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FIOW INDUCED BY A ROTOR IN POWER-ON VERTICAL DESCENT

By Walter Castles, Jr.

SUMMARY

Approximate equations are derived for the induced power required
and blade loading of a lifting rotor operating in the power-on vertical-
descent rsmge. The approximate relations, which are based upon certain
assumptions as to the nature of the flow pattern, yield, for the induced

—

power variation, results which are in general agreement with the avail-
able experimental data.

INTRODUCTION

The induced power required in power-on vertical descent as pre-

.

.

dieted by elementary vortex theory or momentum theory based upon the
assumption that a normal columnar wake extends a lsrge distance below
the rotor does not agree with the available experimental results as is
seen from figure 1 (reproduced from ref. 1). Furthermore, the observed
flow patterns about a rotor operating in power-on vertical descent are
of a “vortex-ring” or recirculator t~e for which it is necessary to
consider the effects of viscosity and the resultant turbulent mixing
in order to e~lain the existence of a steady thrust force.

Although the power-on vertical-descent flight range has been of
little practical interest in the past on account of the operational
limitations on single-engine helicopters, this flight range may be of
considerable interest in the future if vertical-landing approaches are
required at certain locations for nmltiengine helicopters or vertical-
take-off-snd-landing aircraft. Abetter understanding of the mechanics
of the axially symmetric flows that occur in vertical descent may also
be of value in that it may furnish some insight for the more compli-
cated flow patterns that occur in inclined descent.

The present report is an atteqt to express the relations between
the rotor thrust loadings and induced velocity distributions for the
vortex-ring or recirculator flow patterns that exist in power-on
vertical descent in a skple approximate manner that is suitable for
engineering computations.
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SYMBOLS

slope of blade-element lift curve

number of blades in rotor

blade chord at radius r

local blade profile drag coeffic@t at radius r

blade-element lift coefficient

slope of a linear variation of rotor disk loading along rotor
radius

mass flow through rotor

climb power, rate of change of potential energy

induced power required

static pressure

atmospheric pressure .-

rotor torque

rotor radius

radius of point on rotor

rotor thrust

free-stresm velocity or rate of descent

local axial induced velocity at radius r
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Vw axial velocity at end of wake core

v axial induced velocity at rotor for case of uniform disk
loading

‘o axial induced velocity at hovering for hypothetical rotor

r

Twith uniform disk loading~ —
2pl&’

w disk loading at radius r

x nondimensional radius, r/R

z distance below rotor

e blade angle at radius r

P mass density of air

Q Q1= VelOCity of rotor blades

ANALYSIS

Uniform Disk Ioading

Consider the wake of an idealized lifting rotor hovering in a
viscous fluid as sketched in figure 2. Let the radial distribution of
loading be such as to impart a uniform increase in total pressure to
the fluid passing through the rotor. In smalogy with the case of the
flow of a uniform, stationary, free jet as given in reference 2, there
will be a central region of the wake located below the cross section
of min@m radius AA’} denoted in figure 2 by the region between the
axis and surface All,within which the turbulent mixing has not pene-
trated and the flow will be essentially that of a nonviscous fluid
having a uniform axial velocity.

The mixing region between the sections AB and AC in figure 2 has
slititlv divergent streamlines and an sxial velocity distribution such
tha; th~ veloc~ty decreases with radius
with distance from the rotor.

In the case of the stationary free
erence 2 that experimental measurements
practically constsat in the mixing zone

from the w&e center line and

jet, it is remarked in ref-
show the static pressure to be
and only very slightly above
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atmospheric static pressure by the mount of the velocity head of the
radial velocity at the outer turbulent mtxing boundary AC. It might
reasonably be supposed that a very simila situation exists with resl?ect . ..:

m.

to the uniformity of the static pressure in the mixing region at the
boundary of a rotor wake for the portion below the cross section of
minimum wake radius AA’.

.

It is to be noted that there is some surface, denoted by line AD
.-

in figure 2, along which the sxial velocity will be constant and some
small part, say equal to V, of the axial Velocity at the rotor disk.
The radial components of velocity along sucQ a surface of constant

—

axial velocity will be small compared with-the axial velocity COIITPO-
--—.-

nents and will be directed outward. — i:

Consider now the effect of imposing some small descent velocity,
say equal to the previously chosen value V, on the hovering flow pat-
tern of figure 2. Within the core of the wske previously enclosed by
the surface AB the principal effect will be similar to that obtained
by superposition of the velocity V; that is, there will be a decrease
in the axial velocities and little change in the radial velocities ._
somewhat--asshown in figure 2. It would appear that the rate of
decrease of velocity along a streamline through the turbulent mixing
region between surfaces AB and AD will now be greater on account of
the path length being shorter, and the previous surface AD, somewhat ._
altered in position, will now constitute a surface of zero sxial veloc-
ity as shown in figure 3. It would conse”qti:~tlyfollow that, except
for the effect of the very small radial velocity components, surface AD
now constitutes a surface of constant presstie similar to the surface AC
which existed in the hovering flow and.along which, for the case of the
analogous free jet, the static pressure is practically constant. Since
surface AD in figure 3 contains the free-stream stagnation point D
where the static pressure is very nesrly equal to the free-stream total
head, it might reasonably be supposed that.the static pressure in the...
turbulent mixing region between surfaces AI_qnd AD in figure 3 is --
approximately this same value. —

.

—
—

.—

.—

..— —

As a check on the above hypothesis, static-pressure surveys were —
made through the turbulent mixing region upstream o.fa 12-inch fan ope~- ._
sting In the vertical-descent condition in:t.hecenter of the b-foot-square

.—

free jet at the exit of the Georgia Institute of Technology low-
turbulence wind tumnel. The surveys, at three different radii and
free-jet velocities along lines parallel to the free-jet and fsz.axesl.
were tsken with a small pitot tube first directed toward the free

—
:

stresm and then toward the fan.
..—-——

The results of the static-pressure “-”
surveys are given,i.ntable I and are showr_i.nfigure 4. The test free-
jet velocities were limited to the speed range given in table Iby ‘-

—.

the reversal of rotation of the fan at higher velocities and the-extreme
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distortion of the free-jet boundaries at lower jet velocities. The
lower velocity test conditions gave static-pressure peaks in the turbu-
lent mixing region which were below the free-stresm total head as would
be expected from a consideration of the lack of constraint on the free-
jet boundaries.

It can be seen from figure 4 that, within the accuracy of the
present small-scale measurements, the static pressure in the turbulent
mixing region at the end of the primary wake extending below a rotor
operating at small rates of power-on vertical descent is of the order
of the free-stream total head.

In figure 3 it is seen that, although there will be a certain
amount of mixing over the whole of the local flow pattern, the greater
part of the loss in total head in a fluid circuit must occur in the
region ABDA which is the only region where there is a large velocity
gradient. For steady-state conditions to exist, the loss in total head
around a fluid circuit must be equal to the change in total head
across the rotor or very nearly equal to the rotor disk loading for the
idealized rotor under consideration. Similar~, it can be seen from
figure 3 that the total head loss along a streamline within the core
of the wake and extending from the rotor to section AB should be very
small on account of the nearly uniform velocity distributions and
consequent absence of turbulent mixing across these wake cross sections.

Consider now the effect of the small rate of vertical descent V
on the outer boundary of the turbulent tiing region, represented by
section AC in figure 2 for the case of hovering. For the descent case
the outer turbulent-mixing-zone boundary AC in figure 2 will be folded
back on itseu, shrink to a line coinciding with the edge of the rotor,
and be replaced by some section indicated by DE in figure 3. The
momentum loss of the free-stream flow and the vorticity shed by the
rotor will be confined within this outer wake boundary DE which, at
large distances above the rotor, might be expected to have a diameter
very nearly proportional to the cube root of the distance from the
rotor in analogy with the wake at large distances behind any tbree-
dimensional body exerting a drag force. There will be some dividing
streamline, represented schematically by DF in figure 3, outside which
the retarded free-stream flow within the outer wdse boundary will con-
tinue to flow downstream and within which the fluid will recirculate
through the rotor. For small rates of descent the upper stagnation
point F will be a considerable distance above the rotor in a region
of very low velocity flow and nearly atmospheric static pressure p .

0
The total head along the axial.entering streamline is thus of the order
P.“ The total head loss in a circuit, which is the same for all the

reentrant streamlines since it must be equal to the assumed uniform
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disk loading for steady-state flow, is thus very nearly equal to the
total head at the end of the w.gkecore at s,ectionAB less the total
head on an entering streamline, a value of the order of “theambient
atmospheric pressure po.

Let the velocity at section AB where the static pressure is,very
nearly equal to the free-stream total head %e denoted by Vw. Then the

disk loading T/fiR2 is about equal to the total head at section AB
minus the entering total head PO. Thus

(1)

.

.—._ —

—
— --—

.—

.

or

It is to be noted that for the greater part of the energy loss
in a circuit to occur in the high shear region between the section AB,

----____ .

where the total head is about p. + &(Vw2” )+ V2 , and section AD, where

the total head is about PO + $V2 plus scynesmall radial velocity

head, it is necessary that
T—.

or from equation (2)

r .- .— —
v< T (4) ‘- :

PTiR2
.—

The requirement that the downward-directed wske core velocity Vw

at section AB in figure 3 be at least equal in order of magnitude”to the
.

free-stresm velocity V can perhaps be seen more clearly from the
. ..-

—.. -
.
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standpoint of vortex theory. The rate of transport of vorticity down-
ward across some horizontal plane, say YY in figure 3, between SeC-
tions AB and AD must be at least equal to the subsequent rate of
transport of the same vorticity upward across YY between sections AD
and DE for the presently assumed steady-state viscous flow. If the
respective layers of vorticity are considered to compose diffuse vortex
sheets, the vertical rates of transport of vorticity are equal to one-
half the square of the respective vertical components of sheet strength
or difference in vertical component of velocity across the sheets since
the axial velocity component on the dividing section AD is zero by
definition. If, as a first approximation, the effects of radial induced
velocity components are neglected, the vertical velocity difference
across the outer wake vortex sheet between sections AD and DE is equal
to the free-stream velocity V, and thus the vertical velocity difference
Vw across the inner wake sheet between sections AB and AD must be, to

the ssme order of approximation, at least as great as V.

Another equation relating the thrust T and the wake core velocity
Vw can be obtained from a consideration of the momentum exchange. Since

linear momentum is preserved in the turbulent m~ing process and the
fluid recirculates, the rotor thrust can be no less than the rate of
transport of axial momentum across section AB where the velocity is Vw

and the total head is above the free-stresm value. Let v be the mean
axial component of induced velocity at the rotor. Then the mean result-
ant sxial velocity at the rotor is v - V and the mass flow M’ through
the rotor is

M’ = f3f12(V - V) (5)

Thus the rate of change of axial momentum is

T = fm2(v - V)vw (6)

Substituting the value of Vw from equation (2) in equation (6)
and solving for the thrust, using the positive sign on the radical
since the thrust does not vanish for hovering, give

T=
[

PnR2(v - V) (V - v)+ -] (7)
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Solving equation (7) for the induced velocity

where

or in nondimensional form

v:’

—

rT
‘o =

2.plcR2

NACA TN 4330 —

.

(8) :

-. .-. — ., —

.—

—

.
.

(9) ___:
—

It follows from equation (4) that the flight range for which equa- –. _
tions (7), (8), and (9) are useful is

( loj

Values of the nondimensional induced velocity v v/ o and the”non-

dimensional rate of descent V V.
/

are given in table II and shown in

figure 5 along with the experimental curve for the values obtained ti ....
reference 1 for a model rotor with 12° blade-twist ad thus nearly
uniform loading over the outer blade sections.

It is to be noted that for the rotor with uniform disk loading
the relatfion

Tv _pi _ v—-— -—
TVo’ TV. V.

(11)

. .— ..——
— ———

—
.

.

.
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(where Pi
)

is the induced power required holds so that fi~e 5 also

gives the induced power ratios as indicated.

Triangular Distribution of Disk Loading Along Rotor Radius

The problem of finding the radial distribution of load, induced
velocity, and thus the induced power required for a rotor with given
blade geometry operating at a given rate of power-on descent by themethod
to be derived in the subsequent section involves the solution of a’fourth-
degree equation for the tangent of the inflow angle at the blade elements.
Consequently the analysis of the present section will be restricted to a
solution for the induced power required for a rotor with a given trian-
gular distribution of disk loading along the rotor radius. This load
distribution corresponds closely to that of a lifting rotor having blades
with zero or small twist and it thus appears that, whereas the case of
uniform loading is purely hypothetical, the case of triangular loading
may be of considerable interest for purposes of performance estimation.

Let

be the local disk loading at

T=

()w.k~x
YrR2

nondimensional radius x.

(12)

Then

(13)

Integrating, solving the result for the constant k, and substitutim
the value of k in equation (12) give

()

~_3Tx_.—
2 JCR2

Define

(14)

(15)

in analogy with the value V. =

r

T— for the hypothetical case of
2pxR2
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uniform loading.
prhnary wake core
working hypothesis
outer rotor annuli

(

r

NACA TN 4330 —

-—

I’henassuming that there i~no .@r_bulentmixi~in the
.

or, what amounts to the ssme thing, appl.y~ the
.——— -

of the “independence of blade elements” over the
~—

for which equation (9) applies gives
..

-+

—

where ‘i is the local axial component of induced velocity at radius

r for the radii for which
.-—

(17)
.

Substituting the values of w and V. from equations (14) and

(15) in equation (17) it is found that equation’(16) is applicable for
.—

the nondimensional radii

The nbndhensional

outer rotor annulus for

induced power

.— . .—- ———

X51 (18)

()/‘1 1 ‘o required for the

which equation (18) holds is thus —

J(Pi)l 2fi2 ‘ z Wv ~ ~—= —
T’vo TV.

()

i
-—
; :0

or

F’+i%lx2”

—

(19)
—

—.

(20) ‘“’=
.

—
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Integrating equation (20) gives

TV.

It follows from

U.

+

2,520

setting x = 1 in equation (18) that the range of
vertical descent for which equation (21) appiies over some outer smnul.us
of the rotor

For the

just beneath

is less than
lower end of

is

(22)

flight range specified by equation (22) the total pressure

2

()
the rotor and inboard of nondimensional radius x = ~ ~

3 ~o
the static pressure in the turbulent mixing region at the
the wake core. If the effects of turbulent mixim are neg-

lected within the wake core, as was @lied by the use of the ~ndepend:
ence of blade elements in deriving eqyatfon (21), this inner circle, for

2

()
which O~x~$#- , constitutes a closed region as far as energy

o
transfer from the rotor to the fluid is concerned. This is true because
the fluid passing through these inner annuli would not have sufficient
energy to penetrate the adverse pressure gradient above the turbulent
mixing region; thus the total rotor torque due to lift for the sections
of blades within the circle must be asswned to be zero. Using the hypoth-
esis that the power input to the inner circle of the rotor for which

1V2
()

——0SX53V0 is negligible, it follows that the induced power
()‘i 2

for this region is equal to the product of the thrust over the region
and the rate of descent. Thus
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()‘i 2
= 27(V

1V2R[()-—3 ~Q

Jn
Wr dr

NACA TN 4330 .-
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.

(23)

u

Substituting the value of the disk loading w from equation (14) and
dividing both sides by Tvo give the nondimensional induced power ““

—

increment —. ---- — —

(24)

The nondimensional induced power for the rotor with triangulm
loading operating in the power-on vertical-d~sc’entr-e is the sW_of-:
the parts given by equations (21) and (24). -Thecomputed values are
given in table III. Figure 6 shows the comp~ison of the-computed valu@
with the experimental values given in reference 1 for a 6-foot-diameter
constant-chord rotor with untwisted blades. The values obtained on a
full-scale flight test of a rotor with untwisted blades as given in
reference 3 are als-oshown. The flight-test results include the effects
of fuselage drag which tend to make these experimental values too lsrge
at low descent velocities and probably too small at large descent
velocities. The theoretical results of the present investigation
are seen to be in satisfactory agreement with the experimental results.

Loading Over Outer Blade Elements of a Rotor

With Arbitrary Blade Geometry

From two-dimensional airfoil theory it follows that, for small
inflow angles, the thrust dT on a rotor emnulus of radius r and
width dr is

2[ - ~!]hdT =&abc(Qr) 0

—

. .

.—
-- .*

—

.. -

.-

—

—

.-

-

(25)
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where

a

b

c

Q

e

slope of blade-element lift

number of blades in rotor

local blade chord at radius

vls.r velocity of rotor

local blade angle at radius

curve

r

r

Writing equation (7) in differential

dT = @fir(Vi - [)V) (vi-v+

form for the annulus,

~~]ti (26)

for Viz 2V.

Equating the right sides of equations (25) and (26) gives the
following equation:

(27)

Equation (27) may be solved graphically or otherwise for the radial
distribution of the induced velocity Vi and the inflow sngle for the

applicable radii for which Vi > 2V. The thrust loading may then be

cc?zputedfrom equation (25) and the torque loading dQ on the rotor
annulus of width dr from the usual blade-element equation

dQ = dT~i~v)+ ~@c,2r3c%)dr (28)

where Cdo is the profile drag coefficient for the blade element at .—

radius r and lift coefficient
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The simplest consistent assumption for the distribution of the —

inflow angle over the inner radii for which- Vi < ZV in equation (28)

is that Vi = V for this inboard region. However, such a zero value —

for the inflow angle really constitutes a weighted average for the induced . L
torque rather than an actual distribution. _Consequently, if this assump-
tion is made, it would be necesssry to assume also a reasonable blade-

.- —

thrust distribution such as a parabolic var@tion from the calc@s?ed_. ._ . ~

(i

1“2value at the limiting radius x = - — to a zedo value at the hub.
3 Vo

It appeers that the above approximation shou_ldbe adequate for small ..’

rates of vertical-descent where the limiting radius is small and the
thrust in question is an immaterial part of the total. ..

CONCLUDING REMARKS

The present analysis appesrs to yield results for.the variation
of induced power with rate of-vertical power-on descent for a lifting
rotor which are in satisfactory agreement with the available experi-
mental data. It may thus be useful in perfomnsmce estimation and in
furnishing some insight into the mechanics of the vortex ring or recir-
culator flows that occur in these flight conditions.

As there are no experimental blade-load or direct induced-velocity
measurements available for comparison, some judgnent should be exer-
cised in the application of the theoretical blade-load equations given
in the paper.

It might be pointed out that the present analysis gives no steady-
state solution for the (hypothetical) rotor with uniform disk loading
operating in the power-on descent range where the ratio of the free-
stream velocity to the induced velocity in hovering is greater than the
square root of 2. In the case of any actual lifting rot-orthe disk
loading will go to zero at the hub and the radial distribution of disk
loading will be dependent upon the rate of ?escent” COnSeqUent9~ it-
might be expected that the range of stable operation for any actual
rotor will be larger than that for the hypothetical case of uniform -
loading.

,-—

.-
—

—
—

—
——
——. —,-

—
—

—

.—
=

.
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The question arises as to why an smalysis of the present type
should predict the ideal autorotation point or rate of descent at which
the induced power required is equal to the rate of decrease of potential
energy and the resultant mean normal component of velocity at the rotor
is consequently zero. One explanation of this question might be as
follows●

The idealized flow pattern or perfect-fluid flow patterns for a
lifting rotor operating at the ideal autorotation point would have to
be of the Kircbhoff or free-streamline type where the whole of the
wske above “therotor and extending downstream to infinity constitutes
a closed energy region. In the corresponding viscous-fluid flow pattern
a closed energy region bounded by the turbulent mixing zone would also
exist within which the flow could be considered to be of perfect-fluid
type. However, in this case it wotildbe a closed region bounded by the
upper surface of the rotor and some surface of revolution extending a
limited distance downstream.

The present analysis hyyothecates the existence of such a closed
energy region enveloping the inboard blade elements at some small rate
of vertical descent and increasing in diameter with rate of descent
until, at the ideal autorotation point, it includes the full rotor radius.
The growth in diameter of the closed energy region with rate of descent
would necessarily be determined by the external flow and consequently
the ideal autorotation point would occur when the downflow through the
outer rotor annulus vanishes. The prediction of the rate of descent
at which the downflow through the outer blade elements disappears thus
gives the rate of descent at the ideal autorotation point.

Georgia Institute of Technology,
Atlanta, Ga., Msrch 22, 1957.
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RESUIZS OF

TABLE I

STATIC MEASUREMENTS

(a) Runl: Fan5 diameters from free-jet exit; free-jet velocity,
17.5 feet per second; survey along a line 0.5R from axis.

P- Po

~
P- Po

~ &v2
D $V2 D 2

2 (a)

0.96 0.83 0.42 0.25
1.17 1.00 .58 .33
1.33 .92 .75 .67
1.50 .83 .83 ● 75
1.67 ● 75 .92 .83
2.50 .25 1.00 .92
3*33 .08 1.08 1.00

1.17 1.00
1.33 .92

(b) Run 2: Fa 4 dismeters from free-jet exit; free-jet velocity,
16.5 feet per second; survey along a line 0.6R fmm axis.

P - P.
P- P1

z z &v2
5 ~v2 5 2

2 (a)

0.58 0.60 0.25 0.60
.83 .82 .46 .64

1.33 ● 97 1.00 ● 97
1.83 .67 1.50 ● 75
2.33 .40 2.00 .45
2.83 .25
3.33 .12

%tatic pressure for pitot facing fan.



m NACA TN 4330 ..

TABLE I.- Concluded

RESULTS OF STATIC ~

(c) Run 3: Fan 5 diameters from free-jet exit; free-jet velocity,
14.2 feet per second; survey along a line at 0.33R from axis.

z P - P. z

5
&V2

5

1.13
1.25
1.33
1.42
1.50
1.67
2.00
2.’50
3*33

0.75
● 75
.87

1.00
1.00
1.00

● 75
.>0
● 12

0.58
.83

1.08
1.17
1.25
1.33
1.42
1.50

aGtatic pressure for pitot facing fan.

VAIUES OF

P-P.

12
~Pv

(a)

.

.

0
0

.25
● 37
.75
.87
.87
● 75

.-—— -

—TABLE II

NONDIMENSIONAL INDUCED VELOCITY AND NONDIMENSIONAL RATE OF

DESCENT FOR IUMUZED ROTOR WITH UNIFORM LOADING

.2

.4

::
1.0

i:f

\lZ

/
v V.

1.000
1.205
1.420
1.658
1.892
2.155
2.450
2.801

2 tii
.

.
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TABLE III

THEORETICAL VALUES OF NONIIUIENSIONALINDUCED POWER RATIO Pi T%. AND
/

NONDIMENSIONAL RATE OF DESCENT V/vO FOR ROTORWITH TRIANGWAR

DISTRIBUTION OF DISK LOADING AIQNG RADIUS

v V.
/ pi/Tvo

o 1.049

.2 L 238

.4 1.407

.6 1.568

.8 1.737

1.0 1.907

1.2 2.079

1.4 2.185

1.6 2.069

1.65 1.974

1.70 1.841

P C
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111111111
r - SIMPLE MOMENTUM OR ELEMENTARY VORTEX THEORY

I I 1 [ I I I
--vALuEs FRoMDATA c)N6-FooTL_ -

; ; CONSTANT-CHORD, UNTWISTED BLADES

3

2

Pi

T-vo

1

.—

2.0 1,6 1.2 .8 .4 0
v/v.

Figure l.- Comp~~60n of values of nondimensional induced power for ___ “
power-on vertical descent given by simple-mmentum theory or elemen-

___

tary vortex theory with experimental values.
—

.— 7..=
-u
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Figure 2.- Sketch of ideslized hovering air-flow pattern. AA’, minimum
wake radius; AB, outer boundary of region of no mixing; AC, outer
boundary of mixing region; AD, line of constant sxid.velocity in
mixing region.
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Figure 3.- Sketch of idealized air-flow pattern at small rate of verti-
cal descent for rotor with uniform loading. AA’, minimum wake
radius; AD, line of zero axial velocity; DE, outer boundary of
mixing region; AB, outer boundary of region of no mixing; DF, stream-
line dividing recirculator and downstream flow; F, point in region
of very low velocity and nesrly static pressure; YY, horizontal
plane through rotor wake. .-
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Figure 4.- Variation of static pressure through turbulent mixing region.
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Figure 5.- Compaison of theoretical vslues of nondimensional induced
velocity for uniform disk loading with eqerimental values for model-
rotor with 12° blade twist.
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