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TECHNICAL NOTE 4273

ON PATRS OF SOIUTIORS OF A CLASS OF INTERNAL VISCOUS
FIOW PROBLEMS WITH BODY FORCES

By Simon Ostrach and Lynn U. Albers

SUMMARY

In previous asnalyses of fully developed combined forced- and
natural-convection flows, a few examples were presented of two distinct
states of flow and heat transfer which were obtalned for a given set of
conditions if the frictional heating was taken into account. Thls re-
port discusses these pairs of solutions in greater detall and shows how
the solutions are affected by systematic variations of the basic physi-
cal parameters. It 1s also shown that a critical set of parametric
values exists beyond which no fully developed solutlions can be found.

INTRODUCTION

In recent analyses of combined forced- and naturel-convection flow
and heat transfer in enclosed regions, i1t was pointed cut that the ef-
fects of frictional heating could, 1n practical cases, be important
(refs. 1 to 4). Specifically, consideration was given to the fully de~
veloped flow between two parallel surfaces which were subject to various
thermal conditions and oriented parallel to the body force direction.

As a result of retalning the frictional heating terms in the basic equa-
tions, the final fourth-order ordinary differential equation was non-
linear. The boundary value problems specified by the nonlinear eguation
and appropriate boundary conditlons were at first solved approximastely
by an analytical iteration technique in references 1, 3, and 4.

As a check of the accuracy of those solutions, the complete non-
linear problem was solved by numerical integration on an IBM Card
Programmed Calculator (CPC). It was then discovered that the problems
had either a palr of solutions or no solution, and exasmples of the palrs
of solutions are given in references 1, 3, and 4. The solutions ob-
tained snalyticelly displayed no such behavior although they did approxi-
mate one of each pair of solutions in limited ranges of the parameters.
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A somewhat analogous situation was noted by Hartree (ref. 5) in
his study of boundary-layer flows with adverse pressure gradients. The
second solutions to that problem are presented and discussed further in
references 6 and 7.

Since these results are unusual and interesting, and only a few
exasmples are presented in the literature, the purpose of the present re-
port is +to discusa in some detail the pairs of solutions to the convec-
tion problem. To this end, the method of obtaining these solutions is
presented, and the influence of the various physical parameters on these
solutions is discussed.

BASIC EQUATIORS

Consideration is given herein to the fully developed laminar flow
of a viscous fluild between two vertical plane surfaces and subject to a
vertical body force (see fig. 1). Fully developed flow means that the
veloclty components are independent of the axlal distance. Therefore,
the solutions obtalned are wvalid away from the channel ends and, hence,
apply to channels with large length-to-gep ratios. It is further as~
sumed that the physical properties of the fluids are constants, except
that the essential influence of denslity variations on the flow is ac-
counted for by the introduction of the fluld volumetric expansion coef-
ficlent in the body force term. The latter procedure is given in detail
in sppendix B of reference 1l and is justified for liquids and for gases
only if pressure differences are smaell relative to temperature differ-
ences. The other influences of varisble density and the variation of
the expansion coefficient with temperature are also considered to be
negligible. Fluids satisfying these assumptions will be called "quasi
incompressible."”

Under the condltions stated it follows that there 1is only one non-
zero velocity component and that it is a function only of the transverse
coordinate Y. Further, the temperature can be expressed as the sum of
a linear function of the vertical (axial) coordinate end an arbitrary
function of the horizontal (transverse) coordinate as

™ = AX + 7(Y) (1)

where A= BT*/BX is the axial temperature gradient. (All symbols are
defined in appendix A.) The temperatures of the two surfaces are speei-
fied either to be uniform or to vary linearly with the axial coordinate.
In either case, the two surface temperstures can differ by a constant.

The reduction of the basic continuity, momentum, and energy equa-~
tlions by the sbove considerations is explicitly given in references 1,
3, and 4. The equations expressing the conservation of momentum and en-
ergy thus become

005%
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u" + T = CK (2)
7" - (RaJu + {(u')2 + K= 0 (3)

The continulty equation is satisfled identically. The terms (from left
to right) in equation (2) denote the viscous, buoyancy, and axial pres-
sure forces and in equation (3) represent the conduction, convection,
frictional heating, and heat-source effects. The parameter C essen-
tially specifies the temperature level or axlal pressure gradient, and
K 1s the frictional heating parameter. The symbol Ra denotes the
Rayleigh number {product of Prandtl and Grashof numbers), and o« is the
internal-heat-source parameter.

The Rayleligh number is the natural-convection equivalent of the
Peclet number {product of Prandtl and Reynolds numbers), and X is

analogous to the Eckert number U%/CPGWb, which is a measure of the dissi-

pation in forced flows.

Elimination of T between equations (1) and (2} yields the afore-
mentioned fourth-order nonlinear ordinary dlifferential. equation:

wl? &+ (Ra)u - €u')2 - aK = 0 (4)

Equation (4) applies for the three problems treated in references 1, 3,
and 4. For the constant-wall-tempersture case, Ra = O (see eq. (1));
heating from below is simulated by the case Ra < 0, whereas Ra > 0 1is
the conventional flow with llinearly varyling wall temperatures.

BOUNDARY CONDITIONS

The no-slip condition for viscous f£lulds is lmposed in all cases,
that 1s,

uf0) = u(1) = 0 (5)

In the first problem treated in reference 1, it was specified that
the temperature is constant along each wall but that the two walls are
not necessarily at the same temperature. Hence, A = 0 and the thermal
boundary conditions for this case can, by use of equation (2}, be
written as

u"(0) = (C -~ 1)K (6a)}

u"{1) = m(Cc - 1)K (72)
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where m, which is essentially a measure of the asymmetry of the thermal
boundary conditions, is given by

m= (C - 9w1/9w0)/(0 - 1) (8a)

The thermal boundary conditions for linearly varying wall tempera-
tures are

u"(0) = K (6b)
u"(1) = mCK (7o)

where
m= 1 - 9W1/CAd (8b)

The cases A> 0 and A<O (the latter corresponds to heating from
below) are discussed in references 3 and 4, respectively. For the
varying-well-temperature cases the reference temperature in K and
elsevhere (denoted by Or for the purpose of unifying past work in the

present report) is Ad and not Gwo.

METHOD OF SOILUTION

It can be seen from equations (2), (3), (6), and (7) that to specify
a problem the parameters CK, Ra, oK, and m must be known. However,
the solution of the problem is more easily obtained if the boundary con-
dition on the second derivative at y = 1 1s replaced by an arbitrary
cholce of the first derivative at y = 0. Then the third derivative at
zero is varied until integration ylelds u(l) = O. The resultent u"(1)
yields the m +to which the solution Just obtained applies. The itera-
tlon method used in obtaining the solutions is discussed in deteil in _
appendix B.

The variation of m with u'(O) is represented on a curve called
an m-curve. Such a curve is illustrated in the following schematic

sketch:

u'(0)

00S¥
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In general, only the uppermost part of an m-curve is of practical inter-
est, and only this part is presented in subsequent figures.

Each point on an m~curve corresponds to a sclution of the problem
with the prescribed CK, Ra, and oK. The m-curves indicate that maxi-
mum and minimum values of m exist for each CK, Ra, and aK beyond
which no solutions of the type considered in the analysis (i.e., fully
developed) exist and between which pairs of solutions exist. Thus,
arbitrary values of the parameters cannot be specified a priori, and two
distinct states of flow and heat transfer are indicated for each given
set of conditions within the limits discussed above. Similar results
are reported in reference 7 for boundary-layer flows.

Because limits on parametric values were indlcated, it became neces-
sary to determine these limits in addition to computing velocity and tem-~
perature profiles. To this end, regions of the limit curves near the
maximum m values were investigated in detail, and only those portions
are included herein (i.e., see fig. 2). Some investligations were car-
ried far enough to exhibit the genersl nature of these curves as dis-
cussed previously. The minimum values of m indicated therefrom were
generally very large negative numbers, and these were not considered to
be of much interest from a practical viewpolnt.

RESULTS

The dependence of the 1imit curves on the parameters X, Ra, and o
can be discussed first. The constant C weas arbltrarily taken to be
zero for the constant-wall-temperature case (egs. (6a) and (7a)) (essen-
tially fixing the temperature level)}; for the varying-wall-temperature
case, C was given the value -1 (egs. {6b) and (7b)) so that the bound-
ary conditions for all cases were the same. For o = 0 the value of
the parameter CK 1s considered to be determined by & combination of
individual C or K wvalues.

The effect of different K 1s shown in figure 2 plotted from table
I for the case Ra = a = O (i.e., constant wall temperature and no in-
ternal heat sources). The m-curves for other Ra and o are of the
same form. Recall that only parts of the m-curves are presented
here. In general, the limiting value of m Increases algebraically as
K decreases algebraically. In other words, to increase the probsbility
of a problem having a solution decrease the value of K 1n magnitude.
Physically lower X values imply less frictional heating. On the
basis of this observation and similar behavior for Ra and o varia-
tions (which also indicate the smount of heat input to the channel), it
appears that the limit beyond which no solutions of the type considered
herein exist depends on the heat input to the channel. The reason for
this result is not as yet evident. However, another example where the
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heat input is limited is in the familiar one-dimensional channel flow
where thermal choking occurs.

The effect of variation of the heat-source parameter o plotted
from tables I and II is shown in figure 3. This shows that the greater
the heat source, the less likely a solution exists for e particular
problem. This trend is also in accord with the physical discussion
given previously.

The influence of Ra wvariation on the limit curves is shown in
figure 4 plotted from teble III. Increasing Ra mskes 1t more likely
that a particular problem has a solution. This, too, 18 in accord with
the previous discussion, because larger Ra implies increased axlal _
temperature gradients and, hence, a large transfer of heat along the
channel axis. This axial heat transfer should permit the fluid to be
subject to greater heat input.

00S¥

The negative Ra cases, simulating heating from below, were not
studied in as great detail as those reported previously. However, re-
sults similar to those for positive Ra were found for the cases in-
vestigated and are discussed in some detall in reference 4. V-

The m-curves show that, 1f the effect of frictionsl heating is _
taken into account in internal comblned forced- and natural-convection -
flows as consildered herein, two unusual results occur which do not oceur
if frictional heating is neglected: (1) there exist critical sets of
conditions beyond which no fully developed solutions exist and (2) where
solutions exist, there are, in general, two solutions for each set of
admisslble parametric values. The first of these results has been dis-
cussed, but the second one should be consldered in more detail. Figure
5 presents a set of representatlive palrs of veloclity and temperature
distributions teken from the previous work reported in reference 3 for
Ra = 10, K= 10, a= 0, and m= 2. These profiles are associated wlth _
the two circled points on the limit curve in figure 4. _

Since each point on a limit curve corresponds to & solutlon of =a
glven problem, the effect of parametric variations on the flow veloclties _ _
can be observed in figures 1 to 3. For exsmple, larger velocitlies are
obtained for increasing values of the frictional heatling paremeter K;
also, for a given m, increasing the internsl-heat-source parameter o
or decreaesing the Rayleigh number Ra causes one of the pair of flows
to have greater veloclties and the other lower velocitles. Note the
broadness of the m-curve for large Ra. Thils broadness indlcates that
the profiles of each velocity pair and of each temperature palr differ
greatly in megnitude except for m near the maximum.
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The flow with the superscript (1) agrees reasonably well with that
computed by the snalytic method previously mentioned. In generel, the
analytic solution agrees with the one of the pair that has the lower
velocity extremes because the iteration procedure employed to obtain the
analytic solution started with the no-frictional-heating case. Because
less frictional heating is associated with the less intense solution,
this solution is the one to be expected in practice. The other solution,
however, denoted with the superscript (2), represents a flow with veloci-
ties and temperature differences more than an order of magnitude greater
than the first. The second solutions are connected intimately with the
regenerative action of frictional heating in natural convection wherein
frictional heating acts as a heat source in the Tluid and thereby leads
to larger flow velocities. As an illustration of the role that the dis-
sipation plays in these problems, consider the simplest case, namely,
the one wherein the walls are kept at the same constant temperatures and
no heat sources are in the fluid (o = 0). For this case, which is
treated in reference 1, the less intense solution yields essentially the
conduction (1inear) temperature distribution. That is, no matiter what
kind of temperature profile exists in the fluid as it enters the channel,
the profile becomes the conduction distribution by the time the flow has
become fully developed because heat is extracted at the walls in the
entrance region (see sketch (a)). For the more intense solution
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the entering profile becomes parabolic and differs from the conduction
profile considerably (see sketch (b) end fig. 5(b)). It is thus evi-
dent that the frictionel heating acts as & hest source in the fluid.
Another significant fact that cen be seen from figure 5 and the other
examples of pairs of solutions given in references 1, 3, and 4 is that
the mass flow and energy assoclated with the more intense solution are
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greater than for the less intense solution. It, therefore, seems that,
if the intense flow is to be obtained in practice, the flow would have
to be started with the mass flow or energy at the higher level. This
might be possible, for example, by heating the fluid considersbly as 1%

enters the channel.

The next question to arise in comnection with the second solution
concerns its stebility; that is, since the frictional heat is dependent
on the large velocities, would & small decrease in veloclty, for example,
decrease the frictional hesting, and would this process keep repeating
until the second solution attenuates. The stability of the symmetric
case (m = 1) has recently been analyzed, and the results, which will be
published soon, show that this case is stable.

Although pairs of solutions were obtained for three somewhat differ-
ent problems, all the analyses were restricted to fully developed flows
in which the fluld was only "quasi incompressible.” Recently, S. Maslen
gtudied the same problems as discussed herein, but he considered the
fluid to be compressible and to have property varistions. He treated
the complete nonlinear problem by Galerkin's method, and not only did he
determine explicitly the conditions under which the present analysis is
valld, but Maslen too obtained pairs of solutions. These results are
to be publlished soon.

CONCLUDING REMARKS

It can be stated from the work reported herein and from the work by
Maslen that two flow end heat-transfer states are predicted theoretically
for a fixed set of parametric values within certain limits for fully de-
veloped combined forced- and netural-convection flow of certain resl
fluids. The only restriction of the analysis which hes not been evalusted
is that of assuming the flow to be fully developed. Definitive experi-
ments will have to be performed to evaluste this limitation in order to
establish definitely the physical existance of the second state of flow
and heat transfer indicated herein.

The analyses also show that a critical set of parameters exists
beyond which no fully developed solutlons can be found. Here, too, ex-
perimental observation of what oceurs for parametric values beyond the
critical would be of importance.

Lewls Flight Propulsion ILeboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, March 20, 1958
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APPENDIX A

SYMBOLS

longitudinal (axial) temperature gradient

constant, 1/ﬁ(§§-+ phf;)q/zPr)d4/cpeRK

specific heat at constant pressure

characteristic length (specifically, distance between plates)
negative of X-component of body force per unit mass
Grashof number, BfyBpd>/v2

step size

(Pr)(er)peyd/c,

thermal-conductivity coefficient

constant defined by eq. (8)

pressure

Prandtl number, cpu/k

heat due to heat sources

Reyleigh number, {cpn/k}(Bfyad*/vZ)

temperature function defined by eg. (1)

temperature

velocity

reference veloclity

dimensionless velocity, Uw/(Pr)K/cPGR

perturbation function

longitudinal (axial} coordinate
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Y transverse coordinate
¥ dimensionless transverse coordinate il
a dimensionless heat-source parameter, QdZ/Kég
: d(1/p)
B volumetric expansion coefficilent, o T
P
&

2] temperature difference, T - Tg for constant-wall-temperature o

case and T = TWO for linear-wall-temperature case -
GR reference temperature, TWO - Ty for constant-wall-temperature

case and Ad for linear-wall-temperature case
M absolute viscosity coefficlent
v kinematic viscosity coefficient
o] density
gR pg for constant-wall-temperature case and Pup for linear- _

wall-temperature case T,
T dimensionless temperature differences, K(G/GR)
Subscripts: _ i}
8 hydrostatic condition
7o) wall conditions at y= 0
Wi wall conditions at y=1
Superscript:

Primes denote differentiation with respect to ¥y
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APPENDIX B

ITERATION TECHNIQUE

Various integration methods were used: +trapezoidal integration
with end correction, three-point lntegration, five-point integreation,
Runge-Kutta integration, and finally Taylor's series integration. All
methods gave the same results to six significant figures, but the last
named gave good approximate resulte with a step size of 0.2 and, hence,
was used in most of the calculations. When detailed profiles were de-~
sired, integrations were repeated with a step size of 0.1 or 0.05.

The Taylor series formulas were

n

10-
u(J)(y + h) = j{; u(n*j)y 2? for J=0,1, 2, 3
o=

where the superscript on u refers to the order of the derlvative.
Derivatives of u of higher order thaen the fourth were obtained by dif-
ferentiating equation (4).

The usual steps in a straightforward iteration were:
(1) Guess u™(0).
(2) Integrate from O to 1.
{3) Test whether wu(l} is sufficiently close to zero.
(a) If so, stop.
(b) If not, choose a new u™(0) and return to step (2).

The only potentially bothersome step is (b). After the first inte-
gration, u'(0) may be decreassed if u(l) is positive and increased if
u(l) is negative - but by how much is a matter of jJudgment and experience.
After two iterations, linear interpolation or extrapolation usually glves
a good new u'{0). Since an integration took 5 minutes, a machine oper-
ator did not have great difficulty in keeping ehead of several cases run
in rotation. However, in situations were only one m-curve was being
studied, it was desirable to use & scheme which would guess a new u™ (0)
automatically. Hence, the following perturbation problem was integrated
along with the main problem:
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Iet u Dbe the solution of the initial value problem:
wlV = (u')2 - (Radu + K
u(0) = 0, u'(0) = b, u"(0) = CK, u™(0) = g (B1)
ILet W be the solution of the initial value problem:

WiV = (w')2 - (Re)W + oK

wW(0) = 0, W'(0) = b, W'(0) = CK, W¥(0) = g + e (B2)
Iet 8= W - u. Then substituting in equation (B2) yields
ulV + 81V -y 4+ 81)2 - Ralu + 8) + oK

u{0) + s(0) = 0, u'(0) + s'(0) = b (B3)

u"{o} + s8"(0) = CK, u"(0) + s™(0) =d + e

and simplifying by using equation {Bl)} ylelds
siv = 2s'ur + (8')2 - (Ra)s

s(o) = 0, s*(0) = 0, s"(0) = 0, 8™(0) = e (B4)

Now let S = eZ, so that 8' = eZ', and so forth. Then substituting
in equation (B4) and dividing by e yleld

ziv = 2z'u + e(2')2 - (Ra)Z
z(0) = 2*(0) = 2"(0) = 0, 2" (0) = 1 (B5)

As - e approaches zero, the function 2Z approaches the function V,
which is the solution of.

vV = 2vtu' - (Ra)V
v(0} = v'(0) = V'(0) = 0, V" (0) = 1 (B8)

From the preceding work, it can be observed that

du(1) W(1) - u(1) sf1
TV(0) = lim < = 1im —%)- = 1im 2(1) = v(1) (B7)
e+ 0 e =0

e=+0

00SY
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Hence, a good approximation of & suggested change in g or u™(0)
is

Ag = -u(1)/[au(1) /e (0)] = -u(1)/v(1) (B8)

so that the formula after any trial integration for the new u'™({0) is
new u'™(0) = old u"(0) - u(1)/v(1).

Because of storage limitations of 38 ten-digit numbers, only four
terme of the Taylor series for V were used, but even this ylelded good
convergence to a result in several trials. General-purpose floating
point control panels were used for all calculaetions.
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TABLE I. - Ra =0, a' =0
u'(0) K=3 K =10 K =35
u"l( O) m ul"(o) n u"l( O) o
6] 9| -2.0 30|-2.0 100 | -2.2
10 -68| 14.8 -44( 3.3 34 -4
20 -1771 25.2 ~-152}| 6.6 -53 .8
30 -318| 30.6 -290| 8.4} -195 1.6
40 -487| 31.7 -458| 8.9 -356 1.8
50 -683| 29.2 -652| 8.3] =540 1.8
60 =g05| 23.5 ~-873| 6.7 -768 1.5
70 -1152! 15.0} -1118} 4.2}-1014 .9
80 -1422 3.9] ~-1388 .9(-1284 .1
90 -1716; -9.6| -1680|-3.0|-1579 | -1.0
100 -2031|-25.4] -1994|-7.7
u'(0) a =10 a = 100
u(0)f m [u™(0)| =m
0] 41-4.7 -230 | ~29.8
10 -69 .9 -293 } -22.4
20 -175] 4.3 -391 {-17.6
30 -313| 6.2 -522 | -14.6
40 -478} 6.8 -683 [ -13.3
50 -874{ 6.2 -873 | -13.3
60 -8941| 4.7} -1089 | -14.4
70 |-1139} 2.2 | -1330 | -16.6
80 |-1408(-1.0 | -1596 |{-19.7
" 90 |[-1700{-5.0 | -1885 | -23.6
100 |-2014-9.7 | -2198 | -28.4

NACA TN 4273
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TABLE III. - K =10, o =0

Ra = 10 Ra = 100 Ra = 1800

u' () |{u™0) | m |ur(0) (O} m |u'(0)| u'"(0) | m
0 29 { -2.2 0 24|-3.5 1.2 39 -4
10 -41 3.8 10 -5110.2 1 52 6
40 -444 |11.1 30 -181(27 .7 0 125 82
60 -854 9.8 40 -318133.2 C 1398 624
100 { -1966 | -3.2 50 -486{36.2| 10O 2053 | 775
60 -681132.4} 20 2429 | 838
100 -1713|39.4) 30 2681 | 871
150 |-3501|24.6] 40 2852 | 888
200 |-5777|-2.3| 60 3015 | 893
80 2999 | 876
200 401 | 582
300 -4140} 238
350 ~-7064 51
400 |[-10,383|-144




NACA TN 4273

18

4500

- (D ‘X)ph —™

Ll

|

MNNN

Lol

«

_

-

(0 Xyl ——>

LI IR ANNN

J

Section of

fully developed<

flow

- Schematic sketch of configuration considered.

Figure 1.



NACA TN 4273

£0 | -
X
3
-——-—10
- =235
30 ///—\\
/ )
20 N\
10
P S~
n / ~ I~ <
0 / J— — ] T ~— ~— I
- N
\\\
<10 \\
-20 \
~30
o 20 40 60 80 100
u'(0)
Figure 2. ~ The m-curves for various values of frictional
heating parameter K. Ra = 0; o = O.

17



18 NACA TN 4273

10
//' T -
o N
e
5 / / \

\\\
AN
N
7
i
|/

-5 \
o
10
- = — 100
m -10
=17 T~
—15 /I . \‘P
/ N
/ AN
/ hY
¥ N\
T =20 / \\
\
/ \
\
4/ | \
- \
25 ] N
/ i \
A\
N
sol.
0 - 20 40 60 80 100
u' (0)
Figure 3. - The m-curves for various values of heat-

source paremeter o. Ra = 0; K= 10.



1.000 : . : : ,
Ra

=] 1800
\ — — 100
800 / I — 10
/ 0] Points wilth whilch
_ the profiles of
\ fig. 5 are

| \ agsoclated
600

400 . N .
// ' \\\ \\\
, \{ 10m
200 / N N
yilul \ N
r/r < \lOm \‘ \
o Ta \ N

~200

-50 0 50 100 150 200 250 300 350 400
u'(0)

Figure 4. - The m~curves for various values of Reylelgh mumber. K = 10; o = 0.
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Figure 5. - A representative pair of profiles for Ra = 10,

=10, m=2, a=0, and C = -1.
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