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NATTONAT. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE L4278

APPLICATION OF STATISTICAL THEORY TO BEAM-RIDER
GUIDANCE IN THE PRESENCE OF NOISE.
II - MODIFIED WIENER FILTER THEORY'

By Elwood C. Stewart
SUMMARY

A study has been made of the application of Newton's modification
of the Wiener filter theory to the optimizstion of a beam-rider guidance
system operating in the presence of glint noise. Target and missile
motions are assumed to be coplanar,

The theory has been applied using & typical variasble-incidence
missile by placing a reelistic restriction on the mean-square surface
deflection so that the system operation is confined to the linear range.
The transfer functions of the optimum guidance system are derived and
an example missile-control system 1s synthesized. It is shown that the
minimm attainable error corresponding to a realistic control restriction
is close to that for the Wiener theory. DPerformance of the system versus
noise magnitude is given.

It is shown that the most criticsl saturable quantity is control
deflection since constraining control deflections to realistic values can
prevent saturation of other important gquantities. Servo energy require-
ments are also greatly reduced in comparison with systems in which
saturation 1s allowed to occur.

INTRODUCTION

Noise effects 1in missile-guidance systems Impose one of the most
serious limitations on the effectiveness of a missile. Nolse signals in
general have the effect of adding to the system false information which
cannot be distinguished from true information. Thus the missile responds
to the noise signals as well as to the true signal; the miss distance is
thereby increased. Since many sources of noise (such as angular scintil-
lation) are inherent in the physical mode of operation and cannot be
removed, it is important that missile systems be designed to minimize the
miss even though the noise is present. Statistical filter theory is useful
in performing this minimization.

One of the most valusble theories has been developed by Wiener
(refs, 1 and 2). A previous report has considered the application of this

18upersedes recently declassified NACA Research Memorandum AS55Ella
by Elwood C. Stewart, 1955.
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theory to the minimization of the effects of radar glint nolse in s beam-
rider guidance system (ref. 3). It was found there that the optimum per-
formance specified by the theory could not be obtained becguse of certain
practical restrictions, as for example, limiting of control deflection.
Further study showed, however, that even in the presence of limiting, the
optimum performance could be epproached by the addition of network filter-
ing to the guidance system. On the other hand, the optimum form for the
added filtering could not be determined from this study since the system
design was based on & theory which did not teke into account the finite
range of operastion of the satursble quantities. In the present report an
attempt is made to overcome this deficilency by determining the optimum
transfer function under this last restriction. The theory for such an
approach was made available in a paper by G. C. Newton (ref. 4) on a
modification of the Wiener theory.

In the application of this theory to the missile guidance problem it
is necessary to meke certain assumptions. The main assumption made in
reference 3, that is, the assumption that the target and missile move in
the same plane, also will be made here. Other assumptions, such as those
relating to the class of target maneuvers and noise, are discussed in the
text.

SYMBOLS

Heo transfer function of optimum compensating network

He transfer function of the fixed network

N nolse magnitude or zero frequency spectral density, ftz/radian/sec

Ty time constant of the noise spectrum shaping filter, sec

Yo optimum closed-loop transfer function

aq acceleration of target meneuver, ft/sec?

k twice the average switching rate of target acceleration, l/sec

Yp target displacement from a space reference, £t

NS apparent target displacement from true target center due to nolse,
£t -

M missile displacement from a space reference, ft

®14 cross-spectral density of the input signal with the desired output
Oi1 spectral density of the input signal

oN spectral density of noise displacement yy, £t2 /redien/sec

o] spectral density of target displacement ym, ftz/radian/sec

€ error between target and missile position, yp - ¥y, £t
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€ component of error € due to terget motion, £t
N component of error € due to noise, £t
p Lagrangian multiplier
control~surface deflection, radians
¥ angle of yaw, radlans
Ho optimum open-loop transfer function

open-loop transfer function of system approximation to g
angular freguency, radians/sec
( ) complex conjugate of ( )

GENERAL: CONSIDERATIONS

Glint noise is a term that is used to describe a shift in the appar-
ent target location as determined by a radar. It is due basically to the
variable reflection characteristics of aircraft targets and arises from
the reletive movement of the various reflecting surfaces. Since the radar
utilizes the reflected signal to determine target location, variations in
the reflected signal are interpreted by the radar as shifts in the target
location. Of the many sources of noise which may exist in a misgsile-
control system, glint noise is one of the most serious since it has &
physical origin which cannot be eliminated, imposing a fundamental limi-
tation on missile effectiveness. The situation in regard to glint noise
is illustrated in figure 1(a) where the true target position is indicated
as yp and the glint noise is represented by the displacement yy.

The present report is restricted, for the sske of simplicity, to a
two-dimensionsgl study in which the target and missile move in a horizon-
tal plane as shown 1n figure l(a.).2 The attack situstion, that is the
angle between missile and target velocity vectors, may be arbitrary. How-
ever, in order to illustrate the theory, the tall chase illustrated in
figure 1(a) will be considered. It should be noted that for this case
the reference line is fixed in space. The guidance system which is con-
sidered to be of the beam-rider type is illustrated in figures 1(a) and
1(b). TIts function is to make the missile position coincide as closely
a8 possible with the true target position Y. The difference Yp = Yy
is indicated on this figure by the error €, which obviously should be
minimized. The criterion of merit which will be used here 1ls the conven-
tional mean-square time average of the error. This criterion is particu-
larly appropriate in the case of the beam-rider system because the target-
to-missile range i1s not normally transmitted to the missile; since the
missile never knows when the target will be reached, 1t le reasonable to
minimize the error for all values of time.

2The complete three-dimensionel problem would require a more complex
analysis than used herein. Possibly either the present theory or Wiener's
theory for miltiple time series (ref. 1) could be applied to this case.
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Emphasis should be made that slthough the example case is tsken to
be a tall chase, it contains the essential ingredients of the problem.
For other attack situations a coordinate system can be defined such that
displacements and accelerastions are measured from & new reference line
which is not fixed in space. This line is one which translates with con-
stant velocity and without rotation. There are several suitable condi-
tions under which such a reference line can be so defined. In the first,
wherein the launching aircraft flles a collision course with the target,
the line of sight between launcher and target (which coincides with the
radar beam, ideally) would be a suitable reference line. Another case
would be one in which the trackling rader is sufficiently far from the
target that rotations of the line of sight are small. 1In either case,
all displacement guantities as well as accelerations are then measured
perpendicular to the reference line Jjust as shown in figure l(a).

The design of a system normally depends on the inputs to be encoun-
tered, in this case, the target motion and the nolse. Because of their
random nature, neither of these quantities can be conveniently described
explicitly as functions of time, and statistical descriptions are more
suiteble. In the following paragraphs the target motion and nolse are
briefly described. - - : : - .

The glint noise can be defined by specifying both the power spectrum,
or power spectral density as a function of fregquency, and the amplitude
distribution. Many measurements have been made on the characteristics of
glint noise. (For a brief bibliography see ref. 3.) Although these meas-
urements are somewhat complicated and uncertain, it 1s generally found
that the amplitude distribution 1s epproximately Gaussian and that the
spectral density can be adequately represented by

N

N TN2w2+l (l)
An examination of glint noise spectra indicates that the break point
(1/2xTy) is generally on the order of several cycles per second and as
in reference 3 will be taken to be 6 cps, corresponding to ™y = 0.0265
second. The magnitude of the spectrum, N, of eguation (1) depends on
factors such as target size and target aspect so that the guidance system
is generally forced to operate over a wide range of magnitudes, This
range may extend from 7T fta/radian/sec for small targets up to around
30 £t2/radian/sec for large bombers. For this range of magnitudes it
might be thought that 1t would be necessary to optimize the system for
each noise magnitude. As shown in reference 3, however, this was not the
case for the method used therein since near optimum results were obtained
by optimizing only for & mid-range value called the design value. It is
not unreasonable to believe that the same will hold for the method of the
present report. As in reference 3, a design value of 15 f£t2/radian/sec
will be used here.

The type of target maneuver upon which to base the system design can
never be determined with certainty, since the target quite obviously msy
maneuver . in many dlfferent ways. A reasonable situation might be one in
which the target pillot 1s only aware of the attack and therefore maneuvers
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in some random manner to avoid being hit. One of the most useful concepts
in system design and the one which 1is used in this report is to plcture the
target evasive maneuver as a stationary random process in which the target
turns at its maximum posseible rate alternately in opposite directlons with-
out regard to what the attacking missile is doing. The length of time
between switches is assumed to be randomly distributed according to a
Poisson distribution [(1/T)exp(-T/T)], where T represents the length of
the intervel and T +the average intervael length. It can be shown thsat
the spectral density of the target accleration is described by
) kaT2
Y7 x(w® +k2)
Here the quantity ap represents the magnitude of the target accelera-
tion normal to the beam, and k 1s& twice the average switching rate of
k= E/T. The spectral density of the target displacement is then given by
kag™
op = Oy, = —27 3 v 2
T=59r 7 ot (f +k2) (2)

For the exemple teail-chase situeation, the target is assumed to maneuver
with +lg acceleration with an average period of five seconds, which gives
ap = 32.2 ft/sec and k = 0.4 switch?sec.

There are several important comments to be made concerning this type
of input: (1) First of all, & statistical description of the target maneu-
ver process is a desirable one, since target motions cannot be described
as unique functions of time. (2) It is clear that the maneuver assumed is
a severe one and puts the system to a good test; it is often found that
systems designed according to theories based on elther no maneuver or very
weak maneuvers have unacceptably poor performence in the presence of a
more severe maneuver. (3) Another considerstion not generally realized is
that the stationary process described gbove is also applicable to certain
important nonstationary processes. In any real problem it is apparent
that the inputs are distinctly nonstetionary. For instence, they are non-
stationary because the target motion and noise do not exist for an infi-
nitely long time into the past. However, the nonstationary character of
the input is due to the strict mathematical definition. It is clear that
in the practical case it makes little difference to the missile, so far as
miss distance is concerned, whether a process persists over an infinite or
a finite period sc long as the process begine at a time before the end of
the attack by an smount equal to or greater than the system response time.
(0f course, the process may terminate any time after the attack is over
without affecting the results.) In other words, an infinite period is,
for practical purposes, simply one which is longer than the system response
time. Thus, when the system response times are short, results obtained by
means of the stationary input apply directly to an important class of non-
stationary problems. The results presented herein are in this category.
(1) It should be pointed ocut that an optimum design based on the above tar-
get maneuver will operate efficiently against this class of maneuver as a
whole, although not necessarily efficiently egainst any one particular tar-
get maneuver (e.g., a single target turn). However, as indicated in refer-
ence 3, this design will be essentially optimum for the single-turn maneuver
as well,
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ANALYSIS, RESULTS, AND DISCUSSION

The Modified Wiener Theory

The primary objective of the modified Wiener theory is to arrive at
an optimum transfer function in which the effects of certain saturating
elements are considered. Ideally it would be desirable to determine this
optimm transfer function without any assumptions about whether or not the
system would operate in these saturation regions. However, no such theory
is available at present. The approach considered herein i1s one in which
the transfer functions of certain available elements are chosen so that
saturation does not occur. Thus the system 1s forced to remain linesr
and linear methods are immediately appliceble, Although it is not appar-
ent at first glance, there are certain indications that this approach may
lead to desirsble results., First, it appears intultively that saturation
is undesirable because of the loss of both intelligence and ability to
control the missile when in the saturated regions. Second, it is indi-
cated in reference 3 that the undesirable effects of saturation can be
reduced by the addition of flltering without undue increase in the error;
this method in effect tends to keep the operation of the system in the
linear range. These are only indications, however, and the real Jjusti-
fication 1n the completely linear approach depends on the resultant error
performance which can only be established by investigation.

The theory to be used in this approach follows Newbton's modiflcation
of the Wiener filter theory. To describe the essentials of the theory 1t
will be convenient to refer to figure 2 where the block diagrem corre-
sponding to the general fllter problem is glven. It should be noted that
the notation here corresponds to that in reference 4, In the general
situation there are usually certain elements that are glven and may not
be altered in the design of the system. These elements are denoted by
the transfer functlon Hp 1in the figure. In particular cases the fixed
elements might represent missile aerodynamice, servo motors, and so forth,
depending on the application. To describe the limiting or saturating
quantities 1t is necessary to express them in terms of the fixed elements
and either the input or ocutput of the system. Which choice is made de-
pends on the location of the fixed elements - if the output element is
fixed, as 1s usually the case, it is desirable to express the saturating
quantities In terms of the output. Filgure 2 illusirates a situation
wherein the output element is fixed. At this point it is necessary to
know the saturating quantities. For this purpose we introduce & ficti-
tious situatlon. Since in the general case the saturating quantities are
different from the input to the fixed network, the input to Hp 1n
figure 2 is imagined to be fed through certain transfer functions Hgp
which act as recording elements and whose outputs are the saturating
quentities 0Ogp. It should be pointed out that according to this formu-
lation of the problem the outputs of the saturating elements do not feed
into the system but are used merely for the purpose of evaluation, From
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the above discussion, then, it is clear that by specifying both the Pixed
and saturating networks, the saturating quantities can be related to the
output, The remainder of the system, indicated in figure 2 by the compen-
sating network H,, is unknown and must be determined according to &
specified criterion of merit.

By way of comparison, the originel Wiener theory considers only the
problem of choosing the over-sll transfer function so as to result in
minimum mean-square error, 6¢, between the actual output, 605 and the
desired output, 63 The modified theory, however, considers the minimi-
zation of this same mean-square error wlth & side restriction on the
available range of operation of the limiting quantities; for mesthematical
reasons it is convenient to comsider this restriction to be in the form
of a mean-square limitation. According to the method of Lagrange (ref. 5)
this means that the quantity to be minimized is of the form

N

ee + z pnesn (3)
n=31

where the pn's represent Lagrangian multipliers which must be chosen
properly to restrict the operation of the satursble quantities 85, to
very nearly the linear range.

In most cases it is possible to control saturation by an appropriste
choice of the mean-square value of the saturating quantities Ogpne In the
simple case when a quantity has a Gaussian distribution of amplitudes +the
relation between the mean-square value of this quantity and the probabiiity
of its limiting is well known and particulerly simple., The distributlion of
the saturating quantity in the actual case may not be Gausslan for eilther
of two reasons: First the input may not be Gaussian or, second, there msy
be several saturaeting quentities which interact. On the other hand, even
in these casges the distribution is frequently near enough to Gaussian that
saturation can be readily controlled by an appropriate choice of mean-
square value.

The derivation of the solution for the optimum compensating nebtwork
which minimizes the expression (3) is beyond the scope of this report,
but as shown in reference 4 an expression for this network is

1 fme'imtfm HfZia>¢id(a)eia't
b -

Heo(16) = z¥roy - M@ e
where (%)
N
Me) = [BrGEDE(10) +) pofign(0)Fan(1e) Jogs (0

=1
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In thls equatlion the ¢ quantities represent certain combinations of
target motion and noise spectral densities (see Appendix A), He refers

to the fixed network transfer function, Hgn refers to the transfer func-
tion of the nth saturating component, and Pn Trepresents the correspond-
ing Lagrangien multiplier. Of these quantitlies, all will normally be
known with the exception of the p,. This means that only the form of

Heo 1is known from this equation since the numerical constants depend on
the values of p,. The p,, however, are implicitly related (ref. }) to
the mean-square restrictions on 6gn by the followlng equation

o_F - f Fag (10) Eog (16) Epn (T0) gy (10)04 4 () (5)

co

Here it is to be noted that the integrand in equation (5) is dependent
on the P1sP2s e 5Py by virtue of the dependence of Hpp on these quan~

tities (eq. (4)). It can be shown that in many cases of interest the ppts
are uniquely determined by the equations (4) and (5) when a sultable mean-

square value, Ogn®; ls chosen. This quantity is to be chosen so as to
limit the probebility of saturation to a small value according to & cri-
terion given later. In most practical applications the complexity of the
operations involved in solving these egquations does not permit the genersl
solution to be obtainmed explicitly in terms of the input characteristics
and fixed networks. In spite of this & great deal can be learned from
certaln numerical solutions, as will be shown.

Application of Modified Wiener Theory to the
Beam-Rider Guidance System

The validity of the application of the modified Wiener theory to the
beam-rider guidance problem depends on whether or not several restrictlons
inherent in the theory are met. In general, they are no stricter than are
those of the ummodified Wiener theory. First, the input quentities, target
motion and noise, must be stationary random series (see ref. 6 for a
detailed definition) and defined by corresponding power spectra which are
contlnuocus., It is generally believed that dlsplacements at the target are
approximately stationary random series (ref. 3). Since the beam-rider
system operates from these displacements, the inputs to the beam-rider
system are also stationary random series. Second, the transfer function
of the system must have constant coefficlents. In general, however, the
kinematic loop of guidance systems involves & time-varisble range factor.
In particulsr, for the beam-rider system the time-veriable factor 1s the
ratio of the launcher-to-missile and the launcher-to-target ranges. On
the other hand, because the miss 1s determined primarily by what happens
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near the end of flight during vhich the variation 1n this ratio is small,
it 1s reasongble to assume that the requirement of constant coefficients
is approximately met. Third, the transfer functions of the fixed and
saturating components must be known.

Simplifications.- There are many quantities which may saturate in the
beam~rider system; the most important are (1) control motion, (2) rate of
control motion, and (3) radar receiver voltages. To apply the theory to
all these nonlinearities simultaneously would be a tremendous tssk. How-
ever, there are indications that only one limlting quantity need be con-
sldered in the present problem.

One indicetion is that of the three types of limiting not all sre of
equal severity so that one type tends to predominate. Intuitively, it
might be felt that control-motion limiting is the most serious type and
that placing a restriction on the control motion will satisfactorily reduce
the other types of limiting. Of course the validity of this presumption
would require verification.

Another indication is that of the three types of limiting one is more
fundamental in that it is more difficult to remove than the others. It
will be noted that items (2) and (3) above are both control-system limita-
tions while (1) is essentially an aerodynamic or mechanical limitation.
Since control systems are relatively versatile and can be designed to cover
& wide range of characteristics, 1t appears that control-motion limiting
is the most fundamental to the problem.

From these indications 1t appears reassonable to consider only control-
motion limiting. The validity of the assumption that reducing this one
type of limiting will reduce the other types sufficiently will then be
verified. In terms of figure 2 this simplification means that only one
saturating-component transfer function, Hgy, is ilnvolved. If the fixed
network is chosen to be the aerodynamic transfer function so that the
control motion is the input to the fixed network, then Hg equals unity.
Thus, & block diagram more suited to the specific case of the beam-rider
system would eppear as in figure 3. It will be noted in figure 3 that the
input quantity called 6i in figure 2 has been split into the two parts
which exist in the actual case, target motion yy and nolse yy. Like-
wise the desired output 63 of figure 2 is represented in figure 3 by the
target motion yp. The box Heo, then, is that portion of the guidance
system which is to be chosen to minimize the expression (3). It may be
noted that in the form given the dlagrem does not bear a direct resemblance
to the form of an actual guldance system since the latter will involve
feedback loops. The form shown, however, typifies that of the genersl fil-
ter problem and is better suited to calculation. The solution of this
problem can be readily converted to that of the actuel beam-rider system.
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A few additional remarks are appropriate concerning the two quanti-
ties ¢33 and 031 in equation (k). If ¢i3 is defined as the autocor-
relation function of the input in figure 2, then

T
P;4(7) = lim ﬁ 6i(t)esi(t + T)at
Tyoo =7 o

In terms of the input of figure 3, this becomes

T )
@34 (T) = lim —zlff [yp(t) + y(e) Iyp(t + 1) + yy(t + 1) 14t
-T

Ty

Pp(T) + o) + BT + Pyp(T)

It is normally assumed that there is no correlation between target motion
and noise so that Qpy(T) and Qyp(T) are zero. It follows that the Fourler

transform of @34(T) is
015 (w) = op(w) + oy(w)

Since in the present case the target motion and the desired output are
identical it 1las easy to show in a similar fashion thet

0ig(w) = op(w)

General solution with control motion restriction.- By virtue of the
glmplifications discussed in the previous paragrsphs the application of
the theory to a beam-rider-type guidance system becomes feasible. For the
case illustrated by figure 3, the optimum compensating network, H,,, is

glven by ; iat )
He(1a)om(a)e
Heo(iw) = 2,‘_,\_},(&) f emlwt f g2 AEE(;T da 4t L
: 6
where (€
Alw) = [Hfiimiﬂf(iw) + Q}Qii(w)

o
In the above equetion the quantities o and ¢11 are known from the tar-

get motion and noise charscteristics as previously discussed. The transfer

function Hp of the missile aerodynamics was chosen for this study to
represent that for & typical varieble-incidence missile. The significant
transfer functions for this missile are given by the following conventionsl
equations (ref. 7)
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1 Tvys + 1 1
Ta s(Te®s® + 2{,Tgs + 1) 7

¥
%=

M Ta T,28% + 263 Tys + 1
Y oTE T s(mp + L) (8)

from which the fixed network becomes

mp = M _ L Tp°s® + 2LpTps + 1
f 5 ~ Tg Sz(Ta,ZS2 + agaTa,S + l) (9)

Table I summarizes the parameters for this particular missile &t & given
flight conditlon. It should be pointed out for later comparison purposes
that these aerodynamics correspond to those used in the previous noise
study, reference 3. The remaining parameter p 1s not known so that
equation (6) can only be used to give the general form of Heg. To
illustrate this, the form of Heo 1s derived in Appendix A where it is
shown that

82 (ToPs2+28,Tas+1) (Ta2s2+2¢  Tas+1)

(TBS+1)(T7282+2§7T78+1)(Tu282+2guTuS+l)(Tv252+2§vTVS+l)
(10)

Heo(s) = Tg2

Many of the factors involved in this equation dre functions of the unknown
parameter p. The exceptions are (1) the aerodynamic factors, that is,
the gain Tg2 and the second quadratic in the numerator, and (2) the terms
due to target motion and nolise characteristics, that is, the first two
denominator factors. The remainder of the terms can only be evaluated
after the proper velue of p has been established. This value can be
determined from the restrictlon placed on the mean-square control motion.
The analog of equation (5) in the present case is

EE-=L/hm)Hcoiiwiﬁcé(iw)[¢T(w) + oy(w) law (11)

In theory, equations (10) and (11) can be solved for the compensating
network, H,,, corresponding to an arbltrary mean-square control motion,
gg. In this application, however, because of the complexlity of the fixed
network end the input quantities, the computation is unwieldy. Alter-
natively the followlng procedure will be used here: First calculate the
function Hpp from equation (10) for a selected value of p. After the
result is inserted in equation (11), evalustion of the integral gives a

value of gz. By repetition of this process for a few Judlciously
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selected values of p 1t is possible to determine the value of p
corresponding to the desired mean-square restriction EE.

As mentioned previously, Heo does not exist, as such, in the beam-
rider guldance system. The relationship between the filter problem being
solved and the actual beam-rider system is 1llustrated by a comparison of
figures 3 and 4. From figure 3 it is apparent that 1f the entire guldance-
system transfer function is represented by Yo, then

Yo = Heollr (12)

Thus the solutlon for the compensating network Hpo determines the desired
over-all transfer function Yo for the actual form of beam-rider system
shown in figure k.

Unfortunately, the theory does not give the performance of this opti-
mum system directly in terms of the resultant error. The minimum error can
be found, however, from the following relationship (ref. T)

—— —tr —

e = eq® + ex?

=f°° 1 - Yo(iw)fztbgg(w)dw '+f°° | Yo (iw) [2¢Ndw (13)

[+2] - 00

Effects of control-deflection restriction.- The procedure discussed
in the above paragraphs has been carried out for a range of values of the
Lagrangien multiplier p. The results of thls study are presented in
flgure 5 where the errors due to_%arget motion and noise, the total error,
and the control deflection are given as functions of p. These curves
illustrate the nsture of the restriction of the control deflection. Large
values of p here correspond to & large restriction and therefore small
control deflections. It is apparent from the expression (3) that as p
decreases the restriction on control deflectlon is reduced until at p =0
the Wiener case is reached. By cross-plotting these curves so as to elimi-
nete the variable p which has no significance in itself, the curve of
figure 6 1s obbained. This curve is fundamental to the problem in that it
1llustrates the dependence of error on available surface deflection. Here
the minimum obtainable error according to Wiener theory is indicated by
the horizontel line off to the right. The curve is shown dotted in this
region in order to 1lndicate that these values of error would require unob-
talnable .control deflections.

The importance of the curve of figure 6 is that it represents the theo-
retical lower limit of error corresponding to any restriction on root-mean-
square control motion. BEach polnt on the curve would be achleved by a dif-
ferent guldance-system transfer functlon. The interesting feature of this
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curve is that as the surface deflection is reduced from large values, the
minimum error increases relatively slowly over an &ppreclable range of
obteinable control deflections. To determine the best operating point on
the curve it 1s necessary to specify the degree to which limiting will be
allowed to occur. Since in this linear case the control deflection is
Gaussian, an rms control deflection of half the maximum allowable deflec~
tion would then restrict it to within these limits gbout 95 percent of

the time (ref. 8). For the specific missile being used in this study the
meximum control deflection is about 15 which would put the desired opera-
ting point at 7. 5 as indicated in figure 6. It can be seen from figure 6
that for this operating polnt the effect of this restriction is.an increase
in error of about six feet above that of the Wiener theory. It is a some-
what surprising result that the increase in error is so small for such a
great reduction in surface deflection. The significance of this is, then,
that the optimum Wiener result can be approached closely even with the
operation confined to a realistic linear range.

Characteristics of the optimum transfer functions.- It is of interest
to consider in gresater detail the transfer functions corresponding to the
desired operating point in figure 6. This operating point corresponds
very closely to a value of p = 10% (see fig. 5) which will therefore be
used a8 an example. In Appendix A the transfer functions of the compen-
sating network, closed-loop system, end open-loop system have been derived.
The results are glven below; the numerical velues of the parameters are
sumnarized in teble II.

o T 252428 Tos+1 1 g2 5°(Ta®82420oTys+1)
co - (TBs+1)(T7232+2g7Tys+l) T, 2s2+2f, T s+l s Ty=sZ 428, T s+1
(1)
T 52+26,Tos+1 1 262 +2 6, Ty, s+1
Yo = (Tgs+1) (TyPs242L5Tys+l) T, %2420, T s+l T, 282428, Ty s+l
(15)
. TgPsP4R0 Tas+l 1 Ty, 28242 (T, 5+L
Mo = 82 (Tp\s+1) Tx®s2+2¢  Txs+1 Ty2sZ2+2{yTys+L
(16)
- . -t \ ~
" = ~/
Due to target. Due to control Due to
maneuver and noise restriction aerodynamics

(Wiener theory)
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It is 1l1luminating to trace to their origin the various factors com-
prising these optimum transfer functions. Analysis shows that terms due
to the basic Wiener theory also appear in the modified theory. In addi-
tion, other terms due to the serodynamics and the control-deflection
restriction also appear in the solution. This situation is illustrated
by the grouping of terms in equations (14), (15), and (16). It can be
sald that the terms which arise from basic Wiener theory correspond in
form to the first group of terms. However, certain constants are some-
what altered, as can be seen from table II by a comparison of the param-
eters gilven for the two theories for ldentical target motion and noilse
characteristics. The second group of terms in the equations indicates
that the optimum form of the filtering term due to control-motion restric-
tion is quadratic.® The last group of terms in the transfer functions can
be traced to the aerodynamics. In fact, the numerators are ldentical wilth
terms in the aerodynamic transfer function.

The transfer functions are illustrated in figures T(a), 7(b), and
7(c); these curves represent the optimum trensfer functions in the pres-
ence of the control-motiocn restrictlion. For comparison purposes the cor-
responding transfer functions obtalned from the Wiener theory are also
plotted on these figures. It can be seen that, in general, the transfer
functions for these two cases are similar at the very low frequencies and
separate to a greater extent as the frequency 1s increased. The difference
is primerily due to filtering terms which are required to satisfy the
restriction on control motion.

The added complexity has certaln effects on the control motion and
error. These effects can best be illustrated by means of the correspond-
ing power spectra, that is, by the integrands in equations (11) and (13).
These spectra have been plotted in figures 8 and 9, and for comparison the
corresponding curves for the Wiener theory are shown. It can be seen from
figure 8 that the spectrum of the control deflection for the more complex
system attenuvates far more rapldly than dces that for the Wiener theory.
It is as & result of this fact that the modified system does not limit.

As for the error, it is seen from figure 9 that over the important fre-
quency range the error due to noise 1s not altered too seriously so that
most of the increase in the total error is due to an increase in the tar-
get motion component. )

Effect of nolse magnitude on performence.- The preceding results were
determined on the basis of a design noise magnitude which lay between the
expected extremes. The noise magnitude may vary because of targets of
different size, aspect, and turning rate, For this reason the error per-
formance for the optimum transfer functlion has been determined and is

31+t is interesting to note that from calculations not presented here
it has been observed that the damplng ratlos of these quadratics always
lie between 0.7 and 0.8 over the entire range of control motion presented
in figure 6.
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shown in figure 10 (curve A) as & Punction of the zero frequency noise
magnitude, N. The error performance shown is optimum only at the design
value of noise. Shown for comperison is curve B, which represents the
error performance derived from the Wiener theory, corresponding to the
same design condition (see ref. 3). The difference between these two
curves, then, is the increase in the error as & result of the rms restric-
tion on the control deflection.

As a further comparison two additional curves obtained from refer-
ence 3 are shown., First, curve C illustrates the performance of a system
(with certain satursble elements) which was optimized for the fastest pos-
sible response to a step input in the sbsence of noise. The performance
can be seen to be significantly poorer than the optimum performance given
as curve A. Second, the best result that could be obtained in reference 3
is shown &s curve D in the figure. The system corresponding to this curve
was not optimum bhecause the llnear Wiener theory used in this approach was
not capgble of evaluating all of the various filterlng terms discussed in
preceding paragraphs. For example, terms due to Wlener theory were not
altered, and terms due to aerodynamics were not used. Terms due to con-
trol restriction were included but the performance was limited by the
arbltrarily assumed form. Thus the system was not optimum and limiting
occurred; the performance deteriorated accordingly.

System synthesis.- To achieve the results which have been presented
it is necessary to design the guldance system shown in figure 4 to have
the optimum transfer function Yg. This can be done in many different
ways since the actual beam~rider system consists of two distinect parts:
the tracking radar and the missile~control system. For example, the opti-
mum transfer function Yo might be split up and apportioned between these
two parts of the guldance system. Or, on the other hand, the missiie-
control system slone might he designed to approximate the optimum Yo in
which case the tracking radar should be designed to have a relstlvely fast
response. In a similar manner the tracking rader could be optimized, in
which case the fast response should be designed into the missile-control
system.

To investigate all these possibilities is beyond the intended scope
of this report. As an example, however, of one possible design the choice
of missile-control-system filtering was investigated. For this case it is
desired to deslign the missile~control system to match the optimum transfer
function Yo. This procedure is not unique; the analysis used hereln is
based primarily on cut-and-try procedures. It has been found that the
desglred system could be synthesized in a conventional fashion illustrated
in figure 11. To show how this system is capable of supplying the optimum
filtering the open-loop transfer function has been derived in Appendix B
where it 1s shown that with certain assumptions
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T M _ __kokgV (T1o8 + 1)(Tys + 1)(Tp2s2 + 28pTyps + 1)
£ T+ kgkg 8%(Ty;8 + 1)(Tge + 1)(as® + bs2 + cs + 1)

(17)

Comparison with the optimum p, in equation (16) shows that certain dif-
ferences in form exist. However, equation (16) can be expressed in another
form by factoring approximately certain quadretic terms which have large
damping ratios. Equation (16) can be written then as

(Tes + 1) (Tas + 1) (Tp®s® + 20 Tys + 1)
82(The + 1) (Txs + 1)[(Txs + 1)(Ty®s2 + 2{yTys + 1)]

o & Ky
(18)

It is now possible to choose the parameters in equation (17) to match those
of equation (18); the specific values are given in table III.

The remainder of the system conslsts of the tracking radar whose
response should be made relatively fast for this design approach. Further,
from the plots presented in figures 8 and 9 it is apparent that the track-
ing radar should be designed so as not to alter eppreciably the spectral
distribution of error or control motions. Thus a break polnt or natural
frequency of several cycles per second would be satisfactory.

Comparisons and other conslderations.- In a REAC simulation of this
system its operation was exemined in further detail. Of particular impor-
tance in this examination was the control deflection and the assoclated
servo energy. It was found that the control deflections were effectively
restrained.to within the linear range and a&s a result the servo energy was
greatly reduced. For a given servo the power expended is proportional to
the time average of the sum of the absolute displacements of control
motion. Thus the average servo power over a sufficlent time interval of
duration +t can be determined from

zlas]
1

average servo powver o

For this system there is more than a two-thirds reduction in required servo

energy over that for the system with smallest servo energy requirement dis-

cusged in reference 3. The saving in servo energy becomes even greater
when compared to systems for which the error performance becomes progresg-
slvely worse than the optimum. The control-deflection time history
obtained from the REAC was used to show that the required control rates
are easgily attainsble since they rarely exceeded 3 to 3.5 radians/sec.
This system has other virtues. For example, there is also a reduction

of voltages within the circult to reasonsble and esslly obtainable values,
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From this simulation work, then, two facts are apparent. First, it
is clear that the validity of applying only a control-motion restriction
in the analysis has been verified, since the control rate and system vol-
tages did not saturate. Second, it is apparent that in comparison with
systems of reference 3 in which limiting occurred, the present system not
only produced & smaller error but was accompanied by other desireble
effects such as decreased servo energy and clrcult voltage requirements.

The missile-control system discussed in the gbove paragraphs is
intended only as an example designed to achieve optimum performence
against noise., It 1s clear that since the system operation ls essen-
tially linear, all designs which approximate the desired Yo would give
approximately the same performance. However, it is of‘ten necessary to
satisfy other requirements which are related to the specific design objec-
tives of the system and which may favor certain designs or system con-
figurations. Because of the freedom in choice in distributing the opti-
mum filtering in the system, the optimum characteristice specifiled by the
theory do not, in general, place an inherent limitation on satisfying other
requirements. For example, requlrements on transient response during the
beam entry phese may dictate a design in which more of the optimum filter-
ing is located in the tracking reder. Similerly, requirements of simpli-
city on certain parts of the system may dictate yet a different design.
Because these and similar requirements are related to the detalled deslign
objectives, an investigation of such factors is beyond the scope of this
report.

CONCLUDING REMARKS

This study has considered the application of Newton'!s modificaetion
of the Wiener filter theory to the choice of optimum transfer function
for the beam-rider guldance system., The analysis has been applied to &
typlcal variable-incidence missile at & given flight condition attacking
& maneuvering target in the presence of glint noise. By minimizing the
mean-square error with a slde restrictlon on the mean-square value of
certain quantities, limiting effects, of primary importance in misslile
guidance, are largely eliminated.

Although meny limiting-type nonlinesrities are of importance, this
study haes shown that the critical nonlinearity is due to control-deflection
limiting, since a restriction epplied to the deflection sufficient to con-
fine control motions to within the linear range also satisfactorily pre-
vented other types of limiting. Results have been given which illustrate
the effect of the control-motion restriction on the minimum rms error.

Zero restriction corresponds to the Wiener theory whose results are
ungttainable since impossibly large control motions are demanded. How-
ever, as the surface deflection 1s reduced by means of an lncreasing
restriction, the minimum error increases slowly until at a realistle
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value of the control deflection the error has Iincreased only a few feet.
Thus it 1s clear that the optimum performance predicted by the Wiener
theory can still be approached closely by confining operation of the sys-
tem to a realistic linear range.

The trausfer functions of the optimum gulidance system have been glven
and have been compared to the corresponding transfer functions from the
Wiener theory. Differences were shown to be the result of added filtering
terms demanded by the restriction on control motion. The various filtering
factors can be traced to thelr origin, It wes shown that terms due to
basic Wiener theory appear in the solution, and that the additlonal terms
can be associated with the control-motion restriction and the miasslile aero~
dynamics.

For the optimum system, performence agsinst varlable noise magnltude
wves glven and was compared to Wiener theory. As an example of one possible
design which achieves these results, a mlissile-control system was synthe-
sized to match the optimum transfer function. In a REAC simulation the
operation of this sytem was exemined in further deteil. It was found that
the magnitude of circuit voltages, and control-motion retes are greatly
reduced in comparison with systems in which limiting occurs. Similerly,
the required servo energlies are apprecigbly reduced, resulting in sbout
a two-thlrds saving.

Ames Aeronauticel Laboratory
Natlonal Advisory Committee for Aeronautics
Moffett Field, Callf., Mey 11, 1955
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APPENDIX A
DETERMINATION OF THE OPTIMUM MODIFIED WIENER FILTER

The solution for the optimum compensating network Hpny illustrated
in figure 3 is given by equation (6) in the text as follows:

© ... p® Er(ig)er(a)ei®® \
Heo(iw) = E_M-YJ;T))— J; e 1thm £( j)\'%lc(r.)) da d%
where ? (a1)
Alw) = [EETEZSHf(iw) + e}@ii(w)
p
In this equation ®ii 1is defined as
033 = 0p + Oy (a2)

where &g and ¢y represent the spectral density of the target motion and
nolse, respectively. The quantities AT and A" are defined as the factors
of A with poles and zeros in the upper and lower half-planes, respec-
tively. Thus

A = ATA” (43)

For the case to be considered here the target motion and noise will be
taken as

kaTg
o1 = 25(E 1 ¥2) (Ak)

oy =N (45)

It will be noted that the noise spectrum has been approximated here by a
constant 1n order to reduce the complexity of the calculations. As shown
in reference 3, this approximation is velid because the nolse defined by
equation (1) is essentially flat compared to the passband of the optimum
system. It should also be pointed out that use of equation (AlL) leads to
certain methematical difficulties which occur in the process of evaluating
the right-hand side of equation (Al), because the theory reguires that the
poles of ®p not be located on the reel axis. To avoid these difficulties
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i1t 1s necessary to modify the target-motion spectral density to the

Following .
8 kag” (26)
T 7 (e + 1,2 (P + n.2) (o + kB)

where N, and N, are any small resal numbers. The solution to equation
(A1) will then be a function of iw, n,, and 7n,. The desired answer is
obtalned by teking lim Y, (iw,nl,na) as 1M, and n, - 0. However, 1t can

be shown (see ref. 3) that the same answer can be obtained more simply by
taking N, and Ny equal to zero as would be obtained from the rigorous

process described gbove.

Now by combining equations (A2), (Ak), and (A5),

034 (a) = op(a) + oy(a)

. a® + K2a* + (kegp?/aN)
o (a® + k2)

. (o ~ api)(a - app) (o - aps)(a + ap1)(a + apz) (o + aps)
p
af(a + ik)(a - ik)

[p{a)}[-p(-a)]

(o 1 1K) (@ - 15) (A7)

vhere the apm represent roots in the upper half-plene. The polynomial
p{a) is

3
a) = II (a - )
p( ) ) ( Crm B L
= o® + boa® + bya + bo (48)
where
by = -(apl + Qpz + d.ps)
b]__ = G.plalpz + Clplaps + d.pzaps (A9)

bo = =Upidp=dps
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In a similsr manner
-p(-a) = a® - boo® + bia - bo (A10)

An expression to be used later can be obtained from these preceding

equations as follows
2

k
a® + k2at + 3; =(a® + boa® + bia + bo)(a® - boa® + D1 - Dbo)

from which >
ki
- Al
bO - JTN ( l)

The quantity Hp in equation (A1) represents the fixed network or
aerodynamics and 1ts gemeral form (ref. 7) is given by

v . 1 [ - ;Be®) + 1(24Ta)]
B (ta) = 5 TgZ¥ «B[(1 - Tg2a2) + 1(2¢,Tga)] (a12)
and
— 1 [(1 - T3®) - i(2fTa)l
He(ia) = - T2 & (L1 _Tgazd_z) - i(iﬁam (a13)
Thus

1 [Tp%at + (MPT2 - 2TpE)e® + 1]
Be (Ta)Er (1a) = 772 AT ta* + (42T 2 - 2T,2)a2 + 1] (A1H)
Accordingly it can be shown that in equation (Al)
He(ia)HEp(ia) + p

PTe4Tg 4aB+pTs* (bt 2Ta2-2T52 ) B+ (Tp*+pTs*) at+ (M tpETp2-2Tp3) a®+1
Tgtw®[ Ta*at+(4l45Te2-2Tg %) a?+1]

4 4
Y (G'aqn)ﬁgl (aagn)
at[ Ty *at+ (bt 2Ty 2-2T,2) a2 +1]

4

q(a)q(-a) (a15)

pTa*
ot [Ty tat+ (L, PT 2-2T,2) aP+1]
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where the Qgn represent roots in the upper half-plane. The polynomial
a(a) above is

4
q(a) = nE:. (@ - agn)
= a* + cga® + coa® + cia + co (AL6)
where N\
cg = - (oqg1 + 0gz + ogs + %ga)
Ce = agidge + Gqidqs + O0gifgse + Cgolgs + AgeCge + Cgsdqe >
(A7)
c1 = - (agiugotgs + 0qiGgetgs + Gqifgsdqs + Gq2tgstqs)
Co = aqilgzQq3a4
/
In a similar menner,
a{-a) = a* ~ caa® + cpa® - eia + co (A18)

An expresslon to be used later can be obtained from these preceding equa-~
tions as follows

PTg* To* alepTt (Mt 2T 2-2T,2) a®+(y* +oT " )a*+ (4t 2T 22T, 2) B4l

= plg*Ta*a(a)q(-a)

= pTe*Tg* (o +caa +eoa+eiatao ) (o ~caaStesa®-ciateo)

from which
1

2 o o= Al
Co st4Ta4 ( 9)

The second equation in (Al) can now be found by combining equations (AT)
and (A15)
q(a)a(~a)p(a)[-p(-a)]
aB[Tgtat + (42T,2 - 2T,2)c® + 11(a + ik)(a - ik)
(A20)

Ala) = pTa*N
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This expression can be split into two factors with poles and zeros in the
upper and lower half-planes. From the preceding definitions gq(«) and
p(a) both have their zeros in the upper half-plene, Thus

q(on)p(cr:) (a21)

AT (a) = pTe N
(a) = ol o*(1l -~ Ta2a? + i2¢,Tya)(a - ik)

9(-a)[-p(-a)]
a#(1 - Ty2%e® - 12¢, Toa) (o + 1k) (422)

A (a) =

Now, let us consider the evaluation of the first integral in equa-
tion (Als. This integral can be evaluated by combining equations (Ah),

(A13), and (A22) as follows:

« lat
I, Ef Hr(a)op(a)e do

© A” (a)

} kaT2 fco (1 - sza? - 12§-bTba.)eia't i
Ts®n J. oF(a - ik)q(-a)[-p(-a)]

0]

keqp® f°° (1 - '1t22u.2 - iangga.)eiat i
® o2(q - ik)nl;ll(or. + aqn)mgl(a + Cpm)

2 0
= i f f(a)da (423)

TS2‘K Juo

vhere f(a) is defined as the integrand. By considering o to be a com-
plex varigble, the integral can be evaluated by a contour integration indi-

cated by the following sketch:
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There are two poles within this contour, a second-crder pole at the origin
and a simple pole &t « = ik, as indicated. The residues are

Res(o) = lim -—-[a?f(a)]

av»o da

+ kboCoechb + ik(bocl + b1CQ) + bgoco
kboeo k®bo2co?

Toog 7y _ _ (524)_
Res(ik) = 1lim a - 1k)f(a
es(ik) L ( )£ (o)

(T2 + 28Tk + L)e Kb
B -k2q(-ik)[-p(-1k)]

= y,e Kb (a25)

Now, by means of the residue theory, the value of the integral is given
by

I, = Z;kaTa[Res(o) + Res(ik)]

Thus from equations (A24) and (425),

2ikay? L)
= - — e
I, T2 7, + Tooce + 75 (A26)

The second integral in equation (Al) is denoted by Iz and is merely
the Fourler transform of I,. Hence

[0
Io =L/q Te" 100t - -
o]

2ikaT2 oo . £ .

! -iwt 5t _ _-ilwt -tk+iw)t

<G [T [ g T e
o

(a27)
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Thus it can be shown that

2ikap® (73 + 72)boco(iw)2 + [kyiboco + (1/%)]iw + 1
Te2bgco (1w)2(k + iw)

I

2ikar® T 2(1w)2 + 26,0, (1w) + 1
Tg2boco (1w)3(k + iw)

(428)

It should be noted that since the r1's were assumed to be zero, questions
concerning the existence of the above integral arise. However, as indi-
cated 1In reference 3, when the anelysis is made without this assumption,
the integral in equation (A27) does exist, and the limit of this integral
as the n's approach zero becomes precisely equation (A28).

The coefficients can be expressed in a more convenlent form by elimi-
nating the intermediate parameters ¥, and 7y, by means of definitions

given in equations (A24) and (A25). The following results are then
obtained:

1
2€CLTQ. = kylboco + k_

boCl + blco
boco

(429)

-2§'bT-b - i

Also

Te® = (7, + 75)boco

_ _ boCo(Ty®k? + 2LpTyK + 1) _ kbocoRfpTy + ik(bocs + bico) _ 1

qu( 'ik-) [ -P('j—k) ] kzboCo k2
(430)

For the missile parameters of table I and the value of k given on page 28

T 2k% + 26Tk + 1 ~ 1

so that very nearly

- boco 28aTq . L1
R TE S I N T (a31)

T2
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Now, from equation (Al) the optimum compensating network can be
determined as follows:

Iz
Heo(iw) = EAt () (a32)
Substituting equations (A21) and (A28) into (A32) gives
Heo(iw)
B kap® (1w)2[ T2 (1w) 2428 To (1w) +1]1[To2 (1w) 2428, T, (1w)+1]
MpTg2Tg*boco p(w)q(w)
(A33)

To reduce this expression to a more standard form it can be seen from
equation (A16) that

4
a(w) = I (w - agn)
o ff, (e + 1) (a3h)
Similarly from equation (A8}
3
p(@) = T (w - om)
3
= bo I (‘@E + 1) (435)

Also by using the definitions given in equations (All) and (Al9) the com-
pensating network can be shown to reduce to

o (1w)2[T2(1w)2 + 20Ty (iw) + 11T (1w)® + 2L5Ts(iw) + 1]
i <— L1 7 ( u 1)
mea \ Fm t L) B " et
(436)

By the substitution of theé conventional complex frequency s for iw

Heo(ilw) = Tg

s2(T 2s2 + 2§ o8 + 1) (T 262 + 2(,T.s + 1)

G * l>n- <a'?+l)

Heo(s) =

(A37)
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It is shown later in the numerical exemples that certalin terms combine +to
give quadratic factors as shown below

sz(Ta?s2+2§a$a§+l)(Téf§2+2§ET§s+l)

Heo(s) = Tg2
e ® (Tge+l) (T)Ps420,Tys+l) (T,2e2+20, T 5+1) (Ty 25242t Tys+l)
(438)
where
i 1
Ty = — 2 o f —
B~ api Ty aqidqe
TR = - _, agi + agz
7 szaps 2§qu =i —TEEEZE;—
Qpz + Aps
T, = 1 22—k 2 o .1
28y Ty apsaps Ty= = Gqedaa

_ 4 %gs8 + aq4
Bvilv = T “ogsg

The compensating network given in equation (A38) can be used to deter-
mire the over-all transfer function Yo. From figure 2

Yo(s) = Heo(s)Ep(s) (439)
Substitution of equations (412) and (A38) into (A39) gives
(T 2s2+28  Toe+1) (T, 22428, Ty s+1)
(Tgs+1) (TyPs®+28yTys+1) (T2s2424, T s+1) (Ty®sZ+2¢, Tys+1)
(ako)

Yo(s) =

If Y, 1is consldered to represent a unity feedback system, the equivalent

open-loop transfer function is shown iIn the later specific example to dbe
of the following form:

(S) _ YO(S)
Ho T 1 - Yo(s)

- (T2s2 + 28, T8 + 1) (T,%s% + 28 Tys + 1)
CH g2(Tys + 1) (Ty28® + 28, Tys+1) (Ty2s® + 2¢,Tys + 1)

(Ak1)
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Because ¢, and gx are close enough to unity (table II) it is possible
to factor the corresponding terms approximately to give

(Tys + 1) (T8 + 1) (T282 + 26, T + 1)
§2(Tys + 1) (Txs + L)[(Txs + 1) (Ty®s® + 28yTys + 1)]

(AL2)

bo(s) = ky

The numerical evaluatlicon of the optimum system has heen carried out
for the following values of target motion and noise:

k

0.k ap=1lg

T

5 sec N = 15 £12/radian/sec

From this exemple p will be taken to be 10% since, as shown in the text,
this value results in a near-optimum restriction on control deflection.

Evaluation of the numerator in equation (A7) gives

o® + kPat +k:§2= o«® + 0.16 a* + 8.8
3 3
= H (o=~ apm) I (a+ apm)
vhere
apy = i 1.456
aps = 1.427 exp(i 0.543)
aps = -1.427 exp(-1 0.543)

which are all located in the upper half of the complex o plane. Then
from equation (AS)

b = -1 2.9%
by = -h.201
o = 1 2.97
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Similarly from equation (A15) for p = 10%,

pTB4Ta4a8+st4(h§a2Ta2-2T32)a3+(mb4+st4)a4+(h§b2mb2-2mbz)a2+1

(22.58x10'8)a8-(7.h75x10‘5)a3+(6.267x1o‘3)a4-(o.006094)a2+1

4 4
pTg*Tg* L (a-agn) A2, (a+agn)

Solving for the roots gives
3.593 exp(i 0.804)

Qg1 =

gz = -3.593 exp(~i 0.80k)
ags = 12.92 exp(i 0.058)
age = ~12.92 exp(~i 0.058)

which again are 8ll in the upper-half « plane., From the definitions in
equation (A17),

cg = ~i 6.677
cs = -187.61
ey = 1 883.ho
co = 2155

Now from the values of the roots apm end agn @8 well as the b and ¢
coefficlents, the optimum compensating network can be calculated by means
of equation (A38). For this purpose 1t is necessary to evaluate the left-
hand sides of equetions (A29), (431), and the parsmeters following equa~-
tion (A38). Results of these calculations are given in teble IT in terms
of damping ratios and undamped natural periods. Substitution of these
parameters in equations (A38) and (ALO) gives



_ Lo~ 82(1.28 82+1,82 5+1)(0.00602 52+0.00830 s+l)
Heo(s) = 7.9 (0.687 5+1)(0.190 82:0.727 8+1)(0.0775 82+0.%01 &+1)(0.006 82+0.009 8+1)
(A43)
¥, (s) (1.28 5241.82 8+1)(0.00305 32+0.00243 m+l) -
8) =
° (0.687 s+1) (0.490 8240.727 s+1)(0.0T75 824+0.401 841)(0.006 240,009 s+1)
(Alk)
J(\lso %nilwsu)led in this table are the parameters of the. equlvalent open~loop transfer function
eq, (A4l)) which 1e
(s) 0 (1.28 82 + 1.82 s + 1)(0.00305 62 + 0.00243 & + 1)
Hol® 3- s2(2.5 8 + 1)(0.0338 82 + 0.266 g + 1)(0.00619 82 + 0,00807 5 + 1)
(A%5)
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APPENDIX B

MISSIT.E-CONTROL-SYSTEM APPROXIMATION TO
THE OPTIMUM TRANSFER FUNCTION
The optimum linear system is 1lllustrated in figure 11. In the follow-
ing sectlon the system equations are derived.

Using fligure 11 it can be shown that

¥ kg(Tys + 1)(Tgs + 1)

Ey Tgs(Tys + 1)(Tg252 + 28, Tgs + 1)(Tgs + 1) + kgkgs(Tys + 1) (Tos + 1)

(B1)

To simplify equation (Bl) it is convenient to make Ta = Ty. This assump-
tion is not essential but its use leads to simpler equations. In certain
cases where gust disturbances are serious it may be more desirable to
choose Tg small. With the former cholce

~ - _ ks(?ﬂffl)
Ey sl (TqTy2T,)s%+(TaTa24Tq2 T T, ) 62+(TT, 41528 o Tt kT, ) 5+(Tg+kgkg) ]
kg ég},lswl)
T Mgikgks s(asS+bs@+cs+l) (22)
where 3
o= TaTg Ty
Tq + kgkg
T3 (T.2 + 3¢, T, T, )
P = dy-a CaTaTy ? (B3)
Tg + kgkg :
20, TeTg + T Tg + kokoTo
c =
Tg + kgkg
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Thus the entlire open-loop transfer function can be written as

™ koksV (T108 + 1)(Tes + 1) (4,352 + 26pTyps + 1)

p ===

€ Tq + kekg B2(Ty.8 + 1)(Tss + 1)(as® + bs2 + cs + 1)
(B4)

By comparison with equation (A42) it can be seen to be of the same form as
the optimum transfer function. Thus the following correspondences between
quantities in equations (BL4t) and (A42) are appropriate:

)

T11 e TA
Ts e Tx
> (5)

Tio «— Ta

Ty ¢ To

Also it is apparent that
g & TxTyg
b e Ty? 4+ Tx2tyTy (B6)
c > Ty + 2Cy’ry --

For these values of a, b, and c, equations (B3) can be solved for the

remaining parameters to give \
T = B.Ta,
o bTg - 828y
Ta_Tale - &Td_ S
kgkg = 5 ? (B7)
7. o Ta + Ckgkg - 2teTeTg - TyTg
2 kgks
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The value of kpkg 1s determined from the desired gain:
Tg + kgk

Since only kskg and kgks are specified, one of the three gains ko, kg,
or kg mey be chosen arbitrarily, subJject to the conditlon that voltage
limiting does not occur. From the gbove equations the system parameters
have been determined and are tabulated in table IIT.
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TABLE I.- SUMMARY OF AFRODYNAMTC PARAMETERS FOR EXAMPLE MISSILE

Parameter Yalue-

Tg, 0.0775

Ty, .0552

T 2.087

T2 .0007911
Ty 846

e, .0536

& 0220

TABLE IT.- SUMMARY OF PARAMETERS OF OPTIMUM TRANSFER FUNCTIONS

razanster | WOSif1ed Wisner | Wiener theory

Te 1.13 0.925
ga, .805 .T65
Tg 687 687
Ty . 700 .T00
Ey 519 -519
T 2.5 2.5
kyy 3.2 T7.42
Ty .278 -—-
€ .T20 ---
Ty OTTH c--
- .0581 -——-
Tx .184 -—-
tx .722 -—-
Ty .0787 -—-
by .0513 -—-
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TABLE III.- SUMMARY OF PARAMETERS OF OPTIMUM SYSTEM

Paremeter Value
ko 0.0538
Ty 1.13
TlO 1. 13
Tiz 2.5
Ts .184
kg .0463
Y .186
ks -.67h
To <373
Tg 846
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