
a
I

**
#!-
●

. .

NATIONALADVISORYCOMMITTEE
FOR AERONAUTICS

TECHNICAL NOTE 4207

EFFECT OF A STRINGER ON THE STRESS CONCENTRATION

DUE TO A CRACK IN A THIN SHEET

By J. Lyell Sanders, Jr.

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

March 1958

https://ntrs.nasa.gov/search.jsp?R=19930085085 2020-06-17T15:14:04+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42801057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TECH LIBRARY KAFB, NM

lH

u
NATIONAL ADVISORY CO&MITTEE FOR AERONAUTIC lllllllullg~ggf~y

TECHNICAL NOTE 42cq’

EFFECT OF A STRINGER ON THE STRESS CONCENTRATION

DUE TO ACRACKINA THIN SHEET

By J. Lyell Sanders, Jr.

SUMMARY

A coefficient is obtained for determining the effect of a reinforcing
stringer on the stress concentration factor at the tip of a crack in a
thin sheet. The results are given for the case in which the stringer is
intact and for the case in which the stringer is broken. ~ the first case
the stress concentration factor &or the stringer is also given.

Some damage to aircraft
tistically inevitable; thus,

INTRODUCTION

structures due to fatigue or accident is sta-
the fail-safe concept has entered into design

considerateens. One of the problems associated with this concept is the
determination of the static strength of cracked parts. The mechanism of
static failure of a structure weakened by the presence of a crack is by
no means completely understood at the present time. However, an engi-
neering theory which seems to hold some promise has recently become
available (ref. 1). In this theory the significant quantity determining
the strength of the cracked structure is the stress concentration factor
at the end of the crack (corrected for plasticity and the so-called size
effect). The fyndemental information needed to apply the method is the
stress concentration factor obtained from elasticity theory.

For many configurations an exact solution for the stress distribu-
tion from the theory of elasticity is very difficult to obtain. However,
a considerable amount of information that is useful and adequate for
practical applications has ken obtained by making various idealizations
and simplifications of the problems. As a further contribution, the
results contained in the present paper were obtained.

The problem considered in the present paper is the determination of
the relieving effect of a reinforcing striqger on the stress concentration
at the tip of a crack in a thin sheet. The crack runs perpendicular to
the stringer and extends an equal distance on either side of it. The

—

state of stress in the sheet far away from the crack is a tensile stress
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parallel to the stringer. The stress concentration factor for a crack in
a thin sheet may be determined frcm a known formula. (See ref. 1.) The
factor by which this known resukt can be multiplied in order to correct

●

for the presence of the reinforcing stringer is determined in the present
paper. The stress concentration factor in the stringer due to the crack
and the correction factor for the crack in the case in which the stringer
is broken are also found-in the analysis. The results are presented
graphically and in tabular form.

n

SYMWLS

cross-sectional area of stringer

function defined in equation (30)

length of crack on one side of stringer

ratio between stress concentration factors for a cracked sheet
with and without a stringer

—

“N–
corresponds to C in case where stringer is broken

Young’s modulus for sheet material %

Young’s modulus for stringer material —

analytic function defined in equation (11)

shear modulus for sheet material

stress function (see eqs. (2))

modified Bessel functions of first kind

modifie.d.Bessel functions of second kind

Struve functions of imaginary argument—

load in stringer at its intersectionwith crack

load concentration factor for stringer, PE/aAEst

—

— ——

R( ), 1( ) real.part of and imaginary part of
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dmmy variable of integration

sheet thickness

displacement in xl-direction

dimensionless coordinates (see eqs.

physical coordinates

complex variable, X+iy

Euler’s constant, 0.57722

complex variables

d- variable

similarity parameter, 2btE/AEst

direct stress in

direct and shear

direct stress in

sheet at infinity

stresses in sheet

sheet with a crack

analytic function, @+ilj-

corresponds to O for a sheet without a stringer

dimensionless stress function (see eqs. (4))

tiensionless displacement (see eqs. (4))

3

(4) )

but without a stringer

Primes indicate differentiation and the notation - indicates an
asymptotic relationship.

Two simplifications

ANALYSIS

of the problem are made in the present analysis.
One stiplification is that the sheet is assumed inextensional in the
direction parallel to the crack. This orthotropic sheet was introduced
by Hildebrand (ref. 2) and greatly sihrplifiesthe equations of plane
stress. The other simplification is to treat the crack aa a straight-
line segment and assure that the strength of the stress singularity at

— —
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the end of the idealized crack is a measure of the stress concentration
due to a thin crack with a small, but nonzero, radius of curvature at its v

end. The effect of the stringer on the stre@h of the stress singularity
is found by solving the two similar proble~ of the cracked sheet with and
without the stringer. The desired correction factor previously defined is
taken to be the ratio of the two strengths thus found.

Formulation of Boundary-Value Problem

The thin sheet with a crack and attached stringer is represented in
figure 1. AccorMng to the orthotropic plane-stress theory of reference
the stress-displacementrelations are

ox = 1
EL

ax~

(1)
T= ~ au

ayl

where ox and T are the direct and shear stresses, respectively, E

,

2, —

is Young’s modulus, G is the shear modulus, and u is the displacement
in the xl-direction. The displacement in the yl-direction is zero from

syametry. Equilibrium is satisfied if the stresses are given in terms of
a stress function H as follows:

(2)

aH

1

ux=—
b~

T aH
= axl

An equation of equilibrium for the stringer may be obtained by con-
sidering the portion of the stringer from the origin to xl as a free
body. (See fig. 2.) The displacements in the stringer must be the ssme
as those in the sheet along the xl-axis; hence, from equation (1) the

%tstress in the stringer must be ax — where Est iS young’s modulus
E’

for the stringer material. The required equilibrium equation is thus
-=

.
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. J%t+2 ~P= OXA — tT dxl
E o

. ~ Est bH
——-2tH
E ayl

(3)

.

where P is the load in the stringer at xl = 0, A is the cross-

sectional area of the stringer, t is the thiclmess of the sheet, and
H(O,O) has srbitraril.ybeen chosen as zero.

Introduce dimensionless variables and parameters as follows:

Y1 = by

H= ub@

~ . 2btE

AEst
J

(4)

where a is the direct stress in the sheet at infinity.

The following equations may now be obtained by eliminating Ux and

T from equations (1) and (2):

@=&
ax ay (5)

which are the Cauchy-Riemann equatioti. It follows that
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(6)@+illf = O(x+ iy) = o(z)

where @ is an analytic function of the camplex variable z.

Because of synmetry, a boundary-value problan may be formulated
for the upper

Since ax = O

half-plane”only. From equation (3)

on the crack

(y = o) (7)

ji=o (X=o, osysl) (8)

From symmetry, u = O on the line (x = O, y >1) and at the point
(X=o,y = O); therefore,

9 =0

Since Ux~cY and T~O at infinity,

Solution of

‘a - -iz

Boundary-Value

[

x= o, y>l);
O,y= o) (9)

x=

(2+=.) (lo)

Problem

The boundau-value problem just formulated for Q
type. However, ~he probiem may be reduced to the more
type by introducing a new unknown function F defined

The boundary-value

F(z) =Q’+iM+iF

‘(--+-+--F)
problem for F is as follows:

is of the mixed
familiar Mrlchlet
as follows: .-

(11)
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(X=o, y>l) (12)

(y= 0)]

[

(13)
(X=o, y<l)

R(F) = O

I(F) = O

I(F) = ~

F - Az

The solution for F is found to be

(z-+@) (14)

where the arbitrary constant C is real and
the positive real axis. FYom equation (11),

the radical is positive on
it follaws that

(16)

Solving for @ with the use of the relationship O - -iz at infinity
gives

Interpretation of C.- The stress concentration factor F for the
stringer and the coefficient C are as yet unknown. Before proceeding
to determine them as functions of A, it is convenient to show that C
itself is the ratio between the stress concentration factors for a
cracked sheet with -d without a stringer.

The solution to the problem of determining
for the cracked sheet without a stringer may be
and (16) by letting l+CXJ, which is equivalent

the complex stress function
obtained from equations (15)
to letting EstA+O

2btE
since A = —. The result is

E8tA
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00 = F---iz+l (18)

The stress field is determined
function, which in the neighborhood
behaves as follows:

ulI.—

from the derivative of the stress
Ofz= i (the tip of the crack)

1 (Z+i) (19)----
u J2i(z -i)

There is evidently a singularity at z = i. For the cracked sheet with
a stringer,

(-i) (20)

as is evident from equation (16) since o(i) = o fran equations (8)
and (9). On the line (x= O,y>l), r = ia~’. Thus, at
the tip of the crack,

and C is evidently the required ratio.

= O and ax

c

Determination of C and ~.- The two conditions

determining the tio unknowns ~ and C as f~ctions

0(0) =o\

Q(i) =0 J

(21)

available for

of A are

(22)

which follow from equations (8) and (9). When applied to equation (17),
these conditions yield
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By use of equation (24), equation (23) becomes

=0

When the log term is integrated by parts, eq=tio~ (25) and (24)
become, reSpeCtiVdJj

Next make the substitution ~ = iTI to obtain

The definite integrals occurring in equations (28) and (2$?)are
expressible in terms of known functions as follows:

9

(24)

(25)

(26)

(2’7)

(28)

(29)

J‘l-e-=~ = LrW=d’ ‘%(S)*
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where ~ and Kl are

Let

The function B(X) and
of the Struve functions

Bessel functions of the

P?!

modified Bessel functions of the second kind.

(30)

its first two derivatives are expressible in terms
of imaginary argument ~ and L1 and modified

first kind 10 and 11 as follows (see ref. 3):

?

The first integrals of the modified Bessel functions can be expressed as
follows:
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Equations (28) and (29) may now be written
w

2FB -B’ C=l+B”
RI

(33)

(34)

where, in equation (34), use has been made of the formula
J

m ~(s)ds = :.
0

Equations (33} ad (34)
results

c =

may be solved for C and ~ to give the following

Elf~- (1 + B“)
J

m ~(s)ds
A

.

F=

J
w

E!Ko+ B’ Ko(s)ds
A

@ B’K1 + (1 + B“)K()

z
EKo + B’

J
A“ Ko(s)dE

(35)

(36)

Solution for broken stringer.- For the case in which the stringer is
broken at x = O, the factor C must be replaced by @ obtained from
the solution to the boundary-value problem appropriate for the broken
stringer. The solution to this problem is e=_ily obtained from the one
already given. It is only necessary to set P = O and drop the require-

/
ment Q(O = O. The requirement _@(i) = O is retained and leads to
equation 34) as before, except P = o. Thus,

K1
c*.—

%
(37)

Computation of results.- Tables of the modified Bessel functions are
readily available. Values of the Struve functions ~ and ~ may be

obtained from tables given in reference 4 for the range O~h~10 at

J

A
intervals of 0.1. No tables seemed to be available for ~(s)ds;

o
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therefore, values of this function for valuEs of X s 2 were computed
from a power series. For values of A between 2 and 6, it was more con-
venient to compute the function

w
B by numerical integration from the

formula

/(m/2B(A) = 1 )
- e-h sin 0 ~

o sin 0 (38) ‘-

which was obtained from equation (30) by an obtious substitution. For
values of A > 6, the function B was computed from the asymptotic
series

B(A) *7+

which also was obtained
(Y = 0.57722 is Euler’s

from equation (30) by well-known methods
constant). For the same values of A, the

function B‘ and B“ were ccznputedfrom the derivatives of equation (39). ._

Results of the computations for C, ~, and C* for X ~ 100 are
●

given in table I within slide-rule accuracy. The results are also plotted
.—

in figures 3 to 5. For values of h >100, the following asymptotic L
formulas give C, ~, and C?+ within slide-rule accuracy:

—

cwl- 1
y + log 2A1

~ x + 0.875F.-
2y+log2A

}

(40)

NUMERICALEXAMPLE

Consider a sheet 0.1 inch thick reinforced by a stringer made of the
ssme material with an area of 0.5 square inch. A crack 6 inches long
extends 3 inches on either side of the stringer. The effective radius of
curvature pe at the tip of the crack is taken to be 0.002 inch.

According to a well-known formula, the theoretical stress concentration
factor ~ at the tip of the crack is given by
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In the present example,

~ _ 2bt 2X3 XO.l =12-—=
A 0.5

.

Horn table I,

c = 0.688

F= 1.593

The corrected stress concentration factor ~’ at the tip of the crack
*

iS thus

*
K# =c~=o.688x 78.6 =54.l

The stress concentration factor in the strhger is ~ = 1.593. The
Neuber stress concentration factor ~ for the crack, taking size effect

into account, is (see ref.

%

In practical applications,

1)

= $~+%’)=27*5

of course, this large stress concentration
fac=or is considerably
plasticity. (See ref.

reduced when corrected for the effect of
1 for details.)

DIS~SSION

Examination of figures 3 to 5 reveals at least two qualitative
features of the results which are of practical interest. One is the
appreciable stress concentration in the str~er and the other is the
detrimental influence of the stringer once it has broken. These results
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confirm intuition. The stringer is expected to carry pat of the
load refused by the sheet because of the crack. If then the stringer ● –

breaks, the two intact halves of the stringer carry load into the region
of the sheet around the middle of the crack which tends to spread the
crack more than if there were no stringer.

--

Because of the idealizations made in obtaining the theoretical.solu-
tion, some caution should be observed in applying the results. In the
analysis the stringer is assumed to be continuously attached to the sheet
along a line. In reality the stringer has some finite width and may be
attached to the sheet by means of rivets. ThuE the theoretical results
cannot be expected to be accurate for crack lengths shorter than two or
three times the rivet spacing, or two or three times the width of =
integral stiffener.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., December 23, 1957.
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TABLE I.- C!CMPUTEDVALUES OF C, F, AND B

A c

o 0.637
.1 .645
.2 .652
.3 .658
.4 .662

.667
:2 .670
●7 .674
.8 .677
.9 .680

1.0 .683
1.1 .686
1.2 .688
1=3 .691
1.4 .693
1.5 .695
1.6 .697

1.000
1.060
1.115
1.168
1.219
1.269
1.318
1.366
1.413
1.459
1.504
1.549
1.593
1.636
1.679
1.722
1.764

4.&-
2.73
2.23
1.960
1.791
1.676
1.590
1.524
1.472
1.430
1.394
1.365
1.339
1.317
l.=
1.280

1.7
1.8
1.9
2.0

l::
5.0
6.0

l::
9.0

10.0
15.0
20.0
30.0
po. o

100.0

c

0.699
.701
.703
.704
.718
.729
=737
.744
.750
●755
●759
.763
● 777
.787
.800
.816
.834

F

1.805
1.848
1.889
1.930
2.32
2.69

;:Z
3.73
4.06
4.38
4.70
6.21
7.64

10.35
15.40
27.0

1.265
1.251
1.239
1.228
1.156
1.119
~.096
1.050
1.069
1.061
1.054
1.049
1.033
1.025
1.017
1.010
1.005

—-
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O,b)

/
Crack

‘Stringer

O,-b)

Figure 1.- Cracked sheet with a reinforcing stringer.

Figure 2.- Free-bcdy diagrsm of a segment of the stringer.
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Figure 3.- Variation
tion factors in a

case in which the
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with A of the ratio C of the stress concentra-
cracked sheet with and without a stringer for the

2btEstringer is intact. A = —.
A%t
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Variation of the stringer
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.
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Fis!wre5.- Variation with X of the ratio C* of the stress concentra-
‘tion-factors in a cracked sheet with and without a stringer

case in which the stringer is broken. A _ 2btE.
AX8t
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