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Analytical solutions sre given for
stress distributions b thick skins and
angle, channel, !L!-,and H-sections when
Certain of the analytical solutions are
section&L proportions. The results are
involving tiensionless temperature, str; ss,and the parameters and
therefore are applicable for different materials and heating rates and
absolute size of the section. The results have been found useful for
analyztig and correlating experiment&L data.

the temperature and thermal.-
structural elements such as
heated at a constant rate.
evaluated for selected cross-
presented in the form of charts

mollucmol’1

Interest in the behavior of structural elements exposed to the
heating rates end elevated temperatures of high-speed flight has resulted
in a great deal of research, both theoretical end experimental, on the
effects of aerodynamic heating. The variable nature of the heat flux
encountered in a typical flight plan complicates the problem greatly.
By considering constant heating rates, it is possible to simplHy both
theoretical and e~rimentall. aspects of the problem and stiti obtain
valuable information concerning the primary effects of aerodynamic heating.

The present paper contains one-dimensional solutions for tempera-
ture and stress distributions in thick skins and structural elements
such as angle, channel, T-, and H-sections when heated at a constant
rate. These solutions have been found to be useful for analyzing and
correlating experimental data. (See ref. 1.) Although some of the
solutions have been published previously (for exsmple, refs. 2 to 4),
they are derived herein in order to make the presentation complete.

Certain of the smslytical expressions are evaluated for selected
section proportions. The results are presented in the form of charts
involwing dimensionless temperature, stress, ad time parameters and
therefore are applicable for different materials and absolute size of
the sections.
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SYMEOIS

a,b,c

A,B,C

c

E

k

z

n

~

t

T

m

w

X,y

a

e

P

T

constants

constants

specific heat, Btu/lb-%

modulus of elasticity, psi

thermal conductivity, Btu/f%-sec-°F

length of leg of angle, fi

integer

heating rate, Btu/ft2-sec

thickness, ft

temperature, ‘F

maximum temperature cliffererice,%

specific weight, lb/cu ft

coordinates

thermsl coefficient of expansion, in./in-°F

root of characteristic equation

strain, in./in.

dimensionless space coordinates

dhnensionless length, 1&

dimensionless time paremeter, k’r/cwt2

Poisson’s ratio

thermal stress, psi (positive for tension)

time, sec

b
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3

3

.

.

,.

b @ ()dtiensionless temperature psrsmeter, T - To $

Subscripts:

J junction of elements

o hit ial

1 element 1

2 element 2

av aversge

msx msximmn

min minimum

i integer

TEMPERATURE DISTRIBUTION

In the following sections, temperature distributions obtained by
assuming constsnt material properties end making exact solutions of the
one-dhnensional heat-conduction equation are presented. First, the
simple case of a skin, thin in the thermal sense, is discussed b order
to introduce some of the dhnensionless parameters which me used in the
present paper. Then the solutions for thermny thick skins are given
and the thin skin is exsmined as a special case of the thick skin.
Finally, the one--nsional temperature distribution in some common
structural shapes is given.

Thin Skin

If it is assumed that a sldn is heated on one side, that there is
no variation of temperature through the thickness or in the plane of
the skin, snd that there is no transfer of heat through the unheated
face by means of convection or radiation, the differential eqution
governing the temperature of the skin can be obtained by eq=ting the
rate at which the skin absorbs heat to the rate at which heat is provided,
or
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m
Cwt-=q

dr

Integration yields

1 J’
T

T -To=— q dr
Cwt ()

or

T
- To _ %VT

Cwt

where

NACA TN 4y16

(1)

In a convenient dimensionless form, equation (2) becomes, for a
constant heating rate,

(2)

#=e (3)

where

The principal limitation of equation (3) iS that the variation In
temperature through the thickness must be negligible; or, h the thermal
sense, that the skin be thin. Although this solution is called the “thin-
skin’~solution, the actual thickness does not necessarily have to be
small. A thin skin can best be defined by considering it as a special
case of a thick plate as is done in the next section.

.

?
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A frequent use is made of equation (1) or (2) in the calibration
of the heating rate prduced at a given point by a heater arrangement.
The calibration is accomplished by placing a thin skin before the heater
and, with the heater in operation, recording temperature rise as a func-
tion of time. Once the rate of temperature rise has been determined,
the heating rate may be calculated by using equation (1) if the pertinent
material properties are known.

Figure 1 shows the relation between the heating rate and the rate
of temperature rise calculated by eqution (1) for sane of the more
common materials. A nomograph of equation (1), presented in figure 2,
affords a rapid graphical solution of the equation and is applicable
for more materials thsn figure 1. The typical material properties
employed in deriving figure 1 and used in figure 2 are given in table I.

Thick Skin

If a thick plate, shown schematically b figure 3, is subjetted to
a constant heating rate on one face, experiences temperature variation
through the thickness only, and experiences no heat tramfer at the
unheated face, the temperature distribution (derived in appendix A and
ref. 2) is given by

where

@ = (T - TO)*
qt

e=J=

CW-F

(4a)

From equskion (la), temperature distributions have been calculated
for a thick skin of sny material and thickness subjected to a constant
heating rate. These temperature distributions =e plotted ti figure 4 .
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as a function of time for given locations through the thickness and in
figure ~ as a function of location at given times. At lsrge values of
the time parameter 0(0 > O.&), the series term in equation (ha) contrib-
utes a negligible amount to the temperature parsmeter, which then becomes
a linear function of time. The temperature-rise rate becomes constant
for any location through the thickness, and the spacewise temperature
grsiiientis independent of time. The result, which csn be seen in fig-
uxe 4, is that the temperature distribution becomes fixed, with the tem-
perature level of the entire slab increasing uniformly. The temperature-
rise rate at large values of time can also be calculated by considering
only the mass and heat capacity of the skin and the heat input.

The boundary conditions of the present problem, namely, constant
heat input ad no loss of heat, preclude the existence of an equilibrium
condition although a quasi-st&dy state does exist after an tiitial tran-
sient period. The term quasi-steady state is employed herein to describe
that state in which the temperature-rise rate is constant at all points
through the thickness of the slab and is hereinafter referred to as steady
state. In an actual case there sre heat losses through both the heated
and the unheated faces, provided the unheated face does not lie in a
plane of symmetry or is not insulated, and an equilibrium state does
exist. The present solution must therefore be considered as en approxi-
mation for actual cases in which the temperature leveb are such that
excessive heat losses are not involved.

One dissilvantageof equation (ha) is that it converges slowly at
sw VSLH Of e. An alternate solution which can be obtained in the
form of tabulated functions is given by the following equation:

[ 1}

+exp-(n+T)2 -

[(n-’)erfc&)+(n+ ’)erfc&)lj ‘4b)

At small values of e, the first term of the series suffices. However,
as El becomes larger, more terms are necessary. Although there may be
some advantage to using equation (&b) for computing temperatures, par-

ticulmly at small values of e, eqpation (ha) is more amenable to
integration and is used to calculate the stresses. .

L-
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The average temperature is found by titegrating the dimensionless
temperature parameter of equation (ka) over the dimensionless thiclmess
and the result is

#eav =

which is the thin-skin solution (eq. 3). This result is rather obtious
inasmuch as there are no heat losses and, therefore, all available heat
is employed in raising the temperature of the mass. If the heating rate
is constant, then the rate of change of the aversge temperature must also
be constant. In figure 4, the average temperature is shown as a function
of ttie by the dashed ltie. In figure 5, the spacewise location of the
point at which the temperature is equal to the average temperature is
shown by the dashed line. The point at which the temperature is equal.

1<
to the aversge temperature always occurs in the range — . TI~ 1, this

P

petit being at q = ~ for the steady state, at which the the tempera-

fi
ture is a parabolic function of q.

The
surfaces

maximum difference in the values of # for the outer and inner
csn be obtained from equation (4a) and is

l%om equation (5) the msximum temperature difference is found to be

M’ .l@
2k

(5)

(6)

The maximum temperature difference is plotted in figure 6 as a fuuction
of qt for several materials with properties given h table 1. For a

given heating rate and skin thickness, the temperature difference varies
inversely as the thermal conductivity; that is, mhterials with the larger
values of thermal conductivity sre associated with ”thesmaller tempera-
ture gradients. A nomograph of equation (6), presented in figure 7,
permits a rapid graphical determination of the msxtium temperate dif-
ference between the heated outer surface and the insulated tier surface
of the plate.

.
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.

Another interesting feature of equation (4a) is the time required
to obtati the meximum temperature difference. Actually, as an examina-
tion of the series term of equation (4a) will show, the maximum tempera-

.

ture difference is reached at an infinite time. Practically, however,
it can be assumed that the steady state is reached when the series term
contributes only a small amount to the solution; for example, 2 percent
of the maximum temperature difference. In figure 8, the time required
to produce 98 percent of the msximum temperature difference is plotted.
against the skin thickness. The curves for the different materials aie
parallel straight lines whose intercepts on the the axis vary tiversely
as the diffusivity k/cw. Thus, for a given t&i.ckness,the materials

—

with the greatest diffusivity require the shortest time to reach the
condition at which the maximum temperature difference exists.

—
.

One method of defining a thin skin isto set an arbitrary limit on
the amount of temperature variation that can be tolerated. With this
method of defining a tMn skin, curves such as those shown in figure 9
can be prepared. In this figure steady-state temperature differences
through the thickness are given as percentages of the heated-surface
temperatures. The solid lines represent the difference between the
temperatures of the heated face smd the insulated face. Any combina--- ‘“– “
tion of heated-face temperature TV=l and qt/k that lies on or above

the line for the tolerable amount of variation represents a thin-skin
solution. For exsmple, assume that the temperature of the heated face *

is 1,000° F and that the tolerable emount of temperature difference
between the two faces is arbitrarily chosen--asno F or 5 percent. So
long as the value of qt/k for the skti under consideration is equal 3

to or less them 100, a thin-skin solution will suffice.

Angle, Channel, T-, and H-Sections

Consider next an element that is a simplified version of integral
construction (fig. 10(a)) which may be regarded as part of a skin-
stringer or skin-web combination. The idealization employed in the
present analysis is shown in figure 10(b). All.lateral surfaces except
that being heated are considered to be insulated. Several such elements
sub~ected to heating as indicated may be combined to form the sections

-.

shown in figure 1.1.

It is assumed that there is no temperature variation through the
thictiesses tl and t2 and that there is no heat loss through the

unheated faces. Because of the discontinuity in the thickness and
heating, it is convenient to consider the section as two elements as
shown in figure 10(b), the element exposed to the heat flux q being
considered as element 2. The following expressions (derived in
appendix A) give the temperate distributions in the two elements:
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.

In eqwtions (7) the terms j3n sxe roots of the following tran-

scendental equation: .

tz
s~ i%~l cos l%L2 + — s~ 1%~2 cos PnKl = 0 (8)

tl

An expression for the aversge temperature psrsmeter may be found by
integrating eqmt ions (7a) smd (~) as follows:

dq (9)

Upon performing
obtained:

the indicated integration, the following equation is

Agati, as in the case of the thick skin, the
function of the heat capacity of the section.

(lo)

average temperature is a

The infinite series of equations (7) aonverge very slowly for small
values of e. In order to avoid the tedious procedure of calculating
the temperature for short times from eqpations (7), it is possible to
obtain closed-form short-time soltiions in terms of tabulated f~ctions.
The following equations (derived in a

T
Mix A) are approximate short-

time solutions for equations (7a) and n), respectiwly:

v
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(E2 - d&P

(C2- d21erfc(k+J-
2 J

- ([2 - d2
40

approximationsAlthough these short-time equations give good
maximum and minimum temperatures, they do not satisfy continuity at the

.
junction of the two elements. For short-time solutions a satisfactory
approximation for the temperature at the @nction is

(lLb)

to the

Of course, for long times the series terms in equations (7) become
negligible and a quasi-steady state is reached in which the temperature
is a linear function of the the parameter. The slope of the linesr
relation between the the and temperature parameters is, at steady state,
determtied by the heat capacity of the section. The existence of a
state of equilibrium is precluded by the initial assumptions as was the
case for

The
(at ~=
(at ~=

possible
%

the thick plate.

maximum temperature (at ~ = O), the minimum temperature
O), snd the temperature at the $mction of the two elements
:1, q’= ~2) have been calculated for twenty-seven cases all(

tz
combinations of — = 1, 2, and4; cl= 5, 10, and20; end

tl
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r

(2
)

= 10, 20, and 30 . In figure 12 the maximum temperature is plotted as

a dimensionless temperature parameter @2,- against the dimensionless .

time parameter e, each part of the figure.being for a different thick-
ness ratio t2/tl. In figure 12 a straight line with slope of 1 is i.denti--
fied as cl = O. This line is the ssme as the “thin-skin” solution and

serves as the upper limit for the maximxn temperature by representing the
case in which the maximum temperature of the heated element is not influ-
enced by the presence of the unheated element. This line can also be
represented as ~2 =CO, but in either case, Cl =0 or ~2 =ca, the

thickness t2 cannot be zero or large enough to violate the assumption

that there is no gradient through the thichess t2. If ~2 iS suffic-
iently large, say of the order of 50, the msximwn temperature of the angle
section is only slightly affected by the presence of the unheated leg.

In figure 13 the temperature at the junction of the two elements is
plotted as a

If 11 = 22,

given by the

dimensionless parameter ~~ against the time parameter 0.

the temperature parsmeter ~~ is a linear function of El

following relation:

which is a special case of the average temperature parameter

(13) -

#

(14)

For those cases in which
12
—> 1, the lower limit is the straight.

line defined

limit is the

L~

22
by equation (13). For those cases where —< 1, the upper

21
line definedby equation (13).



NACA TN 4306 13

In figure 14 the minimum temperature is plotted as a dimensionless
temperature parameter against the the parameter e. The upper Mmit is
the thin-skin solution which corresponds to 21 = 0, or Cl = 0, and the

lower limit is the horizontal axis which corresponds to 21 =m. The

minimum temperature of the angle section Is more sensitive to changes
in the value of El thanto changes in the value of C2.

THERMAL STRESSES

h the following discussion, it is assumed
considered is sufficiently far from the ends of

that the section being
the structural element

that conditions at the ends do not affect the stress distribution. The
stresses are determined by elementary elastic theory employing the
assumptions that plane sections remain plane and that material prop-
erties do not change with temperature. The derivations of the stress
equations are given in appendix B.

Thick Skin

The stress distribution in an unrestrained thick skin is givenby
the equation (see appendix B andref. k)

where

T = T(y)

with y being measured from the midplane of the plate. If y is meas-
ured from the unheated face of the plate, equation (15a) must be replaced
by
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Syulilletrical heating.- If the skin is heated at the
surfaces, equation (15a) reduces to

.=e*[T.To)-,J:(T-To)w]

NACA TN 43o6

ssme rate on both

(16)

*

-—

When equation (k) is substituted into equation (16) and the indicated
integration is performed, the result is .-

()~*2&=- LIQ+&y(+)@EQnl
CiE qt 2 6 fi2n=l n2

Stress distributions calculated by equation (17) are
ures 15 and 16 in terms of dimensionless parameters;

e-n~2e

plotted in fig-
and, therefore,

(17)

the results are applicable to any material for any thicl&ess or time.
In figures 15 and 16, q = O corresponds to the midplane of the plate.
The stress distribution is symmetrical with respect to the midpls.ne; .—

therefore, the stresses are shown only for the half-depth of the plate.

ymmetrical heatin~
#

.- If the skin is heated on one surface only,
the r%ulting unsymmetrical state requires that all terms of equation (1~)
be included. When the temperature-distributioneqyation (4a) for this
condition is substituted into equation (1~), the resulting stress equa-
tion is

x+1 5 e-n~2e

~4
- 2?’))

n=l,3,5, . . . n4

—

(18)

Stress distributions calculatedly equation (18) are plotted in
figures 17 and 18 in terms of dimensionless parameters. It is interesting
to note that, in certain regions of the skin, the thermal stresses reach
maximum values at relatively short times during transient heating. In

●
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other regions the ~imnun stress is not reached until steady state exists.
The inclusion of the last term in equation (1%), which term is obtained
by satisfying moment equilibriwn, causes the stresses to reach maximum
values at relatively short times.

Angle, Channel, T-, and E-Sections

If it is assmned that material properties do not change with tem-
perature and if elementary theory is employed, simple expressions may be
derived for the stresses acting on unrestrained sections such as those
shown in figure 11 with the heating as indicated. The stress equations
are in terms of geometric properties, integrals involving the tenrpera-
ture distribution, and the local temperatures and are as follows: For
the H-sectionj

for the T-section,

(.lga)

(lgb)

(20a)
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--’c2(2:4.J(:’’+t’’)-@’‘2 k
aE qt’

E’ T

for the channel section,

‘1 k——
aE qt~

‘2 k——=
a qta

{

t2 13

)

–– -gl
11 + tl g2

)
;ll+

for the angle section,

*

(’oh) ‘_

(21a)

(21b)

(22a)
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where

&

The integrals 11, 12, and 13 are defined as follows:

Ii = ~ Ii’
qt,

17

(22b)

(23)

(24)

The quantities 12 and 13 have been calculated for all possible

tp
combinations of — = 1, 2, and 4, ~1 = 5, 10, and 20, and ~, = 10, 20,

tl

and 30, and are plotted in figures 19 and 20. Because of its simplicity,
11 is given only in the form of an equation. (See appendix B.)
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In order to

●

EXAMPLE

Temperature Distribution in an Angle

illustrate the results of the analysis described herein,

an example is presented. The case chosen is %=1, Kl= !$2=109 For
tl

the example chosen ~ = 1 and the Characteristic values are (from
(2

eq. (8))

(n=l,3,5, ...)

The temperature distribution was calculatedly using equations (7) and
is given in figures 21 and 22 as a function of time and space, respec-
tively. This particular case reaches quasi-steady-state conditions
rather rapidly (8 s 150). Note also that the temperature at the junc-
tion of the two elements that make up the basic amgle section is a linear

.

function

The
shown in

of time and is the average temperature of the section.
9

Stress Distribution

quasi-steady-state stresses were calculated for the four cases
figure 11 by assuming 8 = m and using equations (19) to (22).

The results are presented in dimensionless form in figure 23. The
results, which are for unrestrained expsnsion, indicate that, for the
case chosen, if the H-section is divided along either line of sy?mnetry,
the absolute value of the maximum stress on the resulting section is
one-half that of the H-section. If the H-section is quartered, the
absolute value
fourth that of

Solutions

of the maximum stress
the H-section.

CONCLUDING

on the resulting section is one-

for the temperature distributions and thermal stresses of
structural elements such as plates, channel, angle, T-J and H-sections
when subjected to constant heating rates have been presented. These
solutions and charts obtained from them have been found to be useful in

.

●
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mlyzing and correlating experimental data. h addition to temperature
distributions, thermal stresses sre given in forms involving simple
integral functions of the temperatures.

The temperatures of selected points on the element cross sections
have been calculated and presented in dimensionless form for several
geometric configurations. The temperature integrals involved in the
thermal stress equations have been calculated for the same configurations
and are also presented in dimensionless forms. By the use of dimension-
less temperature and stress parameters it is possible.to employ the
results for different materials and heating rates. ‘

A detailed distribution of temperature and stress is given for a
selected.case in order to provide some insight into the nature of the
variation of temperature and stress on the cross section.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, ~a., May ~, 1958.
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APPENDIX A

TEMPEIWTURE DISTKUNTION

Thick Skin .—

h figure 3, a schematic diagram of a thick skin heated on one face
iS shown. It is assumed that there is a variation of temperature through
the thiclmess but no variation in the plane of the skin. The governing
differential equation is .z

~ k i32T._—. ——
h Cw

&2
(Al)

In addition, it is assumed that there is a constant heat flux on
one face (y = t) and that there is no heat loss from the other face
(y=o). The resulting bounda~ conditions are .

The initial condition is

bT

I

.9

xt,T k

T(y,O) = To

Expressed in a dimensionless form, equation (Al) becomes

(A2a)

(Mb)

(A3)

(A4)
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and equations (A2) are mitten as

where

(A5a)

(A>)

(A6)

By employing the I&place transformation the differential equa-
tion (Ak) and the boundary-condition equations (A5) may be written as

d%—- s~+To=O
d72

and

CfF—
I

=0

dll()

(A7)

(Ma)

. (A&b)
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where
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“

The solution of equation (A7)
(A8) iS

T=%+*
s

subject to the boundary conditions

—

(A9)

An inverse transform of equation (AIO) and the required temperature
expression is

T=To+~
k

(Ale)‘

An alternate form of
values of El is obtained
equivalent form

solution which converges rapidly for small
by writing equation (A1O) in the following

Fj=b+gt&
[%e 1-@(n-q) + e-~(n+v) (A12)

s k s3/2 n=l,3,~,. . .

The inverse transform ofequation (A1.2)is

T=TO+!$ ~ ~&{exp[-(n~$)2] +exp[fln~J)2]}-
n=l,3,5J. . .

(A13)



NACA TN 4y16

The average temperature parameter of the thick
rearranging equation (All) smd integrating over the

yielding

The nondimensional

23

skin is found by
thiclmess, or

(A14)

temperature difference, defined as

may be found by using equation (All) and is

It is obvious that, as e becomes large,
perature difference increases until it reaches

or

e-n~2e

.2

(Q5)

(KL6)

u

the nondimensional.tem-
its maximun value of

(A18)

(=9)

at an infinite time.
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Angle,

The idealized angle
It is assumed that there
thicknesses tl and t2

unheated faces. Because

Channel, T-, and H-Sections

section of figure 10(b) is next considered.
is no veriation of temperature through the
and that there is no heat loss through the

of the discontinuity in heating and thickness,
the section is considered as two elements wherein the temperatures are
governed by the following equations:

subject to the following boundary conditions

~o>d‘o

aTl i3T2
(kt)l&~,T) =-(kt)2~(z2,T)

T1(Z1,T) =1’2(z2jT)

%)T)=O# ,

The initial condition is

T~(Y@ = T2(x}O) = To

(A20a)

(A20b)

(A21a)

(l@lb)

(A21c)

(A21d)

(=)

,-

—
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If it is assumed that the two elements s.reof the same material,
the following dimensionless equations may be written to replace equa-
tions (A20) and (A21):

(A23a)

and

where

(A24a)

(A24b)

(A24C)

(A24d)

(A25)
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If the Laplace transformation is employed, the differential equa-
tions (A23) and the boundary-condition equations (A24) become

and

ject

d%2 ~ qtz o
—- s~2+To+– —=

dq2
sk

(A26a)

(A26b)

.

-—

(A27a)
—

(A2/b) .

“

qh) =T2($2) (A27C)

so) =0 (A27d)

The solutions of the transformed differential equations (A26) sub-
to the boundary conditions (A27) are
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The poles of equations (A28) are a pole of
simple poles at s = -~2, where the terms ~n

order 2 at s = O and
are roots of the following

transcendental.equation:

sin &~l cos (A29)

tan

In the present paper

!!2 ~—= , j3n is givenby
(1

or

(A30)

the values ~=1 and3 OCCUr. For the case
El

Cos j3& = o (n=l,3,5, ...)

(n=l, 3, 5, . . .) (A31)



●

For 52— = 3, there me three sets of J3n. Two of the sets are

~1
roots of equations (A30) and (A31), and the third set is given by

COS ~ntja= O (n=l, ~,7,11, ...)

(n=l, ~,y, n,...)

(A32)

By a formal application of the inversion integral the required tem-
perature distributions are found to be

(Tl - To)~=
qtz

1-

+

~-p#’e

.
—

.

.

(A33a)

.

b
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r

+

~.pn%l

$n5 Cos pnq

(A33b)

Because equations (A33) converge slowly for short times, it is
advisable to derive a short-time solution for the present problem. This
derivation can be made most readily by appropriate substitutions in equa-
tions (A28). For small times (large values of s) assume that

and

(A34)

(A35)
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*

If the quantities defined in equations (A35) are stistituted into
equations (A28), the result is .— .—

The inverse transforms of equations (A36) canbe written as (ref. 5)

b

(A37a)

—

.
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APPENDIX B

THERMAL STRESSES

In the following discussion, secondsry effects are neglected; that
is, it is assumed that the section under consideration is sufficiently
removed from the ends of the structural element that the stress distri-
bution is not influenced by the stress-free condition at the ends. All
the stresses are determinedly elementary elastic theory employing the
assumptions that plane sections remain plane and that
do not change with temperature.

If plane sections remain plane, the axial strain
written as

The stress-strain

where, for a free
only,

E =a+bx+cy

relation 1s

e ‘:+u(T-To)

material properties

at any point can be

(Bl)

(B2)

plate with temperature variation through the thickness

E*=+ (B3)
l-v

and for plsme stress

m =E (B4)

The stress can be expressed as

a=
[

E*a+bx+cy-
1

a(T - To) (B5)

.
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equations which must be satisfied are

.

f

1

crdA=o
A

J LncdA=o )
A

(B6)

J Oydf-i=o
A

If equation (B5) is substituted into equations (B6) and the indi-
cated integrations are performed, there is obtained the following general
set of equations for determining the values of the constants a, b,
and c:

Ala + Blb + Clc = ~11’
1

~a + B2b + C2C = a12’

1

(B7)

A3a+B3b + C3C = aZ3’

J

The constants A, B, and C are known functions of the geometry
of the particular section under consideration; 11’, 12’, and 13’ are

integrals involving the temperature.

Thick Skin

The thick skin considered in the present paper experiences varia-
tion of temperature in the thicbess direction only. The coefficients
for equation (B7) for the free plate are

Al=l B1=O cl=:

A2=0 B2=0 C2=0
.1

(B8)



34 NACA TN 4306

The right-hand sides of the equations (B7) are

u12’ = O
{

J’
t

d3’ . : J(T - TO)Y W
o

When eauations (B7) me solved for the coefficients a and c
which are then

. .
substituted into equation (B5), the stress is

(B9)

( )1121 ~ t—--

1

(T - To)y @
t22 t o

(B1O) ●

.

where y is measured from the unheated surface. If the origin is trans-
ferred to the midplane of the phtej equation (15a) is obtained.

If equation (All) is substituted in equation (B1O), the resulting
stress equation for the unsymmetrically heated plate is

()aL_JL2!&.q(l-q) -*+L~(-l)nSE?21!l e-n2fi2e+
cm qt fi2n=l ~2

E(l -27)
e-rWe

X4
2 nk

n=l,3,5,. . .
(Bll)

If the skin is heated symmetrically with respect to its midplane
and there is no variation of temperature in the plane of the skin, the
last two of equations (B6) are automatically satisfied and b = c = O.
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The first of equations (B6) must be employed to determine a. When
this is done, the stress is

(B12)

where y is measured from the midplane of the plate.

If equation (All) is substituted into equation (B12), the resulting
stress equation for the symmetrically heated skin is

Angle, Channel, T-, and H-Sections

The thicbesses of the sections of figure 11 are small enough to.
permit the assumption of plame stress. For the general case, the coef-
ficients A, B, and C of equation (B7) are as follows:

t2t23
c3 .-—

6
J

(Blk)
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The right-hand sides of equations (B7) are

NACA TN 43o6

J
L2

(T2 -%)(TI - g2)dq
o

(B15)

J
The E-section of figure l.1is the stiplest case because of double

symmetry. In this case the constants b and c are zero; therefore,

(B16a) .

.

(B16b)

For the T-section of figure 11, the constant b equals zero and
the stresges are

al
—=
aE
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.

.

.

For the channel section of figure 11, the constant c equals zero
and the stresses sre

(B18b)

The angle section of figure 11 requires the use of sll the constants,
and the stresses are

(

.

.
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f

~$FF:-’)+~~$-1113j-(’2 -T0) ‘“9)

In order to keep the results in a dimensionless form, rather than
employing the integrals defined by equations (15), integrals def’inedas
follows are used:

Ii = Ii’ ~ (’20)
qt’

After the indicated integrations are performed, the equations for 11, .

12, and 13 are as follows:

t’ &.—
% 212=-.
c1 t’

.

b

(B21a)

&5
I1- 1 )

.

(B21b)

.
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13. -

-

+

.

(B21c)

The stresses may now be written in a dimensionless forinby multi-
plying the left-hand sides of equations (B16), (B17), (B18), smd (B19)
by k/qt2 and replacing Ii’ in the right-baud sides by Ii. The

values of 12
tz

snd 13 were calculated for all c-inations of — =“1,
* tl

2, ad 4, ~1 = 5, 10, ~d 20, ~d L2 = 10, 20, ~d 3oj W Usiw-:ither
equation(Am), eqwtion (A31),or equations (A30), (A31), and (A32),
which define the characteristic value Pns For a given case 11 can
be computed from equation (B21a).



40

REFERENCES --

wx TN 43o6

1. Brooks, Willism A., Jr., Griffith, George E., snd Strass, H. Kurt:
Two Factors kfluencing Temperature Distributions and Thermal
Stresses in StNctures. I?ACATN 40~2, 1957.

2. Carslaw, H. S., and Jaeger, J. C!.: Conduction of Heat in Solids.
The Chrendon Press (Oxford), 1947, p. 104.

3. Pohle, Frederick V., and Berman, Irwin: Thermal Stresses in Airplane
Wings Under Constant Heat hput. Ch. 2 of Induction Heating ad
Theory in the Solution of Transient Prciblemsof Aircraft Structures.
WADC Tech. Rep. 56-145 (ASTIA Dec. No. All97210), U. S. Air Force,
Aug. 1956, pp. 35-79.

4. Timoshenko, S.: Theory of Elasticity. First cd., McGraw-Hill Book
co., Inc., 1934, p. 210.

.

.

—

5. Churchill, RuelV.: Modern Operational Mathematics in Engineering.
McGraw-Hill Book Co., Inc., 1944.

.

●



NACA TN 43o6

.

41

.

.

Material

Aluminum alloy

Magnesium alloy

Copper

Titsmium ~Oy

Stainless steel

Monel

Inconel X

TABLE I.- TYPICAL MATERIAL PROPERTIES

F
T
250 I 110

400 570

500 280

600 490

700
I

520

800
I

505

c, Btu/lb-OF

0.220

.247

9097

.145

.130

.118

.128

k, Btu/sec-ft-%

0.0228

.0145

●0583

.Ooa

.0031

.0044

.0028

aRepresentative of average temperatmes in typicsllapplications.
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2

q/t , 1
Btu/ft3–sec.

o

Inconel X–

Stainless steel~

Mone1

Copper

Titanium alloy-

Aluminum alloy

_Magnesium alloy-.

100 200

dT O
=’

F/see

Figure l.- Relation between heating rate and rate of
for th~ plates of V~fOUS mterial-s.“ (See table
properties.)

.

—

300

temperature rise
I for material
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-.

.
dT
z’ q,

OF/sec Btu/ft2–sec
.

.1000– 100

1oo- -10

10-1

10 .01

f

f

Ma~esium alloy—

Aluminuh alloyx

Titanium alloy— I

Copper~- -

Mone 1~

Stainless steel r’

Iriconel XJIOO1 :*001

n 1000”LOOO1
r

Key: The lines ~-t and q-cw intersect on P-P.
dr

Figure 2.- Nomograph for equation relating heating rate and rate of

temperature rise in ttin plate. q= c~ Q.
dT
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—Udm—u—u
t

t

--L

*

.

Figure 3.- Coordinate system for tlxl.ck-platesnalysis.
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Temperature history of thick plate subjected to constant
heating rate.

.
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Figure 5.-

Location of %av 1
7

b

I
I
I
I
~

I
I
I
1’
1
I
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I
I

I e

“.2 .,4 .6

n

Temperature distribution within thick plate
constant heating rate.

.8 .

subjected
.

.
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qt ,
Btu/ft–sec

*

Figure 6.-
ference
various

8

6

4

2

0

Copper–

Aluminum alloy=

ritanium alloyT

—Magnesium alloy

h!onel~

Inconel X

50 100 150
AT, ‘F

Effect of constant heating rate on maximum temperature dif-
between heated and unheated surfaces of thick plates of
materials. (See table Iformaterlal properties.)
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2AT, q,
OF Btu/ft2-sec

100(

10(

10

100

.0

P

NACA m 4306

k, t,
:-Btu/ft-sec-OF ft

Copper

Alumininn alloy

Magnesium alloy

Monel

Stainless steel

Inconel X

Titanium alloy

.0

“1

.1

01

Key: The lines 2&!-k and q-t intersect on P-P.

Figure 7.- Nomograph tor equation relating heating rate and mextiu

temperature difference through thick plate. ~ . ~ ~.

.

.

w
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10(

I

1(

I Inconel X-
1 \

Stai

J
I

1

J-z
.1 .2

Titanium alloy”
\

.nless steel .

Mon.el
\

Copper—

.4 .6 .8 1.0

t, in.
..

Figure 8.- The required to produce 98 percent of maximum t-rature
difference between heated and unheated.surfaces of thick p-tes of
various ma~erials sub~ected to constsnt heating rate. (See table I
for +aterisl properties.)

I

.
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200

150(

T~=l ? ‘F 100(

50C
/-

,/ _Percent diffe~ence e ween
~i~:: g~e~nd lnsula e

1
——–Percent difference etween

8heated surface an
average temperature ,

0 100 200 300 4’00

~, ‘~F

k

Figure9.- Assignedtemperaturedifferencesaa functionof
of heatedsurface of plate snd heating rate:

temperature



IJACAm 4306

(a) Basic angle section.
“

.

tz jl

7’ “’’’’’’’’’’’’’’’’’’’’’’’’”

(b) Idealized angle section.

Figure 10.- Angle section employed to investigate temperature and ther-
mal stress distributions in various structural shapes.
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Figure 11.-.Structurs3 shapes formed by combinations of angle sections.
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.

300

20C

92 ,max

10C

/
—

0 100 20.0 300
f3

(a) : = 1.

Figure 12.- History of =imun tempera~e of angle section for various
proportions.
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Figure X2.- Conttiued.
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.

.

300

—.— L
200

100

0 100 200
e

(c) : = 4.

,/

4
////////////>;,/”

$7’ /“
,+

/’/
/’

(2
“30
“20

“10

300
..—

Figure I-2.-Concluded.

.
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—.— 30 . .

I .c~
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20

100

e

(a) ~ = 1.

200 300 “

Figure 13.- History of temperature at junction of elements of angle sec-
tion for various proportions.
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Figure 13.- Continued.
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300
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100

0

‘c~
10

––––– 20
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—-.– ;:

I
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100 200 300

e

(c) ~=k.

Figure 13.- Concluded.
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Figure 14.- History of nddmum temperature of angle section for various
proportions.
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Figure 14.- Continued.
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Figure 14.- Concluded.
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16.- Historyof stressesin symmetricallyheatedthick plate
subjected to constant heat~ rate.
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Figure 17,- Stressdistributionin thickplate subjectedto constant
heatingrate on one surface.
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Figure 18.- Historyof stressesin thickplate subjectedto constant
heating rate on one surface.
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Figure19.- Continued.
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Figure 19.- Concluded.
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Figure 23.- Conttiued.
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