NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 962

ANAIISIS CF SQUARE SHEAR FEB ABOVE BUCKLING IJAD
By Samuel Levy, Fenneth L. Fienup, and Euth M. Woolley National Bureau of Standards

For Reference
Washingtan
February 1945

classified documbet

This documint contains classified information affecting the Nstionsi Deferae of the Unlted gtaten withln the meaning of the Esplonage ker. USC 50:3I and 32. Its tra.. Aission or the ravalation prohibiturtants in any manner to an unatuthorn
may be laparted only to persons in the military and maval and employ the United Biater, approprlate elrlllan offlefes Intereat thersin, and teral ooverneent who have a legthe-

RESTRICTED

NATIONAI ADVISORY COMMITTE巴 POR ABRONAUTICS

TEOHNIOAI NOTE NO. 962

ANALYSIS OF SQUART SHFAR W FB ABOVH BUCKIING LOAD
By Samuel Levy, Kenneth I. FIenup, and Ruth M. Woolley

SUMMARY

Abstract

A solution of Von Kármán's fundamental equations for plates with large deflections is presented for the case of a shear web divided into square penels by reinforcing struts. Numerical solutions are given for struts of infinite rigidity and for struts the weight of which is one-fourth the weight of the sheet. The rasults are compared with Wagneris diagonel tension theory as extended by Kuhn and by Langhaar. It is found that the diagonal tension thoory as developed bri Kuhn agrees best with the present paper in the practical range when $r=1 / 4$. Kuhn's theory is in especially good agreement for the force in the strut when $r=1 / 4$.

INTRODUCTION

The necessity for designing structuras having the smallest possible weight for a given load has forced airm plane designers to build wing-beams and monocoquo boxes with shear webs so thin that they may be buckled in a diagonal direction under service loads. As the shear load is increased well above the buckling Ioad, it is carried principally by diagonal tension along the buckles. The beam approaches a "diagonal-tension field" beam.

The load at which such shear webs will buckle has been determined by several authors. (See, for example, pp. 357 to 363 of roference I_{o}) After buckifng, the behavior of the web is frequently deterpined from Wagneris diagonal-tension-field theory (references 2 and 3) winch neglects the flexural rigidity of the sheat. Experimental results (see p. 2 of reference 4 , pp. 18 and 19 of reference 5 , and p. 5 Of reforence 6) indicate that Wagneris diagonal-tension-
field theory may be too conservative for constructions in which the diagonal tension 1 ield is only partially developed.

An analysis of the behavior of a flat plate subjected to shearing loads covering the range from the start of buckling to the development of a full diagonal tension field wer, therefore, thought desirable. Such an analysis, based on Fon Karman's large deflection equations, was made for the case of a shear veb divided into square panels by vertical struts.

This, investigation, conducted at the National Bureau of Standards, was sponsored by and conducted with the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS

The following symbols are used (see alsofig, I):
a plote longth nnd plate width
h ploto thicknoss
W normal displacement of points of the middle surface
\# Young's modulus
$\mu \quad$ Poisson's ratio, assumed to be $\sqrt{0.1}=0.316$
x, y coordinate axes with origin at corner of one bay of the web plate
$D=\frac{E h^{3}}{I 2\left(1-\mu \mu^{2}\right)}=\frac{E h^{3}}{10.8}$ flexural rigidity of the plate
F stressfunction
Q shear load carried by beam
$\bar{\sigma}_{x}$ arerage stress in plate in x-direction
$\bar{\sigma}_{y}$ avorizo stress in plate in y-direction
$\tau \quad$ shear stross at cornors of plato
r ratio of strut arca to plate area
P compressive force in strut

$\epsilon_{x^{\prime}}^{\prime} \epsilon_{y}^{\prime}, \cdot Y_{X y}^{\prime}$	median fiber strains
$\sigma_{x}^{1}, \quad \sigma_{y}^{1}, \quad T_{x y}^{1}$	median fiber stresses
$\sigma_{X}^{\prime \prime}, \sigma_{\vec{Y}}^{\prime \prime}, \pi_{X y}^{\prime \prime}$	extreme fiber bending stresses
A_{m}, B_{n}	coefficients in stress function
p	lateral pressure
$\mathrm{b}_{\mathrm{m}, \mathrm{n}}$	coefficient in stress function
$W_{\text {In，}} \mathrm{n}$	coefficient in deflection function
m， n	integral numbers used as subscripts
$\bar{\gamma}=2.632 \mathrm{~T} / \mathrm{T}$	appgrent shearing deformation of beam （ $\bar{\gamma}$ is the angle through which the flanges of the beam rotate relative to the struts）
u，v	displacements in x and y directions， respectively，
M	bending moment in flange

FUNDAMENTAL FQUATIONS

Consider an initially flat square plate of uniform thickness．Two opposite edges are assumed to be simply supported by heavy flanges，integral with the plate，which allow rotation about the edges but prevent displacement parallel to the edges and force the edges to remain straight． The other two edges are simply supported by struts，integral with the plate，which allow rotation about the eges and dis－ placement parallel to the edges corresponding to shortening of tho strut under load but maintain the edges in a straight ユ⿱一𫝀口。

GQUATIONS FOR THE DFFORMATIONS OF THIN PIATES

The fundamental equations governing the deformation of thin plates were developed by Von Karman．They are（see refer－ ence 1 ，pp．322－323）：
$\frac{\partial^{4} F}{\partial x^{4}}+2 \frac{\partial^{4} F}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} F}{\partial y^{4}}=E\left[\left(\frac{\partial^{2} W}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}}\right]$
$\frac{\partial^{4} w}{\partial x^{4}}+2 \frac{\partial^{4} w}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} w}{\partial y}=\frac{p}{D}+\frac{h}{D}\left(\frac{\partial^{2} F}{\partial y^{2}} \frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} F}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-2 \frac{\partial^{2} F}{\partial x \partial y} \frac{\partial^{2} w}{\partial x \partial y}\right)$
where the median-fiber stresses are

$$
\begin{equation*}
\sigma_{\frac{1}{x}}^{\prime}=\frac{\partial^{2} F}{\partial y^{2}}, \quad \sigma_{y}^{\prime}=\frac{\partial^{2} F}{\partial x^{2}}, \quad \tau_{x y}^{\prime}=-\frac{\partial^{2} F}{\partial x \partial y} \tag{3}
\end{equation*}
$$

and the median-fiber strains are

$$
\left.\begin{array}{rl}
\epsilon_{X}^{\prime} & =\frac{I}{E}\left(\frac{\partial^{2} F}{\partial y^{2}}-\mu \frac{\partial^{2} F}{\partial x^{2}}\right) \\
\epsilon_{Y}^{\prime} & =\frac{I}{E}\left(\frac{\partial^{2} F}{\partial x^{2}}-\mu \frac{\partial^{2} F}{\partial y^{2}}\right) \tag{4}\\
\gamma_{\frac{1}{x}, Y} & =-\frac{2(1+\mu)}{\mathbb{E}} \frac{\partial^{2} F}{\partial x \partial y}
\end{array}\right\}
$$

The extremefiber bending stresses are

$$
\begin{align*}
\sigma_{X}^{\prime \prime} & =-\frac{\mathbb{E h}}{2\left(1-\mu^{2}\right)}\left(\frac{\partial^{2} w}{\partial x^{2}}+\mu \frac{\partial^{2} w}{\partial y^{2}}\right) \\
\sigma_{\frac{1}{y}}^{\prime \prime} & =-\frac{E h}{2\left(1-\mu^{2}\right)}\left(\frac{\partial^{z} w}{\partial y^{2}}+\mu \frac{\partial^{2} w}{\partial x^{2}}\right) \tag{5}\\
T_{X, y}^{\prime \prime} & =-\frac{\text { Mh}}{2(1+\mu)} \frac{\partial^{2} w}{\partial x \partial y}
\end{align*}
$$

EQUILIBRIUM OF KRDIAN FIBER FORGES

Seydel (refarence 7, p. 181) showed that the buckinga loed of a simply supported squarp plate subjected to shearm ing forces is given with an error of less then lpercent if the deflection is described by

$$
\begin{aligned}
w & =w_{1,1} \sin \frac{\pi x}{a} \sin \frac{\pi y}{a}+w_{1,3} \sin \frac{\pi x}{a} \sin \frac{3 \pi y}{a} \\
& +w_{3,1} \sin \frac{3 \pi x}{a} \sin \frac{\pi y}{a}+w_{2,} \sin \frac{2 \pi x}{a} \sin \frac{2 \pi y}{a}
\end{aligned}
$$

$$
+w_{3,3} \sin \frac{3 \pi x}{a} \sin \frac{3 \pi y}{a}
$$

where $W_{1,1}, W_{1,3}, w_{3,1}, W_{a, 3}$ and $w_{3,3}$ arefive atjustable constants. The analysis will be carried well beyond the buckifing load on the assumption that expression (6) coitinues to give an edequate description of the buckles in the. plate.

A suitable stress function must now be chosen to satisfy equation (I) which expresses the condition that the median $\because i b e r$ forces.are in equilibrium in the plane of the web. If \mathbb{F} is taken as,

$$
\begin{align*}
& F=\frac{\vec{\sigma}_{x} y^{\bar{w}}}{2}+\frac{\vec{\sigma}_{y} x^{\bar{z}}}{2}-\operatorname{Txy}+\sum_{m=0}^{6} \sum_{n=0}^{6} b_{m, n} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{a} \\
& +\sum_{m=2, A, \sigma} i_{z i i} \cos \frac{m \pi x}{a}\left[\left(\frac{1-\mu}{I+\mu}-\frac{m \pi}{2} \cot \frac{m \pi}{2}\right) \cosh m \pi\left(\frac{y}{a}-\frac{I}{2}\right)\right. \\
& \left.+m \pi\left(\frac{y}{a}-\frac{I}{2}\right) \sinh m \pi\left(\frac{y}{a}-\frac{1}{2}\right)\right] \\
& \begin{array}{r}
+\sum_{m=1,3,5} A_{m} \cos \frac{m \pi \pi}{2}\left[\left(\frac{1-\mu}{1+\mu}-\frac{m \pi}{2} \tanh \frac{m \pi}{2}\right) \sinh m \pi\left(\frac{y}{a}-\frac{1}{2}\right)\right. \\
\left.+m \pi\left(\frac{y}{a}-\frac{1}{2}\right) \cosh m \pi\left(\frac{y}{2}-\frac{1}{2}\right)\right]
\end{array} \\
& +\sum_{n=3,4, \varepsilon} \exists_{n} \cos \frac{n \# \#}{a}\left[\left(\frac{1-\mu}{1+\mu}-\frac{n \pi}{2} \operatorname{coth} \frac{n \pi}{2}\right) \cosh n \pi\left(\frac{x}{a}-\frac{1}{2}\right)\right. \\
& \left.+n \pi\left(\frac{x}{a}-\frac{1}{2}\right) \sinh n \pi\left(\frac{x}{a}-\frac{1}{2}\right)\right] \\
& +\sum_{n=1,3,5} \sum_{n} \cos \frac{n \pi y}{a}\left[\left(\frac{1-\mu}{1+\mu}-\frac{n \pi}{2} \tanh \frac{n \pi}{2}\right) \sinh n \pi\left(\frac{x}{e}-\frac{1}{2}\right)\right. \\
& \left.+n \pi\left(\frac{x}{a}-\frac{1}{2}\right) \cosh n \pi\left(\frac{\pi}{a}-\frac{1}{2}\right)\right] \tag{y}
\end{align*}
$$

and if equations (6) and (7) are substituted into equation
(I) it is found by a method shown in reference 8 that equation
(I) is identically satisfied when

$$
\begin{align*}
& b_{0,0}=0 \\
& b_{0,2}=\frac{E}{64}\left(2 w_{1,1}{ }^{2}-4 w_{1,1} W_{1,3}+18 w_{3,1} 1^{2}-36 w_{3}, 1_{3} w_{3} 3\right) \\
& b_{0,4}=\frac{E}{1024}\left(16 w_{1}, 1 W_{1,3}+144 w_{3}, 1 W_{3,3}+32 w_{2,3}^{2}\right) \\
& b_{0.6}=\frac{E}{5184}\left(162 \mathrm{w}_{3}^{2}, 3+18 \text { WII }_{1}, 3\right) \\
& b_{1,1}=\frac{E}{16}\left(-16 w_{2,2} W_{1,3}-16 w_{2,2} W_{3,1}\right) \\
& b_{1,3}=\frac{E}{400}\left(16 \pi_{1}, 1_{2} W_{2}+64 \pi_{2}, 2^{W_{3}, 1}\right) \\
& b_{1,5}=\frac{E}{2704}\left(64 W_{2}, 2^{W} 1,3+144 W_{2}, 2^{W} 3,3\right) \\
& b_{2,0}=\frac{E}{64}\left(2 W_{1}, 1-W_{1}, 1_{3} W_{3} 1-36 w_{1,3} W_{3}, 3+18 w_{1}^{2}, 3\right) \\
& b_{2,2}=\frac{E}{256}\left(16 w_{1,1} w_{3,1}+16 w_{1,1} W_{1,3}-64 w_{1,3} W_{3,1}\right) \\
& b_{2,4}=\frac{E}{1600}\left(100 W_{1}, 3^{W} 3,1-4 W_{1}, 1_{1} W_{1}, 3+36 W_{1}, 1_{3}, 3\right) \\
& b_{2,6}=\frac{E}{6400}\left(144 \mathrm{~m}_{1,3} 3_{3,3}\right) \\
& b_{3,1}=\frac{E}{400}\left(16 W_{1,1} W_{2,2}+64 W_{1,3} W_{2,2}\right) \\
& b_{3,3}=0 \tag{8}\\
& b_{3,5}=\frac{E}{4624}\left(-16 \mathrm{w}_{1,3} \mathrm{w}_{2,2}\right) \\
& \mathrm{b}_{4,0}=\frac{\mathrm{E}}{1024}\left(32 \mathrm{w}_{2,2}^{2}+16 \mathrm{w}_{1,1} \mathrm{w}_{3,1}+144 \mathrm{w}_{3,3} \mathrm{w}_{1}, 3\right) \\
& b_{4,2}=\frac{E}{1600}\left(100 W_{1,3} W_{3,1}-4 W_{1,1} 1_{3,1}+36 W_{1,1} W_{3,3}\right) \\
& b_{4,4}=\frac{E}{4096}\left(-64 W_{1}, 3^{w_{3}}, 1\right) \\
& \mathrm{b}_{4,6}=\frac{\mathrm{E}}{10816}\left(-36 \mathrm{w}_{1,3} \mathrm{w}_{3,3}\right) \\
& b_{5,1}=\frac{E}{2704}\left(64 \pi_{2,2} W_{3,1}+144 w_{2,2} W_{3,3}\right) \\
& b_{5,3}=\frac{E}{4624}\left(-16 W_{3}, 1^{W} W_{2,2}\right) \\
& b_{5,5}=0 \\
& b_{6,0}=\frac{E}{5184}\left(162 w_{3,3}^{2}+18 w_{3,1}^{2}\right) \\
& b_{6,2}=\frac{E}{6400}\left(144 w_{3,1} w_{3,3}\right) \\
& \mathrm{b}_{6,4}=\frac{\mathrm{E}}{10816}\left(-36 \mathrm{w}_{3}, 2 \mathrm{~m}_{3}, 3\right) \\
& b_{6,6}=0 \\
& b_{m, n}=0 \text { whenever } m+n \text { is an odd nuraber }
\end{align*}
$$

BOUNDARY CONDITIONS

The condition that the edges of the plate be simply supported is automatically satisfied by equation (6) for the lateral deflection.

The condition that the edges of the plate act integrilly with the supporting struts and flanges of the beam requires that the strain at the odge of the plate be equal to the sirain in the supporting strut or flange. This condition will be used to determine the remaining coefficients $\bar{\sigma}_{x}, \bar{\sigma}_{y}, A_{m}$, and B_{n} in equation (7).

The eãges $y=0, \bar{y}=a \quad$ (see fig. 1) are congidered to be supported by flanges so heavy that they do not shorten under load. The median fiber strain in the x-direction at the edges $y=0, y=a$ must, therefore, be zero.

$$
\begin{equation*}
\left(\epsilon_{X}^{!}\right)_{y=0, y=a}=0 \tag{9}
\end{equation*}
$$

The edges $x=0$ and $x=a$ are considered to be supported by struts having a croes-seotional area of r a $h_{\text {. }}$ Such struts will shorten under load. If the compressive force in the strut is denoted by P, the median fiber strain in the y-direction at the edges $x=0, \quad x=a$ must be

$$
\begin{equation*}
\left(\epsilon_{y}^{\prime}\right)_{x=0, x=a}=-\frac{P}{\operatorname{rah} E} \tag{10}
\end{equation*}
$$

Since there are an equal number of web bays and struts, the compressive force in a strut must equal the vertical tensilo force in a web bay, or

$$
\begin{equation*}
P=\int_{0}^{a}\left(h \sigma_{y}^{\dagger}\right) d x \tag{11}
\end{equation*}
$$

Substituting from equations (3) and (7) into equation (II) and performing the indicated integration gives,

$$
P=a h \bar{\sigma}_{y}+\frac{4 h}{(1+\mu) a} \sum_{n=a, 4 ; \sigma} n \pi B_{n} \sinh \frac{n \pi}{2} \cos \frac{n \pi y}{a} \text { (12) }
$$

Substituting equation (12) into equation (10) gives

$$
\left(\epsilon \frac{1}{y}\right)_{x=0, x=a}=-\frac{\bar{\sigma}}{r E}-\frac{4 \pi}{(1+\mu) r a^{2} \mathbb{E}} \sum_{n=3 ; 4,6} n B_{n} \sinh \frac{n \pi}{2} \cos \frac{n \pi y}{a}(13)
$$

The fact that the sumations in the series expansion for F equation (7) have been limited to m and $n=6$ makes it impossibilu to satisfy identically the boundary equations (o) and (13). Except for a small variation in strain of a frequency higher than the sixth harmonic, however, it can be shown by expanding F into trigonometric series and by substituting equations (4), (7), and (8) into equations (9) and. (13) that equations (9) and (13) are satisfied

$$
\begin{aligned}
& \text { for } r=\infty\left(w_{1,3}=w_{3,1}\right) \text {, when } \\
& \bar{\sigma}_{y}=\bar{\sigma}_{x}=\frac{E}{a^{2}}\left(1.804 \mathrm{w}_{1,1}^{2}+18.04 \mathrm{w}_{1,3}^{2}+16.24 \mathrm{w}_{3,3}^{a}+7.217 \mathrm{w}_{\mathrm{a}, \mathrm{a}}^{\mathrm{a}}\right)
\end{aligned}
$$

$$
\begin{align*}
& A_{z}=B_{2}=\frac{F}{10^{3}}\left(-0.3838 w_{1}^{a}, 1-1.295 w_{1,3}^{a}-0.0775 w_{3,3}^{2}-0.0856 w_{z}^{a}, z\right. \\
& \left.+3.693 w_{1}, 2 w_{1}, 3+3.207 w_{1,2} w_{3}, 3+14.04 w_{1 ; 3} w_{3}, 3\right) \\
& \mathrm{A}_{3}=\mathrm{B}_{3}=\frac{E}{10^{4}}\left(+0.159 \mathrm{w}_{1}, 1^{\mathrm{w}} 2,3^{+2.397 \mathrm{w}_{1}, 3^{\mathrm{W}} 2,2^{-1} .581 \mathrm{w}_{3}, 3^{\mathrm{w}} \mathrm{a}, a}\right) \\
& A_{4}=B_{4}=\frac{E}{-10^{5}}\left(-0.0463 \mathrm{w}_{1}^{2}, I-2.414 \mathrm{w}_{1}^{3}, 3-0.1666 \mathrm{w}_{3,3^{2}}^{-1.506 \mathrm{w}_{a}^{a}, a}\right.
\end{align*}
$$

$$
\begin{aligned}
& A_{5}=3_{5}=\frac{\underline{I}}{10^{8}}\left(-0.2504 \mathrm{w}_{1}, 1 \mathrm{w}_{2}, a^{\left.+1.320 \mathrm{w}_{1}, 3 \mathrm{w}_{2}, a+3.289 \mathrm{w}_{3}, 3 \mathrm{w}_{2,2}\right)}\right. \\
& A_{6}=B_{6}=\frac{\exists}{10^{7}}\left(-0.0535 w_{1,1}^{2}-1.181 w_{1,3}^{a}-6.30 w_{3,3}^{2}-.214 w_{a, 2}^{2}\right. \\
& \left.+0.417 W_{I, 1} W_{1,3}+0.417 W_{1,1} W_{3,3}-2.297_{1} W_{I}, 3_{3}, 3\right)
\end{aligned}
$$

and for $r=0.25$, when

$$
\begin{aligned}
& \bar{\sigma}_{X}=\frac{\Sigma}{\mathrm{E}^{2}}\left(+1.338 w_{1,1}^{2}+1.975 w_{1,3}^{2}+11.41 w_{3,1}^{2}+5.354 w_{2,2}^{2}+12.05 w_{3,3}^{2}\right) \\
& \bar{\sigma}_{y}=\frac{\sum_{2}^{2}}{e^{2}}\left(+0.3313 w_{1, I}^{2}+2.346 w_{1,5}^{2}+0.9678 w_{3,1}^{2}+1.325 w_{2,2}^{2}+2.982 w_{3,3}^{2}\right) \\
& A_{1}=\frac{E}{10^{2}}\left(-7.079 w_{1}, 1^{w_{2}}, 2-1.679 w_{1,3} w_{2}, 2-10.42 w_{3}, 1 w_{2}, 2-26.96 w_{2}, 3^{w_{3}, 3}\right) \\
& B_{1}=\frac{E}{10^{2}}\left(-7.079 w_{1,1} W_{2,2}-10.42 w_{1,5 W_{2,2}}-1.679 w_{3,1} W_{2}, 2-26.96 \mathrm{w}_{2}, 2^{W_{3}, 3}\right) \\
& A_{2}=\frac{E}{10^{4}}\left(-3.572 w_{1,1}^{2}-29.50 w_{1,3}^{2}-2.710 w_{3,1}^{2}-0.6007 \mathrm{~m}_{2,2}^{2}-0.5822 w_{3,3}^{2}\right. \\
& +12.79 \mathrm{w}_{1,1} \mathrm{w}_{1,3}+21.68 \mathrm{w}_{1}, 1 \mathrm{w}_{3,1}+122.78 \mathrm{w}_{1,3} \mathrm{w}_{3,3}+8.745 \mathrm{w}_{3,1} \mathrm{w}_{3,3} \\
& +20.46 \mathrm{~F}_{1,3} \mathrm{~J}^{\mathrm{F}} 3,1+29.87 \mathrm{w}_{1,1} \mathrm{w}_{3,3} \text {) } \\
& B_{2}=\frac{E}{10^{4}}\left(-2.193 w_{1,1}^{2}-2.709 w_{1,3}^{2}-17.07 w_{3,1}^{2}-0.4595 w_{2,2}^{2}-0.4164 w_{3,3}^{2}\right. \\
& +12.97 w_{1,1} w_{1,3}+8.147 w_{1,1} w_{3,1}+9.295 w_{1,3} w_{3,3}+70.24 w_{5,1} w_{3,3} \\
& \left.+12.42 \mathrm{w}_{1}, 3^{w_{3}}, 1+18.32 \mathrm{w}_{1}, 1^{w_{3}, 3}\right) \\
& A_{3}=\frac{E}{10^{4}}\left(+0.1590 W_{1}, 1 W_{3,2}+2.258 w_{1,3} W_{2,2}+0.1333 \mathrm{~F}_{3}, 1 \mathrm{w}_{2,2}-1.578 \mathrm{w}_{2}, 2^{w_{3}, 3}\right) \\
& B_{3}=\frac{\underline{E}}{\underline{I}} 0^{4}\left(+0.1530 \mathrm{w}_{1}, 1^{W_{2}}, 2+0.1333 \mathrm{w}_{1}, 3^{\mathrm{w}} 2,2+2.258 \mathrm{w}_{3}, 1 \mathrm{w}_{2,2}-1.578 \mathrm{w}_{2}, 2^{\mathrm{w}_{3}, 3}\right) \\
& A_{4}=\frac{E}{10^{5}}\left(-0.02685 w_{1,1}^{2}-0.06677 w_{1,3}^{2}-0.1894 w_{3,1}^{2}-1.469 w_{2,2}^{2}-0.1307 w_{3,3}^{2}\right. \\
& +0.1133 w_{1,1} w_{1,3}-0.5621 w_{1,1} w_{3,1}-6.982 w_{1,3} W_{3,3}+0.36 I 5 w_{3,1} W_{3,3} \\
& \left.-2.042 \mathrm{w}_{1,3} \mathrm{w}_{3,1}+0.004 .78 \mathrm{w}_{1,1} \mathrm{w}_{3,3}\right) \\
& B_{4}=\frac{E}{10^{5}}\left(-0.03034 w_{1,1}^{2}-0.2391 w_{1,3}^{2}-0.0470 w_{W, 1}^{2}-1.101 w_{2,2}^{2}-0.1177 w_{3,3}^{2}\right. \\
& -0.3736 \mathrm{w}_{1,1} \mathrm{w}_{1,3}+0.1414 \mathrm{w}_{1,1} \mathrm{~T}_{3,1}+0.5727 \mathrm{w}_{1,3} \mathrm{w}_{3,3}-5.161 \mathrm{w}_{3,1} \mathrm{w}_{3,3} \\
& \left.-1.470 \mathrm{w}_{1,3} 3_{3,1}+0.08222 \mathrm{w}_{1,1} 1^{\mathrm{K}} 3_{3}, 3\right) \\
& A_{5}=\frac{E}{10^{6}}\left(-0.2504 W_{1,1} W_{2,2}-0.3245 \pi_{1,3} W_{2,2}+2.143 W_{3}, I^{W} 2,2+3.285 W_{2}, 2 W_{3}, 3\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{6}=\frac{E}{10^{7}}\left(-0.03135 w_{1,1}^{2}-0.1047 w_{1,3}^{2}-0.8686 w_{3,1}^{2}-0.1544 w_{2,2}^{2}-6.221 w_{3,3}^{2}\right. \\
& +0.1097 w_{1,1} w_{1,3}+0.1207 w_{1,11_{3,1}}+0.07695 w_{1,3} W_{3,3}-2.862 w_{3,1} w_{3,3} \\
& \left.-0.04395 \mathrm{w}_{1,3} 3_{3,1}+0.2398 \mathrm{w}_{1,1} \mathrm{w}_{5}, 3\right) \\
& B_{6}=\frac{E}{10^{7}}\left(-0.03761 w_{1,1}^{2}-0.8202 w_{1,3}^{2}-0.08139 w_{3,1}^{2}-0.1632 w_{2,2}^{2}-5.068 w_{3,3}^{2}\right. \\
& +0.1363 w_{1,1} W_{1,3}+0.1508 w_{1,1} W_{3,1}-2.005 w_{1,3} W_{3,3}-0.000761 w_{3,1} W_{3,3} \\
& \left.-0.01981 w_{1,3} w_{3,1}+0.2910 w_{1,1} w_{3,3}\right)
\end{aligned}
$$

The struts and flanges are considered to be stiff enough in bending to keep straight the four edges ($x=0$, $x=a, y=0, y=a)$ of the plate. Fquations for the u and ∇ displacement can be obtained from p. 322 of reference 1 .

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=\epsilon_{\frac{1}{x}}-\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \tag{15}\\
\frac{\partial v}{\partial y}=\epsilon_{y}^{\prime}-\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2} \\
\frac{\partial u}{\partial y}+\frac{\partial \psi}{\partial x}=\gamma_{x, y}-\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}
\end{array}\right\}
$$

Values of u and v can be obtained by substituting equations (4), (6), (7), (8), and (14) into equations (15) and integrating. This gives for the values of u and ∇ at the edges of tive platefor $r=\infty_{1}$

$$
(u)_{x=0}=0, \quad(u)_{x=a}=0
$$

$$
\begin{equation*}
(v)_{y=0}=x \frac{2 \cdot 632 T}{E} ; \quad(\nabla)_{y=a}=x \frac{2.632 T}{\mathbb{E}} \tag{160}
\end{equation*}
$$

and for $r=0.25$

$$
\begin{aligned}
(u)_{z=0} & =0 ; \quad(u)_{x=a}=0 \\
(v)_{y=0} & =x \frac{2.632 T}{W} ; \quad(v)_{y=a}=x \frac{2.632 \tau}{E}-\frac{4}{a}\left(0.3313 w_{1,1}^{2}\right. \\
& \left.+2.346 w_{1,3}^{a}+0.9678 w_{3,1}^{a}+1.325 w_{2}^{2}, 2^{2}+2.982 w_{3,3}^{a}\right)(16 b)
\end{aligned}
$$

It is scon from equations (16) that the edges of the plate corresponding to $x=0, \quad x=a, y=0, \quad$ and $y=a$, satisfy the condition of remaining straight after buckling has started.

FQUIIIBRIUM OF LATERAL FORGFS

After the web plate buckles, the median fiber forces have components which tend to displace elements of the plate laterally from the original plane of the plate. These forces will displace the plate laterally until the bending stifiness of the plate prevents further displacenent. This condition is expressed by equation (2).

The lateral deflection (equation(6)) must now be determined in such a way that equation (2) is satisfied. The fact that the series expression for w (equation (6)) has been limited to only the first five terms, makes it impossible.to identically satisfy equation (2). सxcept for a small unequilibrated lateral pressure p of order higher than 3 , however, it can be shown by axpanding F into trigonometric geries and by substituting equations (6), (7), (8), and (14) into equation (2), as is done in refarence 8, that equation (2) is satisfied.

$$
\begin{aligned}
& \text { for } r=\omega\left(v_{1,3}=w_{3,1}\right) \text {, when } \\
& 0=1.973 w_{1,1}^{3}+w_{1,1}^{2}\left(-1.657 w_{1,3}-0.1360 w_{3,3}\right)+w_{1,1}\left(1.4815 h^{2}\right. \\
& \left.+25.69 w_{1,3}^{2}+15.16 w_{3,3}^{2}+8.09 w_{2,2}^{2}-8.88 w_{1,3} W_{3,3}\right) \\
& -0.5840 w_{2,2} \frac{r a^{2}}{E}-10.147 w_{1,3}^{3}-0.00853_{3,3}^{3}+24.36 w_{1,3}^{2} w_{3,3} \\
& +1.681 w_{3,3}^{2} W_{1,3}+8.80 w_{2,2}^{2} W_{1,3}+3.602 w_{2,2}^{2} W_{3,3} . \\
& 0=123.3 w_{1,3}^{3}+w_{1,3}^{2}\left(-18.72 w_{1, I}-61.28 w_{3,3}\right)+w_{1,3}\left(37.04 h^{2}\right. \\
& \left.+12.85 w_{1,1}^{2}+156.6 w_{3,3}^{2}+74.64 w_{2,2}^{2}+24.36 w_{1,1} w_{3,3}\right) \\
& +1.051 w_{2,2} \frac{\tau a^{2}}{E}-0.2761 w_{1,1}^{3}+0.0235 w_{3,3}^{3}-2.220 w_{1,1 w_{3}, 3}^{a} \\
& +0.8387 W_{3,3}^{2} W_{1,1}+4.402 W_{2,2}^{2} W_{1,1}+15.62 W_{2,2}^{2} W_{3,3} \\
& 0=159.3 w_{3,3}^{3}+w_{3,3}^{2}\left(-0.02561 w_{1,1}+0.1410 w_{1,3}\right)+w_{3,3}\left(120 h^{2}\right. \\
& \left.+313.2 w_{1,3}^{2}+81.90 w_{2,2}^{2}+3.358 w_{1,1} w_{1,3}+15.16 w_{1,1}^{2}\right) \\
& -1.892 w_{2,2} \frac{\tau a^{2}}{E}-0.0453 w_{1,1}^{3}-40.85 w_{1,3}^{3}-4.439 w_{1,1}^{2} W_{1,3} \\
& +24.36 w_{1,3}^{3} W_{1,1}+5.599 w_{2,2}^{2} w_{1,1}+31.22 w_{2,2}^{2} W_{1,3} \\
& 0=31.47 w_{2,2}^{3}+w_{2,2}\left(23.704 h^{2}+8.090 w_{1,1}^{2}+149.3 w_{1,3}^{2}\right. \\
& \left.+81.90 w_{3,3}^{2}+17.61 w_{1,1} w_{1,3}+7.201 w_{1,1} w_{3,3}+62.45 w_{1,3} w_{3,3}\right) \\
& +\frac{\tau a^{2}}{E}\left(-0.5840 w_{1,1}+2.102 w_{1,3}-1.892 w_{3,3}\right)
\end{aligned}
$$

and for $r=1 / 4$, Fhen

$$
0=95.56 \mathrm{w}_{3,3}^{3}+w_{3,3}^{2}\left(-0.0162 \mathrm{w}_{1,1}+0.05922 \pi_{1,3}+0.08791 w_{3,1}\right)+w_{3,3}\left(7.995 \mathrm{~m}_{1,1}^{2}\right.
$$

$$
+106.16 \pi_{1,3}^{2}+134.05 \pi_{3,1}^{2}+53.585 \pi_{2,3}^{2}+1.586 \%_{1,1}{ }^{\pi_{1,3}}+0.9578 \pi_{1,1} \pi_{3,1}
$$

$$
\left.+0.4191 \pi_{1,3^{\pi} 3,1}+120.0 \mathrm{~m}^{2}\right)-21.03 \pi_{1,3}^{3}-20.70 w_{3,1}^{3}-0.03405 \mathrm{w}_{1,1}^{3}-2.280 \mathrm{~m}_{1,1}^{2} 1_{1,3}
$$

$$
0=30.235 \pi_{1,3}^{2}+\pi_{1,3}^{2}\left(-0.2443 \pi_{1,1}-0.3904 \pi_{3,1}-63.09 \pi_{3,3}\right)+\pi_{1,3}\left(6.147 w_{1,1}^{2}\right.
$$

$$
+37.897 \pi_{3,2}^{2}+106.156 \pi_{3,3}^{a}+36.34 w_{2,2}^{2}-13.05 w_{1,2}{ }^{2} 3,1+0.2849 \pi_{1}, 1^{\pi} 3,3
$$

$$
0=62.735 \pi_{3,1}+\pi_{3,1}^{2}\left(-0.1558 \pi_{1,1}-0.2367 W_{1,3}-62.09 \pi_{3}, 3\right)+\pi_{3,1}\left(3.433 \pi_{1,1}^{2}+37.898 \pi_{1,3}^{2}\right.
$$

$$
\begin{aligned}
& 0=1.184 w_{1,1}^{3}-w_{1,1}^{2}\left(0.8046 w_{1,3}+0.8132 w_{3,1}+0.1021 w_{3,3}\right)+w_{1,1}\left(6.147 w_{1,3}^{2}\right. \\
& +9.424 W_{3,1}^{2}+4.946 w_{2,2}^{2}+7.897 W_{3,3}^{a}-4.438 W_{3,1} W_{3,3}-4.5604 W_{1,3} W_{3,3} \\
& \left.+2.129 w_{1,3} W_{3,1}+1.4815 h^{2}\right)-0.08137 \pi_{1,3}^{3}-0.05188 \pi_{3,1}^{3}-0.00543 w_{3,3}^{3} \\
& -6.524 w_{1,3}^{2} \pi_{3,1}+0.1422 w_{1,3}^{2} \pi_{3,3}-6.448 w_{1,3} W_{3,1}^{2}+4.402 w_{1,3} \pi_{3,2}^{2}+0.7930 w_{1,3} \pi_{3,3}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +3.005 W_{2,2{ }^{2}}^{3,3}-0.5840 w_{2,2} \frac{\tau \mathrm{a}^{2}}{\mathrm{I}} \\
& 0=18.894 \pi_{3,3}^{3}+\pi_{2,3}\left(4.945 w_{1,1}^{2}+36.325 \pi_{1,3}^{2}+49.387 w_{3,1}^{2}+53.584 w_{3,3}^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+32.16 \pi_{1,3} \pi_{3,1}+23.704 h^{2}\right)+\frac{\tau e^{2}}{\pi}\left(-0.5840 W_{1,1}+1.051 w_{1,3}+1.051 w_{3,1}-1.892 \pi_{3,3}\right)
\end{aligned}
$$

3ENDING MOMENT AMD SHEARING FORCE IN FLANGE

A flange of the boam (fig. I) can itsolf be considerod as a beam supported at the strut points and subjected to a lateral locd by the medinn fiber tension in the shear wob. Befors bucking, the wob carries all the shearing force in shear and therefore there is no tendency to bend the flange. After buckiing, however, the web carries some of the shearing force by developing a diagonal tension field. This diagonal tension field tends to draw the two flanges together.

Tha flange bending moment will be considered as positive when it curves the lower flange concave upward or the upper flango concave aownard. The shearing force in either flange will be considered positive if it tends to support an axtornal load Q, directed as shown in figure 1.

If use is made of the fact that the flange bending monent is the same at each strut point, the shearing forces in the upper and lower flanges are, respectively,

$$
\int_{x}^{a} h\left(\sigma \frac{y}{y}\right)_{y=a} d x-\frac{1}{a} \int_{0}^{a} h\left(\sigma_{\frac{y}{y}}\right)_{y=a} x d x
$$

and

$$
\begin{equation*}
\frac{1}{a} \int_{0}^{a} h\left(\sigma_{y}^{1}\right) y=0^{x d x}-\int_{x}^{a} h\left(\sigma_{y}^{\prime}\right){ }_{y=0}^{d x} \tag{18}
\end{equation*}
$$

The bending moment in the flenge is determined by makine the slope of the flange the same at each strut point. This gives for the bending moments in the upfer and lower flanses, respectively,

$$
\left.\begin{array}{rl}
n_{y=a}=\frac{1}{2} \int_{0}^{a} h\left(\sigma_{\frac{1}{y}}\right)_{y=a} x\left(1-\frac{x}{a}\right) d x+\frac{x}{a} \int_{0}^{a} h\left(\sigma_{y}\right)_{y=a} x d x \tag{19}\\
& -\int_{0}^{x} d x \int_{x}^{a} h\left(\sigma_{y}^{\prime}\right)_{y=a} d x, \\
y_{y=0}=\frac{1}{2} \int_{0}^{a} h\left(\sigma_{y}\right)_{y=0} x\left(1-\frac{x}{a}\right) d x+\frac{x}{a} \int_{0}^{a} h\left(\sigma_{y}^{\prime}\right)_{y=0} x d x \\
& -\int_{0}^{x} d x \int_{x}^{a} h\left(\sigma_{y}^{\prime}\right)_{y=0} d x
\end{array}\right\}
$$

Substituting for ($\left.\sigma_{y}^{f}\right)_{\mathcal{Y}=0}$ frost equations (3) and (7) art porforaizs tic integrations in equation (19) rives for $\mathrm{K}_{\mathrm{y}}=0$ $M_{y=0}$

$$
=a^{2} h \bar{\sigma}_{Y}\left(\frac{1}{12}-\frac{x}{2 a}+\frac{x^{2}}{2 a^{2}}\right)+h\left(\frac{2 x}{a}-1\right) \sum_{m=1,3}^{5} \sum_{n=0}^{6} b_{m, n}
$$

$$
+h \sum_{m=1}^{5} \sum_{n=0}^{5} b_{m, n} \cos \frac{m \pi x}{a}
$$

$$
+h \sum_{m=1,3}^{5} A_{i n}\left[\left(\frac{1-\mu}{1+\mu}-\frac{m \pi}{2} \tanh \frac{m \pi}{2}\right) \sinh \frac{m \pi}{2}+\frac{m \pi}{2} \cosh \frac{m \pi}{2}\right]\left(1-\frac{2 \pi}{2}-\cos \frac{2 \pi x}{i}\right)
$$

$$
+i \sum_{m=e, 4}^{6} A_{m}\left[\left(\frac{1-\mu}{1+\mu}-\frac{m \pi}{2} \operatorname{coth} \frac{\min }{2}\right) \cosh \frac{m \pi}{2}+\frac{\pi \pi \pi}{2} \sinh \frac{m_{\pi}}{2}\right] \cos \frac{m \pi x}{a}
$$

$$
+\sum_{n=1,3}^{5} B_{n}\left\{\left[\frac{1-\mu}{1+\mu}-\frac{n \pi \pi}{2} \tanh \frac{n \pi}{2}\right]\left[\left(1-\frac{2 x}{a}\right) \sinh \frac{n \pi}{2}+\sinh n \pi\left(\frac{x}{2}-\frac{1}{2}\right)\right]\right.
$$

$$
\left.+n \pi\left(\frac{\pi}{2}-\frac{1}{3}\right)\left[\cosh n \pi\left(\frac{\pi}{a}-\frac{1}{2}\right)-\cosh \frac{n \pi}{2}\right]\right\}
$$

$$
+n_{n=2} \cdot \sum_{n}^{\varepsilon} 3_{n}\left\{\left[\frac{1-\mu}{1+\mu}-\frac{n \pi}{2} \operatorname{coth} \frac{n \pi}{2}\right] \operatorname{cosin} n \pi\left(\frac{x}{2}-\frac{1}{2}\right)+\frac{4 \mu}{n \pi(1+1-} \sinh \frac{n \pi}{1}\right.
$$

$$
\begin{equation*}
\left.+n \pi\left(\frac{\ddot{a}}{a}-\frac{1}{2}\right) \sinh n \pi\left(\frac{x}{a}-\frac{1}{2}\right)\right\} \tag{19a}
\end{equation*}
$$

SEAR LOAD CARRIED BY BEAK

The tun (fig. 1) supports a fear load q. At any fertical section through the beam this load is partially carrisi by shear in the web aud partially by shear in the flanges. part of the shear in the web may be considered due to the diagonal tension after buckling.

Whe shear load carried by the flanges is obtained by adinne aquations (18). The shear load carried by the web is

$$
\begin{equation*}
-\int_{0}^{a} h T_{x y}^{1} d y \tag{20}
\end{equation*}
$$

Adding equetions (18) and (20), substituting for of and Ty their values as given by equations (3), (7), (9), (14a), and (14b), and integrating gives
for $\quad I=\infty\left(W_{1,3}=W_{3,1}\right)$

and for $r=1 / 4$
$Q=-\operatorname{Tnin} w_{2}, \frac{E h}{2}\left(1.349 w_{1,1}-2.432 w_{1,3}-2.430 w_{3,1}+4.372 w_{3}, 3\right)$

SHEARING DFFORMATION OF BEAM

The sionaing forces acting on the end of the beam causo it to shear downward as shown in figure 1 . The amount of tho downward displacement is ($\nabla)_{y=0}$ in equetions (IEa) and (IEE). This §iष3s

$$
\begin{equation*}
(\nabla)_{y=0}=2.632 \frac{\tau \pi}{E}=\bar{\gamma} x ; \quad \bar{\gamma}=2.632 \frac{T}{झ} \tag{22}
\end{equation*}
$$

where $\bar{\gamma}$ is the shear deformation of the beam.

BFFPCTIVE WIDTH IN SHEAR

The loss in shear stiffness of the beam after oucklins of the web may be considered as a loss in effective width of the sheot. The effective width ratio in shear for a givon
shearing deformation $\bar{\gamma}$ will be defined as the ratio of the load actually carried by tha beam to the load which might have been carried had the web not buckled.

The load actually carried by the beam is given by equations (2la) and (2lb). The shearing deforantion of the bean is $\bar{\gamma}$ (equation 22). Frori equations (3), (4), and (?), therefore, a load tah might have been carried with z shear deformation $\bar{\gamma}$ if the web had not buckled. The offective width ratio is, therefore,

$$
\begin{equation*}
\text { Effective width ratio }=Q / T a h \tag{23}
\end{equation*}
$$

Substituting for Q fromequatione (2la) and (2lb) gives for $r=\infty\left(w_{1,3}=w_{3,1}\right)$

Eifective width ratio

$$
=1-\frac{E}{T e^{\bar{a}}} w_{2,2}\left(1.350 w_{1}, 3-4.862 \mathrm{w}_{1,3}+4.376 \mathrm{w}_{3}, 3\right) \quad(24 \pi)
$$

and for $r=1 / 4$
?ffective width ratio

(24b)
CCMPRESSIVE FORCE IN VERTICAL STRUT

After buckling of the web, the diagonal tension iteld tends to draw the two flanges of the beam together. This action is counteracted by the vertical struts which hold the flanges apart. The aagnitude of the resulting coapressive force in the strut is given by equation (12). Substituting for $\bar{\sigma}_{y}, B_{z}, B_{4}$, and B_{6} the velues given in equations (14a) and (14b) gives

$$
\begin{aligned}
& \text { for } \quad r=\infty\left(w_{1,3}=w_{3,1}\right) \\
& P=\frac{3 h}{2}\left\{\left(1.804 w_{1,1}^{3}+18.04 w_{1,3}^{2}+16.24 w_{3,3}^{2}+7.217 w_{2,2}^{2}\right)\right. \\
& +\cos \frac{2 \pi y}{2}\left(-0.0846 w_{I, 1}^{2}-0.2858 w_{1,3}^{2}-0.0171 w_{3,3}^{2}-0.0189 w_{a, a}^{2}\right. \\
& \left.+0.815 \mathrm{w}_{1,1} \mathrm{w}_{1,3}+0.708 \mathrm{w}_{1,1} \mathrm{w}_{3,3}+3.100 \mathrm{w}_{1,3} \mathrm{w}_{3,3}\right) \\
& +\cos \frac{4 \pi Y}{a}\left(-0.0047 w_{1,1}^{2}-0.2467 w_{1,3}^{2}-0.0170 w_{3,3}^{a}-0.1538 w_{3,2}^{2}\right. \\
& -0.0284 \mathrm{~W}_{1}, 1^{W_{1}}, 3^{+0.0165 \mathrm{w}_{1}, 1_{3} W_{3}, 3^{-0.623 W_{1}} 3^{W_{3}}, 3} \text {) } \\
& +\cos \frac{6 \pi y}{a}\left(-0.0019 w_{1,1}^{2}-0.0419 w_{1,3}^{2}-0.2235 w_{3,3}^{2}-0.0075 w_{a, 3}^{a}\right. \\
& \left.\left.+0.0148 \mathrm{w}_{1,1} \mathrm{w}_{1,3}+0.0148 \mathrm{w}_{1,1} \mathrm{w}_{3,3}-0.0814 \mathrm{w}_{1}, 3 \mathrm{w}_{3,3}\right)\right\}(253)
\end{aligned}
$$

```
gnd for r = I/4
```

$E=\frac{E h^{2}}{2}\left\{\left(0.3512 \mathrm{w}_{1,1}^{2}+2.346 \mathrm{w}_{1,3}^{2}+0.9678 \mathrm{w}_{3,1}^{3}+1.325 \mathrm{w}_{2,3}^{2}+2.082 \mathrm{w}_{3,3}^{2}\right)\right.$
$+\cos \frac{3 \pi 7}{2}\left(-0.04840 w_{1,1}^{2}-0.05979 w_{1,3}^{2}-0.3767 w_{3,1}^{2}-0.01014 w_{2}^{2}, 3\right.$

$\left.+0.5043 W_{1,2}{ }_{3,3}\right)$
$+\cos \frac{3}{2}\left(-0.003008 w_{I, ~}^{2}-0.03441 w_{1,3}^{2}-0.004807 w_{3, I}^{2}\right.$
$-0.1126 w_{2}^{2}, z^{-0.01202 w_{3}^{2}, 3^{-0.03366 w} I, I^{w} I, 3}$

$\left.-0.1501 v_{1,3} W_{3,1}+0.009109 W_{1,1} w_{3,3}\right)$
$+\cos \frac{6 \pi y}{2}\left(-0 . \cos 334 w_{1}^{2}, x^{2}-0.02910 w_{1,3}^{2}-0.002882 w_{3,1}^{2}-0.005790 w_{2, a}^{2}\right.$
$-0.2788 w_{3,3}^{2}+0.004830_{1} w_{1} 2_{1,3}+0.00535 \mathrm{Cw}_{1,1} \mathrm{w}_{3}, 1$

$\left.\left.-\operatorname{cocccocow_{1,}} 3_{3,1}+\operatorname{coc} \cos 32 \mathrm{w}_{1}, \mathrm{I}_{3,3}\right)\right\}$
struss at Center of Shear Bay
zaxainotion of bonms which hove sovere shear buckios jubicates bhat the maximum membrane stresses are likely to

```
occur at the center of the shear bay with the line of fail-
ure runaing at nearly 45c to the flanges.
```

The stress at the center of the plate is obtainod irol: equetions (3), (7), (3), and (14) by letting $x=y=a / 2$. This gives

$$
\text { s.nd for } r=1 / 4
$$

$$
+23.15 w_{3}^{2}, 3-2.673 w_{1}, 1 w_{1}, 3-7.823 w_{1}, 1 w_{3}, 1+4.326 w_{1}, 1 w_{3}, 3
$$

$$
\left.+24.59 w_{1}, 3 w_{3}, 1-45.57 w_{1}, 3 w_{3}, 3-9.942 w_{3}, 2 w_{3}, 3\right)
$$

$$
\begin{aligned}
& +24.48 \mathrm{w}_{1}, 3^{\mathrm{W}}{ }_{3}, 1^{-47} .15 \mathrm{w}_{1}, 3^{\mathrm{W}} 3,3^{-9} .056 \mathrm{w}_{3}, \mathrm{IW}_{3}, 3 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } \quad r=\infty\left(w_{1,3}=w_{3,1}\right)
\end{aligned}
$$

Tho maximum ard ininimuri principal stresses at the cantor of the plate ray be obtaired from equitions ($2 \mathrm{E} a$) and ($Z \in \mathrm{~b}$) by the equations on page 19 of roference 9 ,

Whero α is the angle Eatwen the x-axis and the direction of a principal stress.

Stress at Corner of Shear Ray
The stress at the corner of the shecr bay aust be mainiy a shearing stress, sinco the principal deforaetior is a sfonge in angls botween the horizontal flange axi the vertical struts. The boundary conditions of zero strain parallel to the flanfs and of strtiu prallel to the strut equal to the strain in the strut were only partially satisfied (see equations (9), (13), (14a), and (Íb)); so small residual stresses in the x and y directions are left. A measure of the degree to which the boundery equations are eatisfied is the smallness of these residuals in the case where $r=a$. These are computed later in the papar and appoar in tha second and third columns of tables $3 a$ and $3 b$.

The stress at the corner of the plato is obtained from Equations (3), (7), (8), (14a), and (14b) by letting $x=0$, $y=a$. This gives
for $r=\infty\left(w_{1,3}=w_{3, I}\right)$
$\left(\sigma_{x}^{1}=\sigma_{y}^{1}\right)_{x=0}=\frac{5}{a^{2}}\left(0.157 w_{1,1}^{2}+1.94 w_{1,3}^{2}+2.14 w_{3,3}^{2}+0.332 w_{2}^{2}, 2\right.$ $\mathrm{y}=\mathrm{a}$

Depth of Buckle

The contour of tho buckle in the sheer bay is given by equation (6). The depth of the buckle at the center of the bay is obtained by setting $x=a / 2$ and $y=a / 2$. ThIs gives

$$
\begin{equation*}
w_{c e n t e r}=w_{I, I} I_{I, B^{-w}}^{3, I^{+}}+3,3 \tag{29}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and for } r=I / 4 \\
& \left\langle\sigma_{X}\right\rangle_{X=0}=\frac{E}{a^{2}}\left(-0.2889 w_{I, I}^{3}-12.42 w_{I, 3}^{a}+9.593 w_{3, I-1.029 w_{3}^{3}, 8}^{a}\right. \\
& y=a \\
& -2.103 w_{3,3}^{2} \rightarrow 0.9318 W_{1,1} W_{1,3}-0.3613 W_{1}, I_{3} W_{3}, I \\
& -1.36 \mathrm{OW}_{1,1} \mathrm{~W}_{3,3}+0.1806 \mathrm{~W}_{1,3} \mathrm{~W}_{3}, 1+6.16 \mathrm{O}_{1,3} \mathrm{w}_{3}, 3 \\
& -7.403 \mathrm{w}_{3,1} \mathrm{w}_{3,3}+0.729 \mathrm{w}_{2,} 2^{\mathrm{w}_{1,1}+7.324 \mathrm{w}_{1}, 3^{\mathrm{w}} \mathrm{a}, 2} \\
& -8.273 W_{3,1} \mathrm{w}_{2,} \mathrm{a}^{\left.+1.945 \mathrm{w}_{3}, 2^{W} 3,3\right)} \\
& \left(\sigma \frac{1}{y}\right)_{\substack{x=0 \\
y=a}}=\frac{E}{e^{2}}\left(-1.116 w_{1,1}^{2}-9.080 w_{1,3}^{2}-2.108 w_{3,1}^{a}-4.572 w_{2,2}^{a}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -2.799 w_{1,1} w_{3,3}-0.1693 w_{1,3} w_{3,1}-1.067 w_{1,3} w_{3,3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.-0.2494 w_{3,1} w_{3,2}+1.945 w_{a, 2} w_{3,3}\right) \\
& \left(T_{z y}^{\prime}\right)_{z=0}=\bar{T}
\end{aligned}
$$

NUMERICAI SOLUTION

Deflection Coefficients

The deflection coefficients are obtained by sclution of tho sjmultaneous equations (17a), (17b). These equations were solved by a method of successive approximation, using the following steps:

1. Diviae each of equations (17a) and (17b) by h^{3}.
2. Estimate values of $w_{1,1} / h, w_{1,3} / h, w_{3,1} / h$, $w_{3,3} / h, T a^{2} / E h^{2}$, corresponding to a given value of $w_{a, a^{\prime} / h}$.
3. Expand the right-hand side of each of equations (17a) and (17 rb) in a Taylor series in the neighborhood of the estimated values of $. w_{1,1} / h, w_{1,3} / h, W_{3,1} / h, w_{3,3} / h$, and $T a^{2} / \min ^{2}$, omitting the square and higher order terms.
4. Solve the resulting linear equations for tho disfer-
 $w_{3,3} / h$, $\tau a^{2} / \operatorname{Eh}^{2}$ and the improved values. (Crout's method, referonce 10 , was usod for this.)
5. Repeat until the estimated error is less than 0.2 percont. The convergance was rapid; so one or two trizls usually were sufficient to give an accurate answer.

The results of the computation were checked by substitutine the answers in the original equations (17a) and (17b). The results are given in tables la and $I b$ for $\forall a l u e s$ of the shear load Q up to about seven times the critical value for buckling. The value of $\bar{\gamma}$ was computed from T by using equation (22); Q was computod from $T, W_{1,1}, W_{1,3}, W_{3,1}$, $w_{3,3}$, and $w_{3, a}$ by using equations (2la) and (21b).

Median Fiber Stresses at Center or Shear Web
The median-fiber stresses at the center of the shear web were computed from equations (2Ea) and (2Eb) and tables la and $I b$. The maximum and minimum principal stresses then were computed from equation (27). These stresses are given in tables $2 a$ and $2 b$ and are plotted against the shear load Q in
dimensionless form in figure 2. When $r=\infty$, the direction of the maximum principal stress forms an angle of 45° with the flanges for all loads; when $r=1 / 4$, however, the angle is 45° et the bucking load and decreases to $39^{\circ} 8^{\prime}$ as the load is increased to five times the buckling load.

As might be expected, the maximum principal stress (corresponding to tension along the wrinkle) continues to rise after bucking while the minimum principal stress (corresponding to compression across the wrinkle) remains nearly constant after buckling.

The reinforccment ratio r has only a small effect on the wob stresses at the center of the shear bay. (Saefig. 2.) The drop in tensile stress at the center when the reinforcement ratio changes froui $1 / 4$ to ∞ is only 7 percent at a shear load of $45 \mathrm{Eh}^{3} / a$.

Median Fiber Stresses at Corner of Shear Neb

The median-fiber stresses at the corner of the shear web were cosputed fron equations (28a) and (28b) and tables la aad lb. The maximum and minimum principal stressos thon were corputed fron equation (27). These stresses are given in tables $3 a$ and $3 b$ and are plotted against the shear load Q in dimensionless form in figure 3. The direction of the maximum principal stress forms an angle of 45° with the flanges for all loads when $r=\infty$; when $r=1 / 4$, however, the angle is 45° up to the buckilng load and decreases to 41° A' $^{\prime}$ as the load is increased to five times the bucking load.

Comparison of figures 2 and 3 shows that the maximum tensile stress occurs at the center of the plate while the maximum compressive stress occurs in the corner.

The roinforcement ratio r has an appreciable efect on the stress in the corner. (Seefig. 3.) The increaso in compressive stress at the corner when the reinforcement ratio r changes froff ∞ to $1 / 4$ is 40 porcent at a load $Q=45 \quad \pi h 3 / a$.

Effective $\begin{aligned} & \text { idath of the Sheet }\end{aligned}$
The effective wiath of the sheet (corresponding to the width of umbckled sheet which would give the same shear deformetion as the actual buckled sheet) was computed from
equations (24a) and (24b) and tables la and lb. The ratio or the effectiyo width to the actual width is given in tables $3 a$ and $3 b$ and is plotted in figure 4 against the shear deformation fatio $\bar{\gamma} \frac{a^{2}}{h^{2}}$. Ohanging tha strut area so that the reinforcement ratio $r=1 / 4$ instead of ∞ causes a drop in effective width ratio from 0.88 to 0.81 for a shear deformation $\bar{\gamma}=140 \mathrm{~h} / \mathrm{e}^{2}$.

Figure 4 shows that the effective wiuth decreases slowly with increase in the shear deformation. In this connection it should be remembered that the present paper is limited to edee reinforcements which are rigid against bonding in the plane of the wob. It should not be assumed that the effective width will be as high as in figure 4 whan the reinforcements allow bendine in the plane of the web.

Bending Moment in Flange

The oending moments in the lower flango, due to the wob stresses $\sigma_{\dot{y}}^{\prime}$ acting norimel to the flange, are given by oquation (19a). This equation does not take account of the fact that the web shear stress Tyy contributes to the bending moment when the nautral axis of the flange does not coincide with the edge of the shear wab. The bending moments alons the ilange $y=0$ computed from equation (19a) using equations (8), (14a), (14b), and tables la and lb, are given in fisure 5 for $r=1 / 4, ~ Q=45.37 \pi h^{3} / a$ and for $r=\infty, Q=47.23 \pi h^{3} / a$ 。 The maximum moment occurs at the struts, $x=0, \quad x=2$. The distribution of moment is similar to thet in a beam with clemped ends under a unformly distributed load. Although the shear load Q is nearly the same in the two cases, the moments for $r=\infty$ are nearly twice the moments for $r=1 / 4$; the decreaso in cross-sectional aroa of the struts causes a marked decreaso in flenge bending moment.

Compressive Force in Strut
The coipressive force in the strut is given by equation (12). The distribution of corpressive force P along the strut was colputed from equation (12) using equations (14a) and (14b) ana tables la and lb. The results are plottad in figure 6 for $r=1 / 4, Q=45.37 \mathrm{Eh}^{3} / \mathrm{e}$ and for $\mathrm{r}=\infty$, $Q=47.223 h^{3} / a$. The variation in compressive force P along
the strut is 19 percent when $r=1 / 4$ and only 8 percent when $r=\infty$. The maximum force occurs at the center of the strut, $y=a / 2$.

The maximum force $P_{y=a / 2}$ was computed for various loads. It is plotted against load in figure 7 . For a ziven load Q on the beam, the force $P_{y=a / 2}$ in the strut is about throe times as great when $r=\infty$ as when $r=1 / 4$. When $r=1 / 4$ a considerable portion of the force holding the flanges apart saems to be carried by the sheet adjacent to the strut.

Shear Deformation of Beam

The shear deformetion $\bar{\gamma}$ of the beafif and the shear lord Q are given in dimensionless form in tables la and lb. They are plotted against each other in figure 3 for $r=1 / 4$ anc $r=\infty$. The deformetion when $r=1 / 4$ is only about 9 percent granter than when $r=\infty$. The cross-sectional area or the strut apparently has only a minor affect on the stiffiness of beams with buckled webs resisting shear when the strut spacing equals the beam deptin and when the flanges are vary stiff.

Aftor bucking, the effective shear stiffness of the web is decreased about 8 percent for $r=\infty$ and about 13 percent for $r=1 / 4$.

Comparison with "Tension Field" Theory

The nost widely used concept in prodicting the behavior of a shear web after buckling is that of the "tonsion iield" originated by Wagner. Nagner (referonce 2) postuleted that the shear load carried by a thin sheet web after buckling is chiefly carried by tension in the direction of the sheet buckias. Improvements of Wagner's original theory to take account more adequately of the case of an incompletely doveloped iension field have been derived in references ll, l2, and 13.

Kuhn (roferences ll and l2) has developed a semiempiricai trestment for the action of shear webs in incocplete diagonal tension. Kuhn's results are plotted as curves 0 in figures O, 10 , and 11 for comparison with tho present work. The aereemont is excellent in the practical case where $r=1 / 4$ except

For the striss in the corner of the buckic (curve B). In the extreme case where $r=\infty$, nowever, the agreement is not so good.

Lgninaar (reference iJ) takes account of roinforcements and assumes that a compressive stress equal to the critical shear stress acts perpendicular to the buckles. Ee neglects the eficet of Poisson's ratio ($\mu=0$). Langhaaris results ere plotted as curves D in figures 9, 10, and ll for comparison with the present work. The agreement is excellent for tie stress at the center of the panel (curve A fig. 9). It is not quite so good for the shear deformation (fig. li). For tine force in the strut (fig. 10), Langhara's results are nearly twice as high as those or the present paper.

The preceding couparisons of Wegner's theory, as doveloped by Kuhn and by Langhaar, with the more complete enalysis given in the present peper for the special case of a square plate, indicates that Nagner's theory as devaloped by Kukn is in best agreement with the present paper in the prectical case $r=1 / 4$. Kuhn's theory is in especially scod agrement for the force in the strut when $r=1 / 4$.

Notional Bureau of Standards,
Washington, D. O., July 1,1944 .

REMERPNCSS

1. Tinoshenko, S.: Theory of mlastic Stability. McGrawHill Book Co., Inc., 1036.
2. Wagnor, Herbert: Flat Sheet Metal Girdors with Vory Thin Wetal Web.
Part I - General Theories and Assumptions. NACA TM No. $604,1931$.
Part II - Shaet Ketri Girdars witi Spars Resistant to Bending - ObIique Tprighte - Stiffness.

Part III - Sheet Netal Giriers with Spars Fesistent to Bending - The Stress in Uprights - Diagonal Tension Fields. iNACA TM iNo. 606, 1931.
3. Kuhn, Paul: A Suminery of Design Formulas for Beams Having Thin Webs in Diegonal Tension. NACA TN No. 465, 1933.
4. Schopita, J.: Tho Twisting of Thin-Walled Stiffened oiveuint Cilizesss. MACA TM No. 373, 1938.
 of Stiffaners of Shear-Easistaxt Plate-Girder ifobs. KACA TN NO. $362,1942$.
5. Irinde, $\mathrm{R}_{\text {. }}$ and Wegner, H.: Tests for tho Dotormicotion of the Stress Oondition in Tgnsicn Tields. Mof Re NF. 809, 1036.
6. Seydal, Z.: Übor ans Ausbeuiers von rechteckizen icotropen race ortioncral-anistrcpen Platton bei Schmo

7. Levy, Samuel: Bending ef Foctangilicy Pletos witi iars:
 5y io. 346,1942)
8. Timosherkc, S.: Thoory of 巴lastieqt. Megrew-fill 3ook Go., Inc., 1934.
9. Grout, Frescott D.: A Short Methea for fivaluatiry Determinantz ond Solvíns Syetems ot Ininear fquations
 vol. 60, 19.4.
10. Kuhn, Peul: Investisetions oí the Inconpletely Developed Planciliagonel-Tension Field. NAOA Rep. No. 697, 1eno.
11. Kuin, Parl, and Chiarito, Patrick P. : The Strencth of Pleno Fieb Syetems in Incorplete Diagonal Tension. ㅍins ARR, Aus. 1942.
12. Lenghanr, ㅍ. I.: Theorotical end Erperimental Investiहatione of Thin-Wobbed Platomiriur Beams. Trans. h. S. . . E., Vol. 65, 1943, Th. 709-302.

Table la - Values of the deflection coefficients as a function of the apparent shearing deformation \bar{z} or of the shear load Q for $r=\infty$.

$\frac{\mathrm{Qa}}{\mathrm{En} 3}$	$-\overline{8} \frac{a^{2}}{h^{2}}$	$\frac{\mathrm{WH} \text { I }}{\text { n }}$	$\frac{\left.{ }^{W}\right]_{8} 3}{\text { h }}$	$\frac{10.1}{6}$	$\frac{73,3}{n}$	$\frac{\text { T2, } 2}{h}$	$\frac{\tau_{a}{ }^{2}}{E h^{2}}$
8.61	$22^{0} .68$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{0}{0}-8.61$				
8.82	23.24	+0. 1587	-0.0118	-0.0718	+0.0066	-0.0479	-8.83
9.30	24.61	+.292?	- . 0235	- . 0235	+. 0134	- . 0931	-9.35
10.01	26.65	. 4070	- . . 0360	- . 0360	+.0210	- .1390	-10.12
10.56	28.25	$+.4764$	- . 0455	- . 0455	$+.0270$	- .1722	-10.73
11.01	29.6	. 525.	-. 053	-. 0.053	. 032	- . 198	-11.23
12.00	32.5	.613	- . 069	-. 069	.043	-. 251	-12.34
13.20	36.0	. 694	-. 085	-. 085	. 055	-. 303	-13.68
14.02	38.5	. 746	- . 097	-. 097	. 065	- 344	-14.63
15.25	42.6	. 814	- . 115	- . 715	.080	- . 405	-16.16
16.55	46.2	. 881	-. 129	- . 129	.093	-. 453	-17.56
17.85	50.2	. 917	- . 145	- . 145	.107	- . 499	-19.06
20.67	58.8	1.006	- . 772	- . 172	.136	- . 593	-22.32
24.30	70.0	1.110	- . 206	-. 205	.173	- . 704	-26.59
28.04	81.6	1.200	- . 234	-. 234	. 209	- . 804	-30.99
32.04	94.0	1.284	- . 263	- . 263	.245	- . 900	-35.72
36.60	108.2	I.371	- .291	- . 291	. 282	-. 999	-41.10
41.76	124.3	1.462	- 320	- 320	-322	-1. 101	-47.20
47.22	141.3	1.551	-. 348	-. 348	-361	-1.199	-53.65
53.22	159.9	\%. 742	-. 376	-. 376	. 401	-1.299	-60.75
59.82	180.4	2.735	-. 403	-. 403	. 442	-1.400	-68.55
66.60	202.0	1.828	-. 432	-. 432	;482	-1.499	-76:70

Table $1 b$ - Values of the deflection coefficients as a function of the apparent shearing deformation $\overline{8}$ or of the shear load Q for $r=1 / 4$.

$\frac{\mathrm{Qa}}{\mathrm{Eh} 3}$	$-\overline{8} \frac{a^{2}}{h^{2}}$	$\frac{\pi}{n} \frac{1}{n}$	$\frac{W_{1}, 3}{n}$	$\frac{73,1}{h}$	$\frac{\square 3,3}{n}$	$\frac{W_{2,2}}{\mathrm{~h}}$	$\frac{E_{a^{2}}}{E h^{2}}$
8.0	22.66	0	0	\bigcirc		0	0 -8.61
8.73	23.02	+. 1601	-. 01178	-. 01174	+.c0657	- . 0479	- 8.74
9.10	24.13	+. 3196	-. 02504	-. 02472	+. 01417	- . 1000	- 9.16
9.61	25.66	+.4522	-. 03844	-. 03745	+.02198	- . 1500	-9.75
10.21	27.47	+.5652	-. 0525	-. 05035	+.03051 +.03972	-. 2000	-10.44
10.86	29.50	+ 6.6647	-. 06709	-. 06726	+.03972	- 2.3500	-11.20
11.55	31.58	+	-. 082	-. 0.088	+6.049 +.060	=.300	-12.03
13.02	36.44	+. 898	-. 113	-. 101	+.071	- . 400	-13.84
13.81	39.02	+.962	-. 128	-. 113	+.083	- . 450	-14.82
14.54	41.75	+1.02	-. 144	-. 125	+.095	- . 500	-15.86
16.40	47.67	+1.129	-. 175	-. 151	+. 122	- . 600	-18.11
18.33 20.45	54.22	+1.232 +1.327	-.208 -.240	-.169 -.189	+.151 +.182	-. 800	-20.60
20.45 22.77	61.47	+1.327 +1.419	-. 240	-. 189	+.182 +.214	-. 8000	-23.35 -26.39
25.31	78.25	+1.509	-. 303	-. 2298	+.249.	-1.000	-29.73
31.03	98.16	+1.687	-. 365	-. 267	+.320	-1.200	-37.29
34.25	109.40	+1.775	-. 396	-. 286	+.358	-1.300	- -51.56
41.42	134.43	+1.954	-. 458	-. 324	+.434	-1.500	-51.07
45.36	148.24	+2.045	488	-. 343	+.472	-1.600	-56.32

Table 2a - Median-Fiber Stress at Center, r $=\infty$
Maximum and Minimum Principal'Stresses Direction of Principal Stresses

$\frac{\mathrm{Qa}}{\mathrm{Eh}^{3}}$	$\frac{\sigma_{x}^{\prime} a^{2}}{E h^{2}}$	$\frac{\frac{\sigma_{j}^{\prime} e^{2}}{E n^{2}}}{}$		$\frac{\sigma_{\text {man }} \max ^{2}}{\operatorname{mn}^{2}}$	$\frac{\sigma_{\max }^{\prime} \mathrm{a}^{2}}{\mathrm{En}^{2}}$	α
8.51	0	0	- 8.51	- 8.61	8.51	45°
8.82	. 1287	. 1287	-8.83	- 8.70	8.96	
9.30	. 4555	.4555	- 9.35	-8.89	0.81	"
10.01	. 9363	.9363	-10.10	- 9.16	11.04	"
11.56	1.349	$\frac{1}{2}$: 3491	-10.58	-9.33	12.93	"
12.00	2.523	2.523	-12.19	- 9.66	14.70	"
13.20	3.476	3.476	-13.40	- 9.92	16.38	n
14.02	4.253	4.253	-14.22	- 9.97	18.47	"
15.25 16.55 17	5.496	5:496	- 15.52	-10.02	21.02	"
17.86	7.974	7.874	-17.92	-10.05	25.79	,
20.67	10.486	10.486	-20.58	-10.09	31.07	"
24.30 28.04	14.233	14.233	-23.92	- 9.59	39.15	"
32.04	22.227	22.227	-30.96	- 8.73	53.19	"
36.60	26.924	26.924	-35.08	- 8.16	62.00	${ }^{\prime \prime}$
41.76	32.361	32.361	-39.72	- 7.36	72.08	${ }^{11}$
47.22	38.128	38.128	-44.60	- 6.47	82.73	"
53.22 50.82	44.479 51.332	44.479 51.332	-49.98	-5.50 -4.50	94.46 107.26	$\stackrel{4}{\square}$
66.69	58.811	58.811	-62.03	- 3.22	120.84	"

Table 2b-Median-Fiker Stress at Center, $r=1 / 4$ Kaximum and 1 Mnimum Principal Stressss Direction of Principal Streases

$\frac{\mathrm{Qa}}{\mathrm{En}}{ }^{3}$	$\frac{\sigma_{x}^{\prime}{ }^{2}}{E h^{2}}$	$\frac{\sigma_{y}^{\prime} \mathrm{a}^{2}}{E h^{2}}$	$\frac{I_{y y}^{\prime} \mathrm{a}^{2}}{E h^{2}}$	$\frac{\sigma_{\text {min }} \mathrm{m}^{2}}{E h^{2}}$	$\frac{\sigma_{\text {max }}^{\prime}{ }^{\text {a }}}{} \mathrm{Eh}^{2}{ }^{\text {a }}$	α
8.61	0	0	- 8.61	- 8.61	$+8.61$	45°
8.73	+.10	+. 06	-8.75	- 8.61	+8.81 +8.83	44056 \%
3.10	+.42	+.27	- 9.16	- 8.81	+ 9.51	$44^{\circ}{ }^{\circ} 45^{\prime}$
9.61	+.89	+.58	-9.73	- 9.03	+10.50	$44^{\circ} 32.51$
10.21	$+1.46$	+.95	-10.39	- 9.18	$+11.61$	$44^{40} 18{ }^{\circ}{ }^{\prime \prime}$
10.86 11.55	+2.12	+1.39	- 11.10	-9.35	+12.87	$44^{\circ} 3^{\circ} \frac{31}{4}$,
12.27	+3.67	+2.39	-12.60	- 9.58	+15.66	$43^{\circ} 33^{\prime}$
13.02	+4.55	+2.96	-13.39	- 9.65	+17.17	43° 39,
13.81 14.64	+5.49	+3.58	- 14.19	- 9.68	+18.76 +20.42	$4{ }^{4} 3^{\circ} 4.55^{\prime}$
16.40	+8.78	+5.72	-16.69	- 9.51	+24.02	$42^{\circ} 2{ }^{\prime}$
18.33	+11.29	+7.34	-18.53	- 9.32	+27.96	$41^{\circ} 581$
20.45	+14.16	+9.21	-20.48	- 8.34	+32.32	$41^{\circ} 33^{\prime}$
22.77	+17.33	+11.30	-22.58	- 8.44	$+37.10$	$41^{\circ} 101$
25.31	+20.95	+13.63	-24.94	- 7.81	+42.40 +54.42	$40^{40} 48$
34.25	+29.23	+12.10 +22.10	-32.65	- 5.15	+ +61.42	$39^{\circ} 52^{\text {\% }}$
41.42	+44.55	+29.05	-38.82	-2.78	+76.39	$33^{\circ} \mathrm{21:}$
45.36	+50.46	+32.92	-42.20	- 1.41	+84.79	$39^{\circ} 8^{\prime \prime}$

Table 3a - Hedian Fiber Stresses at Corner of Shear Meb, $\mathbf{r}=\infty$

$\frac{6 a}{\sin 3}$	$\frac{\sigma^{\prime} \mathrm{x}^{2}}{\mathbb{E n}^{2}}$	$\frac{\sigma_{y}^{\prime} \mathrm{a}^{2}}{\mathrm{En}^{2}}$	$\frac{\tau^{\prime} \mathrm{y}^{\text {a }}{ }^{2}}{\mathrm{Eh}^{2}}$	$\frac{\sigma_{\text {max }} \mathrm{m}^{2}}{E n^{2}}$	$\frac{\sigma_{m i n}{ }^{\text {a }}}{} \operatorname{En}^{2}{ }^{2}$	\propto	$\begin{aligned} & \text { Efreotive } \\ & \text { Width } \\ & \text { Ratio } \end{aligned}$
8.61 8.81 9.82 10.01 10.56 11.01 12.00 13.20 14.02 15.25 16.55 17.86 20.67 24.30 28.04 32.04 36.60 41.76 47.22 53.22	0 .0004 .0009 .000 . .001 -.003 -.008 -.025 -.037 -.050 -.052 -.099 -.141 -.207 -.270 -.341 -.425 -.513 -.612 -.726 -.839	0 .00 .00 .00 .00 .00 -.01 -.02 -.03 -.04 -.05 -.06 -.10 -.14 -.27 -.27 -.34 -.43	-8.61 -8.83 -9.35 -10.12 -10.73 -11.23 -12.34 -13.68 -14.53 -16.16 -17.56 -19.06 -22.32 -26.59 -30.99 -35.72 -41.10 -47.20 -53.65 -60.75 -68.55 -76.70	8.61 8.83 9.35 10.12 10.73 11.23 12.33 13.66 14.60 16.12 17.51 19.00 22.22 26.45 30.78 35.45 40.76 46.77 53.14 60.14 67.82 75.86	$\begin{aligned} & -8.61 \\ & =8.83 \\ & -9.35 \\ & -10.12 \\ & -10.73 \\ & -11.23 \\ & -12.35 \\ & -13.70 \\ & -14.66 \\ & -16.20 \\ & -17.61 \\ & -19.12 \\ & -22.42 \\ & -26.73 \\ & -31.20 \\ & -35.99 \\ & -41.44 \\ & -47.63 \\ & -54.16 \\ & -61.36 \\ & -69.28 \\ & -77.54 \end{aligned}$	45° 11 11 11 1 1 1 11 1 1 11 11 3 1 1 1 3 11 11 1 11 H	1 .998 .994 .988 .984 .980 .972 .964 .958 .949 .942 .936 .926 .913 .904 .897 .890 .883 .880 .876 .872 .869

$\frac{\mathrm{Qa}}{\mathrm{En} 3}$	$\frac{\sigma_{x}^{\prime} x^{2}}{E h^{2}}$	$\frac{\sigma_{y^{\prime} \mathrm{a}^{2}}^{E h^{2}}}{}$	$\frac{\tau_{x y} a^{2}}{E h^{2}}$	$\frac{\sigma_{m}^{\prime} n^{a^{2}}}{E h^{2}}$	$\frac{\sigma_{m a x}^{\prime} a^{\prime 2}}{E h^{2}}$	α	Sifective Width Ratio
$\begin{array}{r} 8.61 \\ 8.73 \\ 9.10 \\ 9.51 \\ 10.21 \\ 10.86 \\ 11.55 \\ 12.27 \\ 13.02 \\ 13.81 \\ 14.64 \\ 16.40 \\ 18.33 \\ 20.45 \\ 22.77 \\ 25.31 \\ 31.03 \\ 34.25 \\ 41.42 \\ 45.46 \end{array}$	$\begin{aligned} & 0 \\ & -.01 \\ & =.06 \\ & =.13 \\ & -.23 \\ & =.33 \\ & =.45 \\ & -.59 \\ & -.74 \\ & -.90 \\ & -1.08 \\ & -1.48 \\ & -1.93 \\ & -2.45 \\ & -3.04 \\ & -3.70 \\ & -5.22 \\ & -6.09 \\ & -8.04 \\ & -9.13 \end{aligned}$		- 8.61 - 8.74 - 9.16 -9.75 -10.44 -11. 20 -12.03 -12.91 -13.84 -14.82 -15.86 -18.11 -20.60 -23.35 -26. 39 -29.73 - 37.29 -41.56 -51.07 -56.32	-8.61 - 8.77 - 9.28 -10.00 -10.86 -11.83 -12.88 -13.97 -15.20 -16.47 -17.82 -20.77 -24.07 -27.74 -31.81 -36.30 -46.51 -52.28 -64.62 -72.29	$\begin{aligned} & +8.61 \\ & +8.71 \\ & +9.04 \\ & +9.49 \\ & +10.01 \\ & +10.59 \\ & +11.20 \\ & +11.86 \\ & +12.51 \\ & +13.21 \\ & +13.95 \\ & +15.52 \\ & +17.23 \\ & +19.11 \\ & +21.17 \\ & +23.41 \\ & +28.46 \\ & +31.31 \\ & +38.06 \\ & +41.09 \end{aligned}$	45° $44^{\circ} 57^{\circ}$ 44. 49^{\prime} $44^{\circ} 39^{\prime}$ $44^{\circ} 28^{\prime}$ 440771 $44^{\circ} 6^{\circ}$ $43^{\circ} 55^{\circ}$ $43^{\circ} 46^{\circ}$ $43^{\circ} 36^{\circ}$ $43^{\circ} 27^{\prime}$ $43^{\circ} 14^{\prime}$ $42^{\circ} 56^{\prime}$ $42^{\circ} 43^{\prime}$ $42^{\circ} 32^{\prime}$ $42^{\circ} 22^{\prime}$ $42^{\circ} 5^{\prime}$ 410591 $41^{\circ} 47^{\prime}$ $41^{\circ} 43^{\prime}$	$\begin{aligned} & 1 \\ & .998 \\ & .993 \\ & .986 \\ & .978 \\ & .969 \\ & .959 \\ & .950 \\ & .941 \\ & .931 \\ & .922 \\ & .905 \\ & .889 \\ & .875 \\ & .852 \\ & .851 \\ & .832 \\ & .824 \\ & .810 \\ & .805 \end{aligned}$

Figure 1.- Beam under shearing force Q and typical bay of shear web.

fisure 2.- Principal median fiber stresses and direction of mazimum principal strese at cerater of shear bay. Ratio of strut area to gueet area $r=I / 4, \infty$,

Figure 3.- frincipsi streases and direction of maximum princtpal styess at corner of shenr bay. Ratio of etrut tren to sheet aree r=1/:,∞.

Figure 4.- Effective pidth of sheet in shear. Ratio of strut area to sheot area $r=1 / 4, \infty$.

Figure 5.- Moment distribution in bottom flange ($y=0$).

Figure ह.- Force distribution in struts at $x=0$, a. Ourve A, $r=\infty, Q=47.22 \operatorname{lin}^{3} / \mathrm{e}$, Curve $B, r=1 / 4, Q=45.37$ stres $5=r$ ratio of strut cross-sectional area to sineet crosssectional area.

Figure 7.- Variation of maximum compressive force in strut $P_{y=e} / 2$ vith Ioad. Ratio of strut aroa to shect area $r=1 / 4, \infty$. .

Figure 8.- Shear deformation of beam for ratio of strut area to web
area $r=1 / 4, \infty$.

Figure 9.- Comparison of maximun median fiber atresses, $\sigma, r=$ ratio of strut crosensectional area to sheet crose-soctional area; curve A, conter of plate, present paper; curve B, corner of plate, presont papor; curve C, all pointe in plato, references 11 and 12; curve D, all points in plate, reference 13.
. .

Pigure 10.- Conparison of compressive force P in strut, r = ratio of strut cross-sectional area to sheet cross-sectional area; curve A, midpoint of strut, present paper; curve G, anywhere in strut, roferonces 11 and 12 ; curve G, anywhere in stmat, roforonce 13.

