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NATIONAL ADVISORY COMMITI'EE FOR AERONAUTICS 

TECHNICAL NOTE 4276 

AN APPROXIMATE ANALYTICAL METHOD FOR STUDYING ENTRY 

INTO PIANETARY ATMOSPHERES 

By Dean R. Chapman 

SUMMARY 

The pair of motion equations for entry into an exponential planetary 
atmosphere is reduced to a Single, ordinary, nonlinear differential equa­
tion of second order by disregarding two relatively small terms and by 
introducing a certain mathematical transformation. The reduced equation 
includes various terms, certain of which represent the gravity force, the 
centrifugal acceleration, and the lift force. If these particular terms 
are disregarded, the differential equation is linear and yields precisely 
the solution of Allen and Eggers applicable to ballistic entry at rela­
tively steep angles of descent. If all the other terms in the basic 
equation are disregarded (corresponding to negligible vertical accelera­
tion and negligible vertical component of drag force), the resulting 
truncated differential equation yie lds the solution of Sanger for equi­
librium flight of glide vehicles with relatively l arge lift-drag ratios. 

A number of solutions for lifting and nonlifting vehicles entering 
at various initial angles also have been obtained from the complete non­
linear equation . These solutions are universal in the sense that a single 
solution determines the motion and heating of a vehicle of arbitrary 
weight, dimensions, and shape entering an arbitrary planetary atmosphere . 
One solution is required for each lift-drag ratio. These solutions are 
used to study the deceleration, heating rate, and total heat absorbed for 
entry into Venus, Earth, Mars, and Jupiter. From the equations developed 
for heating rates, and from available information on human tolerance 
limits to acceleration stress, approximate conditions for minimizing the 
aerodynamic heating of a trimmed vehicle with constant lift-drag ratio 
are established for several types of manned entr y . A brief study is 
included of the process of atmosphere braking for slowing a vehicle from 
near escape velocity to near satellite velocity . 

INTRODUCTI ON 

One of the many challenging problems connected with space flight 
occurs during the terminal phase of operation when a vehicle at near 
orbital velocity enters the earth's atmosphere or the atmosphere of 
another planet. Some important aspects of this problem are the possibly 
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severe decelerations for human occupants, the intense aerodynamic heating, 
and the tactical aspect of having satisfactory control over both the time 
and location of landing . The problem is made more interesting by inter­
relationships between these aspects which re~uire, as always, keen under­
standing in order to make the best design compromises. For example, the 
lowest heating rates and smallest decelerations are obtained with very 
shallow entry paths, such as would be obtained by letting an orbit 
gradually decay; but the tactical aspects of fixing the time and location 
of a vehicle upon landing are most difficult with these very shallow 
re-entries. Also, the total heat absorbed during descent is greater for 
shallow entries than for steep ones. If descent at a steeper angle is 
induced by deflecting the orbit, such as by means of a retrorocket, then 
the total heat absorbed for laminar flow is reduced substantially , and 
the time and location aspects of recovery are improved , but both the 
deceleration and the heating rate are increased . In order to devise an 
efficient method of entry for a given application, it is highly desirable 
that a designer have available relatively simple e~uations for computing 
how each variable at his disposal affects the entry trajectory, the 
deceleration, and the aerodynamic heating . 

For several special types of entry, analytical theories are available 
which provide simple e~uations showing clearly how each variable aff ects 
the motion and aerodynamic heating. In the case of ballistic - type entry 
without lift at sufficiently steep angles that the gravity and centrif ugal 
forces can be disregarded, the analysis of Allen and Eggers (ref. 1) 
provides such e~uations . In the case of smoothly gliding- type entry at 
zero initial angle with a sufficiently large lift- drag ratio that t he 
vertical acceleration and the vertical component of drag force can be 
disregarded, the analysis originally given by Sanger (refs . 2 and 3) would 
be applicable. In the case of skipping vehicles entering at sufficiently 
steep angles and with a sufficiently large lift-drag ratio that t he 
gravity and centrif ugal forces can be disregarded, the analysis of Eggers, 
Allen, and Neice (ref. 4) would apply . For more general types of entry , 
though, where the gravity f orce, centrifugal force , lift force, vert ical 
acceleration, and vertical component of drag are all of importance, these 
existing analyses would not apply . Such would be the case, for example , 
for the entry of a satellite with a small lift - drag ratio, or for the 
entry of any orbiting vehicle starting with a very small initial angle. 
As a result, present understanding of the relatively shallow entries -
which are of special interest to manned space flight - is based primarily 
on numerical calculations made with computing machines in connection with 
relatively specific vehicles (see , e.g . , refs . 5, 6, and 7). 

The objective of the present report is to develop an approximate 
analytical solution to the motion e~uations which is usable for engineer ­
ing calculations and which is applicable to an arbitrary planetary atmos ­
phere, to a lifting or nonlifting vehicle, and to entries along either 
shallow or steep descents . Such a solution could be applied to a fairly 
broad variety of vehicles, such as skip , glide, satellite, ballistiC, or 

J 
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escape vehicles undergoing the process of atmosphere braking . An addi ­
tional objective is to devel op a method applicabl e to composite types of 
entry, such as entering initially with zero l ift , and then suddenly chang­
ing the l i ft and/or drag at any number of points during the descent . 

During the preparation of this report an interesting report by Gazl ey 
(ref. 8) became avail able in which he considers the entry of a nonlift i ng 
satellite into a planetary atmosphere from a decaying orbit . He obtains 
an approximate analytic solution by making an arbitrary assumption about 
the relationship between vel ocity and angle of de scent which is not made 
in the present report . As a result , his end equations for this particular 
type of entry are quantitatively different, though qual itativel y simil ar 
to those of the present report , as discussed briefl y later. 

a 

A 

C 

D 

g 

NOTATION 

resultant deceleration 

reference area for drag and lift , sq ft 

dimensional constant in heat - transfer equations 
(17,000 Btu ft - 3/2sec -~ for numerical cal culations of this report ) 

drag coefficient , 
~ Poov2A 

D 

lift coefficient, 
~ Poo~A 

L 

drag force , lb 

gravitational acceleration , ft sec - 2 

gravitational conversion constant, 32 .2 ft sec -2 

ratio of local heat f l ux to that at a stagnation point , JL 
qs 

k2 average value of heat flux relative to stagnation point value , 

~ J .9:... dS S qs 

characteristic length of vehicl e , ft 
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L lift force , lb 

m mass of vehicl e, slugs 

M mean molecular weight of planetary atmosphere (consistent units 
with gas constant and g ) 

Pr 

q 

Q 

q 

Q 

r 

R 

Re 

s 

S 

t 

T 

u 

u 

y 

Prandtl number 

convective heat- transfer rate per unit area, Btu/sq ft sec 

total convective heat absorbed, ~ dt dS, Btu 

dimens i onless function proporti onal to heat ing rate (U5
/
2JZ for 

laminar f l ow) 

dimensionless function proportional to total heat absorbed 

(~u3/2Z-1/2cos-2~ dU) 

distance from planet center, ft 

universal gas constant , or radius of curvature of vehicle surface 
in feet 

P VI 
00 

Reynolds number, ---­
~oo 

circumferential distance travel ed, ft 

surface area wetted by boundary layer, sq ft 

time, sec 

temperature (various units employed ) 

circumferential velocity component normal to radius vector, ft/sec 

circular orbital velocity, ~, ft/sec 

t o u ra 10, -­
U e 

upper limit for range and total heat absorbed ( see eqs . (28) and 
( 39b )) 

altitude, ft 
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v vertical velocity component (along direction of radius vector) , f t /sec 

V resultant velocity , J u2 + ..j2 

W weight of vehicle at earth ' s surface, mgc ' l b 

Z dimensionless function of u determined by equation (21 ) and 
appropriate boundary conditions 

~ atmospheric density decay parameter, ft - 1 

y ratio of specific heats behind bow wave 

e angle in polar coordinates 

~ coefficient of viscosity, slug ft - 1 sec - 1 

p density, slug ft - 3 

~ flight-path angle relative to local horizontal directionj positive 
for climbing flight, negative for descent 

Subscripts 

o sea level 

00 free stream 

s stagnation point 

i initial condition 

b break where is discontinuously changed 

relative to earth 

Superscripts 

differentiation with respect to u 

mean value for exponential approximation to atmosphere density­
altitude relationship, or dimensionless quantity 
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.ANALYSIS 

Assumptions and Approximations 

The problem analyzed concerns that portion of the descent of a 
vehicle into a planetary atmosphere where in the decelerations and the 
convective aerodynamic heating are dominant. Three assumptions made at 
the outset are : 

(i) Atmosphere and planet are spherically symmetric . 

(ii) Atmosphere density Poo varies exponentially with altitude. 

(ii i ) Peripheral velocity of planet is negligible compared to the 
velocity of the entering vehicl e . 

Assumption (i) is reasonable for those planets which have only small 
equatorial bulges ( such as Venus, Earth, and Mars), inasmuch as the severe 
aerodynamic heating and decelerations occur over a l ength of flight path 
which is small compared to the planet ' s mean radius ( the order of 
one tenth the planet radius for nonlifting bodies ). The assumption of 
spherical symmetry, however, would not be as reasonable for pl anets with 
relatively large equatorial bulges, such as Jupiter and Saturn. As noted 
later, this assumption of spherical symmetry can introduce some inaccuracy 
i f the descent is nearl y al ong a line of longitude and if the vehicle also 
happens to have a relatively large lift-drag ratio . For large lift - drag 
ratios the important deceleration and heating portions of the descent can 
be prolonged over a distance comparable to the planet's radius; hence, 
the nonspherical nature of the atmosphere could be important in such 
cases . 

Assumption (ii), of an exponential atmosphere, is based upon the 
simple kinetic theory of an isothermal gas in a uniform gravitational 
field . This theory yields the well-known exponential approximation for 
atmospheres ( see ref . 9, ch. III, for exampl e ) 

Poo -l3y 
- = e 
Po 

(1) 

where 

13 
Mg 

RT (2) 

and where M is the mean molecular weight of the planet ' s atmosphere , 
T the mean temperature, R the universal gas constant, and g the l ocal 
acceleration due to gravity. I t is to be noted that Po represents the 
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intercept of t he straight l ine which best fits a curve of log P versus 
altitude, and is not the same as the true s ea l evel density po . From 
data such as presented in references 10 and 11 , approximate mean values 
of several quantities of interest for vari ous pl anets are as foll ows 
(the subscript ~ designates a val ue relative to the earth ): 

M, T, Planet r~ g~ Gases j..l~ 13- 1 , ft .J ( I3r ) ~ 
gm mol - 1 oK 

Venus 0 · 97 0 .87 C02,N2 0 .8 40 270 2xl04 L O 
Earth 1. 0 1. 0 N2,02 1.0 29 240 2 . 35xl 04 1.0 
Mars . 53 · 38 N2, C02 1.0 30 220 6xl 0 4 .47 
Jupiter 11.0 2 .63 H2 , CH4 · 5 3 170 6xl 0 4 2 . 0 

The exponential approximation for the earth (with Po = 0 .0027 sl ug ft - 3 ) 

is compared in figure 1 wi th the relatively recent (1956 ) ARDC model of 
the atmosphere . I t is evi dent that a single value for 13 appears to be 
a reasonable approximation at al titudes bel ow about 400, 000 feet (80 mil es , 
roughly ) . In most cases peak decel erations and maximum aerodynamic heating 
occur well below this altitude . Moreover, the region of most important 
heating and decel eration for a given vehicl e occurs only over a rel ativel y 
thin strip of al titude (very roughly over a 70,OOO-f oot strip across whi ch 
the density changes by about a factor of 20 ). Since the analysis which 
foll ows enables the altitude of this important strip to be calculated 
quickly for any given vehicle, the exponential decay parameter 13 in each 
case could be sel ected , if desired, as corresponding t o this particular 
altitude rather than to the mean value tabulated above. A pl ot of the 
dimensionless parameter ~ as a function of altitude is shown in fig­
ure 2 for the ARDC model atmosphere . In determining ~ cons iderati on 
is given only to the 70,OOO-foot region of air immediately above a given 
altitude . The f luctuations in ~ for this standard atmosphere bel ow 
about 400,000 feet amount to the order of ±10 percent from a mean val ue 
of 30 and are attributed primarily to the variati on in temperature with 
altitude . Inasmuch as variations in temperature with season and with 
latitude (see ref . 12, for example) can f l uctuate the order of ±15 per cent, 

rn:: --1/2 -
the parameter ~l3r - T can f l uctuate about +7 percent . For most numer-
ical calculations in this report, a constant value ~ = 30 is used for 
the earth ' s atmosphere corresponding to a mean atmospheric temperature of 
2400 K (4320 R) . 

Assumption (iii ), that the peripheral vel oc ity of the planet is 
negligible compared to the veloc i ty of the entering vehicl e , would not 
introduce significant errors for most descents into most pl anetary atmos ­
pheres . For descents nearly along a line of l ongitude, the errors in heat 
transfer and deceleration would , of course , be negligible . The greatest 
error would occur in an e~uatorial descent . As a measure of this error, 
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we can take the ratio of the equatorial peripheral velocity up of the 
planet to the circular satellite vel ocity uc ' This ratio for several 
planets is as follows : 

Venus 
Earth 
Mars 
Jupiter 

~0 . 002 

.06 

.07 

.29 

Hence the error introduced by assuming a nonrotating atmosphere in the 
case of near- equatorial descents would be negligible for Venus, appreci ­
able though not l arge for Earth and Mars, but probably significant for 
Jupiter . 

In addition to these three physical assumptions, two mathematical 
approximations are made in the devel opment of the subsequent analysis in 
order to effect major simplifications in the structure of the equations 
of motion . They are mentioned here for convenience : 

(a ) In a given increment of time , the fract i onal change in distance 
from the planet center , dr/r, is small compared to the fractional 
change in vel ocity dU/u; that is, I dr /r I < < I dU/u I . 
(b ) For lifting vehicles, the flight - path angle ~ relative to the 
l ocal horizontal direction is sufficiently small that the component 
of lift in the horizontal direction is small compared to the drag; 
that is, I (L/D )tan ~I « 1. 

For nonlifting vehicles (e . g ., ballistic entry) , approximation (b) 
is automatically satisfied; approximation (a) does not specifically 
restrict the descent angle (00 to 900 can be analyzed for nonlifting 
vehicles), but it does restrict the analysis to a portion of the over -all 
trajectory below an upper altitude limit . Above some altitude dr/r 
cannot be small compared to du/u, as is shown to be the case on mathe ­
matical grounds in appendix A. PhYSically, this i s clear from the law 
of conservation of angular momentum which states that in the absence of 
drag, d(mur) = 0, or dr/r = -du/u . Consequently, the present solution 
would be reasonable at l east below an altitude where drag has s lowed down 
a vehicle slightly to some point (A in sketch) where dr/r = 0 .1 dU/u. 
It i s shown in appendix B that this corresponds to the point where drag 
has reduced the vehicle velocity by about 0.01 of the initial velocity. 
Above this altitude (point A), orbit - type calculations could be applied. 
A method for joining the present solution to Keplerian ellipses is 
discussed in appendix B. 

~Thi s value may be a factor of ten higher due to the uncertainty in 
the length of the Venus day. 
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For lifting vehicles (e.g . , skip or gliding entry) assumption (b) 
clearly restricts the analys is to small angles of descent. Even if a 
lifting vehicle starts entry horizontally, the angle of descent will 
increase as the velocity is reduced (and as the centrifugal forces are 
diminished ) until (L/D)tan ~ becomes unity in the terminal subsonic 
gliding phase . Although the solution is not valid, strictly speaking, 
when (L/D)tanl~1 is comparable to unity, a reasonabl e over-all trajectory 
would be obtained by stopping the present solution at the point where 
-(L/D) tan ~ = 1 (point B in above sketch ), and considering that 
- (L/D) tan ~ = 1 thereafter. As sketched , peak heating and maximum decel-
eration occur well within the range ( solid line) where the present solu­
tion applies . 

The limitations resulting from approximati ons (a ) and (b) are 
examined in appendix A, where it is shown that for vehicles entering from 
decaying satellite orbits, with or without posit ive lift, the errors 
introduced are only the order of a few percent insofar as aerodynamic 
heating and peak decelerations are concerned. Surprisingly small errors 
result from approximation (b ), even for very l arge L/D ratios , because , 
in orbital decay or in a smooth gltde , the larger the L/D the smaller 
the angle ~ at conditions near maximum heating and peak deceleration; 
this keeps the product (L/D)tan ~ small . 

Various modes of entry and the portions of the trajectories of 
satellite, ballistic , escape , glide , and skip vehicles to which the anal­
ysis applies are sketched in figure 3. 
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Development of Differential E~uation 

Descent in a spherically symmetric atmosphere about a spherically 
symmetric planet would occur in a meridian plane in the absence of lateral 
forces. This confines the problem to one of two dimensions for which 
polar coordinates (r, e) are convenient. The velocity components are 
(v, u), respectively, as sketched below. 

Flight path 

The vector acceleration in terms of the unit vectors er and ee for polar 
coordinates is 

~ -+ (dV u
2

) -+ (dU uv) a :::; er dt - r + ee dt + r 

where er and ee are the unit vectors in the rand e directions, 
respectively. The local flight -path angle ~ (negative for descent ) is 

u 
(4 ) tan ~ v 

:::; -

The vector aerodynamic force 

-+ 
f (-mg + L cos ~ - D sin CP)~r - (D cos ~ + L sin cp)ee 
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must equal the mass m t i mes t he vector accel eration in t he absen ce of 
thrust - type forces . Hence , equations (3) , (4) , a nd (5) yi el d t wo com­
ponent equations of motion 

_ d2 y dv u2 L cos cp +~ s in cp g -
dt2 dt r m m 

( 6) 

du + uv = ~ (cos cp+~ s in cp) 
dt r D 

It is noted that g and r are l ocal val ues i n these equations . 

We will sol ve this system of equat i ons by di sregarding the term 
uv/ r in equation (7) (whi ch , as will be evident shortl y , i s equival ent 
to assumption (a ) that Jdr/r J« Jdu/u J). This restri cts the solutions 
to problems wherein Juv/rJ« Jdu/dt J, but the rest r i ction is not serious 
for the aerodynamic heating and deceleration aspects of entry . In the 
case of orbital entry , for exampl e , maximum decel erat i on and heating 
occur at such small angles that uv/ r is the order of 1 percent of du/dt 
( see appendix A). An alternate view of what the approximation i nvol ves 
can be seen as fol lows : 

« 1 (8 ) 

Consequently , the di sregard of uv/r is prec i sel y equ i val ent to approx­
imation (a ) mentioned earlier ; namel y , that the percentage change in 
distance from the planet center is small compared to the percentage change 
in velocity . We will empl oy this approxi mation several times more i n the 
analysis . I nasmuch as dU/u is rel atively l arge only when the drag i s 
important , it is understandabl e why the basic approxi mat i on Jdr/r J« Jdu/uJ 
yiel ds results appl icabl e to regions of important decel erat i on and aer o­
dynamic heating , but not to the outer regions of space where orbit - type 
calculations (which do not neglect the accel erat i on term uv/r compared 
to dU/dt ) are necessary to describe the motion of a vehicl e . I n these 
outer regions, radiant heat domi nates , whil e convective heating and 
deceleration are very small . 

By utilizing approximation (a ) (inequality (8)) , we have 

du D ( L ) -- = - - cos cp 1 + - t an cp 
dt m D 
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so that, by introducing the drag coeffi cient, the exponential approximation 
to the atmosphere, and approximation (b ) (I (L/D)tan cp I « 1), and noting 
that V = u/cos cp , 

du 
dt 

= 
u 2 

COS cp 

We will select as an independent variable 

u u u 
= U c = ..rgr 

(10) 

(11) 

representing the ratio of horizontal vel ocity to the l ocal circular 
satellite vel oc i ty . The basic approximation (8) taken together with the 
rel ation dg/ g = - 2dr/r resulting from Newton rs gravitational l aw enables 
us to disregard derivatives of both g and r relative to derivatives of 
either u, or Uj for example, 

du 

dt 

d( .[iT u) au 
----- =Jgr-

dt dt 
(12) 

By introduction of the drag coeffici ent , the motion equation (6) for an 
exponential atmosphere becomes 

1 dv - --
g dt 

C Aru2e- ~y ( ) 
1 - 2 Po D . L = - u + Sln cp - cos cp 

2 m cos2cp D 

In order to reduce the pair of motion equations (10) and (13) to a 
singl e equation , we transform to a new dimensionless dependent variable 
Z defined by 

(14) 

and employ u as the independent variable. 2 Thus, by differentiating 
(Zr = dZ / du) and keeping in mind the basic approximation (8) 

2The author knows of no simple way to explain a priori why this coor­
dinate system Z(u) should be introduced. I t was discovered by trial and 
error after trying various other t ransformed coordinate systems which did 
not reduce the pair of motion equations to a single equation . ~ I 
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Z' Z Po ~ - f3y dy 
- - 2 = 

2 (C~A) 
e -u u du 

= - 13 ~ dy dt 
u dt au 

We see from equations (10) and (12 ) that 

du = _ J@ liZ 
dt cos ~ 

so that substitution into equation (15) and noting that 

dy/dt = v = u~ tan ~ yields 

Z' _ ~ = fi. cos ~ dy = Jf3r.. s in ~ 
u .jg u dt 

13 

(15) 

(16) 

Proceeding now by different i ation of 
there results 

v and s in ~ f r om equation (17), , 
~ dv = fE ~ eu s in ~\ = _ 1 _ au (liZ" + u.JT3T sin2~ d~ '\ (18) 
g dt .J g dt cos ~ ) .JT3g dt cos ~ cos2~ dU) 

The term d~/du representing fl i ght -path curvature can be expressed in 
several ways in terms of the Z funct i on by noting from equations (17) 
and (12) that 

u ~ (Z ' z) --JBr d sin ~ 
du ~ = u f3 r 

du 

= lizll Z' Z 
- + = u 

Alternat e forms of 
terms representing (19) 
flight -path curvature 

liz " -.Jfk sin ~ 

Consequently, we can substitute the fi rst form of this equation, together 
with equat i on (16) into equation (18) to obtain 
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1 dv 
g dt = - ~ :~ = C:2~ {liZ" + tan2~ [u :u (ZI -~) ] } (18a) 

We note from equations (14) and (17) that equation (13) can be writ t en 
in the f orm 

1 dv - - -
g dt 

= __ gl dd
t

2
; = 1 _ u2 + ilZ (Z' -~ - Jf3r ~ cos ~\ 

COS2~ u D ) 
(20) 

Hence, by comparing thi s equation with equation (lEa), and by observing 
from the second f orm of equation (19) that 

Z' - ~ == uz II - U :u (Z' - ~) 

t he f inal equation fo r t he Z f unct i on i s obtained. 

In thi s equati on , cos ~ == ../1 s in2~ 
and Z through equati on (17) 

Jrh. s in ~ 

can be expre ssed in terms of 

Z ' _ Z 
U 

(21) 

Z' 

Thus , the pai r of motion equati ons has been reduced to a singl e , second­
order di fferent i a l equat i on by us ing IT as the i ndependent variable and 
Z as the dependent var i abl e . 3 For nonlift ing vehi cl es (L/D == 0 ) the 
equat i on i s applicabl e to l arge angl es of descent as well as small. For 
lifting vehi cl es i t is applicabl e for \(L/D) tan ~ \«l. I n all cases it 
is applicabl e when \dr / r\ / \du/u \« l. We note from equati ons (4) and (16) 
that 

3Clearly , the same reducti on would be achi eved by using g (u ) as the 
independent variabl e and zh (li) as the dependent vari abl e , where g (li) 
and h (u) are arbitrary functi ons . 
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dr/r uv/r - u s in ~ 
--= =----
dU/ u du/dt .[f3T Z 

(22) 

As noted in appendix A, the ratio Idr / rl/ ldu/ul is l ess than 0.1 bel ow 
the altitude where drag has reduced the velocity by about 1 percent of the 
initial velocity . 

The nonlinearity of equation (21 ) is due to the ter m (1 - ii2) cos4~/Uz 
which represents the effects of gravity and centri f ugal forces i n i nducing 
a curved f l ight path . I t is noted that the bas i c equation is independent 
of the physical characteristics CD, W, A of the vehi cl e as well as 
independent of the sea- l evel characteristics Po a nd go ' Aerodynamic l ift 
occurs only i n the comb i ned parameter ~ LID . The eQuati on has a s ingu­
larityat Z = 0 which must be handled anal ytically i n numerical methods . 
A method of solving this equat i on is discussed in appendix D. 

I t i s i nstructive to consider the physical meani ng of each of the 
terms i n the differential eQuation (21 ). EQuati ons (19) and (20 ) hel p 
in this regard . 

uzn 

verti ca l ver t i cal component 
accelerati on of drag force 

( ffr sin ~) 

= 
1 - 2 

- u 4 -=-- cos ~ 
uZ 

\.---_.,'V'_----J 

gravity minus 
centrifugal for ce 

r::- L 3 - " f3r - cos ~ 
D 

lift for ce 

(21a) 

By understanding tpe physical significance of the vari ous terms one can 
judge, for example , what terms to consider i n obtaining speci al approxi­
mate solutions . 

Since the basic differenti al equation is of second order , we need 
two initial conditions to compl ete the system . We take these at some 
initial vel ocity Ui, and wri te as generalized i nitial conditions 

If the vehicle starts at a very high altitude where the density is negl i ­
gible compared to that near peak heating, then the def i n i tion (14) 

z. = (gcCD
A IE) u· p ' 

l 2W ~ ~ l l 
(24a) 
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shows that Zi is very small in such cases. For simplicity we take 
Zi = 0 for entries starting at very high altitudes. The e~uation 

(24b) 

shows that Zi' would be equal to ~ sin ~i when Zi = O. As an 
example, entry from a decaying satellite orbit (~i ~ 0 and ui = 1 in the 
stage of decay before appreciable aerodynamic heating begins ), would be 
represented by the initial conditions 

One universal Z function would be required for each value of the 
parameter ~ LID appearing in the differential equation (21). 

(25) 

Byallowing Zit to take on values other than zero and allowing Ui 
to be either less than or greater than unity, we can obtain the corre ­
sponding Z functions for ballistic, glide, skip, or escape vehicles 
entering a planetary atmosphere from very high altitudes . By further 
allowing Zi to be other than zero, corresponding Z functions can be 
obtained for entry starting from an initial altitude where the density 
may not be negligible compared to that near peak heating . Before present ­
ing some solutions to equation (21 ), though, it is advantageous to show 
how the Z functions, once computed, can rapidly be used to determine a 
number of useful quantities in practical calculations . 

Summary of Some Useful Quantities Related to the Z Function 

From the Z functions , it is a relatively simple matter to obtain, 
for example, the horizontal component of deceleration ae by using 
equations (3), (12 ), and (16), 

du g .J7h. liz (26) ae -
dt cos ~ 

or 

1 du 
30 liZ for Earth , small - -- - ~ g dt 

Strictly speaking, g and r are local values in the outer layers of the 
atmosphere where the deceleration takes place . For Earth, however, these 
are not significantly different from their respective surface- level 
values . Local and surface values might be greatly different , though , for 
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planets such as Jupiter and Saturn which are believed to have a very deep 
atmosphere . The equation for the angle of descent (cp<O for descent ) is, 
from e~uation (17), 

Z l - (ziTi) 
s in cp = (27) 

..{fh 

Z l - (ZiTi) ;:; for Earth 
30 

The circumferential distance traveled between a point where the dimension­
less vel ocity is Ul and a point where it is ~ can be expressed in 
terms of Z from equation (16), 

or 

6,s 

r 

&:, _ 1 
=-

r 30 

u dt du 1 
dTi =.[f3r 

cos cp du 
Z 

du 
Z 

for Earth, cp small 

(28) 

(29 ) 

Inasmuch as the analysis is not valid in a very small neighborhood of 
Z = 0 where U = ui' but becomes valid after drag has reduced U by les s 
than 1 percent (as shown in appendix B), we select an upper limit such as 
Ul = 0 . 995 ui or Ul = 0 . 99 Ui for the entry range . In a practical appli ­
cation , this range would have to be joined to the range of the appr opriate 
Keplerian ellipse in order to obtain the total range . The corresponding 
time el apsed is obtained al so with the aid of equation (16) 

t 
cos cp dTI 

uZ 

sec for Earth, cp small , g - go 

Another useful quantity is the density ratio, referred to the true sea­
level density (Po = 0 .00238 slug ft - 3 ), which comes from the defini ­
tion (14) for Z 
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or 

W for Earth, 
CDA 
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(31a) 

in lb ft - 2 

The left side of this last equation is a function only of the altitude 
for a given atmosphere (~ for the ARDC model atmosphere is shown in 
fig. 2), so that it provides for a given Z(u) function the altitude ­
velocity relationship for any model atmosphere . The density ratio 
referred to the effective sea-level density (po = 0.0027 ) which best fits 
the p(y) curve is 

(31b) 

( 
w ) Z -5 = 3.2 CDA TI X 10 for Earth, W in lb ft- 2

, ~ = 30 CnA 

The dynamic pressure is 

1 mg liZ 
p V

2 = - .J73r --2 00 CDA COS2~ 

for Earth, W in lb ft - 2 , ~ small 
CDA 

and the free - stream Reynolds number per unit length is proportional to 
Z (eQ. 14 )) 

for earth, ~ small, W in lb ft - 2 

CDA 
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The viscosity of air at the mean atmospheric temperature T = 4320 R is 
employed to obtain the constant in this last equation which is val id only 
for the earth ' s atmosphere . 

It is interesting that the Reynolds numbers involved during entry 
from a decaying satellite orbit are relatively small . Near peak heati ng , 
for example, we will see subsequently that the value of Z ranges from 
about 0 .17 to 0.015, for L/D ratios between 0 and 1, so the correspond­
ing Reynolds numbers are of the order of 1000 (W/CnA ) to 100 (W/CnA ) per 
foot . These are sufficientl y small for one to be optimistic about the 
practical possibilities of maintaining laminar flow for shallow entry 
from a satel lite orbit . For steep entries, as for balli stic vehicles, 
the Z function is larger , and hence the corresponding Reynolds numbers 
are larger . Curves illustrating this are presented later . 

Fairly simple expressions also can be obtained for the aerodynamic 
heating rate per unit area (q) and the total heat absorbed per unit area 
Q/S. Following the analysis of Lees (ref. 13 ), we will consider the 
heating rate at any point on a body to be a certai n fraction 

k =...9:.. 
1 - qs 

of the heating rate qs at a stagnation point of radius of curvature R. 
The heating rate in hypersonic flow at a stagnation point, can be 
expressed as 

where the constants C, n, and m depend on the type of boundary- layer 
flow . For laminar flow we have n = 1/2 and from the several references 
listed (with Po being the true sea- level density ) 

m Reference C 
-~-

14 
13,7 

15 

16,800 3 .1 
19 , 800 3 . 22 
17,600 3 .15 

Remarks 

Intermediate enthalpy theory 
Theory of Lees 
Correlation of AVCO shock­

tube experimental results 

We will base all our numerical calculations on l aminar flow (n = 1/2 ) , 
and will use the value m = 3 for purposes of simplicity (this corre ­
sponds to a gas with viscosity proportional to T1 / 2 ), and the value 
C = 17,000 Btu ft - 3/2sec - 1 which is adjusted to match a mean of the 
above result s for air at velocities near peak heating (u ~ 0 .8). For 
gases other than air we use the theory of Lees (ref . 13 ) to obtain for 
hypersonic flow C -Jpo~ouc3Pr-2/3[(y - 1 )!rJl /4 . In subsequent calcu­
lations, differences in the Prandtl number and in the ratio of specific 
heats for various planets are disregarded . 
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Proceedi ng 
and C = 17,000 , 
in terms of the 
(g$ = g / gearth ' 
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from equations (35), (34), and (31) with n = 1/2, m = 3, 
the laminar convective heat - transfer rate can be written 

Z function and the rel ative pl anetary constants 
I-l$ = I-l/I-learth ' etc .) as 

q = k q = 590 {Pr-2/SI-l V2gS /2rS /4f3 l/4} [ k J m J -q­
l s o lS l CnAR coss<p 

where Q = u5 /2Zl /2 . (If the flow were turbulent Q ~ u2 .2ZO
.
S

, approxi ­
mately , and we would have different powers appearing in equation (36).) 
It is noted that the different variabl es affect the heat f l ux in a form 
represented by a series of factors ; the expression in curl y braces rep­
resents the effect on heat f l ux of the par ticular planetary atmosphere , 
the expression in brackets represents the effect of the physical charac ­
teristics of the vehicle , that is , the mass , dimensions and shape of the 
vehicle , and the dimensionless function ~ = n5/2zl/2 represents the 
effect of the particular type of trajectory as determined by the lift ­
drag ratio . 

Whereas equation (36) for heating rate would be useful in studying 
vehicl es designed to operate at radiation equilibri um t emperatures , an 
equation for the total heat absorbed during entry i s of more i nterest for 
heat- sink type vehicles . 

Q = ff q dt dB 

where 

k = ~ J k dB = ~ J-.9:.. dB 
2 s l S q 

S 

is the factor which takes into a ccount the variations in heat f l ux over 
the whole surface S wetted by the boundary layer . (For a hemisphere , 
for exampl e , k2 = 0.5.) Combining equations (37), (36), and (30 ) yields 
the following equation for the heat absorbed between Ul and U 

(39a) 

where 

(39b) 
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Heat radiation from the surface is not considered in these equations . 
They are useful in studying vehicles incorporat i ng heat sinks or abl ation 
cooling under conditions when the heat radiated away is small compar ed to 
the heat absorbedj Q = ~(cm)sink (where c is the effective speci fic 
heat of the sink material) is proportional to the heat - sink weight . We 
note here that the particular planetary atmosphere (g , r, ~) and espe ­
cial ly the particular trajectory Z(u, LID) affe ct the heat i ng rat e q 
in a different fashion than the total heat absorbed Q. Examples 
illustrating this are presented later. 

Some Approximate Analytical Z Functions 
Obtained From Truncated Basic Equation 

By disregarding three different combinations of terms in the basic 
differential equation (21 ), three special solutions are obtained which 
yield results identical to previous approximate solutions. The detail s 
are described in appendix C and lead to the following approximate 
solutions : 

Solution 

ZI = Ji3r (sin ~)'iI In u 
'iIi 

Vehicle 

Ballistic 

Glide 

Skip 

Terms disregarded 
(see eq. (21a) ) 

Gravity, centrifugal 
and lift forces; 
~ = ~ = constant 

Vertical acceleration 
and vertical component 
of drag force; cos ~ = 1 

Gravity and centrifugal 
forcesj cos ~ = 1 

(40) 

( 41) 

( 42) 

The ZI function provides an approximate solution for the motion and 
heating identical to the solution of Allen and Eggers (ref . 1 ) for balli ­
stic entry. The ZII function corresponds to equilibrium gliding flight 
originally discussed by Sanger (ref . 2 ). The corresponding aerodynamic 
heating problems for this type of hypersonic flight have been discussed 
by Eggers, Allen , and Neice (ref . 4 ) who also obtained a solution equiva­
lent to the ZIII function for skip vehicles . As will be apparent l ater , 
the ZI function for ballistic vehicles is quite accurate for angles of 
descent greater than several degrees W ~r l ~i /> 2 approximately ) and the 
Zrr function for hypersoniC glide vehicles is quite accurate for LID 
ratios greater than about 1 (.J~r LID> 30 approximately ) provided ~i ;;; O. 
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The accuracy of the ZIII f unction for skip vehicles , however, depends 
on bot h LID and the initial angle ~i ' The conditions for applicability 
can be determined from an approximate solution which considers both the 
gravity and centrifugal forces that were neglected in obtaining ZII1' 
In appendix C the following appr oximate solut i on is developed for satel­
lite entry (iIi = 1, Zi = 0) at small initial angles ~i : 

By comparing with ZIII, we see that the gravity and centrifugal forces 
can be disregarded provided 2 ~rl ~i (L/D)I»1. An interesting feature 
deduced from ZIV in appendix C is that the total heat absorbed in the 
first skip (which is perhaps the most important ) is essentiall y independent 
of both the initial angle ~i and the velocity of exit from the skip . 
The heat absorbed varies as l/~ and hence is a minimum for entry at 
CLmax ( see appendix C). For flat plates in Newtonian flow thi s corre -

sponds to an optimum L/D of 0 . 7 . 

Some Z Functions Obtained From Full EQuation 

Entry from a decaying orbit for various L/D (Ui = 1, ~i = 0).- We 
turn now from the special solutions obtained by truncating the f ull eQua­
tion (21), to some sol utions of the complete nonlinear eQuation applicabl e 
to vehicles entering from a decaying satellite orbit . As the apogee of an 
elliptical orbit is slowly reduced by drag (primaril y exerted near the 
perigee ), the orbit eventually becomes a near circle and then begins a 
gradually decaying spiral j hence , the initial angle ~i for thi s type of 
entry is taken as zero , and the initial velocity ui = 1. The peak heat ­
ing and the maximum deceleration occur at such small angles that 
cos ~ ~ 1. The differential eQuation (21) is then 

iI ~ (dZ _ ~) _ 1 -u:
2 

+ .ff3;!:. 0 
diI diI iI U:Z D 

( 44) 

and the corresponding boundary conditions for decaying orbits are 

Z(l) = 0 Z I(l) = 0 (45) 

This system need be solved only once for each value of the parameter 
~(L/D), and the results are then applicable to any planet and to any 

vehicle with arbitrary shape , size , or mass . I n particular , the universal 
Z function for L/D = 0 i s presented in figure 4(a ) (liZ is plotted sinr.e 
this product stays within smaller bounds than Z) . Solutions of eQua­
tion ( 44) a l so have been carried out for various values of ~(L/D). The 
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numerical method employed is described in appendix D. Curves of the 
Z functions and related quantities are presented in figure 4 (b ) for 
values of ~(L/D ) corresponding for earth to L/D = 0 .1 , 0 . 25 , 0.5, 
and 1. They are plotted in coordinates especial ly suited for comparison 
with the ZII function of equation (41 ) representing Sanger's concept 
of an equilibrium hypersonic glide. Values are not shown for L/D > 1 
since ZII can be used in the velocity range of interest for these cases. 
This is evident from the various curves in figure 4(b). The dashed curve 
represents ZII which is the exact solution for L/D = 00. From the Z 
functions the various quantities of engineering interest, such as the 
deceleration, descent angle, range, time, dens ity- velocity relationship, 
dynamic pressure, Reynolds number, heating rate, and total heat absorbed 
can be computed from equations (26) to (39) presented earlier . 

Nonlifting entry with initial angle of descent (Ui = 1, ~i < 0).­

We now consider entry when the initial descent angle is not negligible, 
as it is in the case of a decaying orbit , but is some finite value ~i . 

Entry with an initial angle occurs in the case of a ballistic vehicle, 
or a satellite to which a retrorocket has been applied to divert the orbit 
into one which will induce the entry process . The differential equa-
tion (21) for nonlifting bodies is applicable for large as well as small 
angles of descent . 

U ~ (d~ _ -u~) _ 1 - u2 cos4~ 
du du uZ 

o (46 ) 

The initial conditions are 

In this case we have a double parameter family of solutions (ui and 
oJ I3r sin ~ ). Actually, \'le need solutions to the nonlinear equation (46) 
only for quite small initial angles inasmuch as the Allen-Eggers solution 
(eq. (40)) is applicable for moderate and large angles . This may be seen 
from figure 5 which presents example Z functions corresponding to the 
nonlinear equation for various -~i up to 200 with ui = 0.9 (23,400 fps, 
for earth) . Since the ordinate is Z/~( -s in ~i)' the Allen-Eggers 
solution is represented by the ordinate function U In(ui/u) on this plot. 
It is evident that their solution, which neglects gravity and centrifugal 

\ forces, i s quite accurate near peak heating (u = 0 . 7) for descent angles 
greater than about 50 . Near maximum deceleration (u = 0.4) the descent 
angle has to be somewhat larger for comparable accuracy. It is clear 
that, as far as peak heating and maximum deceleration are concerned , a 
family of solutions to the nonlinear equation need only b~ computed for 
small initial angles. 

The Z functions for small initial angles and for the case of 
satellite entry (ui = 1) are of special practical interest. These are 
presented in figure 6(a) for various values of ~ ~i such that in the 
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earth ' s atmosphere -~i = 10 , 20 , 30 , 40 , and 60 • Rat her than to plot 
Z itself, the Quant ity 30 liZ is plotted which represents for the earth 
the horizontal deceleration in g's . Tabulated values are presented in 
tabl e I for -~i = 00 , 0. 50 , 10 , 20 , 30 , and 40 . It i s noted that these 
values tabul ated are solutions to eQuat i on (46) wit h the cos4~ term 
included , and hence are applicable to terminal conditions of small u 
(say less than 0 . 1) where ~ is large as well as to conditions near peak 
heating and maximum deceleration where ~ i s small. The tab les of Z 
apply to any planet for the same initial val ue of ~ ~i ' The supple ­
mentary tables of -~earth ' (Dslr)earth' and tearth can be applied to 
other planets over the range where ~ is small by regarding the tabu­
lated val ues as representing - ( .[fiT I 30)~ , (.[fiT I 30) (65 I r) , and 27 ffg t , 
respectively (see eQs . (27), (28), and (30)) . 

Entry with initial angle of descent for various LID (Ui = 1, ~i < 0) .­

If we now consider a vehicl e with lift , we must restrict our considerations 
to small initial angles of descent -~i and to the portion of trajectory 
over which -~ remains sufficiently small that (LID) I tan ~ I« l (assump­
tion (b )). The basic differential eQuation (21 ), with cos ~ = 1 , becomes 
the same as eQuation (44), and the initial condit i ons are now 

Z(l ) = 0 Z ' (1) = ffr CPi (48) 

Solutions to eQuation (44 ) with these initial conditions have been obtained 
for various values of ~ ~i and for various val ues of the parameter 
ffr(L/D) . 

I n figure 6 some curves representing Z functions are presented 
as a function of -~i for earth . The vari ous portions of this figure 
correspond to LID for earth of 0.25 , 0.5, 0.7, and 1. It is evident 
from these figures , as might be expected , that small values of LID and 
- ~i do not result in any significant skippi ng , but once the LID is 
increased beyond a certain amount , or the initial descent angle is greater 
than a certain value , then numerous skips of s i zable i ntensity occur 
during the entry trajectory . Information on the heating rates , total heat 
absorbed , and horizontal range during entry , has been obtained from these 
Z functions and is discussed l ater . The Z functions i n f i gure 6 
could be applied to any planet by noting that ~i for earth is eQuival ent 
to a val ue (~r ) e-l/2 times as great on another planet , and that a given 
(LID ) for earth is eQuivalent to a value (~r)e-l/2 times as great . 

Atmosphere braking for various LID (Ui > 1, ~i < 0).- I n entering 

the atmosphere of a pl anet from space , the approach vel oci ty can be com­
parable to escape velocity (Ui = J2). I t is uneconomi cal in weight to 
use chemical rockets for reducing the approach vel ocity in outer space , 
and it is possibly uneconomical in time to use a low- thrust space engine . 
Hence there is considerable interest in the braking process of making 
successive passes through an atmosphere in order to reduce stepwise the 
velocity and the eccentrici ty of an orb i t to near circular conditions 
(ui == 1 ) . 
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In analyzing the atmosphere braking process , cos ~ can safel y be 
replaced by unity, so the basic differential equation (21) becomes once 
again the same as equation (44), but the initi al conditions are now 

where Ui > 1. By arbitrarily selecting various val ues for the angle of 
entry ~i, various solutions are obtained corresponding to single passes 
through the atmosphere at various altitudes from the surface . It might 
be more convenient in describing a single pass to select as the arbitrary 
parameter the velocity uex at the exit of the pass, or 30 (UZ: max , which , 
for the earth , would be the maximum deceleration in g fs experienced during 
this pass, and would be independent of W/CnA. 

In figure 7, four Z functions are presented for nonlifting vehicles 
which start the braking process with essentially escape velocity (Ui =1.4) 
but with different values of maximum deceleration in the first pass . The 
short- dash curve (a) corresponds to a maximum decel eration in the first 
pass of 30(UZ )max = 0 . 46 . It is seen that, starting with this initial 
pass (and with no further control exercised on the vehicle ) six passes 
would occur before the seventh pass completed the entry process . The 
long-dash curve (b) in figure 7 corresponds to 30 (UZ) max = 1.65 for the 
first pass. In this case only two passes occur before the third pass 
completes the entry. The other two curves ( c ) and (d ) in figure 7 corr e ­
spond to conditions wherein the first pass is the only one , inasmuch as 
it is made sufficiently close to the planet surface to complete entry 
without ever emerging from the atmosphere. 

In computing the Z function for a successive pass, the initial 
angle was assumed to be the same as the exit angle of the previous pass . 
The exit angle was taken at the point where dr/r = dU/u. Further dis ­
cussion of these Z functions, and the results of other such functions 
computed for atmosphere braking are presented later. 

RESULTS AND DISCUSSION 

From the various Z functions presented, it is relatively easy to 
study the influence on entry motion of several variables of practical 
interest . For example , we could study the effect of lift-drag ratio on 
deceleration and aerodynamic heating , or the effect of a small error i n 
initial angle of descent on the range over which the re - entry process 
takes place . Before considering such topics , however , it is desirabl e 
to discuss two preliminary items . First, we compare some results from 
the present approximate analysis for an exponential atmosphere with more 
exact machine calculations for a standard atmosphere . This serves to 
provide a feeling for the accuracy of the present analysis , and also to 
show how any of the subsequent results readily can be corrected, if 
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desired, for atmospheric temperature variations. Second, we discuss the 
relative deceleration and aerodynamic heating of various pl anetary atmos ­
pheres. This provides multiplication factors which enable any of the 
subsequent results for the earth ' s atmosphere to be quickly converted to 
results for other planetary atmospheres . 

Comparison of Present Analysis With Other Calculations 

An insight into the approximate accuracy to be expected from the 
present analysis can be obtained by comparison with machine calculations 
of the pair of motion equations for specific vehicl es . Differences 
between the present analysis and more exact calculations can arise 
inasmuch as the present analysis makes certain assumptions about the 
trajectory (that is, Idr/rl«ldu/ul and I(L/D)tan ~ I « 1) and about the 
atmosphere (Poo - e-~Y) which need not be made in numerical machine cal­
culations . The a posteriori check of the trajectory assumptions, as 
presented in appendix A, shows that insofar as convective heating and 
peak decelerations are concerned, only a few percent difference should 
be expected for vehicles entering from a satellite orbit . A check of the 
assumption of an exponential atmosphere can be obtained by comparing with 
numerical calculations for some standard atmosphere . In figure 8 a com­
parison is made of the present analysis with numerical calculations from 
the pair of motion equations using the ARDC model atmosphere . These 
numerical calculations were made by M. W. Rubesin and G. Goodwin using 
equations equivalent to ( 6) and (7) without discarding any terms . The 
curves in figure 8 (a ) show close agreement of both the al titude and the 
descent angle as a function of velocity . The curves in figure 8(b) show 
similar agreement of the circumferential distance traveled (6s / r ), and of 
the maximum deceleration (within 6 percent ). This small difference in 
maximum deceleration is believed due primaril y to the departure of the 
ARne atmosphere in certain altitude regions from the idealized exponential 
atmosphere of constant ~ (1/23,500 ft - l ). 

As noted earlier , the present analytical method can readily be 
applied using semilocal values of ~ if it is desired to make correc ­
tions to the results in order that they more closel y represent some 
standard atmosphere . Corrections also can be made to allow for atmos ­
pheric seasonal variations, or for variations with the earth ' s latitude. 
In this sense, analytical results for an exponential atmosphere are actu­
ally more general for global application than numerical results for any 
single standard atmosphere . This can be seen from the results which 
follow . Let us consider the maximum deceleration for entry f r om a 
decaying orbit . This occurs at a vel ocity near u = 0 .43 at which point 
Z = 0 . 64 (fig . 4 (a »). The approximate altitude at which maximum deceler ­
ation occurs is obtained by substituting either into equation (31a) to 
yield (Poo!Po)max du/dt = 5 . 5(W/CDA)X10- , or into equation ( 31b) to yield 
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Ymax du/dt = 23 ,500 (9.96 - In C~) ft 

and is seen to depend on W/CDA. Since ~ for the ARDC model atmos ­
phere depends weakly on altitude , as shown in figure 2 , the maximum decel ­
eration ffr(uZ)max = 0 . 278 ffr in a standard atmosphere al so will 
depend weakly on altitude, and hence weakly on W/CDA. The resulting 
values of - amax/g are shown by the solid curve in figure 9 , for (W/CnA) 
values ranging from 0 . 01 to 1000 lb/ft . They agree very well with the 
points shown which represent numerical integrations (Rubesin- Goodwin ) of 
the complete e~uations for the ARDC model atmosphere . 

If desired , similar corrections for atmospheric variations also 
could be made to other ~uantities computed for a mean value ~ = 30 . 
Th~s, the distance traveled varies as (~r )-l~ ( e~. (28 )), and the con­
vective heating rate varies as (~r )l /4 (eq.(36)). It is noted that the 
f luctuations in ~ with altitude, as plotted in figure 2 correspond 
very closely to the f luctuations in T-l/2, as should be expected , since 
~ = Mg/RT . Hence any variations in mean atmospheric temperature , such as 
seasonal variations or longitudinal variations , can just as readily be 
corrected for as variations with altitude . 

Gazley (ref . 8) has developed an approximate theory for t he case of 
orbital decay with L/D = 0 by assuming u~ is constant . Thi s arbitra r y 
restriction yields results for orbital decay without lift that are quali­
tatively similar to the present analysis , but quant itatively dissimilar . 
For example , the density-velocity relationship near peak heating (u = 0 . 8) 
differs by a factor of roughly 2 . For higher velocities the discrepancy 
rapidly increases , and for l ower velocities it decreases . The peak decel ­
eration occurs at lower velocities and is not greatly affected by Gazley's 
assumption . For the earth (ffr = 30) he obtains a maximum of 9 . 6 g at 
u = 0 . 54, whereas the present analysis, which does not make any assumpt i ons 
about the u(~) relationship , yields 8 . 3 g at u = 0 .43. 

Relative Deceleration , Heating , and Reynolds Numbers 
For Entry Into Various Planetary Atmospheres 

For a given size and shape of vehicle the deceleration , l aminar 
heating rate, total heat absorbed , and Reynolds number vary , according 
to equations (26), (36 ), (39 ), and (33 ), respectively , as 

a ~ g ffrz 

q ~ Pr- 2 /3~J./2g3/2r5/4~l/4zl/2 

Q ~ Pr-2 /3~ J. / 2gr5 /4~ -l /4Z -l /2 
o 

Re ~ gl/2~l/2 1lo -lZ 

(50) 
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I n the case of nonlifting entry from a decaying orbit ( zero initial angle 
of descent ) , the characteristics of the planetary atmosphere (~) do not 
enter the differential equation or the initial conditions (Zi = 0, 
Zi ' = O)j hence Z can be disregarded in computing the rel ative values 
of the above quantities for various planets . In the more general case of 
entry from high altitude (Zi = 0 ) with fixed values of ~ ~i and ~(L/D) , 
the Z function still would be the same for all planets . Neglecting dif ­
ferences in Prandtl number and ratio of specific heats , we have for several 
planets the following relative values applicable to nonlifting entry from 
decaying orbits, or to any other type of entry where the val ues of ~ ~i 
and ~(L/D) are fixed : 

(du/dt) $ 'Ie ~ 
Re$ 

relative rel ative 
relative heating rate , 

relative total Reynol ds 
deceler-

(~ol/ 2g3 / 2r5 / 4~1/ 4 ) $ 
heat absorbed, number, 

ation , ( ~o 1 /2gr5 / 413 - 1/ 4) $ (g 1 /2 131 /2 ~o - 1) $ 
(g ffr) $ 

Venus 0 · 9 0 · 7 0 .8 1. 
Earth 1.00 l.00 1.00 1.00 
Mars .2 . 09 .2 .4 
Jupiter 5 · 50 . 50 . 2 . 

It is to be remembered that, in the case of a vehicl e with lift, in order 
to have the same Z function, a given LID ratio on earth is equivalent 
to an LID ratio (~r ) $- 1/2 times as great on a planet other than earth, 
and that a given ~i on earth also is equivalent to a ~i value 
(13r )$-1 /2 times as great on another planet . This equivalence, together 
with the above table , enables any result for earth to be converted to a 
result for each of the other planets. 

In the special case of entry at a constant angle ~i' the atmospheric 
characteristics enter the initial conditions on Z (Zi ' = ~ sin ~i )' 
Since equation ( 40 ) shows that Z ~~ for this type of re- entry, we 
include this in the expressions ( 50 ) to obtain the fol l owing relative 
values applicable only to ballistic entry (LID = 0 ) at constant ~ : 

(du / dt )$ q$ ~ Ree 
relative relative relative relative 
deceler - heating rate , total heat Reynol ds number , 
ation , ( ~ 1 /2g3 /2r 3 /2 ~1 /2 )$ absorbed, ( gl /2 ~r1/2~ -1) 

( g 13r )$ ( ~ l /2gr )$ o $ 

Venus 0 · 9 0 · 7 0 · 7 1. 
Earth 1.00 1.00 1.00 1.00 
Mars . 09 .06 .2 .2 
Jupiter l l. 70 . 20 . 4. 
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These relative values for ballistic entry are exactly the same, of course, 
as would be obtained directly from the theory of reference 1 and are 
applicable for initial angles greater than about 50. The previous table 
would apply for ~i = 00 . For nonlifting entry with ~i the order of a few 
degrees, the relative values for various planets would be intermediate to 
the above two tables. 

We see that entry into the atmosphere of Venus involves only slightly 
less deceleration and heating than does entry into the earthrs atmosphere, 
whereas entry into Mars involves much less deceleration and heating, and 
entry into Jupiter, much more. The Reynolds numbers, however, are not as 
greatly different for the various planets. 

Effect of Lift on Deceleration, Heating Rate, and Total Heat 
Absorbed During Entry From Decaying Orbits 

From the relative values of deceleration and heating for various 
planets , together with the Z functions already presented, certain 
quantities of practical interest readily can be computed. The remainder 
of this report concerns such application of the Z functions for the 
various types of entry. In the present section we discuss first lifting 
entry from decaying orbits (Ui = 1, ~i = 0). 

Deceleration.- A plot of the horizontal deceleration d~/dt in gls 
for the earthls atmosphere (equal to 30 liZ) is presented in figure 10 as 
a function of the dimensionless velocity u for various lift -drag ratios . 
The powerful effect of LID ratios the order of only a few tenths is 
evident from this figure . It is also evident that the maximum decelera­
t i on occurs near a velocity of u = 0.4. These curves are independent of 
the shape, size, and mass of the vehicle. The result ant deceleration is 

taken as a ==J(du/dt)2 + [(dv/dt) - (u2 /r) + g]2 . For no moti on this 
expression reduces to g, the gravitational constant of the planet . By 
substituting equations (16) and (20) we have 

a == .J7h. liZ J 1 + (tan g cos ~ ~ 

which , for small angles (I~I « LID, cos ~ ~ 1, tan2~ « 1) yields 

A plot of this approximation for the maximum resultant deceleration is 
shown in figure 11 for the several planets considered . Once again the 
strong influence of the LID ratio near LID = 0 is evident. Also 
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evi dent are the r el ativel y l ow decel erations for Mar s compared to earth 
and Venus , and the rel ati vel y hi gh value s for Jupiter . 

From t he vi ewpoint of human tol erance t o accel er ati on stress , it is 
not only the peak deceleration which must be considered , but also the 
or i entation of the body , the durati on of stre ss , and the rate of onset of 
decel eration. Numerous experiments with the human centrifuge have shown 
that human tolerance is greatest in transverse orientation j that is , with 
either chest - to -back or back- to- chest l oading . Centri fuge experiments 
( see, e . g ., ref . 16 and the references quoted t here i n ) al so have shown 
that the magnitude of accel eration is rel ati vel y more important than the 
duration , i n the sense that if the acceleration is i ncreased 10 percent, 
the tol erabl e duration is decreased by a factor of about 2 . Thus, a 
method believed to be conservati ve for cal culating t he effective duration 
6t during entry is to assume that the maximum decel eration acts over the 
entire time it would take for this decel eration to slow the vehicle from 
orbital vel ocity to rest. Curves of maximum decel eration versus duration 
computed in this manner are presented i n figure 1 2 for vari ous planetary 
atmospheres and for various L/D ratios . I ncluded in this figure is a 
boundary representing human tolerance in the transverse orientation for 
condi tions of rapid onset of acceleration (ref . 16 and references quoted 
therein ). This boundary also is conservative inasmuch as entry decelera~ 
tions are buil t up relati vely sl owly under which conditions, according to 
the centrifuge experiments of reference 17 , the body circulation builds 
up a reflex action of effectiveness comparable to that provided by a 
G- suit. The conservative l imits determined from this figure are indicated 
in figure 11. I t is evident from both figures 11 and 12 that the deceler ­
ations for orbital entry into the earth ' s atmosphere are well within human 
tol erance even for nonlifting bodies . For Mars , human tolerance is suf ­
ficient to permit entry at sizable angles of descent or with negative 
lifting devices . Manned entry i nto Jupiter, however , would require a 
positive lifting body, or some other device in order to maintain the 
decelerations within human tolerance . 

Heating rate .- In examining the effect of lift on convection aero ­
dynamic heating of entering vehicl es, we can use the same Z functions 
as employed in studying the decelerations . We note first that for many 
vehicles, the values of Reynolds number near peak heating are sufficiently 
low that one would expect a considerable extent of laminar flow , yet suf ­
ficiently high to be in continuum- gas flow rather than free -molecule flow . 
A pl ot of Re/l at peak heating is presented in figure 13 as a function 
of W/CnA for entry from orbital decay into the earth ' s atmosphere . A 
vehicle on a large parachute would correspond to W/CnA the order of 
0 .1 lb/ft2 , and , with L/D = 0, to Re of about 102 ft - l • For such con­
ditions the peak heating, which occurs at a Mach number Moo = 20, would 
be near the slip- flow regime (Re/Moo = 1). A reasonably bl unt metallic 
structure would correspond to W/CnA values the order of 10 to 100 lb/ft2 , 

and to values of Re / l the order of 1 03 to 105 . Such values are wel l 
within the continuum regime, yet l ow enough to be associated with laminar 
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f l ow . The curves in figure 13 are for earth but can be applied to other 
planets by multiplying the ordinate by the value of the relative Reynolds 
number already t abulated for several pl anets . 

For a given atmosphere the l aminar heating rate i s proportional to 

A plot of the dimensionless heating rate Q as a function of u i s 
presented in figure 14 for entry from decaying orbits . The maximum value 
occurs at a velocity u of about 0.8 and is a function only of the param­
eter ~(L/D) as follows : 

.j"f3;( L/ D ) (L/D)Ea r th 
- - l/4 
Qmax Qmax 

-1 5 - 0 . 5 0 . 375 0 . 783 
- 7 . 5 -. 25 . 302 .741 
- 3 - .1 . 253 . 709 
0 0 .218 . 683 

3 .1 .184 . 656 
7 . 5 . 25 .138 . 61 0 

1 5 . 5 .098 . 560 
30 1.0 . 070 . 514 

For LID ratios greater than 1 the asymptotic solution ZII 
( 

- 2 
1 - U I 

..[f3r u (L/D) 

can be used to yiel d 
2 --;::=====- as noted in appendix C. 

3 J 3 ffr(L/D) 

We will consider that the vehicle dimensions and weight (R) A) and W) 
are fixed) and will study the influence of vehicle shape (CD and LID). 
Under these conditions the maximum heating rate is proportional to 
qmax /JCD . The effect of lift - drag ratio on maximum heating rate (which 
occurs at a u of roughly 0 . 8 ) is illustrated in figure 1 5 for entry 
from decaying orbits. The Quantities plotted have been normalized to 
unity for L/D = 0 ) and can be applied directly to any planet ) as can th~ 
curves in figure 14) by recalling that a given L/D for Earth is eQuiva­
l ent to a value (~r ) $l/2 times as much for a planet other than Earth. If 
the L/D ratio could be increased indefinitely without changing the drag 
coefficient such as by using reaction lift ) then the maximum laminar heat­
ing rate would be proport i onal to the dotted line in figure l 5 represent­
ing Qmax and would decrease indef initely with an increase in LID 
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(asymptotically as (L/D) - 1/2 for LID greater than about 0 . 5). Physically 
this decrease arises because the greater the lift, the less rapid the vehi­
cle descends, so that the heating occurs at higher altitudes where the 
density is lower. On a practical device which uses aerodynamic lift, how­
ever, the LID ratio cannot be increased much without making the vehicle 
more slender and decreasing CDj a decrease in CD increases the heating 
rate ( - 1 IJCD) because it results in less slowing down, thereby causing 
the peak heating to occur at lower altitudes where the density is higher . 
As a result, there is an optimum LID ratio for minimizing the heating 
rate which, for the three families of shapes indicated in figure 15, is 
near the range of LID between about 0.5 and 1 . For the family of half ­
cones and half-paraboloids, the LID ratio was changed by changing the 
fineness ratio while maintaining the flat tops parallel to the stream 
direction . For the family of flat plates the LID ratio was changed by 
changing the angle of attack . In all cases, CD and LID were computed for 
Newtonian flow . The optimum LID ratio is seen to depend somewhat on the 
particular aerodynamic shape , since LID and CD are coupled somewhat dif ­
ferently for different shapes. It is evident that the net benefit to be 
gained by using aerodynamic lift amounts to about a factor of 2 in reduc ­
ing the maximum rate of aerodynamic heating at a stagnation point . 

Inasmuch as the optimum LID ratios for minimizing the maximum heat­
ing rate are greater than about 0 . 5 , they are in the range 1-There the ZII 
function for orbital decay is a good approximation near peak heating ( see 
fig . 4(b) ). From e~uations (36) and (41) we see that for a given planet 
and given radius at a stagnation point, 

a-a _5 /2 Hi!i-u2 

~ ~ CDA ~ - C~ r.. u 
if" u(L/D) 

since LID 

Cdmax -J C:A 
( 54) 

and we see that the various mlnlIDa in figure 15 each correspond to enter­
ing at CLmax ' The peak heating always occurs at a dimensionless velocity 

u = J273 = 0 . 82 . For flat plates in Newtonian flow CLmax = 0 . 77 at an a 

angle of attack of 550
, for which LID = 0 .71. As noted in appendix C, 

these conditions also turn out to represent optimum ones for minimizing 
the total heat absorbed for skipping- type entry, because in this case also 
q and Q vary as (L/D )-1/2 . 

Surface temperature for radiation equilibrium.- The stagnation sur­
face temperature experienced during entry of a structure having relatively 
small heat capacity (e .g ., a thin skin) is calculated by equating the 
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radiation heating rate to the convective heat ing rate. For entry from 
decaying orbits we may set cos ~ = 1, inasmuch as ~ near peak heating 
varies from _2 . 60 to _0 . 20 as L/D varie s from 0 t o 1. We have 

EaT 4 = qs = 590 J m q 
Ws CnAR (55 ) 

where E i s the surface radiative emissivity, R the radius of curvature , 
and cr = 0 .48XlO- 12 Btu ft -2 sec - l °R- 4 is the Stefan- Boltzmann constant. 
By substituting the value of gc for Earth there results (for Tw in oR, 
R in ft , W/CnA in lb ft -2 ) , 

Tw El/4Rl /8 = 3840 (~)l /8 ql / 4 
s CnA (56) 

where Q for l aminar f low is equal to U5 / 2Z l /2 . The maximum value 
~axl/4 is listed in the preceding table for entry from decaying orbits . 

Other types of entry would require the use of other Z functions, but 
equati on (56 ) would remain unchanged . For a planet other than Earth , the 
radiati on- equilibrium temperature calculated from the above equation for 
Earth would have to be multiplied by the 1/4- root of a quanti ty al ready 
tabulated; namely, the relative rate of heating q@ for that pl anet . The 
relative radi at i on- equilibrium temperature factors Tw@ = ~l/4 are : 

Tw __ Ea_ 

Venus 0 .91 
Earth 1.00 
Mars . 55 
Jupiter 2 .7 

A graph of the maximum temperature parameter T El/4Rl /8 for entry from Ws 

decaying orbits i s presented in figure 16 as a function of W/CDA (W in 
Earth weight ) . It is noted that the numerical calculations for nonlifting 
satellite s descending in the Earthrs atmosphere, as reported by Kemp and 
Riddell (ref . 6 ) and by Gazley and Masson (ref. 5) , agree well with the 
anal ytical variation represented by the present analys is . 

The curves for Tws in figure 16 could be applied to other planets 
for any given value of ~(L/D) by multiplying the ordinate by the 
quantity Tw@ tabulated above . Since L/D is a more convenient variable 
than ~(L/D), however , a separate pl ot of the parameter 
TwS El / 4/(W/CnAR)l/8 (which represents the maximum surface temperature that 
is experienced during entry for radi ation equilibrium at a stagnati on 
point of radius of curvature R) is presented in figure 17 as a function 
of LID for several pl anets . The coupling between CD and L/D i s taken 
as that for the family of half -paraboloids . The others would not be 



NACA TN 4276 

greatly different, as may be seen from the curves in figure 15. We can 
deduce from figure 17, for example, that a nonlifting body with E = 0·9, 
and w/cDAR = 1 lb ft- 3 (e.g., R = 1 ft and W/CnA = 1 lb ft-2 or R = 10 ft 
and W/CnA = 10 lb ft - 2 ) would experience during entry from orbital decay 
a maximum stagnation temperature of approximately 10000 F for Mars, 
20000 F for Venus, 22000 F for Earth, and 68000 F for Jupiter . 

Total heat absorbed. - It is emphasized that the effect of lift-drag 
ratio on the total heat absorbed Q is ~uite different from the effect 
just discussed on the heating rate ~. The use of lift prevents a vehicle 
with a given drag coefficient from descending as rapidly as a nonlifting 
one, thus leading to lower heating rates at higher altitudes, but the lift 
also prolongs the descent markedly . This prolongation dominates over the 
reduced rate of heating, to lead to a net increase in total heat absorbed 
with increasing LID. That the total heat absorbed must increase with an 
increase in LID, may be clearly seen from the general e~uation 

developed by Allen and Eggers in reference 1. For a given CD, an increase 
in LID does not change the kinetic energy loss, but it does increase the 
effective laminar skin-friction coefficient CF t inasmuch as the corre­
sponding increase in altitude results in the heat being taken aboard at 
lower Reynolds numbers where CF t is higher . 

The ~uantitative magnitude of the increase in Q with an increase 
in LID may be deduced from e~uation (39) for Q (vlhich neglects the heat 
radiated from the surface ). For a given atmosphere (given Pr, ~, g, r, 
~) and a given size and weight (A, R, W), Q for laminar flow and 
cos ~ = 1 is proportional to the ~uantity 

__ 1_ i Ul u
3

/
2
du 

- .[CD il Zl / 2 

where Q is a function of LID and is very insensitive to the lower 
limit u down to which the integration is carried (providing u is 
small) . For convenience in evaluating Q from the Z functions, we 
select an arbitrary upper limit Ul = 0.99 . The following values for 
Q are obtained for entry from decaying orbits : 
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~(L/D ) (L/D)Earth 
Q 

for Ul 0·99 

- 30 -1. 0 0 ·75 
-15 -· 5 ·93 

- 7 · 5 -. 25 1.09 
-3 -.1 1 .23 
0 0 1· 36 
3 .1 1 .54 
7 · 5 .25 1·90 

15 · 5 2 . 53 
30 1 .0 3 · 54 

For LID ratios greater than 1 the asymptotic ZII function can be used 
to yield QII = 0.62(~r )l/\fL75 for the heat absorbed between Ul = 0 ·99 
and u = O. (See appendix C for a more general expression for QII.) 

The effect of lift-drag ratio on the total convective heat absorbed 
(disregarding radiation from the surface ) during entry into the earth ' s 
atmosphere from decaying orbits is plotted in figure 18. These curves 
are normalized to unity for LID = O. In contradistinction to the effect 
on q, an increase in LID by itself is seen to always increase Q, and 
hence Q, as anticipated from equation (57 ). When the coupling between 
LID and CD is considered, an optimum occurs at negative LID ratios , 
near the range - 0.7 to - 0 . 5 . In view of the fact that these negative 
LID ratios result in high decelerations (fig . 11 ) they would not be 
feasible for a manned entry into the earth ' s atmosphere; the practical 
optimum for a heat - sink vehicle would be near LID = O. 

In figure 19 curves are presented of the total heat absorbed per unit 
area during entry into various planets from decaying orbits . Radiation 
from the surface is disregarded for these curves . They represent the 
family of half - paraboloids , but the other families would not be signifi ­
cantly different . As would be expected , the minimum for each pl anet occurs 
at a negative LID ratio . For Mars the decelerati ons are not excessive 
for LID near - 0.5 (see fig . 11) but the reduction in total heat absorbed 
compared to a nonlifting vehicle is only about 10 percent . 

Nonlifting Entry From Deflected Orbits 

In the discussions thus far we have considered only the trajectories 
resulting from decaying orbits wherein the initial descent angle is 
essentially zero . This type of entry leads to rel atively shallow angl es 
of descent with relatively low heating rates , but provides very little 
control over the time of entry and the location of impact. One method 
commonly envisioned to fix the time of entry , and greatly improve the 
accuracy of landing in a predetermined area, is to induce entry by 
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suddenly deflecting an orbit so as to enter at some initial f l ight path 
angl e ~i . A retrorocket force , for exampl e , or a rocket force applied 
in the direction toward the pl anet center will initiate such entry . 
I nduced entry of this type , however , results i n greater decel erations and 
can affect the aerodynamic heating problem either adversely or favorabl y . 

A curve is presented in f i gure 20(a) showing t he ef f ect of i ni t i al angle 
~i on the maximum decelera tion experienced during entry of nonlifting 
vehicles into the earth ' s atmosphere . Also shown for comparison is the 
approximate limit of human tol erance (for rapid onset with transverse 
orientation), and a dotted curve corresponding to the Allen-Eggers theory 
for ~ = constant = ~i . This theory for Ui = 1 can be used for descent 
angl es greater than about 40 or 50 . Above about -~i = 30 the decel era­
t ions exceed human tolerance , so that some method of deceleration all evi a ­
t i on , such as provided by l ift , or by increas i ng the value of W/CnA 
during descent , would have to be empl oyed for manned vehicl es entering at 
these l arger angles of descent . The curve of (du/dt )max in Earth g ' s 
can be appl ied to any pl anet by regarding the absc i ssa s cale as bei ng 
- (~)~~i and then multipl ying the ordinate scale by (g ~)e . 

The effect of initial angle on maximum laminar heating rate and on 
the total l aminar heat absorbed is shown in figure 20 (b ). As would be 
expected , the steeper the descent the greater the heating rate . The total 
heat absorbed , however , i s less for the steeper descents because the 
shorter duration more than compensates for the greater laminar heating 
rates . E~uation ( 57 ) shows that this must be the case , since entry at 
larger angles results in the heat being taken aboard at lower al titudes 
where the laminar skin-friction coefficients are small . If the flow were 
turbulent the corresponding reduction in CF ' and hence in Q with an 
increase in descent angle would be less . The curves in figure 20 (b ) 
approach the curves developed from the ZI function corresponding to the 
solution of Allen and Eggers ( see e~s . (C3 ) and (c4) of appendix C) . In 
order to be consistent with the other values of Q representing the heat 
absorbed from IT = 0 . 99 to u ~ 0, a calculated factor 0 . 84 has been applied 
to e~uation (c4 ) which represents the heat absorbed from u = 1 to u = O. 
It is seen from figure 20 (b ) that the Allen-Eggers solution for heat 
transfer in this case (Ui = 1) is ~uite accurate for descent angles greater 
than about 20 . The curves in figure 20 (b) can be appl ied to other planets 
by regarding the abscissa as a scal e for the ~uantity -(~) ~~i' 

In the figure 20 (c) a curve is presented showing the strong influence 
of initial descent angle on entry range for Earth . Two incremental ranges 
are shown : a solid line curve for the distance between the point where 
U = 0 . 995 and the impact point (u = 0 ), and a dashed-line curve for the 
distance between U = 0 . 99 and impact . From the sl ope of the solid- line 
curve we obtain the l ower curve shown of average mi ss di stance for an 
error in ~i of 0 . 50 . It is to be remembered that this miss distance 
curve does not consider the essentially dragless portion of a defl ected 
orbit from the point of orbit deflection to the poi nt where u = 0 . 995 , 
and hence it is indicative of only the entry portion of the practical 
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problem of estimating miss distance . The curve illustrates, however, the 
advantage of using a small initial descent angle in order to greatly 
improve the ability to determine impact point . 

A further contribution to miss distance which can be studied with 
the present equations is that due to atmospheric variations in temperature 
with either season or l atitude . Equation (28) shows that 6s ~ (~~r)-l, 
so that a ±15-percent seasonal variation in temperature would correspond 
to a f7-percent variation in ~ and in 63 . For small initial angles, 
say ~i = _10 , the range during entry from u = 0 . 995 to impact is roughly 
1000 miles according to figure 20 (c ), and hence the impact point would 
vary ±70 miles . The entry range would be greater in summer than in winter. 

A graph of the Reynolds number per foot at peak heating for nonlifting 
entry into the earth ' s atmosphere with Vi = 1 is presented in figure 21 
for -~i = 00 , 50 ,100 , 200 , 400 , and 900 . The -~i = 00 curve is based 
on the Z function of figure 4(a). All others are based on the ZI 
function corresponding to the Allen-Eggers solution . Entry at other values 
of Vi, according to this solution, results in values of Re proportional 
to Vi . 

Lifting Entry From Deflected Orbits 

If a vehicle with L/D > 0 enters the atmosphere from a deflected 
orbit at a sufficiently large initial angl e of descent , the entry trajec­
tory is comprised of one or more ski ps . This is to be expected on physical 
grounds and is evident from the Z functions already presented in fig ­
ures 6 (b ) to 6 (e ). During the firs t portion of descent, a vehicle under­
going a sizabl e ski p will, at the bottom of the skip , decelerate and take 
on heat at a lower altitude than a vehicle at the same velocity which 
glides in smoothly from a decaying orbit ( ~i = 0 ). For large initial 
angles of descent , then , we might expect a skipping vehicl e entering from 
a deflected orbit to experience greater decel erations , higher heating 
rates, and shorter entry range than a gl iding vehicle entering from a 
decaying orbit . On the other hand, since the skipping vehicle takes on 
most of its heat at a l ower altitude (where the skin-friction coefficients 
are lower) we would expect from equation (57 ) that the skipping vehicle 
would absorb less total heat during entry than the orbiting- decay vehicle . 
Calculati ons from the Z functions of figures 6 (b ) to 6 (e ) show these 
various expectations to be the case for initial descent angles -(~i )Earth 

greater than about 10. This is illustrated in figure 22 (a ) for maximum 
laminar heating rate , in figure 22 (b ) for total laminar heat absorbed , and 
in figure 22 (c ) for entry range . The expected increase in deceleration is 
already evident from figures 6 (b ) to 6(e) which show 30 liZ ~ du/dt as the 
ordinate . 

If a vehicle with LID> 0 enters the atmosphere from a deflected 
orbit at a very small initial angle of descent, so that the trajectory 
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might be described more appropriately as a rippling descent rather than 
a skipping one , then the peak deceleration and maximum heating rates can 
actually be slightly smaller than for the same vehicle gliding in from 
a decaying orbit . What happens in such cases may be seen, for example, 
in figure 6 (c) by comparing the curves for -~i = 10 and -~i = 00 . The 
rippling entry (-~i = 10 ) has one maximum on each side of the maximum 
for -~i = 00 representing orbital-decay entry . These two maxima in 
deceleration for -~i = 10 are slightly less than the single maximum for 
-~i = 00 . A similar situation can exist for the maxima in heating rate . 
As a result, the curves in figure 22(a ) for the dimensionless maximum 
heating rate qmax for lifting vehicles entering from deflected orbits 
show slight waviness and sometimes slight reductions bel ow the values for 
-~i = 0 when the initial descent angle is less than about 1 / 20 to 10. 
Consequentl y, we can say that, in principle, a rippling- type descent from 
a deflected orbit can have l ower maximum heating rates than a gliding 
descent, but for practical purposes , there is no significant difference 
between the two . 

Composite Entry 

It may be desirable to combine lifting and nonlifting entry in order 
to achieve some advantages of both types . For landing maneuverability it 
obviously is advantageous to employ a lifting vehicl e . The total heat 
absorbed by a lifting vehicle , however , is much higher than for a nonlift ­
ing vehicle (fig . 18) . The optimum use of aerodynamic lift reduces the 
maximum heating rate only to about one -half that of a nonlifting vehicle 
of the same W/A . Nonlifting vehicles can more easily be constructed 
with much lighter W/A ratios by employing , for example, a large, light 
drag device (for example, a parachute) . The larger the device , the smaller 
is the heating rate (q ~ 1/ JAI - 1- 3/2), the smaller the entry Reynolds 
numbers (Re ~ (W/CnA)I - I -l), and the better the possibilities are of 
maintaining laminar flow . Nonlifting vehicles with shuttlecock stability 
are advantageous al so from the viewpoint of minimum control requirements 
during entry . Hence, an evident composite type of entry, which combines 
some of the desirable features of lifting and nonlifting trajectories, 
would be to enter first without lift but with a small W/CnA provided 
by a drag devicej then, when the vel ocity is reduced to a certain value 
ub the device is jettisoned or retracted, leaving a lifting vehicle of 
larger W/CnA for the remainder of the descent . 

A practical compromise is required in selecting ITb , because the 
drag device should be jettisoned as soon as possible from the viewpoint 
of achieving maximum maneuvering range , but as late as possible from the 
viewpoint of achieving major reductions in heating rate . For the initial 
nonlifting portion of descent let the drag-weight parameter be (W/CnA) o 
and the Z function be ZO o For the subsequent portion let the corre­
sponding quantities be (W/CnA)l and Zl o Since the altitude y and the 
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angle of descent ~ are continuous at the break velocity ub, we have 
two conditions from e~uations (14) and (17) 

39 

(58) 

for determining the initial conditions Z~i = Z~b and Z~ir = Z~br for 

the second portion of descent. Hence the Z~ function can be determined 
approximately from equation (C13) of appendix C by substituting ui = ub, 
Zi = Zlb' sin ~i = ~ , and cos ~ = 1. The maximum heating rate occurs 
near the bottom of the first dip after the break, and can be obtained 
from e~uation (C24) in appendix C with the same substitutions . The total 
heat absorbed in this dip can be obtained from e~uation (C25) . 

As an example let us consider the case of a l arge drag device 
((W/CnA)~ » (W/CnA) o ) jettisoned at a velocity Ub during entry from 
a decaying orbit . In order to minimize the peak heating after jettisoning , 
as well as minimize the total heat absorbed during the skip, a value 
L/D ~ 0 .7 is selected . Curves showing the resulting values for maximum 
heating rate ~ after jettisoning , and total heat absorbed Q~ during 
the first skip, are presented in figure 23 as a function of the break 
velocity ub. We see that a large drag device carried down to ub = 0 .4, 
for example, would have a maximum heating rate about 1/4 of that for the 
same vehicle with no drag device. 

It may be noted that the deceleration history for a drag device 
jettisoned at ub = 0 .4, for example, is essentially the same as the 
acceleration history investigated in the human centrifuge tests of refer­
ence 18. The select individuals for these centrifuge tests did not 
blackout (or grayout, or even get dizzy ) during the runs . They were able 
to perform continually simple dual control operations even when the accel­
eration dropped suddenly from about 8g to about 2g. 

Comparison of Several Types of Entry With ui 1 

It is interesting to compare the relative magnitude of aerodynamic 
heating for the several types of entry discussed . The dimensionless 
maximum heating rate ~ and the dimensionless total heat absorbed Q 
are used for this comparison . They would be proportional to the actual 
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heating rate and the total heat absorbed for vehicles of the same size 
and W/CnA . The table which follows summarizes these ~uantities for 
seven different types of entry , all starting with ui = 1 . 

Type of entr y 

Near optimum glide , for 
minimum C1max (CPi = 0) 

Near optimum rippl e for 
minimum a ( - cp. = 0 . 50 ) "'IIlax 1. 

Near optimum gl ide, for 
minimum Q(CPi = 0 ) 

Near optimum first skip 
for minimum Q 

Nonlifting (CPi 0 ) 

Nonlifting, from defl ected 
orbit with - CPi = 20 

Composite , large drag device 
jettisoned at ub = 0 . 4 

L/ D 

·7 

- . 5 

o 

o 

o for 
0 . 7 for 

·7 

u > 0 . 4 
U < 0 . 4 

Q 
for 111. = 0.99 

0 . 084 3.0 

.083 

.93 

·90 

. 22 1. 4 

. 27 .93 

. 02 .16 

In comparing these val ues it should be remembered that the a ctual ~uanti ­

ties of interest for a given W/A are %!ax/..[CD and 'Qj .jCD , and that 
nonlifting vehicles are placed at a small disadvantage in the table 
because they presumably can be designed wi th somewhat hi gher values of 
CD than lifting vehicles . It is noted that the total heat absorbed in 
the case of the skip vehicle , corresponds only to the first skip . Pre ­
sumably this is all that should be considered if the vehicle is designed , 
as suggested by Ferri (ref . 7), to radiate essentially all of the heat 
'absorbed after each skip . 

Atmosphere Braking 

During entry of a planet's atmosphere from space a t near escape 
velocity, possibly severe deceleration and heating probl ems can occur 
during the process of passing through an outer segment of the atmosphere . 
The closer a pass is made to a planet surface , the greater is the braking 
action, the greater the deceleration , and the greater the rate of aero­
dynamic heating . The Z functions for four different entry histories of 
nonlifting vehicl es starting with escape velocity (Ui = 1 .4) have already 
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been presented in figure 7. These functions apply to any planet . They 
are based on the assumption that after the initial pass no further control 
of the vehicl e is exercised . 

Entry (a ) is initiated with 30 (UZ )max = 0.46 during the first pass 
(0 .46 g maximum deceleration for earth ) and corresponds to a dimensionless 
peak heating rate of qmax = 0.24 at U = 1 . 38 . The successive peaks 
correspond to qmax progressively less, while the seventh pass, which 
starts from u = 1 .08 and completes the entry, corresponds to qmax ~ 0 . 20 . 
As might be expected this is not far from the value 0.22 corresponding to 
orbital decay from ui = l with LID = O. Since qmax is a measure of 
the maximum temperature experienced by a radiation- cooled vehicle, it 
follows that entry of such a vehicle could be completed on the seventh 
pass, without the temperature during any of the atmosphere braking passes 
exceeding appreciably that experienced during orbital decay . 

Entry (b ) in figure 7 is initiated with 30 (uZ)max = 1 . 65 in the first 
pass during which an amount of heat is absorbed corresponding to Q = 1 . 5 . 
This heat could be radiated to space before the second pass is made in 
which an additional amount Q = 1 . 4 is absorbed . The third pass starts 
from U = 1 .09 and completes the entry with Q = 1 .7. These values are 
not far from the value Q = 1 . 4 corresponding to orbital decay with 
LID = O. Since Q is a measure of the total heat absorbed by a heat ­
sink vehicle, it follows that such a vehicle could complete an entry on 
the third pass without absorbing much more heat during each of the two 
atmosphere braking passes than that absorbed during orbital decay . 

Entries (c) and (d ) in figure 7 are completed in a single pass and 
both lose an amount of kinetic energy (1/2)m (1 . 4 JgT)2 = mgr . They absorb 
a quantity of heat corresponding to Q = 2.9 and Q = 2.1, respectively , 
and experience maximum heating rates corresponding to ~ax = 0.58 and 
qmax = 0.73, respectivel y . The total laminar heat absorbed by (d ) is 
less than (c), even though the maximum heating rate is greater, because 
entry (d ) corresponds to a closer pass to the pl anet surface for which 
the heat is taken aboard, on the average, at l ower altitudes where the 
friction coefficients are lower ( see eq . (57 )). 

In addition to the four Z functions just discussed, a number of 
Z functions (not presented ) have been computed for lifting vehicles 
undergoing singl e atmosphere braking passes in which the entering vel ocity 
is ui and the exit velocity is uex . Results are presented in figure 24 
for Ui = 1 .4 and in figure 25 for Ui = 1 .2. In each figure curves are 
presented for the maximum value of horizontal deceleration 30(UZ)max, the 
dimensionless maximum laminar heating rate ~ax' and the dimensionless 
laminar heat absorbed Q during the single pass . The curves are label ed 
as to the LID values corresponding to earth; they also can be applied 
to other planets by recalling that a given value of LID on Earth is 
equival ent to a value ( ~r)e -l /2 times as much on another planet . 
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An interesting feature of these results for single atmosphere brakings 
is that for a given loss in kinetic energy (given uex ) , they exhibit the 
opposite variation with LID from that previously found for orbital 
decay . Thus, an increase in LID decreases the maximum deceleration for 
orbital decay but increases it for atmosphere braking; an increase in 
LID decreases the heating rate qmax for orbital decay but increases it 
for atmosphere braking; an increase in LID increases the heat absorbed 
Q for orbital decay but decreases it for atmosphere braking . From a 
mathematical viewpoint the reason for this contrasting behavior is that 
the gravity minus centrifugal force term (1 - u 2 )/UZ in the basic differ ­
ential equation changes algebraic sign at U = 1 . From a physical view­
point , the effect of LID on atmosphere braking can be understood by 
noting that in order to lose the same amount of kinetic energy , a lifting 
vehicle must pass closer to the surface than a nonlifting one . Hence at 
the lower altitude the deceleration and rate of heating of the lifting 
vehicle are greater, while the friction coefficients are smaller and hence 
the heat absorbed for a given l oss in kinetic energy is smaller ( see 
eq . (57)). 

A plot of the maximum surface temperature parameter 
TwsE1/4/ (w/cnAR ) 1 / 8 as a function of the maximum deceleration in Earth 

g ' s is presented in figure 26 for atmosphere braking in vari ous planets 
with LID = O. These curves are for a single pass starting with Ui = 1.4 . 
It is seen that in the earth ' s atmosphere, for example , the maximum decel­
eration that can be experienced in a single pass and still enable the 
vehicle to exit from the atmosphere at some velocity uex > 1 , is about 
3.5g. If the nonlifting vehicl e attempts to decelerate more than this 
by passing closer to the surface, then before it exits from the atmosphere , 
the velocity is reduced to U = 1 at some point within the atmosphere and 
the vehicle completes entry in a single pass experiencing at least 7 . 2g 
deceleration in the process. Any pass still closer to the surface only 
increases further the maximum deceleration and temperature. When the 
maximum deceleration during a single pass jumps discontinuously from 3.Sg 
to 7 . 2g, the corresponding maximum temperature does not jump because the 
maximum temperature already has been experienced before u = 1 was reached . 
The limiting maximum deceleration for atmosphere braking in Mars is seen 
to be much less (0 .7 Earth g ) , and for Jupiter much more than for Earth . 

A companion pl ot t o figure 26 , only for the laminar heat absorbed 
per unit area in a single pass , is presented in figure 27 . These curves 
also are for LID = 0 and Ui = 1 .4 . In this case , the heat absorbed 
increases discontinuously when the maximum deceleration increases discon­
tinuously (from 3 . 5g to 7 . 2g for Earth ) because of the additional loss 
in kinetic energy . Any pass still closer to the surface increases the 
deceleration but decreases the laminar heat absorbed . This decrease 
exists because, for a given loss in kinetic energy , any pass tru(ing on 
its heat at lower altitudes will have smaller laminar friction coeffi ­
cients, and hence l ess total heat absorbed (see eq. (57 )). 
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CONCLUDING REMARKS 

An approximate analytical solution for the motion and aerodynamic 
heating of a lifting vehicle entering a planetary atmosphere has been 
obtained by disregarding' two relatively small terms in the complete motion 
equations, and then introducing a mathematical transformation which reduces 
the pair of motion equations to a single, ordinary, nonlinear differential 
equation. Relatively few solutions to this differential equation provide 
quite general results inasmuch as the basic equation is independent of 
the physical characteristics of a vehicle, as well as independent of the 
sea-level characteristics of an atmosphere. The solutions apply to any 
exponential planetary atmosphere . 

Certain asymptotic solutions in closed form result from a process of 
truncating various combinations of terms from the basic nonlinear differ­
ential equation . The aggregate of terms represents vertical acceleration, 
vertical component of drag force, gravity force, centrifugal force, and 
aerodynamic lift force . This truncation procedure yields an asymptotic 
solution for ballistic vehicles entering at relatively steep angles of 
descent (which solution is identical to that of Allen and Eggers ) , an 
asymptotic solution for glide vehicles of relatively large lift - drag ratio, 
and a solution for skip vehicles . 

Comparison of the present solution for an idealized exponential 
atmosphere with digital computing-machine results for a standard atmos ­
phere reveals differences the order of about ±10 percent . These rela­
tively small differences are due primarily to the variations in atmospheric 
temperature with altitude in the standard atmosphere . The present analytic 
solution enables corrections readily to be made in order to yield results 
applicable to any standard atmosphere, or to an atmosphere which has 
variations in temperature with season or with latitude . 

Maximum deceleration during entry into an exponential atmosphere 
from a decaying orbit does not depend on the vehicle weight, shape, or 
dimensions; it occurs at a velocity of about 0.4 of orbital velocity, 
and is much less for lift-drag ratios as small as a few tenths than for 
a lift- drag ratio of zero . Even for nonlifting vehicles, though, the 
decelerations are within human tolerance for Earth and Venus, and far 
below for Mars . Manned entry into Jupiter would require a lifting vehicle 
in order to avoid excessive decelerations . 

For vehicles entering from a decaying orbit with aerodynamic lift, 
the maximum heating rate depends strongly on the vehicle weight, shape, 
and dimensions through the parameter W/CnA; maximum heating occurs at a 
velocity of about 0 . 8 of orbital velocity, and, for any given loading 
W/A, is minimum for entry at CLmax ' This corresponds for common shapes 

to optimum L/D ratios between about 0 . 5 and 1 . 0 . Because of the 
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coupling between CD and LID for any aerodynamic shape , the use of a 
near optimum LID can reduce the maximum heating rate to no more than 
about one -half that for a nonlifting vehicle . 

The laminar heating rate varies directly as J wj CnA; hence , by using 
a drag device to increase markedly CnA , such as a drag parachute or f l are , 
much larger reductions in heating rate are possibl e than through the use 
of a trimmed lifting vehicle . 

The total heat absorbed during entry from a decaying orbit increases 
rapidly with lift- drag ratio for vehicl es with pos i tive l ift . I t is a 
minimum for lift - drag ratios near about - 0 . 5 , but these negative l ifts 
result in excessive decelerations for manned entry into the earth ' s 
atmosphere ; hence the practical optimum for minimizing the total heat 
absorbed in orbital - decay entry of a manned vehicle is near a l ift- drag 
ratio of zero . The total laminar heat absorbed , like the l aminar heating 
rate , varies directly as J wj CnA . 

By inducing entry at a sizable initial angle of descent , the total 
heat absorbed for laminar convection can be reduced substantially . The 
limit of human tolerance to deceleration stress is cl osely approached for 
nonlifting vehicl es entering the earth ' s atmosphere at an initial descent 
angle of about 30

, under which conditions the total heat absorbed is 0.6 
of that for a decaying orbit having zero initial angle of descent , while 
the decelerations and the maximum heating rate are correspondingly 
increased . However , if a vehicle with smal l aerodynamic lift ( say , 
LID ~ 0 . 7 , approximately) enters with a small init i al angle , the trajectory 
is a rippling descent which can have a slightly lower maximum heating rate 
as well as smaller total heat absorbed than for gliding entry from a 
decaying orbit . 

The total heat absorbed during the first skip of a l ifting vehicle 
entering at a sizable initial angle of descent , is essenti ally independent 
of both the angle of descent and the velocity of exit from the skip . I t 
is a minimum for entry at CLmax (lift - drag ratios near 0 .7 ). For a given 
W/CnA, this minimum total heat absorbed during the first skip is roughly 
the same as that absorbed during the entry of a nonlifting vehicl e enter­
ing at an initial angle of descent of about 20 . 

In the process of atmosphere braking for stepwise sl owing a space 
vehicle from near escape velocity to circular orbital vel ocity , the 
effects of LID on peak decel eration , on maximum heating rate , and on 
total heat absorbed are the opposite to the corresponding effects in the 
process of orbital- decay entry. For exampl e , an increase in LID with a 
given CD increases the maximum heating rate in atmosphere braking , but 
decreases it in orbital decay . For nonlifting vehicles starting with 
escape velocity and employing atmosphere braking , entry to a planet sur­
face can be completed on the third pass without the total heat absorbed 
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in any pass exceeding that absorbed for orbital decay, and can be 
completed on the seventh pass without the maximum rate of heating exceed­
ing that for orbital decay . 

Ames Aeronautical Laboratory 
National Advi sory Committee for Aeronautics 

Moffett Field , Calif . , Apr. 9, 1958 
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APPENDIX A 

CHECK ON APPROXIMATIONS MADE IN ANALYSIS 

The basic approximation (a) of the analysis, as represented by 
equation (S), can be expressed fairly simply in terms of the transformed 
variable Z and the angle of descent 

jdr/rj 

jdu/uj 

jTI(dy/dt) 1 

j r( dTI/dt) j 

uj sin crj 
---- « 1 

.fl3r Z 

Inasmuch as Z/TI - Poo' this shows that approximation (a ) cannot be valid 
at very high altitudes which are represented by a small neighborhood near 
TI = TIi and Z = O. In figures 2S(a) and 2S(b), curves of the ratio 
(dr/r)/(du/u) are shown for lifting entry into the earth's atmosphere 
from decaying orbits and for nonlifting entry from deflected orbits with 
various initial angles cri' It is evident that in the regions near peak 
heating (u = O.S) and near peak deceleration (TI = 0.3 to 0.5) the basic 
approximation should introduce errors the order of only 1 percent. As a 
vehicle initially enters the atmosphere, however, the decelerations are 
very small and the errors introduced are larger. As a general rule, 
approximation (a) is valid for engineering calculations once the air 
drag has reduced the velocity by about one -half of one percent (see 
appendix B). Approximation (b), that (L/D)jtan cr j« 1 likewise is a 
valid one for heat transfer and deceleration calculations of vehicles 
with zero or positive lift entering from decaying orbits . As figure 2S(c) 
illustrates, approximation (b) may result in substantial errors near 
maximum deceleration for vehicles having negative lift, but still results 
in reasonably small errors near peak heating of such vehicles . 
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APPENDIX B 

MATCHING PRESENT SOLUTION TO KEPLERIAN ELLIPSE 

Let us assume that a retrorocket force, or some other force, has 
deflected an orbiting vehicle into a new Keplerian ellipse which, in the 
absence of drag, would intersect the planet surface at some angle ~o ' 
A "zeroth order" approximation would be to use this angle in the present 
solution as the initial angle ~i for the entry . This would be suffi ­
ciently accurate for descent angles greater than a few degrees, but for 
very small angles of descent a more accurate matching of the present 
solution to the Keplerian ellipse may be desirable. 

Since the present sol ution assumes that Idr/rl«ldu/u l whereas the 
conservation of angular momentum requires that dr/r = -du/u outside 
the atmosphere, it seems reasonable to select the point of matching where 
the ratio (dr/r)/(du/u) is some value less than unity. Let the descent 
angle at the point of matching be ~,and the velocity be um. Let us 
confine our attention to a small region near matching, where the density 
is very low, the ae rodynamic f orces are very smal l, and the flight path 
is only slightly curved. We represent the Z function in this region 
by the approximation ZI from equation (40) for constant angle of 
descent, namely, 

Since urn is only slightly less than ui we approximate 2n(um!ui) by 
(um - Ui)/Ui ' Hence from equation (22), it follows that at the matching 
point the ratio rm of terms discarded to terms retained is 

_ dr/r 
rm = dU/ u 

umsin CPm. _ ui 

ffr Zm (f3r) (Ui - um) 

For Earth f3r = 900, so that rm = 1 at um = 0 ·999 ui' rm = 0.2 at 

(Bl) 

um = 0 ·995 ui, and rm = 0 .1 at u m = 0 ·99 ui' Thus, it would be reason­
able to match the present solut i on with a Keplerian ellipse at some 
velocity i n the range, say, um = 0·995 ui to um = 0 .99 ui' The density 
Pm at the matching altitude (from the defining eCluation (14) for Z 
and from equation (Bl) ) can be determined from 

.Jr/f3 Pm ~ _ 
--~ - '7 - fj3r (u ' - um) ( - sin rno) 2 (m/CDA) - ~ - ~ PL' l ~ (B2) 

(B3) 
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or) from Pm we can determine the altitude Ym and hence the corre ­
sponding value of ~ from the Keplerian ellipse at this altitude. The 
value of ~m so determined would be the value of ~i which closely 
matches the present solution for the entry motion . 

An equivalent way of matching would be to select first arbitrarily 
various altitudes y~) Y2) Y3) ... and corresponding densities 
Pl) P2) P3) • • • • From the Keplerian ellipse the slightly different 
angles ~1 ) ~2 ) ~3) •.• could be determined, and by substitution of 
these into equation (B3) in place of ~o ) the respective values (m/CDA)l' 
(m/CnA)2' . . . which would bring about proper matching for a given 
value of rm (say, O.l) could be computed. Interpolation would yield 
the matching angle ~,and the matching altitude Ym for any desired 
value of m/CDA . 



NACA TN 4276 

APPENDIX C 

DEVELOPMENT OF SOME APPROXIMATE SOLUTIONS 

The first approximate solution is that for entry of a nonlifting 
vehicl e along a spiral path which makes a constant angle cp with respect 
to the local horizontal direction . For this first special case we desig­
nate the Z function by ZI, and see from the right members of equa­
tion (19) that 

d~ ( s in cp) = 0 = 'ITZI" - .Jf3r s in cp 

or , after one integration , 

Zr ' = ~ sin cp I n 'IT + constant (Cl) 

The integration constant can be evaluated in terms of the initial veloc ­
ity 'ITi and the angle cp , to yield after one more integration for entry 
from high altitudes (Zi = 0) , 

u CDAPo - ~y 
I n -- =- e 

Ui 2m~ sin cp u$r sin cp 

from whi ch it follows that the d imensionless l aminar heating rate 
5/2 1/2 

qI = 'IT Zr has a maximum value 

3 1 /4 r----;---:-

0 . 247 ui ( ~r ) .J sin (-cp ) 

(C2 ) 

and the dimensionless total heat absorbed from U ui to u = 0 i s 
evaluated by noting that the i ntegral of equati on (39b ) is proportional 
to r(1/2) = ~rt/ 2 . 

1 /4 r----;-~ 
( ~ r ) .J s in ( -cp) 

(c4 ) 

This sol ution for ZI corresponds to setting the l eft menilie r s of 
equation (21) to zero . I n order that the right members of equation (21a) 
also vanish , we see from equation (C2 ) that thi s special solution can be 
realized in two ways : (1) by maint aining a true spiral path through pro ­
gramming the lift with velocity in the very special way such that at all 
points 

L (1 - u2 )cos cp 
D u2(~r) s in cp I n (u/ui) 
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or (2 ) by entering with a nonlifting vehicle along such a steep path that 
the gravity forces minus the centrifugal forces are negligible compared 
to the vertical component of drag force (this y ields essentially a 
straight-line trajectory ) . Case (1) of spiral trajectories with pro­
grammed lift, is not easily realized in practice, but case (2 ) represents 
exactly the physical situation considered by Allen and Eggers (ref . 1 ) 
for their solution to the problem of ballistic entry . Hence , it should 
not be surprising tha t equation (C2 ) is identical to their solution . 
This solution for nonlifting vehicles at constant ~ does not depart 
significantl y from the complete solutions near peak heating (u/ui == 0 . 8 ) 
except for i nitial descent angles l ess than a few degrees , and near maxi ­
mum deceleration ~u/ui ~ 0 . 4 to 0.6) except for initial descent angles 
less than about 5 . 

As a second speci~ case , we consider smoothly gliding , hypersonic 
flight (li near 1) with a large LID and at suffic iently small descent 
angles that cos ~ == 1 and sin ~ == ~« LID . Under these conditions the 
left -hand terms of equation (21a ) involving the normal deceleration and 
the vertical component of drag force can be disregarded . The right mem­
bers yield for the special function ZII representing balance between 
gravity , centrifugal , and lift forces , 

1 
_ 2 

- U Z II = - =----=::....--
li$r (LID) 

(c6) 

The flight - path angle is obtained from equation (17) by differentiating 
equation (c6) 

-~ 
2 

This particular solution is the same as the solution for gliding flight 
orginally given by Sanger (refs . 2 and 3) for which the aerodynamic heat ­
ing problems have been studied by Eggers , Allen , and Neice (ref . 4) . 
This special solution is quite good for LID ratios greater than about 1 
(for Earth) and hence is adequate for most glide vehicle analysis . It 
cannot be applied , however , to entri es with other than zero initial angl e , 
inasmuch as extremely small i nitial angles of descent "Till result in a 
skipping trajectory for which the vertical acceleration term is not small 
compared to the lift force . For thi s gliding solution ZII the maximum 

( -U5 /2Zl/2 )max occurs at -u -- .12/3 heating rate proportional to qmax = 

with 

(c8 ) 

the dimens i onless function proportional to the total heat absorbed is 



NACA TN 4276 51 

(I3 r ):1/4~(. -:1_ 
- S:1n U · -2 D :1 

_ 2) - ui 

and the range function is 

U ' 
~ 1 :1 'iI d'iI 
D 1 - 'iI2 

o 
(CIO) 

as obtained in reference 4 . 

As a third special case, we consider entry with lift along a trajec ­
tory wherein the gravity minus centrifugal force is relatively small ( see 
eq. (21a )). A skip vehicle , for example, would fall in this category . 
In this case the flight path is determined primarily by a balance between 
the normal acceleration term liZ" , the lift term ffr(L/D) cos3cp, and the 
vertical drag component . The trajectory is, by assumption , influenced 
only secondarily by the gravity minus centrifugal force term 
(1 - U2)COS4~/(UZ)j hence we may render the basic differential equation 
linear by supposing that Z in the denominator of this nonlinear term 
be approximated a priori by some Z function obtained either by neglect­
ing this nonlinear term or obtained in some other way such as by expand­
ing Z about ui ' By writing cos cp as the "average" value of cos Cj) 
for the flight path according to the theorem of the mean , we have , after 
one quadrature, 

dZ _ ~ == cos4cp l u 
1 - 'iI

2 
d'iI - cos3m 'r3Y 1. In ~ + constant (Cll) 

d'iI U _ 'iI2Z 't' "fH 
D Ui 

ui 

at U == Uij equation (17) shows that (dZ/d'iI ) - (Z/u) == ~ sin Cj) i hence 
the descent angle is given by 

l
U

l 
cos4cp _ 

ui 
(C12) 

and the Z function is obtained by solving the first -order differential 
equation (Cll), noting that l/u is an integrating factor, 

(C13) 
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By disregarding the gravi ty mi nus centri fugal force i ntegral , we obtai n 
a special function ZI I I representing balance between normal accel eration , 
ve r t i cal drag component , and lift force , 

(c14 ) 

and 

sin ~ = sin ~i - cos3~ (~)2n ~ (C15 ) 

These l ast two equations for L/D = ° reduce to equat i on (C2 ) . I f 
desired , we could substitute ZIII (or some other ini tial esti mate of Z) 
into the denominator of the integrand in equation (C13 ), thus obtai ning 
a correction term for the gravity mi nus centrifugal force term. The suc ­
cess of such a method would depend upon the accuracy and s i mplicity of 
the initial estimate . 

To ill ustrate one appl ication of the special sol ution ZIII given 
by equation (c14 ), we consider the first skip onl y of a lifting vehicl e 
entering the atmosphere at a smal l angle ~i (cos ~i ~ 1 ) and at orbital 
vel ocity (Ui = 1). The first skip is generall y the most severe from the 
heat- transfer viewpoint . We have for Zi ~ 0 , 

ZI~I ~.J[3r (~i2 n U - ~ 2n2u) (c16) 

which can be substituted into the integrand of equat i on (C13 ) to yield an 
expression for the gravity minus centrifugal force term. We notice first , 
though , that by definition (ZIII/U) ~ Poo returns to its small initial 
value Zi whenever the vehicle returns to the initial altitude At 
the end of the first skip the velocity is reduced to some value 
such that 

in accordance with the results of reference 4 . This is the vel ocity at 
the end of the dip . Since we are considering small angles onl y, 
-2~i/(L/D ) ~ 1 - ullle , and we may substitute 2n U ~ U - 1 in equa­
tion (c16 ) for the purpose of evaluating the double integral of equa­
tion (C13) representing the gravity minus centrifugal forces . This 
yields a new Z function 

ZIV 
iT 

(1 - u)2 

4Jh ( -~i ) 

znI + -­
IT 

(C17 ) 



NACA TN 4276 53 

The velocity at the end of the dip is given by 

In ue (clB) 

Since ~r = 900 for Earth, the correction term 1/ (4~r~i ) can often be 
disregarded . The path angle is obtained from equation (C15) 

~ = ~i - (~)In U (C19) 

so we see t hat 
1 __ ~-=l __ 

2 (L/D)~r~i 
-~i ----=-...:..-...:....:...--.-.:....=. 

1 + -..,--,......:;l~_ 
2(L/D)~r~i 

(C20 ) 

If 2(L/D)~r~i » 1 these equations reduce to results previously obtained 
by Eggers, Allen, and Neice (ref. 4) . In particular, for relatively 
large values of (L/D)~i' the angle leaving the dip is equal but opposite 
to the initial angle ~i of entry, as noted in reference 4 . After a 
skip, a period of weightlessness follows at an essentially constant 
velocity ue under conditions where the vertical acceleration 
(dv/dt ) = g - (ue2/r) i s constant; hence the durati on of weightlessness 
6t = 2ve/(dv/ dt ) is 

6 t = 
2ue (~e ) 

g el - ue2
) 

(C21) 

After this period, a second entry occurs at nearly the same angle as the 
first entry, only at the reduced velocity ue . The maximum laminar­
heating rate occurs near, but not at the bottom of the dip (~ = 0 ) at 
which point the velocity Urn is given by In um = ~i/(L/D). By substi ­
tuting this into equation (c16) the approximate maximum l ami nar heating 
rate is then represented by 

_ (_ 5/2 1/2 ) 
~ = um Zrn (C22 ) 

1 /4 
( ~r) (-~i ) 

.j2L/D 
for -~i « ~ 

An interesting result concerns the total heat absorbed in a single 
skip starting from satellite velocity (Ui = 1) . The total heat absorbed 
is obtained from equation (39 ) together with 
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1
1 _3/2 -

- u du 
Q = = 

ue .JZ 

By empl oying the same approximation I n U ~ -1 + U the integral can be 
evaluated . 

- .j2 ( CPi ) 
Q = (~r)1/4JL/D ~\l + L/D 

(C23 ) 

This is essentially independent of CPi ' since CPi /(L/D) for many skip 
vehi cl es would be small. 

_~ .j2rr. 
Q = 1/4 

(~r) .J L/D 
for - CPi « ~ 

Although the maximum heating rate in a skip is proportional to the initial 
angle of descent CPi ' the total heat absorbed is essentially independent 
of both the initial angle CPi and the exit velocity ue of the skip . 
Since Q ~ Q/.JCD, we see that Q ~ l/JCi, which means that the least heat 
is absorbed by skipping at CLmax ' For inclined f l at surfaces in hyper-
sonic f l ow , simpl e Newtonian theory yields CLmax = 0.77 at an angle of 
attack of 550

, at which angle L/D = 0 . 71 . Hence 

(Q)min Q = .J2 rr./( ~r )1/4.J0. 71 = 0. 96 

This value is compared elsewhere in the DISCUSSION wi th corresponding 
values of Q for other types of entry . 

I f a skip vehicle does not enter initially at orbital velocity , but 
at some d i fferent value uiJ then the corresponding equations with gravity 
and centri fugal forces neglected indicate the bottom of the dip to be at 
a vel ocity urn given by In(um!u i ) = CPi /(L/D). At thi s point the heating 
rate is represented by 

The exit of the skip occurs at a velocity ue given by 

I n (ue /ui ) = 2CPi /(L/D) 

The dimensionless total heat absorbed is approximatel y 

1 / 4 r.;:-r;::: 
(~r) ",L/D 

(c24 ) 
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APPENDIX D 

INTEGRATION OF BASIC NONLINEAR EQUATION 

Many numerical methods could be used to compute stepwise a Z func ­
tion from a nonlinear equati on such as 

where Z' 

integrate 
equation , 

Z 
liZ" - Z' + 

U 

- ~=ffr sin cp o 
u 

such an equation , 
such as 

1 - u:2 
L cos 4cp - Ji3; - cosBcp 

uZ D 
(Dla) 

A study has not been made of the best way to 

or of whether or not an alternate form of this 

(Dlb) 

where F == Z/U and TIF' =.Jf3r sin cp , may be preferable for purposes of 
integration . The particular method employed, while probably not extremely 
accurate, is simple in the sense that it involves merely the repetition 
of a large number of identical operations . Suppose we know at some ini­
tial point un the values of Zn and Zn' . Then f r om the differential 
equation we have for the s econd derivative (with cos cp set equal to 
unity for purposes of simplicity in illustrating the method), 

Zu"= ! (Zn' Zn 1 - 2 
- .fl3T ~) - Un - =- + unZn Un Un 

(D2) 

and for the third derivative 

! [! (Zn' ~~ 
1 - 2 Zn ' _ 1 + un2 ] Zn'" - Un 

Un Un Un Zn2 un2Zn 

Hence a Taylor expansion for Zn+l and Zn+l ' at t he next point un+1 
yields 

(6U)2 (ru)3 
Zn + Zn' 611 + Zn" --- + Zn '" 2 - 6-

(6il)2 
Zn+l' = Zn' + Zn"6u + Zn '" 

2 
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while the above equations (D2) and (D3) yield Zn+l tl and Zn+l til when n 
is replaced by n+l in the formulas. Thus the process can be continued . 
For most cases the Z functions are fairly smooth , and the inclusion 
of Zlt t is unnecessary in the above procedure if suffi ciently small !§i 
are used . For the present calculations Zlt t was omitted; !§i = 0.001 was 
employed for ui = 1, and !§i = 0.002 for Ui = 1.4 and Ui = 1 . 2 . For skip 
vehicles, the Z function can vary quite rapidly and the inclusion 
of Z ttt presumably would enable larger increments !§i to be used . 

This particular procedure requires a knowledge of nonzero values 
Zo and zot at some initial point uo . Hence the first step is taken 
analytically . For decaying orbits an analytical representation in the 
vicinity of IT ~ 1 , where (1 - u2 )/u - 2 (1 - IT), i s 

(D4) 

since these yield Zotl = 2(1 - uo)/Zo and correspond to values of both 
Zot and Zo/uo small compared to Zotl (see eq. (Dl )) . Equations (D4) 
and (D5) would apply to a lifting vehicle provided (1 - uo ) is selected 

small enough so that ffr ~« (1 - ITo) - l/ 2 . If the L/D ratio is 
D 

large, we can use t he ZII function to obtain 

1 - 2 
Zo 

- Uo (IX) ) 
~ (L/D)uo 

- 2 
Z t 1 + Uo (D7) 0 ffr (L/D)u02 

For re - entry with an initial angl e CPi at initial veloci ty ui we can 
use the ZIII function for the first step, 

Zo ::: J73; Uo [S i n CPi tn ! 
ui 

Z t o 

(DB ) 

(D9) 
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TABLE 1.- VALUES OF Z FUNCTIONS AND RELATED QUANTITIES FOR LID = 0 AND ui = 1 

Z -~rth Q (ly,) tEarth Z - 'l'Ea.rth Q (~)Earth tEarth Z -~th Q (~)Earth tEarth 
deg r Earth sec deg sec deg sec 

ii 

(- <P1) Earth = 0° ( -<P1)Earth = 0.5° (- <Pi) Earth = 1° 

0 ·995 0 .00058 0.33 0 0 0 0 .00131 0.50 0 0 0 0 .0026 1.00 0 0 0 
.99 .00165 . 48 .156 .169 140 .00270 .57 . 113 .088 72 .0053 1.04 .080 . 044 37 
.98 .00467 . 68 · 338 .288 238 .00603 ·71 . 265 .169 140 .0108 1.11 .191 . 088 73 
.96 .01315 . 96 .550 . 372 309 .01457 .95 . 460 .240 199 .0229 1.26 . 342 .l29 108 
.94 .0241 1.19 .688 . 409 341 .0253 1.16 · 593 .274 229 .0361 1. 40 .451 .152 l28 
.92 .0369 1. 39 ·792 . 431 360 .0378 1. 36 .695 .296 248 .0505 1.53 . 537 .168 141 
.90 .0515 1. 57 .875 . 446 374 .0519 1.53 ·777 . 311 262 .0660 1. 67 . 609 .180 152 
.85 .0939 1. 98 1.030 . 470 396 .0934 1.94 ·932 .335 284 .1092 2 .01 · 750 .199 170 
.8 .1435 2 . 36 1.140 . 485 411 .1421 2.33 1.042 . 349 298 .1580 2.34 .853 . 2l2 183 
·75 .1991 2 · 73 1.223 .494 421 .1970 2.70 1.l26 . 359 309 .212 2.69 . 933 . 221 192 
·7 .260 3. 11 1.288 . 502 429 .257 3.08 1.191 .366 317 .270 3.05 .996 . 228 200 
.65 .324 3. 50 1. 340 .507 436 .32l 3.48 1.243 .372 324 ·333 3.42 1.047 .233 207 
.6 . 392 3. 91 1. 381 .5l2 442 .389 3.89 1.285 . 377 330 .398 3.83 1.088 . 238 213 
.55 . 463 4. 36 1.415 .516 448 . 460 4. 35 1. 318 . 381 336 .466 4.28 1.122 . 242 218 
.5 . 536 4.86 1.442 ·519 453 ·533 4.85 1. 346 .384 341 .537 4·77 1.149 . 245 223 
.45 .610 5. 43 1.464 .522 458 .607 5.42 1. 367 ·387 346 .608 5. 34 1.170 . 248 228 
.4 .684 6 ·09 1.481 ·525 463 .681 6 .08 1. 385 · 390 351 .680 6 .00 1. 188 . 251 233 
. 35 .757 6 .89 1.495 .527 468 · 754 6 .89 1. 399 .392 356 ·752 6 .81 1.202 . 253 238 
.3 .827 7 .89 1.505 .529 473 .824 7.89 1.409 . 394 361 .821 7 ·82 1.2l2 . 255 244 
.25 .892 9 . 21 1.513 .531 479 .890 9.22 1. 417 .396 367 .885 9 .15 1.220 . 257 249 
.2 .949 11. 09 1.519 .533 486 .947 11.10 1.423 · 398 374 .942 11.04 1.226 . 259 256 
.15 .992 14.04 1.523 ·535 493 .991 14.05 1.427 . 399 382 .986 14.01 1.230 .260 264 
.1 1. 009 19 . 52 1.525 .536 504 1.009 19.53 1.429 . 401 392 1.005 19.52 1.232 .262 275 
.05 . 958 33 . 3 1.527 .538 521 .958 33 · 3 1. 431 . 402 409 .956 33 .3 1.234 . 263 292 
.025 .825 50 . 7 1. 527 .538 537 .825 50 ·7 1.431 . 403 425 .824 50 ·8 1.234 .264 307 

( - <Pi)Earth = 2° (-<!>i)Earth = 3° (- <P1)Earth = 4° 

0 .995 .0052 2 .00 0 0 0 .0078 3·00 0 0 0 .0105 4. 00 0 0 0 
·99 .0105 2 .02 .057 .0222 18 .0157 3.02 .047 .0148 l2 .0209 4.01 .040 .0111 9 
.98 . 0210 2.06 .136 .0443 37 .0313 3·04 .111 .0295 24 .0416 4.03 .097 .0222 18 
.96 .0422 2 .13 .246 .0663 55 .0624 3.09 .201 .0443 37 .0827 4.07 .175 .0333 28 
·94 .0638 2 .21 · 327 .0790 66 .0934 3.15 .268 .0529 44 .l233 4.11 . 233 .0398 33 
.92 .0858 2.29 . 393 .0880 74 .l243 3. 20 · 323 .0591 50 .1633 4.15 .281 .0445 38 
.90 .1080 2 . 37 . 449 .0949 80 .1550 3·26 . 370 .0639 54 .203 4.19 · 322 .0481 41 
.85 .1651 2 .59 .560 .1073 92 .231 3· 41 . 463 .0726 62 ·300 4. 31 . 404 .0548 47 
.8 . 224 2.82 .646 .1159 100 .306 3. 57 .536 .0788 68 .393 4.44 . 469 . 0596 52 
·75 .284 3.07 .714 . l225 107 .380 3.76 .595 .0837 74 .482 4. 58 · 521 .0634 56 
·7 . 346 3.34 .769 · l278 113 . 452 3.96 .643 .0877 78 .568 4.74 ·564 .0666 59 
.65 . 409 3.64 .815 .1322 119 . 523 4.20 .683 .0911 82 .649 4.93 . 599 .0693 63 
.6 . 474 3 ·97 .852 .1360 l24 .591 4.46 · 717 .0941 86 .726 5·14 . 630 .0718 66 
·55 ·538 4 ·35 .883 .1393 l28 .657 4. 77 · 744 .0968 90 ·797 5. 39 . 655 .0739 69 
·5 .603 4·79 .908 .1422 133 .721 5·13 . 767 .0992 94 .863 5·69 .676 .0759 72 
.45 .668 5 .30 .929 .1448 137 ·781 5.56 · 787 .1014 98 ·922 6 .06 .693 .0778 75 
.4 · 732 5 ·91 .946 .1472 142 .838 6.09 .802 .1035 102 .974 6 .51 .708 .0795 79 
·35 .794 6 .67 . 959 .1493 147 .890 6.76 .815 .1054 106 1.018 7.08 ·719 .08l2 82 
.3 .853 7 .63 . 969 .1513 152 .936 7.63 .824 .1072 110 1.052 7·85 ·729 .0828 86 
.25 .907 8.93 .977 .1532 157 .975 8.82 .832 .1089 115 1.076 8 .92 . 736 .0843 91 
.2 .954 10. 79 .983 .1550 164 1.005 10. 57 .838 .1106 l21 1.086 10.52 ·741 .0859 97 
.15 . 989 13.75 .987 .1567 172 1.021 13. 42 .841 .1l22 l29 1.079 13·20 · 745 .0874 104 
.1 1. 002 19.28 . 989 .1583 182 1.016 18 .87 .844 .1137 139 1.048 18 .45 ·747 .0889 114 
.05 · 952 33 .2 .991 .1598 200 .952 32 .8 .845 .1153 137 .960 32. 3 ·748 .0904 131 
.025 .822 50 .8 ·991 .1605 215 .820 50 .6 .845 .1160 172 .821 50 . 3 . 74~ .0911 146 
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Figure 3.- Sketches of typical entry trajectories and portions to which 
pres ent analysis applies . 
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