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TECHNICAL NOTE 4230

PRANDTL-MEYER EXPANSION OF CHEMICALLY REACTING GASES
IN LOCAL CHEMICAL AND THERMODYNAMIC EQUILIBRIUM

By Steve P. Heims
SUMMARY

It is found that Prandtl-Meyer flow, in which chemical reactions - -
are occurring and are in equilibrium, can be simply and exactly calcu-
lated. The property of eir which governs the flow is found to be a
quantity which depends only on the ratio of enthalpy to the sgquare of
the speed of sound; the analogous quantity for en inert gas depends only
on the ratio of specific heats. The maximum angle tThrough which the
flow mey turn is genersally larger when chemical reactions are occurring - .
than it is in nonreacting air. A numericsl example shows that the pres-
sure veriation with angle, as well as temperature and Mach number varia-
tions, may be considergbly affected by the presence of the chemical
reaction.

INTRODUCTION

At the high Temperstures encountered in hypersonic flight, the air
may no longer be regarded as an inert gas. It does not have a constant
ratio of specific heats, ¥, nor does it generally cbey the simple equa-
tion of state, p/p = RT. These thermodynamic features reflect the fact
that at high temperatures molecular vibrations are excited and chemical
reactions are teking place in air. Because of this, any flow solutions
depending on constancy of ¥ and the perfect gas law are not valid.

One elementary supersonic flow solution is the Prandtl-Meyer expan-
sion around a corner. In this paper the theory of the Prandtl-Meyer
expansion is extended to include high tempersture flow in chemical and
thermal equilibrium. When only molecular vibrations asre active, and no
chemical reactions occur, one can still use the usual flow equations in
terms of vy, if the sppropriate function of temperature is inserted for
7 (see ref. 1). However, when chemical reactions are occurring, then ¥
is no longer a useful concept in the Prandtl-Meyer f£low. '

Insteaed of working with ¢, we shall employ & quantity 17 to des~
cribe the thermodynamics of the gas, because it is 1 and not ¥ which
enters into the flow equations at high temperatures. When no reactions
are teking place, 7 reduces to (y+l)/(y-1). In the present analysis,
it will be shown that by introducing also an suxiliary variable V¥, the
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Prandtl-Meyer expansion can be simply and exactly calculetec for equi- -
librium flow without employing any iterative procedures or extensive

numerical integrations. However, a table or s Mollier diagram for the
thermodynamic properties of air at high temperabtures is required. At 4

high temperatures, the table of reference 2 or the Mollier chart of

reference 3 is suitsble. At temperatures below 3000° K, reference L i

useful.
SYMBOLS

a speed of sound =
c a consbant of motion with dimensions of velocity, defined by

equation (3)
h enthalpy per unit mass
'] Planck's constant divided by 2x
k Boltzmann constant :
M Mach number
D pressure ) P
r radial coordinate - - =
R gas constant for air
S entropy
T absolute temperature
v speed,./vr2 + vgZ : - ' R R :
Vo component of velocity along the radius vector i -
Vg component of velocity perpendicular to the radius vector
4 ratlio of specific heats, ;% -
n  parameter defined by 1 + a% .
6 sngular coordinate =
v angle through which the flow has turned o
vy theoretical maximum value of v ’

density ¥
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¥ an angle defined by equation (7)

Yt an integration varisble
Subscript

o) value along the radial line on which the Prandtl-Meyer expsnsion
begins

ANATYSTS

In the ususel derivation of Prandtl-Meyer flow (ref. 5) one seeks a
solution for supersonic flow for which the pressure, density, and veloclty
are constant along radlsl lines emansting from the corner around which
the gas is expanding. Such a solution can exist only when no character-
istic length enters into the problem. Thus when chemical relaxstion
occurs in the air, one cannot have such & solution. However, when the
air is in equilibrium everywhere, there is no length and one may expect
to find such a solution., More generally, if each of the various reac-
tions and internal degrees of freedom of the molecules are elther frozen
or in chemical equilibrium, a Prandtl-Meyer type solution is expected to
exist. We seek a formsl solution of the Prandtl-Meyer type which is
valid for asny of these isentropic flows.

If we define a2 = %g) , the variation of pressure with density at
s

constant entropy, we obtain from the requirement of continuity and from
momentum conservation the usuel equations:

dvy
Vg = & (2)

Equation (2) requires that the flow be supersonic. The energy equation
is

2 2
1.2 _ Yo FVr
5 < = h + 5 (3)

Combining equations (1), (2), and (3) gives the differential equation
for vy
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av.\2
(d;rr> =17 (Jéh/agj (c® - v,5) (L)

Let 6p Dbe the angle at which the Prandtl-Meyer expansion begins. Then
in view of equation (2), the initial radisl velocity is (see sketch):

vr(8o) = 8o JMo® - 1 (5)

- (
8,=c08” R

Mo

It is seen from equations (1) and (4) thet, for given initial condi-
tions, the flow is completely specified if the quantity 7 1is known,
where we define

=1+ (6)

For sir at moderate temperatures, the ratio of specific heats is g
constant, and n = (y+1)/(y-1) = 6. For a diatomic gas in which the
molecular vibrations are in equilibrium but no reaction is occurring, n
is a function of temperature (but not of pressure) and varies from 6 at
moderate temperstures toc 8 at temperatures that are large compared to
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}{w/k , where w is the characteristic frequency of molecular vibretions.
In general, when chemical reaction is also occurring, the quantity 1
is a function of locel tempersture and pressure.

In order to integrate equation (4) in this genersl case, it is
convenient to introduce a varisble ¥(8) defined by

1
ao =
— n

or v f (1)
@ - 85 =d£; J1av?

with
Vo = sin""(‘—rc,'g sin 60) = sin'l(i"g-./Moz - l)

Then equations (k) and (5) become

Gy - @ - (8e)

vr(¥o) = a-o»JMoz -1 (8b)

The solution of equation (8) is

vr=CSin-’¥, 1[";‘?0 (9)
The other component of velocity is then in view of equations (1) and (2):

/2

Vg =as= en” t® cos ¥ (10)

It is seen Prom equations (9) and (10) that when the angle ¥ 1is
%/2, the flow is purely radial and the Mach number becomes infinite.
From this it follows that =n/2 is the limiting value of ¥.

To compute the flow field, we notice from equation (10) that
can be expressed as g function of the state of the gas:
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¥ = cos‘(%ﬂ) (11)

Now with equations (2), (6), (9), and (11), we can compute the flow field
as a function of V. When chemicel reaction is important the simplest
procedure is to use a Mollier chart for air (ref. 3) or a set of tables
(ref. 2), and regard h as the independent variable. Knowing the initial
(¥ = wo) state of the gas, and knowing that it will follow an isentrope,
one takes successive increments of h, looks up corresponding values of
the sound speed &, readily evaluates the right-hand side of equation (11),
and thus finds the value of ¥ corresponding to each h. Any of the
other thermodynamic properties of the air corresponding to a particular

¥ can then glso he read off from the chart or table. At the lower tem-
peratures where the molecular vibrations are active, but where the chemi-
cal reaction msy be neglected, a somewhat simpler procedure is suggested
by the fact that 7 and & are in this region functions of temperature
only: Choose temperature as the independent varisble (as is done in the
tables of ref., 3), and look up h and a in the tables. Then equation-(11)
yields the value of .

In any case, once V¥ 1is known, one obtains the flow field from
equations (9) and (10), and the local Mach number is given by

M=l + (vp/vg)? = J1 + 1 tan?y (12)

It remains to obtain the physical angle 6 corresponding to the parsmeter
¥ by performing the integration indicated in equation (7). At tempera-
tures where molecular vibrations and chemlcal reaction can be neglected,
this integral (for air) is simply 6 - 8o = N(7+1)/(y-1) (¥ - ¥o). Even
at high temperatures ,/m varies only slowly (as fig. 1 illustrates), and
numerical evaluation of the integrsl (7) can be done quickly because one
may teke large steps, treating ./n as constent during each step.

This completes the solution of the Prandtl-Meyer problem; the angle
the flow has turned through is given by:

1

(13)

v=60 = cos

R

(For an alternative expression see ref. 3.)

For some applications it may be desirsble to have an explicit analytic
expression for the density as a functlon of ¥. Such an expression can be
obtained by integrating the contimuity equation, (dpvy/d6) + pvy = O (see
ref. 5). The integration is performed with the help of equations (7), (9),
and (10). It yields:
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p(¥s) COS ¥,

o () cos wﬂ)"o <0>1,2 f (ng-n)ten ¥' ay’ -

The usual "constant 7" solution is obtained when 7 = g, = (y+1)/(7-1).
A numerical teble of h and a permits fitting (n,- n)/qo, the local
devlation from constancy, by a simple sine series with integer multiples
of ¥'- Vo as the argument. The integral in equation (14) is then of an
elementary type. In the special case where M, 1is unity, the integral
in equation (14) may be put equal to zero for emall angles V.

NUMERTICAL: EXAMPLE AND GENERAL, QUALITATIVE FEATURES

A numerical example of Prandtl-Meyer flow is presented graphically
in figures 1 to 5. A set of initial conditlons were chosen at which the
difference between frozen and equilibrium flow is marked, and at the same
time is in the region which is of interest for high-altitude flight. It
corresponds to the stagnation conditions at an altitude of about 130,000
feet with a flight velocity of 19,000 feet per second. The frozen flow
was taken as a flow in which only the random translations and molecular
rotations keep up with equilibrium, but the chemical reaction and the
energy of the molecular vibrations are frozen at the values they have at
the point where the Prandtl-Meyer expsnsion begins. The initial thermo-
dynamic state (pressure, temperature, demsity) at a Mach number of unity
is taken to be the same in the frozen and equilibrium case. This requires
that the initisl sound speed and the flow veloclity are different in the

d;
frozen case than in the equilibrium case. The sound speed, Eg) s 18
S

different in the two cases because the variation of pressure with density
is different, even though the initial thermodynamic states are identical.
This difference in sound speed results In & significant difference in +the
initial value of 1 (see fig. 1).

Several qualitative feabtures of the relation between equilibrium
flow (large 1) and frozen flow (small 1) can be seen from the present
analysis and from the figures. Because of the simple geometry, we
restrict ourselves in the following comments to the important type of
flow in which the expansion begins with sonic velocities, even though
gll of the foregoing equatlons are valid for any initial Mach number not
less than unity.

The Maximum Turning Angle

The maximum angle through which the flow may turn corresponds %o
¥ = ﬂ/2 and is given by
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/2 -
Vm=f ﬁd\V‘E (15)

(o]

When 17 is constant, equation (15) reduces to

vm= (7 - 1) & (152)

Even when 1 1is not constant, equation (15a) is evidently approximately
equal to equation (15), provided a suitably averaged value of ,Jﬁ is used.
For frozen undissociated flow 1 = 6 and Vg = 129.3°, However, for flow
with chemical reaction (see fig. 1), the averaged value of 1 may be
larger than 9 and consequently the maximum angle vy 1s larger than 180°.
This shows that at high temperatures and pressures, equilibrium flow might
have to meke more than a 180° turn before the theoreticel limit is reached.

The Mech number, pressure, density, and temperature all take on their
limiting values (M becomes infinite, T, p, and p become zero, for the
ideel gas model)r at v = vp. This fact is reflected in all the Ffigures 2
to 5 in that for the larger turning angles the small 1 values of p, T,
p, and M have changed more from their initial value, than the large 19
curves,

Density

An interesting feature of the density curve (fig. 2) is that the
equilibrium value 1s not everywhere higher than the frozen value of
density, but 1ts initlal slope is steeper and the two curves then must
cross, because from the gbove comment about vy we know that the demsity
for the frozen case has to reack zero much sooner than the equilibrium
curve, It will usually be true that for the equilibrium flow the density
decreases initiglly more rapidly then for the frozen flow. This can be
proved rigorously from eguation (lh), i1f the equilibrium flow is identi-

3
Tied with a certain value of 75, and a nonpositive value of Sg
é=o0
and the frozen flow is identified with a relatively smaller and a
constant 17, (see appendix).

The point here is not so much that T = 0 and p = O at vps in fact
the idesl gas model breaks down completely at temperstures where the sir
begins to liquefy. For example, near T = O the specific heats are zero,
and do not have the constant values associsted with ideal gases at room
temperature. The point is, more precisely, that the v corresponding to
the state of the air in which the ideal gas laws break down 1s much larger
in the large 1 case than in the smell 1 flow. In the text the simpler
statement is preferred; however, all of the gquations 1n this paper are
generelly valid and do not depend on any specific gas model.
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Pressure

First of all one sees from figure 3 that unlike the density curve
the equilibrium values for pressure are glways higher than the frozen
ones., Moreover the equilibrium and frozen pressure curves sre well sepa-
rated, much more so than the density curves. TFor example at v = 70°
the equilibrium pressure is nine times as large as the frozen pressure.
The corresponding ratio of the densities is 2,

The point of interest is that in a Prandtl-Meyer expansion the pres-
sure is quite sensitive to the chemical resction, much more so than the
density. This 1s Just the opposite of what occurs in the compression by
a normsl shock, in which the pressure ratio is very insensitive to any
chemical reaction, but the density ratlo is not.

Mach Number and Turning Angle

The local Mach number variation and its strong dependence on 1 in
the example are shown in figure 4. The more general qualitative variation
of Mach number snd turning angle cen be derived from equations (12), (13),
and (7). It is seen from these equations that for a given angle 6, the
Mach number and v depend on the local value of 1, &8 well as on its
value for smeller 6, but they depend on no other parsmeters. The differ-
ence between frozen and equilibrium flow msy be analyzed as arising (a)
from the fact that 17 1is usually larger in the equilibrium case and (b)
that it is not constant in the equilibrium case. The effect (a) is seen
from equation (12), and may be stated in words: The larger the (constant)
velue of 1 the smaller the value of the local Mach number at any fixed
6, and the larger the corresponding turning sngle v(8). It follows that
the larger the velue of 1, the smaller the Mach number at any given
turning engle v. As to the effect (b) due to the variation of 7(8)
with 6, it may be stated in words as follows: If (@) is a monotoni~
cally decreasing function, then the actual Mach number at a point 6.
for equilibrium flow is smaller and v(e ) is larger than it would be
for & flow which is characterized by the constant value of 7 = n(e,).

It follows that for any fixed v, the Mach number is smaller than for
the flow characterized by the constant 1 = 7(9.).

Ames Aeronsuticsl Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Dec. 2, 1957
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APPENDIX
THE DENSITY AT VERY SMALL ANGLES

We wish to consider two flows initielly at M = 1 and at the same
density (which we choose as our unit of density), but with different
initigl values of 1, Mo, and noz; Also generally the derivatives

d log Ny d log y
- 7 oo and 8, 5 g Bo will be different. We ask the
question: Under what conditions will the density Py of flow 1 be
smaller than that of flow 2 for small angles?

g

Expansion of equation (14) for small sngles @ yilelds:

2 -
_fo . (et &2)07Y 62 (Mop = Mol o
pl p2 = [2 2 (g g ) + 5 1 lnoz +0(9 )

From this expression it is seen that the condition that Py be less than
Py for sufficlently small & is either

g <8
or
8y = 8 3 Mo, = Mo,

In the example gived here, where p, represents equllibrium flow and p,
frozen flow, one has g, < g = 0, as well as Mo, > Noge
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Figure 1.- Comparison of 7 =1+ -Eg— and [T for frozen and equilibrium
Prandtl-Meyer flow; My = 1.00, T, = 6140° K, po = 1.2 atmospheres.
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Figure 2.- Comparison of density for frozen and equilibrium Prandtl-Meyer
flow; Mg = 1.00, Tg = 6140° K, po = 1.2 atmospheres.
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Figure 3.- Comparison of pressure for frozen and equilibrium Prandtl-Meyer
flow; Mg = 1.00, Tq = 6140° K, pg = 1.2 atmospheres.
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Figure 4.~ Comparison of Mach number for frozen and equilibrium Prandtl-Meyer flow; M, = 1.00,
Ty = 6140° K, Dy = 1.2 atmospheres.
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Figure 5.~ Comparison of temperature for frozen and equilibrium Prandtl-Meyer flow; My = 1.00,
Ty = 6140° K, pg = 1.2 atmospheres.
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