‘ / ; o @ https://ntrs.nasa.gov/search.jsp?R=19930085079 2020-06-17T15:13:28+00:00Z

| LULINESS, SLIENCE & TECH. DEP) |
MARTPORD PUBLIC L LRA Y
HARTFORB, CUIN,

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

NACA TN 4282

TECHNICAL NOTE 4282

BOUNDARY-LAYER STABILITY DIAGRAMS FOR ELECTRICALLY
CONDUCTING FLUIDS IN THE PRESENCE OF A
MAGNETIC FIELD

i By Vernon J. Rossow

Ames Aeronautical Laboratory
Moffett Field, Calif,

Washington
August 1958







Z NATTONAL: ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4282

BOUNDARY-LAYER STABILITY DIAGRAMS FOR ELECTRICALLY
CONDUCTING FLUIDS IN THE PRESENCE OF A
MAGNETIC FIELD

By Vernon J. Rossow
SUMMARY

The effectiveness of a magnetic field in stabilizing the laminar

flow of an incompressible, electrically conducting fluid is studied.
The neutral stability curves pertaining to a two-dimensional sinusoidal
disturbance are presented for flow over a semi-infinite flat plate in
the presence of either a coplanar or transverse magnetic field and for
channel flow in the presence of a coplanar magnetic field. As is to be
expected, the magnetic field stabilizes the flow unless the velocity

- profile is distorted by the magnetic field to an inherently unstable
shape. This occurs when a transverse magnetic field is fixed relative
to a semi-infinite flat plate.

INTRODUCTION

Mere mention of the possibility of controlling the motion of
electrically conducting fluids with a magnetic field stimulates one's
imagination to conceive flow fields which may furnish certain ideal char-
acteristics. All too often the configurations are too complicated to be
amenable to analysis and one must be content with a greatly simplified
version of the original idea. A survey of the literature shows that a
number of basic solutions are being accumulated. A large portion of the
effort is directed at the theoretical evaluation of the effectiveness of
a magnetic field in stabilizing a given laminar flow so that transition
to turbulent flow is inhibited. Some of the earliest work on problems
of this type was carried out by S. Chandrasekhar. He found that a mag-
netic field would inhibit the onset of convection in a fluid heated from
below (ref. 1), and would impede the transition to turbulence of fluid
between rotating cylinders of nearly the same diameter (ref. 2). In a
later paper, reference 3, it is found that a layer of fluid heated from
below and subject to rotation is, under certain conditions, destabilized
by application of a small magnetic field. The motion is stabilized by
increasing the magnetic field strength beyond a certain amount.

The effect of a magnetic field on the stability of the flow of an
. incompressible electrically conducting fluid in a two-dimensional channel
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has been studied for a coplanar magnetic field by Stuart (ref. L) and for
a transverse magnetic field by Lock (ref. 5). The transverse magnetic
field is found to be the more effective in stabilizing the flow field.
The high degree of stabilization brought about is attributed (to the
order of accuracy of the analysis) entirely to the change in the velocity
profile caused by the interaction of the fluid and magnetic field. When
the magnetic-field lines are parallel to the stream direction, the favor-
able effect on the stability of a disturbance is brought about by the
electromotive resistance encountered when a fluid element leaves its
normal path of motion in an effort to form a turbulent eddy, thereby
crossing magnetic lines of force.

The effect of a coplanar magnetic field on the stability of a laminar
mixing region was studied by Curle (ref. 6). The Reynolds numbers at
which a small disturbance becomes unstable are generally quite small for
this type flow field (generally less than 100) but increase rapidly with
increasing magnetic parameter. Complete stabilization is predicted for
a magnetic parameter over 0.301.

An experimental example of flow instability caused by a magnetic
field is given by Lehnert in reference 7. It is found that a shallow
layer of mercury over a copper disk with two concentric copper rings is
destabilized by application of a vertical magnetic field. The rotation
of the inner copper ring produces a shear layer in the mercury which is
intensified by the magnetic field to the extent that an eddy-type flow
results. It is pointed out by Lehnert that a generalization concerning
the effect of a magnetic field on the flow field cannot then be made,
and each situation must be studied to find out if the beginning of ampli-
fication of a disturbance is actually delayed to a higher Reynolds number
by the magnetic field.

The flow of an incompressible electrically conducting fluid over a
semi-infinite flat plate in the presence of a magnetic field perpendicular
to the surface of the plate was studied in reference 8. The effect of
the magnetic field on the stability of the flow has not as yet been
studied for the case when the magnetic lines of force are perpendicular
to or alined with the stream direction. It is the intent of this paper
firstly to present an analysis of the stabilizing effect brought about
by a coplanar magnetic field acting on an electrically conducting fluid
flowing over a semi-infinite flat plate. The analysis is restricted to
infinitesimal sinusoidal disturbances of the Tollmien-Schlichting type.
In the course of the investigation it is necessary to evaluate a large
portion of the numerical work for the corresponding two-dimensional chan-
nel problem. Since the method of analysis is slightly different from
that of reference 4, these results are presented. Secondly, the effect
of a transverse magnetic field is considered. As was found for the chan-
nel (Lock, ref. 5), the change in the critical Reynolds number,for the
flat plate is controlled primarily by the change in the velocity profile
brought about by the interaction of the fluid and magnetic field. The
velocity profile shapes which are considered are taken from the two
simplest cases analyzed in reference 8. The first case assumes that




NACA TN 4282 3

the transverse magnetic field is fixed relative to the plate and the
second that it is fixed relative to the fluid far from the plate.

The method of analysis which is used is patterned after the procedure
developed and described by C. C. Lin in references 9, 10, and I, A his-
tory of the development and of the various physical problems which have
been studied is given in a monograph by Lin in reference 12. A brief
outline of the method is given in the introduction to the present analy-
sis. The neutral stability curves are presented for several values of
the magnetic parameter.

SYMBOLS
a l-c
B imposed magnetic induction
e wave speed of disturbance
F(z) Tietjen's function (see eg. (19))

z oB2 :
m magnetic parameter, —G—, per unit length
PYxo
P pressure
gg’ql’}- inviscid perturbation amplitude functions (see eq. (8))
550
. 85U
R Reynolds number based on boundary-layer thickness, ——
Vv
Ry Reynolds number based on distance from leading edge of
xX*U
flat plate, 2
u x component of velocity
U oty
Ueo
i) velocity in the stream direction of the flow field to be
perturbed

v y component of velocity

X,y rectangular coordinates
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z Yo(Uo'@R)l/s
(o8 wave number of disturbance ;
x*
) boundary-layer thickness, 6 TTZ
(00}
c L
(CLR)]‘/3
W perturbation stream function
® amplitude function
v kinematic viscosity
Y'.Vo
L €
o density of fluid
(o] electrical conductivity

X X 7
(0)> (l)’}' viscous perturbation stream functions (see eq. (16))

Subscripts
o edge of boundary layer, or free stream
0 critical layer where U = ¢
da disturbance
Superscripts
- vector

! derivative with respect to ¥y

* dimensional quantities
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ANALYSTS

The present state of stability theory requires that a number of
simplifications be made in the analysis so that the method can be applied
to physical situations without a prohibitive amount of labor. The method
developed by C. C. Lin (refs. 9, 10, and 11) 1s a compromise between
accuracy and effort required to analyze a given flow field. The present
analysis 1s therefore patterned after it.

Resumé of Steps in Analysis

The desired result is a stability diagram of exciting wave number o
and Reynolds number R. At the beginning, the undisturbed steady-state
solution to the magnetohydrodynamic flow problem being considered is
assumed to be known. This information together with the equations of
motion, the continuity equation, Maxwell's equations, Ohm's law for a
moving fluid, the electromotive force relation, the wave nature of the
disturbance, plus various approximations go to make up a complex fourth-
order ordinary differential equation for the amplitude function ¢. The
various steps will now be explained. Sketch (a) was designed to orient
the reader in the subsequent analysis which, in view of its well
established nature, is discussed only briefly.

The flow field is at some time assumed to be a steady two-dimensional
stream of incompressible electrically conducting fluid. A two-dimensional
infinitesimal sinusoidal disturbance of a given wave number o is then
impressed on the fluid to test for the stability of the stream. A sinus-
oidal disturbance is chosen because many disturbances which are likely
to occur in nature can be Fourier analyzed and thereby reduced to a sum
of sinusoidal disturbances. The magnitude of the disturbance is assumed
to be vanishingly small or infinitesimal so that the analysis may be
simplified by retaining only those terms which are linear in a disturbance
or perturbation quantity. The wave nature of the disturbance is intro-
duced by the disturbance stream function

T SUmcpeia*(x*-c*‘b—ici*t)

where o* 1is the wave number, c* 1s the velocity of the wave in the
stream direction, and c4* 1is the rate of growth of the wave amplitude.
The disturbance velocities are then given by u* = Oy/dy* and

v¥ = -(0y/dx*). The starred quantities have physical dimensions, whereas
the unstarred counterparts have been made dimensionless by dividing by

' the free-stream velocity Uy, or by the boundary-layer thickness § as
the case may be. It is assumed that the disturbance velocity and
magnetic-field components are characterized by this exponential and
depend on it to a first power. The object of the analysis is to find
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the conditions when the wave will just begin to growl (i.e., will be
neither damped nor amplified but neutral), the factor ci¥ of the expo-

nential is set equal to zero and the exponential reduces to ela¥(x¥-c*t),
This function describes the propagation of the wave in the stream direc-
tion for a given station x* as a function of time. The velocity of
propagation for a given disturbance is independent of the distance along
and perpendicular to the plate. It remains to find the circumstances
under which the wave amplitude neither grows nor diminishes but is neu-
tral. It is found that the neutral point of wave growth occurs when the
wave speed c¥ 1s equal to the local velocity U of the fluid. The
region in the fluid where this happens is referred to as the "critical
layer" and the distance from the wall as y*.

In the actual flow problem one knows that the disturbance may be
of either the two- or three-dimensional type. It has, however, been
shown by Squire (ref. 14) that if the flow field is unstable to a three-
dimensional disturbance it will be unstable to a two-dimensional disturb-
ance at a lower Reynolds number., The extension of this proof to the type
of magnetohydrodynamic problems being considered here is made by Michael
in reference 15, Only two-dimensional disturbances will then be considered
because they are the most unstable.

When the information just described is introduced into the equations
relevant to the problem, a complex ordinary fourth-order differential
equation is obtained for the amplitude function ¢ (sketch (a)).

It is complex because imaginary quantities are introduced by the expo-
nential used to describe the perturbations. The terms which contain
products or squares of the disturbance quantities are discarded. It is
also assumed that the station in question is far enough downstream so
that the variables are not changing in the free-stream direction.

Even though a number of simplifying assumptions are made, the form
of the differential equation is such that a simple solution has not yet
been found. It is necessary then to find four linearly independent solu-
tions by reducing the complete differential equation to two simpler dif-
ferential equations by a power series expansion in 1/R and € = (1/aR)*/®
as indicated in sketch (a). The zero-order terms in l/R are the only
ones retained. The resulting differential equation is sometimes referred
to as the inviscid form of the differential equation because all terms
involving viscosity have been dropped. Proceeding down to the next step

1The stability curves corresponding to a number of growth rates,
c; > 0, have been computed by S. F. Shen (ref. 13) for flat plate and
channel flow using an extension of Lin's method.
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Complex fourth-order ordinary differential equation
for
o(y,a,c,U,md,R)

1/R]_/R2 " S 2 €=(1/QR) 1/3
LN, AW
(Discard terms involving viscosity)
Complex second-order
differential equation -
inviscid functions:
o(y,a,c,U,md)

Complex fourth-order
differential equation -
viscous functions:

X[ (y-y0) (R)*/3; Uo']

&2 aal

S

P P2

o X
<K
L}

-O)(aR)1/3 X =1 X3 = g3 | |Xs = 0a

i 3
PRI R

Yo¢5'(0) lbecause
itends to
with y

= TietJjen's function|

ayR combinations for neutral
stability obtained from constants
o in
P = 8191 + 8zP2 + a3P3
with constants chosen so that
9(0) = ¢'(0) =9'(1) =0

|

md

Unstable
Stable

R

Sketch (a)

in sketch (a), the first two linearly independent solutions ¢; and @o

‘ are found by introducing another series which consists of positive powers
of the wave number o and whose coefficients depend on the wave speed c
and velocity U in the flow field. Once again, only the first few terms
in a are retained.
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The boxes on the right of sketch (a) indicate that the solution to
the first-order term in the set of differential equations which results
from the expansion in e = (1/aR) 3 4is the only one which is found. "
As pointed out by ILin, higher order functions could be found by quadra-
tures but in most cases sufficient accuracy is obtained by considering
only the first-order term, This differential equation has four linearly
independent solutions which can be used. Two of these solutions, X;
and Xp, are discarded because they are too simple in form for curved
velocity distributions. An examination of X4 or @4 shows that it
increases without limit with y and thereby violates the boundary con-
dition that disturbances must die out as y approaches infinity. For
this reason it is not used in the problems treated in this paper. The
function @3 is generally used in the form known as Tietjen's function
(sketch (a)).

The three remaining linearly independent solutions are then combined
in such a way that the boundary conditions are satisfied. The disturbance
velocities will vanish at the wall and edge of the boundary layer when

® =2a3P1 + 820> + azPz

with the constants a;, ap, and ag chosen so that

¢(0) = ¢'(0) = 9'(1) =0

This is possible only for a certain combination of « and R when the
magnetic parameter md, velocity distribution ﬁ, and wave speed c have
been specified. The end result from several such computations is a graph
of the wave number a versus the Reynolds number R for various values
of the magnetic parameter md. Since these curves denote the values

of a and R for neutral stability of the wave, a combination of a and R,
which lies on the side of the curve denoted as unstable, warns that the
amplitude of the disturbance will grow under those conditions. In the
stable region the wave is damped.

The number of approximations which are made might cause one to doubt
the accuracy of the end results., Estimates made by Lin in reference 11
indicate that the stability curves should not be in error by much more
than a few percent and are therefore accurate enough for most engineering
purposes.

The analysis of the problems being considered in this paper is
presented in the following sections. Since the method is well defined
in references 9, 10, and 11, only the essential parts of the analysis
are presented.
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Coplanar Magnetic Field

Differential equation.- The differential equation for the fumction ¢
will now be derived for the magnetic-field lines alined with the stream
direction. The result is general enough that it can be applied to the
flow in channels and over flat plates. Maxwell's equations for the
incompressible-flow problems being considered are

- N
Div E = 0
. -
Div § = 0
il ) (1)
Curl H = Lgxj
->
Curl B = - o
ot J

- -
where b S uH 3, and p are the electric field intensity, magnetic inten-
sity, electric current density, and magnetic permeability, respectively.
Ohm's law for a moving fluid is

—

=
j=0oF+Tx3B) (2)
- — —
where B = pH and U is the local velocity vector. The equation of
continuity is

Div U = 0 (3)

The Navier-Stokes equation modified to include the electromotive
force term (so-called Lorentz force) arising from the relative motion
between the fluid and magnetic field is

- e -
S+ (U grad)l -
& ( grad)

— -
() XxB) + = grad p = w20 ()

O+
10)] fl=

where the excess charge density and applied electric field are assumed
to be zero.

The relation between the input wave number, a, of the disturbance
and the Reynolds number, R, of the flow at which the amplitude of the
disturbance neither increases nor decreases (neutral) will be found by
introducing the quantities,
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w =T+ ud*(y*)eia*(x*-c*‘b) ) :
v = vgr(yw) el (xk-cxt)

By = B + b(yx)ele(-et) $ (5)

By = B(yx)elo*(KF-cxt)

p* = Br + pge(ye)el(xX-ext) )

where c¥ = cp* 4+ icy¥. When the disturbance is classified as neutral
(neither amplified nor damped) ci* 1is zero. ©Since the problem will be
to find only the neutral disturbance curves, the quantity c* will here-
after be used to denote only the real part cy*, that is, the wave speed
of the disturbance. The quantity o¥ dis the wave number of the
disturbance.

It will be assumed that:

1. The location of the instability is far enough downstream of the
entrance to the channel or leading edge of the plate that the velocity
normal to the boundary is negligible in comparison with the velocity
parallel to the boundary.

2. The fluid is of uniform density and conductivity, and the
applied magnetic field, B, is uniform throughout the flow field.

3. The boundaries are perfect conductors in order to complete the
circuit for electric currents in the fluid.

4, Terms which contain products or squares of the disturbance
quantities are negligible.

5. The disturbances are neutrally stable at values of the Reynolds
number high enough so that a series in (l/&R)l/s converges rapidly.

Following the method used by Stuart in reference U4, equations (1)
through (5) may be combined and simplified using the foregoing assump-
tions to yield a complex ordinary differential equation for the dimen-
sionless amplitude function .

(U-c) (¢"-a2g) - @U" + imdagp = {Slgﬁ (" -2a20" +a%p) (6)
vhere m = oB2/pU,, R = dUy/v, and U denotes the local velocity divided
by the velocity at the edge of the boundary layer, Us. The symbols «

and c¢ in equation (6) denote the dimensionless form of the wave num- .
ber o* and wave speed c¥, respectively. The amplitude function o

is a function of y = y*/8. The primes denote differentiation with

P e
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respect to the distance y normal to the nearest bounding surface.
Hereafter, only the dimensionless unstarred quantities will be used in
the analysis unless it is noted otherwise.

The boundary conditions are,

) = ol =) a6 =N

at center of chammel, y = 1 ‘
@ =0 =10 -{or

at ¥y =« for the Flsbiplate

Four linearly independent solutions to equation (6) will now be
found by the technique explained in references 9, 10, and 11l. The first
two solutions, ¢ and @p, will be derived from a series expansion in 1/R
and are designated as the inviscid solutions. The two remaining solutions
@3 and @4 result from a series expansion in € = (l/ouR)l/3 and are
called the viscous solutions.

Inviscid solutions.- If the terms involving 1/aR in equation (6)
4 are assumed small, the remaining terms constitute the differential
equation which ¢, and @o must satisfy.

i (U-c) (¢"<Zp) - U" + imdag = O (7

A solution to equation (7) is found by the method of Heisenberg
(see, e.g., ref. 12). It is assumed that the solution is of the form

= 0o + %1 + 9Pgs + 053 + + & & (8)

When equation (8) is inserted into equation (7) and the terms containing
the same power of o are equated, the following set of linear ordinary
differential equations is found.

Q" - u" 120 (9a)
U=-c
un imd

no_ = e — b

e Lo (90)
1 imd

Qr'; " U-c Gnti=dp—oms U-c dn-1» D=2,3.¢. (9n)

The two linearly independent solutions of equation (9a) are
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q,ol =U-c¢ (lOa)
J
= -C .—_gi_
4, = (U )fo (Uo)? (10b)

The two inviscid solutions for the function ¢ may then be written

as
9(y) = (U-c) [1 + aZfoy (U_lc)zj;n(U-c)zdyzdyl +
a‘*Ly(U_lc)zj;yl(U—c)e/;yzﬁz—j;ya(tf—c)adndyadyadyl + .. ] -
(U=c) <imba [’/;y(u_lc)zfoyl(u-c)dyzdyl +
az/;yzu_l_c)gh/;yl(u-c)eﬁyg(U}C)zjoﬂya(u-c)dy‘tdyaayzwl + .. ] .. } + .
(11)
and
) = ey { [T azfoy@_lc—)_,_foyl(u-c)zfoyew_lc)z Woady + - - -
e [ [T [P0 [ 2y e Jo - Foo

where only linear terms in md have been retained.

The integrals in equations (11) and (12) may be changed to a more
convenient form by the transformation employed by Lin in reference 11.
At the wall, y = O, and at the edge of the boundary layer, y = 1, the
inviscid functions and their derivatives then become

91(0) = -c W
(@) = o)
9! (0) (0) & -
9=(0) =0
@é(o) = ‘:cl::‘ J
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where

@1 (1)

¢ (1) =

P2(1)

. (1)

1-c

2 Tn - imda(l-C)Ps + + - )
1 [ePHyi-0*Mat o » o«
1-c [ 1-o2H, * AmpolTisaiEl S ')}
= (1-c) [ LSRN a®Ns + imda(gs-KiPo- . - ):I
l-@gHg
15 ik {GJZK]_(H:L-CLQM3+ o ® -) g et GIZHZ e, o 2
l-c 1-a®Hs
imda [Kl(pl+cc2p3+ e el e R J} 4
1
P1 =f (U-c)ay
o
L 1 yl( )
D =f f U-c)dy=dys
T o (U-¢)®Jo
Gl 5 Vi o N
D3 =f (U-c) 2f (U-c)dysdy=dyy
o o (U-c)=dJo
e Y i
ds =f gf (U-c) = dysdyodys
o (U-¢)=Js vo (U-c)
1
Hy = (U-c)Zay
vo
Al
e f 2
Ho= U- d;
2 £ o2 J, (U-c)"dyzdyy
3 1 J2
Ms =f (U—c)gf e Zf (U-c)2dysdyody:
o Y1 (U-¢)= Jo

13

(15¢)

(154)

(15e)

(1.58)

(15g)
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.
N3 —\Z: (U—C)gnl: (U-c) L/;2 (0-0)2 dysdy=dy; (15h)
1 i .
e (151)

The path of integration, according to
Yi reference 10, lies along the real y axis with
an indentation along a semicircular path under
the singular point, y = y, (i.e., vhere U = c)
as shown in sketch (b).

U=c Viscous solutions.- The two remaining
0 —CJ o JYr independent solutions, the so-called viscous
solutions @5 and @4, are found by introducing
Sketch (D) the small parameter e = (1/aR)1/2 and the

function X as

€N =Y - Yo W -
= = NE -€2 o ©
o(y) = X(O)(n) X(l)(n) + X(Z)(n) + > (16) L
‘ and
. Us >
U-c=Ul(en) + = (em)= + . . .

The subscript o indicates that the quantity is to be evaluated at the
point where U = c. If the equations (16) are introduced into equation (6)
and the terms containing the same power of € are equated, the following
set of ordinary differential equations results.

nUIX" . ix"” = O (l7a)
(o) (o)

X+ i = ui, o gy amex” (17D)
°" (1) (1) (o) o 2 (o) (o)

et

The solutions to equation (17a) are the only ones in this series
which are found. As pointed out in the introduction to the analysis
two of these four linearly independent solutions are discarded on the -
grounds that they are trivial. It is also found that the function X,
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or ¢4 1increases with y indefinitely and thereby violates the boundary
condition that the disturbance velocities must die out at the edge of the
boundary layer. The form of the solution required is then

|

= -y F(z) (18)

where

-7 4
f dcf Cl/zHl/s l:% (iC)3/2:I d-C

—y
_Z\jp C1/2H1/3 [g (ig)s/z] a

and Hy/3( ) is a Hankel function of the first kind and of order 1/3.
The function F(z) is sometimes referred to as the Tietjen's function.
The tabulated values of references 9 and 16 are plotted in figure 1.
The viscous solution is not modified by the presence of the magnetic
field to the order of accuracy of the amalysis.

(19)

F(z)

The inviscid solutions, equations (13) and (1k4), together with
equation (18) make it possible to find the change in the neutral
disturbance curve caused by a coplanar magnetic field.

Channel flow (parabolic velocity profile).- The flow of a viscous
fluid between parallel planes (Poiseuille flow - sketch (c)) gives rise
to a parabolic velocity profile if the station in
question is not near the entrance to the channel. e

The effect of a coplanar magnetic field on the I TT ST
growth of a two-dimensional disturbance has already =Y —
been studied by Stuart in reference 4. The differ- == e
ence between the analysis carried out here and in

reference 4 lies in the larger number of terms Sketch (c)
retained here for the inviscid solution ¢; and in

the form of equation (22) which is used to find the proper a-R combina-
tion. The end results of the two analyses should, however, be about the
same. Since the integrals (15) must be evaluated for a parabolic veloc-
ity profile in order to make application to the flat-plate flow field,
only a small amount of additional effort is required to find the neutral
disturbance curves for the channel.
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The velocity distribution is written as
U=2y - y2 (20)

The integrals (15) can be evaluated in closed form for arbitrary values
of the wave speed c.

N
9. 3 (21a)
e =l 1-a®  3a2-1 , lia) (3a2-2a3-1)
= 6 \a2 a2 2a3 1-a, 12a3 (le)
b = 2nia2 (Gae—zacen) s 3a2 1 8a VE 8 4 8a4-6a2+3 2lla2> "
45 Ya2 300
Sina
sE ol (1+a)® [Qllaz 55 L <l'3a a5 _83_2> 1n(l+a)} +
60a> 180 5 5
3_a,2 i 2
M (l—a)a LElla . 1+17a/k4 _ <l+3a 0 §f> Zn(l-a)] (210)
60a> 180 5 3
vé 2 2
s = L ﬁ) [3(&%)— (2a-1)1n(1+a) + 3(1-a)" (2a+l)ln(l-a)+3(a2+2):l+
T2a5 1-a 2a, 2a
2
{'212 L (}-g < > L Za) - [Zn(;+a)] + (in 2a)[zn(l—a)]}-+

[ in(1-a2) - —8—251 in 2a + 2a(a-0as) 5a2) <a2— —> 1n< + E;—r (3a2—2a3—l)]

16 a6

(214)

where a2 = 1l-c, and L( ) is the dilogarithmic integral. Numerical
values for the relations (21) for several values of the parameter c¢ are
presented in table I. The functions L, are tabulated in references 17
and 18. The remaining integrals in the group (15) are written and
tabulated in reference 11.

It remains now to combine the inviscid and viscous solutions so that
the boundary conditions at the wall and at the edge of the boundary layer
are satisfied. It i1s found that the wave number of an antisymmetric
disturbance and the Reynolds number of the flow field must be chosen so
that
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95 (0) el (1)

o yo{U‘(O)cp'g(l) +2 cp’l(l)]

F(Z) = - (22)

With all of the individual functions known, an iteration scheme is
employed to find the correct wave number and Reynolds number combination.
A graphical method was used to find the intersection of the curves of
the functions on the left and right sides of equation (22) for several
values of the parameter c, whereas a numerical iteration scheme was
used in reference 11.

The neutral disturbance curves for several values of the magnetic
parameter md are shown in figure 2(a). Since the parameter mda was
held constant in the analysis of reference 4, a direct comparison with
the neutral stability curves of that paper cannot be made. The critical
Reynolds numbers found by the two analyses will be compared in the
discussion.

Flat-plate velocity profile.- When an incompressible viscous fluid
flows past a semi-infinite flat plate of zero thickness, the velocity
profile can be predicted theoretically and
is generally referred to as the Blasius pro- y T
file (sketch (d)). The neutral stability B ——— ——— —
curve in the nonmagnetic case has been com- U P e - L
puted in references 9, 10, and 11. The
effect of the magnetic field on these

results will now be found. Sketch (d)

The integrals (15a) through (l5d), evaluated by the approximate
method suggested in reference 11, are tabulated in table IT for specific
values of c. The real and imaginary parts of K; are computed by the
relations given in reference 11 as

Kip = - ——— + 0.1465 + 1.2467c + L.0k5c2 + 2.039¢3 + 4.0T8c# +

cU* (0)
242365 & . e+ % <c2 a %?Ics . .> <ln O'i"c & i#) (23)

(ur)®

The expression which determines the proper values of wave number o
and the Reynolds number R for the flat-plate problem is
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clol(1) + aga(1)]

F(z) = (25)

yo{hwoﬂmyl)+cwglﬂ-+%[mﬂl)+G¢JIH}

The neutral stability curves for several values of the magnetic
parameter md are shown in figure 2(b).

Transverse Magnetic Field

The change in the boundary-layer velocity profile for flow over a
flat plate in the presence of a transverse magnetic field was found in
reference 8. It was found that the skin friction and heat transfer are
reduced if the magnetic field is fixed relative to the plate (sketch (e))
| and increased if it is fixed relative to the

vyl | @' l ]! lyl 1 fluid outside of the boundary layer

|: I L4’¥'EI_J_T__ (sketch (f)). The possibility exists, however,
U 1¢’T' l | | that the magnetically induced velocity profile

4/1 | E. | !} may be more or less stable to transition to

X turbulent flow. An estimate of the change in 3
Sketch (e) the stability of an infinitesimal sinusoidal
disturbance induced by the transverse magnetic
y ] U | 1|U| | field will now be found.
T : ] 4l l — j__:_ The differential equation for the
= |Llp-HHTIEEDTTT aisturbance stream function is found by the

technique used by Lock in reference 5 which
is to combine equations (1) through (5) and

Sketch (f) then simplify the result by applying the five
assumptions outlined in the analysis of the coplanar field. The differ-
ential equation for the perturbation stream function is then

(U-C) ((p"—cx,2cp) = U"(p = E-_Z%§ CP" i _{Eﬁ (@""-2a2cp"+on4cp) (26)

It is shown by Lock in reference 5 that the forms of the inviscid
and viscous solutions are not affected to the order of the analysis by
the additional magnetic term in equation (26). In other words, the
change in the velocity profile caused by the transverse magnetic field
dominates the stabilizing action of the magnetic field. The neutral
stability curves for several values of the magnetic parameter mx are
found by the method outlined in the appendix of reference 11. The invis-
cid solutions are found by using the numerical data in tables I and IT
of reference 8 to determine the velocity profiles at mx = 0.05 and 0.10. -
The numerical results for the integrals (15e) through (15h) are tabulated
in tables IIT and IV.
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The real part of the integral (151) is evaluated by expanding in a
series about the critical point y =y, where U = c. The result which
was used in the computations for the transverse magnetic field is

(ugy® ~ £ehs
0.3 = 0.04-0.
i (U('))4 (U'O)s ( QYO) +

e 0.4-y
SR Okl K S l )

WCHE TR T Sl

1", 4
5 (U;) <O.264 ~ 0.16y, + o.uy02> e B el

16 (Ué))e
at ak it il 1-2 N1-c 0.1 (27)
4(1-c) \ 0.75-¢ Ji-e Yes Jlee (Tc)

The imaginary part KXi4 is evaluated by use of equation (2h). .- The
velocity U in the integrals (15e) through (15h), (24), and (27) is
referred to the velocity at the edge of the boundary layer a“ the partic-
ular station being considered. When the magnetic field is fixed relative
to the plate the undisturbed stream velocity and the velocity at the edge
of the boundary layer are not the same.

The neutral disturbance curves are shown in figures 3(a) and 3(b).
DISCUSSION

The neutral stability curves shown in figures 2 and 3 indicate that
the presence of a magnetic field may stabilize or destabilize the flow
of an incompressible, electrically conducting fluid. It 1s seen from
these results that the flow over a flat plate is stabilized by either a
coplanar magnetic field or by a transverse magnetic field fixed relative
to the fluid, but a transverse magnetic field fixed relative to the plate
is generally destabilizing. The portion near the top of the mx = 0.1
curve in figure 3(a) indicates an opposite trend for a small range in
wave number. As pointed out in the introduction, another example of
flow instability caused by a magnetic field is presented by Lehnert in
reference T.

A given flow field will probably contain disturbances covering a
wide range of wave number due to imperfections in the walls and entrance
to the flow field. A conservative value for the critical Reynolds number
is then the lowest value at which it is first possible for any of the
waves to be amplified. The critical Reynolds numbers for the flow prob-
lems considered in references 4 and 5 and for the coplanar magnetic-field
cases studied in this paper are shown in figure 4 as a function of the
magnetic parameter md. The results for the transverse magnetic field
as a function of mx are also shown in figure 4., It is seen that the
results of Stuart in reference 4 are in essential agreement with the
present analysis. The difference between the results is attributable
to the smaller number of terms retained in the analysis of reference L4
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for the inviscid solution. The results for a laminar mixing region
obtained by Curle in reference 6 are not shown in figure L4 because the
Reynolds numbers are too small for the scale of the graph.

It is quite evident from figure 4 that a magnetic field is more
effective when applied to channel flow than to flat-plate flow. In
particular, the transverse magnetic field is so effective in stabilizing
the flow in a channel that the curve is a vertical line to the scale of
the graph.

When the magnetic field is coplanar, the large difference in the
shape of the critical Reynolds number curves for the channel and flat-
plate flow fields is attributable to the infinite extent of the flow
field above the flat plate. As is shown by Lin in reference 9, the
asymptotic form of the disturbance stream function as the distance y*
approaches and exceeds the boundary-layer thickness, &, introduces addi-
tional terms in the equation determining the neutral stability curves.
This is obvious when equations (22) and (25) are compared. These addi-
tional terms de-emphasize the terms involving the magnetic parameter and
result in a much smaller stabilizing effect for the flat plate than for
the channel flow.

The magnetic parameter and the Reynolds number for the flow over a
flat plate at which an infinitesimal disturbance will grow (figs. 2(b)
and 3) are based on the boundary-layer thickness & taken® as
6/ Uy/vx¥*, where ﬁ/Uoo = 0.999. The distance along the plate from the
leading edge is then related to the boundary-layer thickness by the
relationship

*
5 - 6x
Rx*
where, Ryx = Ux*/v. Therefore,
. Emx*
N Ryx
and
R = 6 \’Rx*

2Standard texts on boundary-layer theory usually define the thickness

as 8 = 5/ JUx/vX*, where U/Uy = 0.99. As explained in reference 11,
more accuracy is achieved by defining a thicker boundary layer to a
evaluate the inviscid integrals.
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It was found in reference 8 that a magnetic field perpendicular to
a flat plate changes the velocity profile in the boundary layer. Even
a small magnetic field fixed relative to the plate will cause an inflec-
tion point® in the velocity profile near the surface. As is shown in
figures 3(a) and L, this causes the flow to be less stable with a mag-
netic field than in the nonmagnetic field case. The results in fig-
ures 3(b) and 4 indicate that a magnetic field fixed relative to the
fluid far from the plate changes the velocity profile to a shape which
is more stable. The results of reference 8 indicate that the skin fric-
tion and heat transfer are reduced in the former and increased in the
latter case. Care must then be exercised if one attempts to reduce either
the skin friction or heat transfer by imposing a magnetic field across
(perpendicular to) the flow field and not in relative motion with the
plate, because the laminar flow is destabilized by this technique. Iike-
wise, the increase in the skin friction and heat transfer brought about
by a transverse magnetic field sweeping past the plate at the velocity
of the free stream would eventually experience a moderate compensating
effect in the form of increased stability of the laminar stream.

The results of this paper, in conjunction with that of reference B
point out the fact that it is not certain whether the skin friction and
heat transfer are lowered or raised by using a transverse magnetic field
to alter the flow over a flat plate. The magnetic field alters the
velocity profile and changes the rate of growth of small disturbances so
that the two effects tend to compensate each other. Individual situations
must then be considered separately to determine whether an advantage can
be achieved.

CONCLUSIONS

The analysis carried out in this report for the flow over a flat
plate indicates the effect of a magnetic field on the stability of a
disturbance of the Tollmien-Schlichting type. In particular it is found
that:

1. The flow is stabilized by a coplanar magnetic field. The
increase in the critical Reynolds number is small compared with the
increase achieved in a channel with a coplanar or transverse magnetic
field.

2. A transverse magnetic field fixed relative to the flat plate
changes the velocity profile to an inherently unstable shape which lowers
the critical Reynolds number.

3Tt is noted in figure 3(a) that the maximum value of the wave number
first increases and then decreases with increasing mx. This is caused
by the rapid change in the curvature of the velocity profile with mx.
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3. A transverse magnetic field fixed relative to the fluid far from
the plate changes the velocity profile in the boundary layer to a shape
which is more stable and thereby raises the critical Reynolds number. s

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 1, 1958
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TARLE I.- COEFFICIENTS FOR INVISCID SOLUTIONS; PARABOLIC
VELOCITY PROFILE (COPLANAR MAGNETIC FIELD)

c Pa P2 P3 ds

0 0.6667 [0.3977|0.09281 ©
.05 | .6167| .4101| .0858 {0.6765
.1 | 5667 .u22h| 07900 .6529
.15 5167 4351 .0T2LkT| L6675
2 | Ju66T7| J4L80| .0661T| .TO35
.25 | Ju167| 4615] .06010( .T587
.3 | L3667 4756 L0542k} 8355
.35 .3167| .4905| .0k855| .9kol
Lo| L2667 5062 .0430211.0828
A5 21671 5230 .03762(1.2818

TABLE IT.- COEFFICIENTS FOR INVISCID SOLUTIONS; BLASIUS
PROFILE (COPLANAR MAGNETIC FIELD)

c Pa Po P3 a3

0 0. 7133 1@.38 L0122 o
.05| .6633| .3941| .1202 | .5603
.1 | .6133] .ho6Lk] .1134 | .5367
.15 .5633| .4191) .1068 | .5512
22 | 51331 -u4321| .10053] .5872
25| .4633] .L4455| .09546( .6k2k
.3 | .4133( .4597| .08860( .T7192
.35 .3633| .4745| .08261| .8238
4| .3133] .4902| .07T739| -9665
45| .2633] .5070f .07198(1.1656
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25

TABLE III.- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC

FIEID FIXED RELATIVE TO PLATE

mx | ¢ Hy Ho Mg N3 Kap K1y U Yo
0.05|0 .602210.2337]0.079070.1700 - 0 1.8273 |0
051 .53721 2225} .06916| .1806(-10.87 |-.0310|1.828L | 027
1 | JHTTRl .2107| .06052] ..19294 ~5.327 1=.0338|1383021 .O5LF
A58 (Lol -.19831 .05310] 2084} =3.41k (-.016211i8500 J0BE0
2 | 37211 .185L1 .0U682] 2158) ~2.30k 1 w030 L RS E o
251 32711 JAT718]) .04162] .2266) -1.721 | J115O90ANSSE i J1366
3 1 .28701 1576 .0374L] .2385] ~1.209 | 21000 BT RlST Ll
«35] .2520| :1428{ .03409] .2466] =.T729] <3553 L3000 S1o1T
A [o.22207 1274l 03151 .2UTR) . -.29951 5200 S aHISE
As . agegv 11321 L0296 1 2389 22531 <50l 2ATT
.10{0 «57331 2283 | 06975 L1732 -0 0 1.6473 |0
.05 .5089| .2111| .05984| .1838|-12.28 |-.0914|1.6498 | .0303
A1 | JA4kost 19931 .05120) .1962) -6.156 [-.1394 11 65861 0606
151 .3951] .18691 .04378] .2076] =L.051L {-.1i5641366 TGO
2 | 34561 J1THOY 03750 .2190] =2.939 f~dd320 LE6ERE W &0
251 3012} .1604} .03230] .2208| -2.228 |-.0LhTl1 6720 F 1507
.31 .2618% .1h62) 02809} .2hi7l -1.717 | -0S8G|aFcTl T S0
351 -.2274 | 1314} .02477] .2k98| -1.323 | .195@|1N6C T 2105
L4 | .1980] .1160| .02219| .2504| -1.0126| .3726(1.6520| .2408
L LS G1T36 1 <0998 [ 0202l . 2LaTHE s S T8 3 N 595 9l1NNG Sl@N N2
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TABLE IV.- COEFFICIENTS FOR INVISCID SOLUTIONS; TRANSVERSE MAGNETIC
FIELD FIXED RELATIVE TO FLUID

mx c Hq Ho Mg N3 Klr Kli Ué yO
00510 0.6458 0.2536 |0.09507 |0.1704 -0 [0.4537]2.3245 |0
.05 .5753| .24k24| .08516| .1810|-7.937 | .4621|2.2862| .0218
1| .5099| .2306| .07652| .1934|-3.699 | .L7L48|2.2481| .0L38
15 J4hoh| ,2182] .06910| .2048|-2.248 | .L4936]2.2101| .0662
2 | 3940} .2052| .06282 | .2162|-1.45841 .5319|2.1707) .0891
-25] 3435 .19l7| .05762 | 22701 -.017h] .587k|2.1293 ) 11nkL
.3 | .2981| .1775| .05341| .2389| -.L4697| .6642[2.0856| .1360
.35 .2576| .1627| .05009 | .2470| -.0392| .7692]2.0370| .1603
A | 2222 ah72] oLh7S5L| 2476)F J434T7] .910T7(1.9826) .1852
450 .1917] .1310( 04556 .2393] 1.0287]1.0983(1.9219| .2108
.10l0 .6585| .2604| .10067| .1725 -0 .6430|2.6073 |0
.05] .5768| .2492| .09076] .1831|-6.648 | .6606]2.5390| .0196
1] .5202) 2374 .08212| .1954|-2.966 | .6869|2.k712| .0395
15| 4586 2250 07470 | L2068 |-1.6996| .T719k|2.4045| 0600
.2 | 4019} .2121| .06842] .2183-1.0201] .7611}2.3380| .0812
251 3503 1985 06322 | .2291| ~.5522| .8189)2.2712| .1028
<3 .3036| .1843| .05901| .2410| -.1525| .8923|2.2029| .1252
.35] .2620] .1695| .05569 | .2491| .2L4L45| .9911|2.1320| .1L83
L) 22531 L1541 .05311 ] .2497| .7030|1.124k4|2.0584 | 1721
45| .1937) 1379| .05116| .2h1k| 1.3022]|1.3015|1.9803 | .1968 4
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Figure l.- Tietjen's function, F(z) = Fp(z) + iFi(z) where z = yo(Uo'ozR)l/s.
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(a) Channel flow; parabolic velocity profile.

Figure 2.- Regions wherein an infinitesimal sinusoidal disturbance is amplified or damped in the
presence of a coplanar magnetic field.
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(a) Magnetic field fixed relative to plate.

Figure 3.- Regions wherein an infinitesimal disturbance is amplified or damped for flow over a
semi-infinite flat plate in the presence of a transverse magnetic field.

c8ch NI VOVN




NACA TN L4282

ENNE 2

e .F = —
P iIIIM,H j
e ? g
e SOl n.m.w \N
8
. \ E .
I
i | 1 | S |

1.6

20

16

12

RxIO >

(b) Magnetic field fixed relative to fluid far from the plate.

Figure 3.- Concluded.
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Figure L.- Critical Reynolds number as a function of the magnetic parameter.
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