:
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Mo} = | [1-0] + 16[1.0] + 02(x] 7] - 02[ityy] [r] - m[r]tAJ[zM]]{Ms}
(16)

or

{Ms} = [[1.0] + 1g[1.0] + Q2[F][z] - w2y (2] -

wol[A] (A~ ) (17)

If the calculations are to be made for, numerous rotor speeds, equation (1
may be put in the same form as equation (13).

The cantilever-blade equation for the hovering condition is:

{ug} = Ufl.o] + 92[F] [ZM:H _l{Ma} (18)
CALCULATION PROCEDURES

Matrix Evaluation

The calculation procedures presented are illustrated for the hinged
blade. The details given pertain to the ten-segment breakdown of the
blade load, weight, and stiffness distribution shown in figure 2. The
procedure for either a cantilever or a teetering blade is a simplifica-
tion of the hinged-blade case. The particular blade-section breakdown
in the matrix tables (see figs. 2 and 3) was selected to provide more
stations near the root of the blade where rapid changes in blade moment
and stiffness occur. The number of blade elements used may be increased
by the procedures given in the appendix for increasing the order of each
matrix. However, it is believed that for most blades ten stations are
sufficient.

In order to apply the hinged-blade equations, it is first necessary
to evaluate the various matrices in the equations. The hinged-blade
equation, previously given as equation (12), is
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{Igi}} = |(1.0 + ig) .[E(_)%]_,:,.{g} + 02[F) [[ZM]E{r - h}:l -

o [ - 1] - B 4] [ - ] o

The structural damping coefficient g is a function of the fre-
quency, and the value used should correspond to the value of o for

which the equation is being evaluated. The matrix ——o2alll| is an

identity matrix where the zero, as the last element on the diagonal,
imposes the condition of zero structural moment at the blade hinge.
This matrix is given in table I. The matrix [Fﬂ expresses the moment
on the blade caused by the centrifugal forces acting on the deflected

blade. The [F] matrix is given in table II. The matrix [[ZM]E{r - h}]

expresses the blade deflection caused by the structural moment and the
root slope. This matrix is given in table IIT. The matrix Dﬁzi]

expresses the vertical inertia moment in terms of the blade deflection.
The [sz] matrix is given in table IV. The [r] matrix is an inte-

grating matrix which expresses the moment of a loading and is given in
table V. The matrix [AJ expresses the aerodynamic damping load in
terms of the blade deflection. The matrix EA] is given in table VI,

The number of digits needed in the evaluation of the various matrices
and in the succeeding operations for the most accurate results has not
been rigorously established. However, limited experience has shown that
carrying the basic masses, distances, stiffnesses, and so forth to four
digits and, in succeeding operations, allowing the number of digits to
accumulate to a maximum of ten gives good results. The procedure for
filling out the given matrix tables is as follows:

(1) Set up the identity matrix as shown in table I, which is
already completed in its entirety and may be used as is.

(2) Obtain the weight distribution for the blade and break it down
into ten elements of equal length. Determine the mass of each element.
Use the product mr for each element as described in the appendix, and
£ill out table II.

(3) Obtain the stiffness distribution for the blade and break it
down into the smaller elements shown in figure 2. Use these stiffness
values and the values of Are and fill out table III.

i
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(4) Use the mass values of item 2 and fill out table IV.
(5) substitute the value of Ar into table V.

(6) Use the values of the chord of each element, the lift-curve
slope of each element, the radius to the center of each element, and
the values of p and Ar, and fill out table VI.

Application to the Hinged Blade

The equations for the hinged blade are applied to those problems
which are believed to be the most general. The cases discussed include
the determination of (1) the flexible-blade structural moment due to
the rigid-blade aerodynamic loads; (2) the structural moment due to the
measured aerodynamic loads; (3) the moment of the total aerodynamic
loading as determined from the measured structural moment; and (4) the
aerodynamic damping load. The procedure for obtaining the natural
modes and frequencies of the blade is also discussed since, in some
cases, this information may be desired.

Structural moment due to rigid-blade aerodynamic loads.- The stand-
ard design practice is to obtain the rigid-blade total loading from
rigid-blade aerodynamic load and inertia balance equations. The rigid-
blade aerodynamic and inertia loads are then applied to the flexible
blade which is considered to flex about the rigid-blade position. This
procedure is equivalent to the application of the rigid-blade aerodynamic
load only (minus an aerodynamic damping component which is proportional
to 2) to the equation for the flexible blade which was derived as equa-
tion (12) and in which the deflections are referenced to the plane of rota-
tion perpendicular to the shaft. The equivalence of the standard design
procedure and the procedures of the present method is proved by the
following:

The rigid-blade total load (aerodynamic plus inertia) which is nor-
mally applied to the flexible blade (considered to flex about the rigid-
blade position) is given by

- _ =)
Lypigid = (La)rigid mrf - merp (19)
total total

where the terms on the right-hand side of the equation represent the
rigid-blade aerodynamic, vertical-inertia, and centrifugal-inertia loads,
respectively. Since the equations of the present method are written in
terms of moment, it is useful to convert equation (19) to its moment
equivalent. Also, it is useful to express each term in equation (19) in
the matrix form. Thus, equation (19) vecomes
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total total

{Mrigid} = [ﬂ{( La)rigid} + 02 [Mz\ﬂ {Zrigid} - 9°[F] {Zrigid} (20)

where the terms on the right-hand side of the equation are the rigid-

blade aerodynamic, vertical-inertia, and centrifugal-inertis moments,
respectively.

If the rigid-blade moments given by equation (20) are applied to the
flexible blade, which is considered to flex about the rigid-blade posi-
tion, the following equation results:

Moment of rigid-blade loading

[x] {(La) rigid} + 0¥ [Myy] {erigial - 9PLF] {zrigid}: B

total

Moment of flexible-blade loading
(1.0 + ig){MS} + Qe[F]{Zflex} - wz[hzi]{?flex} - iﬂnEﬁ][A]{?flex}

(21)

The terms on the right-hand side of the equation give the moments
associated with the blade deflection {Zflex}’ about the rigid-blade

position. These terms, from left to right, represent the blade-bending,
the centrifugal-inertia, the vertical-inertia, and the aerodynamic-
damping moment, respectively. Equation (21) implies that the blade
moments resulting from the flexible-blade deflections must balance the
applied rigid-blade moment. The flexible- and rigid-blade deflections
251 ex and zrigid are shown in figure 1(b). If it is recognized that
Zflex PLUS Zypigiq 18 equal to the deflection z (measured with

respect to the plane of rotation) and if the terms of equation (21) are
collected, then the following equation results:

(1 }(La) pgrah = (1-0 + 18) (Mg} + 0P[E] {2} - oP[yy] {2} -

total]
1 (7 A] {zg1ex} (22)

Adding the term -iw[r][A] {zri ai a} to both sides of equation (22),
collecting terms, and rearranging yields
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(1.0 + ig){Ms} = [r] {La} + i [FI[A ]} + o®Myy]{z} - 92[F] {z}
(23)

where

{La} = {(La)rigid - Al ey giq] (24)

total

Equation (23) is recognizable as equation (7) where {La} is

defined as the total rigid-blade aerodynamic load minus a component
which is proportional to the rigid-blade deflection velocity. The matrix

UMZVJ is equal to the matrix multiplication [r{[m] shown in
equation (7).

Substituting [z {r - h}B in equation (24) yields

{?rigia} =

{La} = (La)rigid - iwfAa]l{r - n}p (25)
total

The flexible-blade moments, therefore, may be determined by applying
equation (25) (the rigid-blade total aerodynamic load minus a rigid-blade
deflection-velocity load) to the flexible-blade equation (eq. (12)) which
is referenced to the plane of rotation.

In order to obtain the flexible-blade structural moment due to
rigid-blade airloads:

(1) Obtain the rigid-blade total aerodynamic load for each harmoniec
and remove the flapping effects by using equation (25).

(2) Use the loading just obtained along with the previously deter-
mined matrices, and obtain the moment by means of equation (12).

The reason the rigid-blade loads were handled in this manner was to
keep the blade equations referenced to the plane of rotation in order to
provide for more general applications.

Structural moment due to measured airloads.- The procedure for the
cese of measured airloads is as follows: Since measured loads include
all aerodynamic damping effects, the aerodynamic damping term is dropped
from equation (12) and the aerodynamic moment <{Mﬁ} is given by
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{Ma} = [f]{;measured}' Equation (12) is then applied by use of the pre-

determined matrices to obtain the structural moment.

If the hinged-blade equations are used with measured airloads where
®w = and the equations involve no aerodynamic damping, the last row
and last column automatically drop out of equations (11) and (12) when
the matrix multiplications are performed, and Bp 1s no longer involved

in the solution. This behavior of the equations is consistent with the
physical concept of blade rotation in the plane of no flapping or rigid
mode resonance. ‘

Moment of total aerodynamic loading as determined from measured
structural moment.- A requirement for determining the total aerodynamic
moment is that the blade flapping angle at the root of the flexible
blade By, be measured as well as the structural moment. The procedure,

then, is to apply equation (11) and drop the aerodynamic damping term
from the equation because the structural moments are a result of the
total loads applied to the blade.

The aerodynamic moment obtained is thus the total aerodynamic
moment and includes the moment due to all of the aerodynamic damping
loads.

Aerodynamic damping loads.- In some of the foregoing applications
it may be desired to determine the aerodynamic damping load or moment
which is proportional to the blade total deflection velocity 2 in

order to remove these effects from the measured data. The load and
moment linearly related to the deflection velocity are given by

() - s e - ] 2

and } (26)
[Mge) = waILA] [ i {x - 2] igs}_
h

J

M .
The values of £—§} may be either from measurements or from cal-
Pn
culations for the lower harmonies, but By would probably have to be

calculated for the higher harmonics because of its extremely small
magnitude.
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Determination of blade natural modes and frequencies.- If the blade
rotating natural modes and frequencies are desired, the procedure for
their determination is as follows:

(1) Solve equation (15) for unit loads applied at the center of
each of the ten blade elements.

(2) Use equation (10) and the results of step (1) and determine the
deflections due to the unit loads.

(3) Set up the numbers from step (2) in matrix form, postmultiply
by the diagonal mass matrix [m], and follow standard iteration proce-
dures. (See ref. 6.)

The ten-element breakdown of the blade allows ten degrees of free-
dom and thus permits the calculation of ten natural modes and freguen-
cies; however, the use of the standard iteration procedure for obtaining
accurate results above the fourth natural frequency is rather difficult
because the iterations converge slowly at these higher frequencies.

Application to Cantilever and Teetering Blades

The foregoing procedures were based on the hinged blade. When the
problem is for a cantilever blade, the only change i1s to use the corre-
sponding cantilever-blade equation and matrices. The cantilever-blade
equivalents of the hinged-blade equations (10) and (25) are not given
but’ are obtained by making Bh and B equal to zero in these equations.

The cantilever-blade matrices are given in tables T through V as the
elements above and to the left of the dashed partition lines.

In an analysis of a teetering blade, the even harmonic loadings are
considered as applied to a cantilever blade; the odd harmonic loadings
are considered as applied to the hinged blade. The reasons for the dif-
ferent considerations for different harmonies is that even harmonic
loadings are symmetrical loadings, that is, of equal sign on both sides
of the hub; the odd harmonic loadings are unsymmetric,

NUMERICAL EXAMPLES

In order to illustrate the method, it is applied to a cantilever
and to a zero-offset hinged blade. Both blades were of the same weight
and stiffness, with the exception that the stiffness of the hinged blade
was zero at the hinge. The weight and stiffness distributions are given
in figure L.
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The aerodynamic loading applied to the hinged blade in forward
flight is shown in figure 5(a). The loadings shown are plots against
spanwise station of assumed Zl,C and Zl,S coefficients for the first

harmonic of measured blade airloads as defined by
ll,r = Zl,C cos ¥ + ll,s sin ¥

By using the loading of figure 5(a) and the weight and stiffness of the
blade shown in figure L, the structural moment coefficient shown in
figure 5(b) was calculated by means of equation (12). The aerodynamic
damping term of equation (12) was dropped because measured loads already
included aerodynamic damping effects. The effects of structural damping
were not included, although the inclusion of structural damping in the
equations should improve the accuracy of the calculations for the case
where the blade is near resonance. However, near blade resonance, the
effects of small errors in the calculated blade weight and stiffness on
the calculated results are likely to be large, and the problem reguires
extreme accuracy in all components.

The structural moments calculated by the modal method of reference 3
for the loading of figure 5(a) are also shown in figure 5(b). For these
calculations the first four natural rotating modes and frequencies were
used in equations of reference 3., The aerodynamic damping terms were
dropped from the equations. The mode shapes and natural frequencies
were obtained by the method previously outlined in the caleulation pro-
cedures. As can be seen in figure 5(b), the agreement of the results
obtained by the two methods is very good.

The aerodynamic loading applied to the cantilever blade was the
forward-flight second-harmonic loading shown in figure 6(a). The
loadings shown are plots against spanwise station of assumed s o and

2

12 S coefficients for the second harmonic of measured airloads as
b
defined by

Zz’r = 12,0 cos 2y + 12,5 sin 2y

This loading and the weight and stiffness distribution of figure 4 were
used in equation (17) to calculate the structural moments shown in
figure 6(b). Also shown in figure 6(b) are the results obtained by the
method of reference 3 by using the same aerodynamic load (from fig. 6(a))
and four rotating symmetrical modes and natural frequencies. The results
calculated by the present method and by the method of reference 3 are
seen in the figure to be in good agreement.

The structural moments on the rotating hinged and cantilever blades
caused by 100-pound loads applied at various spanwise stations are given
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in figures 7 and 8. The moments were obtained by the use of equations (15)
and (18). By using the curves for the moment on the cantilever blade
caused by 100-pound loads at various stations and the aerodynamic loads
measured at various stations in the hovering test of reference T, the
structural moments in hovering were calculated. The calculated moment

and the blade deflections for the hovering condition are shown in figure 9.

The various matrices used in the example calculations are shown in
tables VII to X. The elements above and to the left of the partition
lines pertain to the cantilever blade. The matrix of all of the given
elements pertains to the hinged-blade case.

CONCLUDING REMARKS

A matrix method has been derived for determining the structural
moment and deflections of hinged, teetering, and cantilever blades. The
method avoids any preliminary mode shape, natural frequency, or quasi-
static calculations and, as a result, is comparatively short and involves
only standard matrix procedures.

The equations are well suited to the determination of the blade
bending moment at various rotor speeds and for numerous loadings. The
method puts no restriction on the blade deflection shape and thus permits
the blade to assume more complex shapes that could be simulated by the
superposition of four natural modes, as is usually employed in a modal
method of solution of the differential equation for blade bending moment.
Thus, the present method should give more accurate results than the modal
solutlion for the higher harmonics, where the blade deflection and load
distribution are of a more complex shape.

The method includes the effects of the primary inertia and damping
loads on the blade and also incorporates mainly the following assumptions:
(1) small angle consideration, (2) step diagram of the blade mass and
stiffness, (3) step integration procedures, and (&) steady average aero-
dynamic considerations in the damping terms. In addition, the method
does not include the effects of: (1) radial change of mass position
with blade deflection, (2) variation of rotor speed with azimuth angle,
and (3) any torsional considerations. Some of the effects of the step
distributions may be removed by increasing the number of blade elements;
however, for most blades ten elements should be sufficient.

The inclusion of structural damping in the equations should improve
the accuracy of the calculations for the case where the blade is near
resonance. However, near blade resonance, the effects of small errors
in the calculated blade weight and stiffness on the calculated results
are likely to be large, and the problem requires extreme accuracy in all
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components. These unfavorable factors, in some cases, could be somewhat
offset by experimental determination of the elements of the influence
coefficient matrix [Zy] and the mass of the blade elements and by some

experimental estimate of the structural damping. In cases where the
blade is not near resonance with one of the applied load frequencies,
the structural damping term is relatively unimportant and mey be dropped
from the equations for blade bending moment.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May T, 1958.
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APPENDIX
BASIC INTEGRATING MATRICES

Moment of an Arbitrary Loading

The general bending-moment equation (eq. (1)) is given as

R R
Mpp = ) lv(r - rn>dr - \/; ZH(z - zn)dr
n n

In this sectlon the mabtrix equivalent of the expression

R
Mpp = k/; lv(r - rn)dr (A1)

is derived.

The integration of equation (Al) may be accomplished by using a
procedure based on step, trapezoidal, or parabolic representation of the
loading. In the present method the step diagram is used, and the load
is considered to act at the center of each step.

The procedure for obtaining the moment of a loading is as follows:

(1) The loading is replaced by a system of equivalent concentrated
loads as shown in the following sketch:

L2 LB ];'i)"l‘

N
1L —— T1,2 I'Lz—ol

In

Arbitrary load station arrangement
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(2) The moment due to the loading is desired at the stations shown
in the following sketch:

My M M3, My,
i 1 | ]
n L /) N
7 7 4 P4
— }-— er
—TM2

Arbitrary moment station arrangement

The loads are centered for 10 equal stations at 0.05(R - h), 0.15(R - h),
0.25(R - h), and so forth, whereas the moments are taken at stations
0.85(R - h), 0.75(R - h), and so forth except near the root where stations
at 0.0125(R - h) and 0.0625(R - h) are used to include possible hub
effects.

With the arrangement just shown the moment equation is given as

f' I rr' - - —— f' h
My S AT - BS & S 1% N o N Vo W VW Vi | I I
M2 T Tre TLs o Toh| [TM2 T T2 Tme|| |2
¢ ? = - o ()
M3 L1 T2 YLz Ty Mz ™Mz Mz TM3|| | L3
My, R TR S P B VS VR A T
. J - - - e N 8 J

In equation (A2) any elements of negative sign resulting from the
subtraction are to be replaced by zeroces since the moment contribution
of the loads inboard of a moment station is zero.
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If the rectangular matrix of equation (A2) is symbolized by [r],
then equation (A2) may be written as

o} - ) {f (x3)

which is the matrix equivalent of

R
Mpp = f 1V(r - rn)dr
Tn

where the integral is to be evaluated at a selected number of stations.

The [r] matrix is given in table V for the ten load and moment
stations of figures 2 and 3. The matrix of table V may be extended to
include more stations by expanding the equation {M} = [r] L} as shown
in equation (Al4), where the rectangular matrix postmultiplied by the
diagonal matrix is equal to the [r] matrix.

,M,gs ] [ o o 0 0 0 0 0 o 0 0 o_ (L_95 )
M5 2 1 0 0 ) 0 0 0 0o o 0o o L.gs
M 65 3 2 1 0 0 0 0 0 o o o o L5
M. 55 L 3 2 1 o o 0 0 o o 0o o .65
M s 5 4 3 2 1 0 0 0 o o 0o 0 L.s
) M35 L 6 5 i 3 2 1 0 0 o o0 o o[ J L.ys
- o |4 b (ak)
Mo 7 6 5 A 3 2 1 0 o o o0 o L 35
M 15 8 7 6 5 b 3 2 1 0o o© 0o 0 L o5
M, o625 8.87 7.87 6.87 5.87 L.87 3.8y =2.87 1.87 0.8 © o o L35
M.0125 9.37 8.37 7.37 6.37 5.37 k.37 3.37 2.37 137 0 0.37 O L.0625
------ el T L.os
LMO ) L9.5 8.5 7.5 6.5 5.5 1{.5 3.5 2.5 1.5 0 0.5 o_ L0125
L J
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To extend the matrix to more stations, continue the given number
sequence of the rectangular matrix and obtain more rows at the top and
more columns on the left. Keep unity numbers on the diagonal and zeroes
on the right. The moment stations are then the given stations (shown in
table V) multiplied by lO/ne, (where ne 1is the new number of blade

_elements), and the obtained sequence is continued columnwise in order to
provide additional stations. For example, the elements of the first
colum of a 20-station arrangement would be 1, 2, 3, 4, 5, 6, . . . 16,
17, 18.87, 19.37, and 19.5(r - h)/(R - h); the load stations would be
0.025, 0.075, 0.125, 0.175, . . . 0.925, and 0.975(r - h)/(R - h); and
the moment stations would be 0, 0.00625, 0.03125, 0.0725, 0.125, 0.175,

. 0.875, and 0.925(r - h)/(R - h).

Moment Due to Horizontal Forces Acting on a Deflected Blade

The general bending-moment equation of the text’(eq. (l)) is

R R
Mpyp = f lv(r - rn>dr ~ f 1H(z - zn)dr
r

n Tn

In this section the matrix equivalent of the expression

R
My = -f zH(z - zn)dr (85)

Tn
is derived.

The system of equivalent horizontal concentrated loads, as shown in
the following sketch, is again used, although some other representation
might produce slightly more accurate results at the expense of simplicity.

= _ T
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At station rq +the moment due to horizontal centrifugal forces may
be written as

Mypq =‘[LH4(ZA - Zl) + LH3(Z5 - zl) + LHE(Z2 - zl_] (A6)

Collecting terms and writing equation (A6) in matrix form yields

Z
N
n=4
{Mrl} = -|LEs LE3 Im2 - > L[ <¢™3 (a7)
n=2 22
Z1

If this procedure is now applied and extended to obtain the moments due
to the centrifugal inertia forces at ten selected moment stations on the
blade, the following matrix equation results:

2.95
MiHlO Fip -Fio 0 o) 0] ¢} 0 o] 0 o [¢] [¢] Z.85
=10
M;h9 Fio Ty -Eg Fn 0 0 0 0 0 0 0 0 0 275
n=
n=10
Miyg Fio Ty Fg -ZB Fp 0 [ 0 o 0 0 0 0 .65
n=
n=10
Mgt Fio Fy Fg By -1;2_‘7 Fn 0 0 o o 0 [} 0 255
v n=10
M6 Fio Py Fg Fr 3 _26 Fn s} 0 0 0 0 0 45
n=
= 0 =10 1 > (48)
Migs Fip Fg Fg Fq Fg Fs -Es Fy 0 0 0 0 0 2,35
n=
n=10

My Ty Ty Fg Fq Fg Fy Fy -n2-!+ Fy 0 0 0 0 2,25

n=10 .
Mim, Fio Fg Fg Fr Tg ¥ w, F3 -23 Fp 0 0 0 2,15

n=
n=10
Mimp Fip Fy Fg Fp g Fs wy Fs Fo -22 Fy O [} 2 o625
n=.

n=10
Mim Fio ¥y ¥g Fr Fg ¥5 Fly Fy Fp 0 Fy -§l Fal 2,05

0=,

o -

%.0125
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where

Lug
F9 = m9r9 -—-é-
Q

Lo
Fl = mlrl = -—Q-—é

If the rectangular matrix of equation (A8) is symbolized by [Fq

(given as table II), then equation (A8) may be written in shorter form
as

{Mm} 22[F| {} ‘ (49)

R
which is the equation Myp = :/1

" T™n
to be evaluated at selected stations. The moments Mig are the moments

on the blade caused by the centrifugal forces acting on the deflected
blade.

ZH(Z - zn)dr in matrix form and is

In order to extend the matrix equation (A8) to n stations, make
all of the negative summations on the shown diagonal go from F, to Fy,
where k is the subscript of the F values in the preceding column as
illustrated. The elements off the diagonal of summations are obtained
by extending the indicated sequence to Fp. The new moment and deflec-
tion stations are lO/ne times the given stations, and the obtained

sequence is extended columnwise for additional stations. The new blade-
element arrangement has to have equal-length increments Ar.
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Blade Deflection Due to Structural Moments

For the blade the general bending-moment equation of the text
(eq. (7)) is given as

[+ 6] (Mg} - [I{ta) + s00[x] [4] {3} + a3 Em] (2} - 5]}

In subsequent derivations, a matrix expression for the deflection {g}

is required. The deflection {z} is composed of a component due to

the flexible-blade root slope and a component due to blade bending. In
this section a matrix expression for the deflection component due to
blade bending is derived. The derivation involves establishing the
matrix equivalent of the analytical expression

r AT M
Zp = f f = 4r dr (A10)
oJo EI

The derivation of the required matrix expression 1s illustrated herewith.
The integration is first illustrated with four stations and then extended
to more stations.

The blade stiffness and structural moment distributions are repre-
sented by the following step diagrams:

S R & ar
{‘-(R-h) (R—h)T(R-h)T(R-h)T
I

EI,

EI§

EI)
EI ET
EL 15

’ |
-

.025 1 .2 3 n 1.0
(r - B)/(R - n) |

Blade stiffness distribution
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or I or &
“(R-h)T(R-h)“'(R-h)T(R-h)T
My

M2

% My,

M M5

.025 1 .2 .3 T
(r - b)/(R - n)

Blade moment distribution

The segmental arrangement just noted could be made differently, but
the particular arrangement shown was chosen for the reasons that: (1) it
permits a large change of blade stiffness at the blade hub, and (2) it
gives a moment station where there are large changes in moments when the
methods are applied to the hinged blade.

The blade angles B, resulting from the bending deflections are

r r
given by the equation By =f M ar lor the eq. By = E M
o EI o EI

and can be deduced, for example, from the foregoing distributions as
follows:

(r - n)
= 0.025,
AL (R - h) >
8 ﬁiLés)
T EL \4
ap (2=B) o0
(R - h)
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(r - 1) _ 4 o0
(R - b) ’
M1 (or) Mo /5 &) M3
Pr EII(T> EIp\ l+> EI5(N>
(r - )
R-w

B.o25 ﬁ‘;—i 0 0 ol |Mm
B.10 A S IS S ol M
YEI, MEI, |
) = 7 (A11)

& 3N N ol lu
P20 YEI, MBI, EI ?

o & & N
B.30 2 My,

JET, MEI, EIz EI),
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In order to extend the procedure to obtain the deflections in
terms of the moments, the following sketch proves helpful:

L _ v o Ar Ar
(R - h) (R - h) (R - h) (R—h)“
%2.35
z, 05
2 ! B.30
z.15 |
| B.20
z,05 .
i : ) B'lo -2 1 ] 4;
.025 .10 .20 .30 .o
(r - b)/(R - b)
At (r-n) _ 0.05,
(R - h)
. (g) (M
0-025\2 EI, 4/2
ap oD 0.15,
(R - h)
M A My A 3Mp AOr
= + Or = + +
% = %0.05 * Po.10 EI; 8é) WET, = MEI,
ap 2o B) 0.25,
(R - h)



30 NACA TN 4304

Extending and collecting terms and writing in matrix form ylelds the
following:

r ) o T 0
Z.05 -?E—‘—I-; 0 0 ¢] My
S =2
z.15 2 & o o ||m
J 8EIl 1+E]:2 J
0=
—2 —2 =2 (h12)
. 54 646 A o ||us
25 8EI; MEI, EI3
—2 —2 —2
. TE IR A B M
£ 8EI,  LEI, EI;  EI, b
- - - - L J

Symbolizing the square matrix by [ZM] gives equation (Al2) as

- B

Rearranging equation (A12) to have the blade tip values in the
upper rows and extending to obtain deflection values at the twelve
selected stations results in the following matrix. (See figs. 1, 2,
and 3 for station location and the definition of the elements.)
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2.75

Z,65

2.55 -

2,0625

2,0125

2F 3E OLME 3K 6K 15 8K o1& WE
EIg EIg EI7 EIg EI5 EIy EI3 YET, 81y
—2 —2 =2 =2 —2 —=2 =2 —2
& & 35 LE 5F 6K 1K aF UN
EIg Elg EI7 Elg Elg EI) Ely LB1, 8ETy
—2 -2 2 —2 —2 2 —2 —2
o - 246 34 WA 54 64 2Nk LA
EIg EIq Elg Els EI), Elx LEI, 88
— — — —2 2 —2 —2
o s E 2E 3E M E 5E 1BE BE
Elg Elg Els EL) EIs LBT, 8ETy
o o ° '&‘___2 2 E° 3. LES 1ES LE-
Elg EI; B, Ely YET, 8ET,
—2 —2 2 —2 2
o o o o &~ 2N 3N A 9
El5 ELy EIs YETp, 8Ty
—2 —2 2 —2
0 0 0 0 0 £, 240 24, L4
ET) El3 KEI, 8ET,
- —2 =2
o s} 0 0 o 0 B A 2 &
EL;  MEIL, 86T,
' 3ES &
0 0 ] 0 0 0 0
LRI, 8EI,
2 =2
0 0 0 0 0 0 0 & &
32EI,  32BI;
2
o o 0 0 0 0 0 0 &
&1,
—2
o 0 0 0 0 o 0 o

32EI;

T

Mg10
Msg
Meg
Mg7
Mg6
Mg
LE
M3

Mgo

Mgy

31

(a1k)
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Equation (Al4) may be written as follows:

[

-95

.85

<15

.65

25

45

35

.25

.15

.0625

.05

.0125

o £ N

+ W

a:kgl

o\ oo K oo

o |\
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My

M53

} (a15)
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To extend to more stations, simply extend the established number
sequence in the rectangular matrix. Keep unit values on the extended
diagonal and zeroes below. The procedure for obtaining the new moment

and deflection stations is as previously discussed in the Er] and

[f] matrix derivations. The values of EI must pertain to the new
moment stations.

The results obtained by using either equation (A1%) or (Al5) have
been compared with results obtained by graphical numerical double
integration of a known M and EI distribution, and the results
agree very well. If desired, the elements of equation (Alk) or (A15)
could be determined experimentally from the actual blade.
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. 1
TABLE I.- MODIFIED IDENTITY MATRIX E%:?;tigl

Lofio
Moment station, (r - h)/(R - h) i Moment
. d By station,
0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.0625 0.0125 : r-h
R-h
1.0 0 0 o 0 0 o 0 0 0 I} 0.85
i
I
0 1.0 0 o o 0 o 0 4] 0] 1o N
1
{
0 ¢ 1.0 o 0 0 0 0 0 0 1o .65
|
i
0 o 0 1.0 0 0 0 0 o] o o 55
1
1
0 0 o 0 1.0 0 0 0 0 o] o A5
!
I
] 0 0 0 0 1.0 0 0 o] 0 o .35
|
1
0 0 o] 0 0 0 1.0 0 o 0] o 25
I
1
0 0 0 0 0 0 0 1.0 0 o] 1o 15
|
|
0 0 0 0 o} 0 0 0 1.0 o} o .0625
|
1
o} ¢} ¢] (¢} ] ¢] 0 4] o 1.0 10 .0125
|
___________________________________ - - ———
0 0 0 (o} 0 0 0 0 0 ] 1o 0
— |
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TABLE II.- CENTRIFUGAL-FORCE MATRIX [F]
]:Fn = murn]
Deflection station, -(r - h)/(R - h) Moment
station,
0.95 0.8 0.75 0.65 0.55 0.5 0.35 0.25 0.15 0.0625 0.05 0.0125 roh
' R-n
— -1
Fig F1q O 0 ) 0 0 0 0 ) 0 o) 0.85
n=10
Fiq Fg -3 Fy O o 0 0 0 0 0 0 0 .75
n=9
n=10
Fio Fy Fg -g Fp © 0 0 0 0 0 0 0 .65
n=10
Fio Fg Fg Fq -nf_: Fn 0 o 0 0 0 0 0 .55
n=10
Fip Fg TFg Fq Fg -n_z-—_s Fp, 0 0 0 0 0 0 .15
n=10
Fig Fg Fg Fq Tg Fg .2_5 F, 0 0 0 ) 0 .35
n=10
Fig° Fg Tg Foq g Fg Fy -n§=1} Fn O ) 0 0 .25
n=10
Flo Ty Tg Fq Fe F5 B S 0 0 15
=10
1o Fy Ty F, Fg P, ), Fy F, -g F, © 0 .0625
F o n=10
Figo Fg g Fq Fg Py F) Fy 5 Fy -ngl_‘ Fn .0125
Flo Fy, Fg Fy Fg Ty F) Fy F, o Fy 0 0
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TABLE TIT.. DEFLECTION MATRIX (7}{r - n}]

1
Moment stesion, (¥ .- h)/(R - 1) i D:g::::un
T — Bh e d
0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.0625 0.0125 | 1;..:_:
i T
= 2 &° 3 % 5 B 6 &° 152 85" aF  wE) .y 0.5
Ehp EI, Elg EL; EXg EL, ET) EL, UEL, 81, .95
]
1
o = 22 3 &2 yE 5 K" 6 & 152 on &2 1152:(“1:)0.&5 &
Bl EIg ELy Elg Elg B, Efy LEI, 8EL, il
H
I
o o = 2 &5 35 W s & 6 &S & 15&2:(,_,,)075 5
FIg Ly Elg £l T, Er WEL, &L, .
1
1
o o o = 2 & 3 & y &S 5 & BE 12&‘2:<r_h)065 &
iy Elg FI, ET, T, YEL, &I, g
1
1
0 0 o o &2 2 & 1& 1 &3 BE 114\72:(1-_11)055 55
EIg El5 ET, EI 4ET, 8ET) | -
1
i
2 —2 2 —2 e
= 2 & = L& S _ i
° ° ° ° ° . tr, 1?.—1; e, = D - Hos 45
1
1
—2 e =2 =2 1
o 2 & 2 A 147 - .
0 0 0 0 o 0 & W o i, | {r - Bg,35 35
H
i
—2 =21
x
0 o [ o 0 0 0 & §5° 2 I (r - h)g p .25
B, LEL, 8T, | >
1
]
il PYa
0 0 ° [ 0 0 o o 2L 1 (r - n)o.15 .15
LET, BRI, |
I
i
—2 I
5052
0 o 0 [ 0 0 0 240 2457 | (r - h) 0625
° 32ELp 528y 0.0625
1
1
= |
0 o 0 0 0 0 o o [ &y | {r - Bg.q5 .05
i
i
—_ !
) 0 0 o 0 0 0 0 0 i g, 0125 .0125
32T, |
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(a) Force system. T S o
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Rotor shaft. ¢

(¢) Geometry.

Plane of rotation

(b) Deflections.

Figure l.- Definitions of force and geometric symbols.
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Hinge offset

Spanwise station, LD
' R-h

Figure 2.~ Hinged-blade segmental arrangement for the matrix tables.

0 .1 2 3 4 5 .6 78 .9 1.0
Spanwise station, r/R

Figure 3.- Cantilever-blade segmental arrangement for the matrix tables,
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First harmonic coefficients
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Spanwise station, %E%

Spanwise variation of first harmonic coefficients of blade airload.

-
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’.—400IVl . I T I . "t o
1,r = M ¢ cos + sin -—--Present method
v v 1,8 v ——Method of reference 3
-300
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~100  l | BN

structural bending moment , Lb~in

pe I

,// ] = },S_-—‘ \\\
e e il B e R
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First harmonic coefficients of. blade

Spanwise station, éib

(b) Calculated spanwise variation of first harmonic structural moment
coefficients due to first harmonic airload coefficients.

Figure 5.- Airloads and structural moments for hinged blade used in
numerical examples.
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1.6

12— l2,r = 12,C cos 2¥+ 12 g sin 27y -

of blade airload, lb/in.

Second harmonic coefficients

0 A 2 23 A4 5 .6 7 .8 9 1.0
Spanwise station, r/R

(a) Spanwise variation of second harmonic coefficients of blade airload.

- -1200

———Present method

N ——Method of reference 3
~1000 - '

-800 N

\\\ Mg,y = M2,c cos 2y + Mp,s sin 2V
-600

\ o C
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-400

-200 ===
M2 g BN
________ L /M2, ’ . I~

o .1 2 .3 A4 .5 .6 4 .8 .9 1.0
Spanwise station, r/R

Second harmonic coefficients of
blade structural bending moment, Ib-in

(b) Calculated spanwise variation of second harmonic structural moment
coefficients due to second harmonic airload coefficients.

Figure 6.~ Airloads and structural moments for cantilever blade used in
numerical examples.
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Figure T.- Structural moment on zero-offset rotating hinged blade due to
100-pound concentrated loads at various stations.
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Figure 8.- Structural moment on rotating cantilever blade due to 100-
pound concentrated loads at various stations.
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