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SUMW!RY

GRADIENT

The incompressibleboundary-layer theory of Truckenbrodt was ex-
tended using a modified Stewartson-type tmnsfomnation to include com-
pressible boundsry-layer develowent over insulated surfaces. The vari-
ation of turbulent shear stresses with Mach number of the bounding poten-
tial stresm was considered using the reference-temperaturemethod of
Eckert. The explicit technique of Truckenbrodt for determining the pro-.
file pmsmeter in the incompressible theory was unchanged so that the
profile psmmeter as well as the momentum thickness can sti.111be evelu-

* ated by simple quadrature in the present theory.

The method is applicable to two-dimensional ud sxisymetric, hmi-
nsz and turbulent boundary layer, and accounts for the pressure gradient
along the wall for both compressible and incompressible flow.

Experimental measurements of the boundary layer on small axisym-
metric bodies on the wall of a supersonic wind tunnel were compared with
theoretical predictions. For most cases studied, agreement between ex-
periment and theory was within 10 percent.

INTRODUCTION

It was first shown by von K&& (ref. 1) that the differential
equations describing the motion of the fluid in a boundary layer can be
simplified by use of integral tbichess parameters. The resulting inte-
gral equations then consider the growth of these parameters (momentum
ad displacement thicknesses) in the external stresm direction. Refer-
ences 2 and 3 further showed that for incompressible flow all velocity

. profiles could be reasonably representedby one parameter ftilyj this
profile psmmeter generally being the ratio of displacement to momentum
thickness. Determination of any two of these three parameters, momentum

9 thiclmess, displacement thiclmess, and profile parsmeterj therefore, is
sufficient to describe the over-all boundary-layer profile characteris-
tics for most engineering applications.
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The momentum equation has been solved by the K&rmdn-l%hlhausen-
.

Holstein method (ref. 2, pp. 93-100) for the leminar incompressible case.
A method of calculation of the plane turbulent boundsry layer was first ?
made by Gruschwitz (ref. 4, pp. 93-98]. Von Iloenhoffand Tetervin
(ref. 3] also presented a method for calculation of two-dimensionaltur-
bulent boundary layer, the procedure of which was later simplifiedby —

@rner (ref. 5). Explicit expressions for momentum thickness in terms
of a simple quadrature were obtained by Buri (ref. 6) and Maskell (ref.
7} for plsme turbulent flow, and by Walz (ref. 8) for plane leminar flow.

$
Recent progress has been made by Truckenbrodt (ref. 9) who devised m

a method for computing leminar and turbulent lxxmdary layer for both
—

two-dimensional and axisymmetric flow. The main advantage of this method ●

over references 2 to 8 is that it enables the computation of the profile —

parsmeter as well as the momentum thickness in explicit form by use of
simple quadrature.

References 2 to 9 sll consider incompressible boundary lsyer.
Stewartson (ref. 10) presented relations which transformed the two-
dimemional, compressible lsminar boundsxy-layer equation to the fom”of
the incompressible case. Cohen and Reshotko (refs. 11 and 12) applied
these transformations to the lsminar boundary layer including the effects -
of heat transfer. Van Le [ref. I-3)suggested that the Stewsrtson-type
transformationbe used for turbulent as well as lsminar flow if time
average values were taken for the vari~les. Reshotlm and Tucker (ref.

*

14j and Mager (ref. 15) used these transformations for emalysis of shock-
induced turbulent boundery-layer separation.

This paper uses a modified Stewartson transformation to change the
final equations of Truckenbrodt to compressible coordinates for both
two-dimensional and axisymmetric flow. The results should then be ap-
plicable to lsminer or turbulent, two-dimensionalor axisymmetric, com-
pressible or incompressible adiabatic flows with or without surface pres-
sure gradients. The explicit form developed by Truckenbrodt for evalu-
ating boundary-layer profile parsmeter E@ momentum thickness by means
of simple quadrature is retained.

SYM80LS

A friction term definedby eq. (5)

a sonic velocity

b constant in eq. (10] “

c constant in eq. (2)
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local coefficient of friction

average coefficient of friction

dissipation (ener~ converted into heat)

profile parameter

profile parameter

psxsmeter used in

profile parameter

8*/e

tj*/e

eq. (9)

(fig. 1]

total length of boundary layer in longitudinal direction

local Mach number

constant = 1 for laminsr flowj 1/6 for turbulent flow

pressure

transformed body radius

body radius

temperature

turbulence energy

longitudinal velocity com?Wnent at edge of boundary layer, y= 5

longitudinal velocity component

transformed longitudinal coordinate

longitudinal-ccerdinate

transformed normal coordinate

normal coordinate

constant in eq. (10)

ratio of specific heats

boundary-layer height
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&E displacement thickness

#$ energy thickness

c variable in eq. (24)

c defined by eq. (23]

e momentum thickness

x defined by eq. (22)

w absolute viscosity

v kinematic viscosity

E definedby eq. (12)

P density

T shear stress (includes both lsminsr and time average turbulent
stresses if any)

v cone half angle

Subscripts:

e edge of bounday layer, y= 5

I incompressible flow in “physical” space

i transformed or incompressible flow

z lsm.inar

o free-stream stagnation conditions

P flat plate

r recovery

s starting, or initial, conditions

T transition

t turbulent

w wsJl or surface vslue

.

.

h“

.
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Superscript:

*
1

used

based on Eckert*s reference temperature used everywhere except
when modifying 5

THEORY

Incompressible Momentum Thickness

A brief review, to aid in the understanding of the final expressions
from reference 9, will be given.

The Truckenbrodt method of computing momentum thickness is based on
Wieghardtts kinetic energy equation,

. instead of the momentum integral equation used by references 2 to 8. Use
of the energy equation offers the advantage that the term representing
the sum of the dissipation and turbulence energies (d + t/po~) is al-.
most independent of profile parsmeter Hi, whereas the friction coeffi-

cient, which enters into the momentum equation, vsries rapidly with wo-
file parameter. The dissipation term was studied as a function of Hi

~d Ui9i/Vo by use of Hartree profiles for laminar flow
of references 16 and 17 for turbulent flow.

Equation (1) was therefore integrated, assuming mean
resulting in

s

x

C+A ~2n #+n ~

<)

u~e~ n Xs
e— =

‘o 3+2n Rl+n
‘ u~

and the results

values for ~,

(2)

ei,swhere the integration constant s p,::i,s)nc s @i+$ R1+
Y

subscript s denotes initial conditions. The constant n equals 1The
for

0

the

*

laminar-flow and 1/6 for turbulent flow.

The coefficient A was evaluated by Truckenbrodt by assuming that
average shearing stress at the wall was of the ssme form as that for
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a flat plate at zero incidence. For a

@i)s = o if X~ = 0, so that equation

NACA TN 4022

flat plate Ui iS constant and

(2) becomes

()
n

‘i,p”i,p
ep,i = JfJi

‘o

and since for a flat plate from the momentum integral equation

The average
flow by the

e cf~av-n—
z 2

.

t-

(3)

wall friction coefficient was in turn evaluated for lsminar
Blasius equation

= 1.328 (4)Cf ?iav
1

r

ui2i ●

‘o
.

and for turbulent flow by the Falkner expression

0.0306
Cft,iav= ~

()

ii

‘o

(5)

so that

A. 0.441 for lsminsr flow

AM 0.0076 for turbulent flow

The two-dimensional case is obtainedby omitting R in equations
(1] and (2 .

i
It is interesting to note thq; the formula for momentum

thickness eq. (2)) has the same form as that given by Buri (ref. 6) and
Maskell (ref. 7) for turbulent flow, and byWalz (ref. 8) for lsmiw-
flow, in spite of widely different methods of derivation. The exponent
on Ui(3i/vO is given as 0.25, 0.2155, and 0.167 for turbulent flowby

references 6, 7, and 9, respectively, where= the exponent on the Ui *-–

term is given as 4.0, 4.2, and 3.33, and the A constants are 0.015,
0.01173, and 0.0076. For leminar flow, n= 1 in both references 8 and
9. Reference 8 lists A as 0.470 in place of the 0.441 value in

c

reference 9.
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.
When considering both lsminar and turbulent flow, the final expres-

sion by Truckenbrodt for momentum thickness may be written SE

where ~ is the longitudinal distance to transition. The expression

inside the brackets is the contribution of the lsminar boundary layer,
aud the remaining part inside the braces is the contribution of the tur-
bulent boundary layer.

Incompressible Pcofile Parameter

As stated in the INTRODUCTION, the method of reference 9 for deter-
mining the profile psrsmet= differs from the other methods in that
Truckenbrodt succeeded in determining the proffle parameter b an ex-
plicit form. The momentum equation

.

.

was subtracted from the kinetic energy equation (1) making

Note that this expression is independent
srranged to the following form:

of R. Equation (8) was re-

where the profile parameter ~ is defined by—

J’
Zi

d%
‘i= ~,i o%- m-l

r.
and

(-Zd+t )( )

%,i Uiei n
—-%——
pou: Poq ‘o

K(L) =
(~ - l)~i

(7)

(9)



8 NACA TN 4022

The quantity Li was arbitrarily chosen as.zero for zero pressure gra-
.

clientflows so that the value of HP)i was set at 2.6 for lsminar flow

and at 1.4 for turbulent flow. $:

The data of references 16 to 19 for turbulent flow, and the
Hartree profiles (numerically evaluated in ref. 20) for lsminer flow were
used to arrive at approximate expressions for K as a function of Li,
and Li as a function of Hi. —

-$
An adequate approximation for the quantity K(Li) is

m

K(Li) = a(Li - b) (10)

where

[
2.87 for lsminsr flow with pressure drop

a= 3.53 for lsmi.nsrflow with pressure rise .—

b=

The

L0.0304 for turbulent flow

[

O for laminar flow
0.0305 in uiei/vo - 0.23 for turbulent flow g

resulting relations between Li ~d Hi are shown in figure 1. P

Substitution of equation (10) in equation (9) results in a first
.

degree linesr differential.equation, then solved for Li. The result is

where

(12a)

for laminar flow
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.
for turbulent flow. The parameter ~i is defined by the two equations

(12a) and (12b) since the change of profile parameter through the tran-
7 sition region will be handled as a discontlnuity~ as will.be discussed

later in the Initial Conditions section.
W
ml
3 The calculation procedure may be briefly summarized as follows: for

a given velocity distribution over a known body, the momentum thiclmess
distribution Is first calculated using equation (6)j then the profile
parameter Li is calculated as a function of the longitudinal distance

from equations (11) and (12), and finally, the conventional form factor

.y

g

Hi iS

A
and an

Where

obtained from the values of Li using figure 1.

Transformation to Compressible Case

modified Stewartson
adiabatic flow (see

transformation for a Prandtl nuniberof one
Appendix and symbol list) is

x 3T-1 \

x=

J( )

ae ~
dx

ro
0

[

Y
ae

y.—
%

~ dyPo
o

>
43

Ui=SoMe=~U
e

%=~u

R=r
J

X, y, and r are the compressible ‘physical” coordinates and

(Al)

x, Y, and R are the transformed coordinates. Use of these transforma-
tions in either the K&m&n momentum equation or the Wieghsrdt kinetic
energy equation yields
cient (see Appendix).

Cf,i =

the following relation for the friction coeffi-

(13)
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Therefore the transformations satisfy the known relations for the lsmi- 1$
nar friction coefficient. cm

For turbulent flow, the total shear term includes turbulent as well
as laminar shear stresses} and no simple expression for the total stresses
is available. Eckert (ref. 21), however, found that the form of the ex-
pression for a flat plate friction coefficient c~be made invariant with
the Mach number of the external stream when the properties of the fluid

-.

are based on a proper reference temperature. This reference temperature
:

is described as

~~ Te+0.5(Tw - Te) +0.22 (Tr - Te)

or

T* Tw

~
s 0.72 ~ + 0.28

e

if

Expressions
can then be

Applying this
the viscosity

for friction coefficient obtained
extended to apply to compressible

.

.

for incompressible flows
flows, From reference 21

—

method to equation (4) of this reprt and assuming that
varies linearly with temperature,

a2

()$=:= %
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The effect of compressibility on the turbulent friction coefficient could
be shown through the ratio

7 peuz ‘1’
Cft

()
~ 10/7

Cf
()~t=+:s F

)

()
~

(16)

where Cf~ is defined as the constant fluid-property (incompressible)

friction coefficient for the same Reynolds number as the compressible
stream and shxld he kept distinct from the incompressible friction co-
efficient cf~ in the transformed pltie. The agreement between the re-

sults of equa;ion (16)(T = 1.4] and those of references 21 to 26 is shown
in figure 2. The curve of equation (16) is somewhat lower tham that of
reference 21, based upon the Schul.tz-Grunowequation (ref. 27]. Closer
agreement of equation (16) with reference 21 smd the experimental data
could have been obtained by adjustment of the constants in the expression
for reference temperature. This adjustment was not believed necessary
for purposes of the present study.

.

A transformation of the compressible friction coefficient by use of
equations (Al)j (5), and (15) results in

.

(17]



l?ACATN 4022

In figure 3 it is shown that

so that equation (17) becomes

88/49

()

ae 0;0306
cfc=—
t %

Therefore,the transformed friction coefficient may

Recall
terms,

()
%2

Cfi,t = ~ c%

0.0306
~ lo/49

()“~<

() %3

be expressed as

.

(19)
*

that friction coefficient enters into equation (6) through the A
where for turbulent flow

%’=(y’’)q~”6

A combination of this equation with equation (19) yields

%)When ~+O,z+l so that equation (6) remains

pressible flow.

Therefore, under the circumstances considered

(20)

.

and Frandtl n~ber equals one) the lsminar boundary”
transformed to the incompressible form, whereas the
layer is transformed to a form which redu&% to the
for a Mach number of zero.

unaltered for incom-
—.

(insulated surface
layer is exactly
turbulent boundary
incompressible form B

.
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.
A transformation of equation (6) by means of equations (Al) and (20)

to get the compressible flow momentum thickness gives

1

co
ml
m
d+

where
.

.

and

r

For the completely laminar boundary-layer case, x equsls

@r

(21)

dx (22)

for the completely turbulent case, X equals only the secon~ term on the
right side of equation (22).

When determining the profile parameter, it is convenient first to
determine Li and then find ~ and H. By substituting equations (Al)

and (20) in expressions (11) and (12), and by using the definitions of
a snd b, the following equation results:
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where

~= ~6”5 for laminar flow with pressure drop

e= ~8 for lsminar flow with pressure rise

~e 5/21

()
E .% G for turbulent flow

b = O for lsminar flow

[) ]

2
~e 3

b = 0.0305 In —
Ue

%
Tr - 0.23 for turbulent flow
o

NACA TN 4022

.

*.

Figure 1 can now be used to determine Hi. ._Acombination of equations

(A3)and (A5) results in the following expression for H:

Boundary-layer

()%J2(q+l)-1E= (25)
ae

profile and momentum thickness for compressible flow
can thus be determined in explicit form by use of equations (21) to (25).
Recall that these equations &e written in-the more-general or &isfi-
metric case. For two-dimensional flow merely omit r whenever it
appears.

Initial Conditions

Initial values for lsminar flow are derived in reference 9 as
follows: For two-dimensional stagnation-mint flow, -

Li,s = 0.0260

or

.

—
*

.
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.
For axisymmetric stagnation-point

? L-1,s

15

f low,

= 0.0195

or

e. 0.235
1,s =

F

1 dUi
.—
Vo dx

For both two-dimensional and axisymmetric flow over a sharp-edged or
pointed body,

L-l,r3= o

.
and (26)

ei,s ~ es s o.

There will be a relatively small change In e through the transi-
tion region if the length of the boundary-layer travel is large, there-
fore, it is reasonable to assume that et at the end of the transition

is equal to 6
!!

at the start of transition. Appreciable change in the
profile parame er, however, may take place through the transition region.
For incompressible flow with no pressure gradient, reference 9 lists the
measured results of references 27, 16} and 17 as shown in figure 4. These
results show only a small variation of change of the incompressible pro-
file parameter through transition as a function of the Reynolds nuniber.
time data for transition showing a lxu?geeffect of the pressure gradient
may be found in reference 7 for incompressible flow. Inaccurate assump-
tions of the initial value of H are quite permissible, however, be-
cause the influence of the values selected for an initial condition van-
ishes rapidly with the distance downstream of the transition. This will
be demonstrated later in the ~ section.

.

.

The method advanced in this report was compared with a limited
smount of experimental measurements of the boundary layer on several
small axisymmetric bodies and on the walls of a lsxge supersonic tunnel.
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The measurements were
and form factors were
and total temperature

NACA TN 4022

made with small pitot tubes.
.

Momentum thickness
computed with the assumption that static pressure
were constant in the y-direction through the a

boundary layer. These assuqtions are the same as those of the appendix.
The Reynolds number (UZ/V) was approximately—5x106for the axisymmetric
bodies and approximately 2x1O9 for the supersonic tunnel. The transition
Reynolds number was approximately 1.5x106 on the sxisymmetricbodies.
The boundary layer on the tunnel was essentially completely turbulent.

Comparison of theory with
angles of 20° and 25° is shown
pressure gradient (dp/dx= 0),

.

measurement made on cones having half 8

in figure 5. For the case of the constant %

equations (21) can be integrated to give

+-

16/7L
58Y-16

Thus, no integrals need be evaluated to determine the momentu#thiclmess.
The largest difference between experimental and theoretical momentum
thickness is 7 percent, which is probably close to experimental accuracy,

The change of the profile parameter (H or Hi) with the turbulent
boundary-layer growth is negligibly small OS these cones since there is
no pressure gradient in the x-direction and the length of the boundary-
layer development is approximately 1 foot. These data therefore were used
as a check of the profile-parameter transfotiation (eq. (25)). The com-
pressible profile parameter was computed f~m the incompressible profile-
parameter values of 1.3 and 1.4. This is the maximum range of Hi ob-
tained using equation (26) and figure 4. Good agreement with the ex-
perimental trend was obtained.

Figures 5 and 7 compere theoretical sad experimental results for
the cases of moderate and high, adverse pressure gradient (dp/dx> O).
The abrupt pressure gradient on figure 7 is,due to an externally gener-
ated shock striking the body. These bodie~ are all conical for
OS X4 0.233, in which range it was assumed that dp/dx= O. The ex-
perimental Mach number variation with dist-&ce in the x-direction is

.

v

.

.



NACA TN 4022 17

3

shown in figures 6(a) and 7(a), and the calculated momentum and dis-
placement variation is shown in figures 6(b) and 7(b). The agreement is

@ generally within 10 percent, which is again close to the accuracy of the
data.

i!

co
N
m The effect of making an erroneous assumption of the initisl vslue
d of the profile parsmeter is also shown in figure 6(b) by the line made

up of short dashes. An initial.value of 2.2 (near separation value) was
assigned to Hi even though the pressure gradient in this region was
small. In spite of this poor assumption, the solution converged to the
originsl curve (in which Hi was assumed to be 1.4) in a very short
distance.

The case of a favorable pressure gradient (dp/dx< 0) on the wall
of a supersonic tunnel is shown in figure 8. Since the flow in this
case was neither completely axisymmetric or two-dimensional, an effec-
tive radius equal to the tunnel wetted perimeter at each axial station
and divided by 2fi was used for r in equation (21). This computed
result was compared with the experimental. G and H measured on two ad-
jacent tunnel walls. Experimental agreement with theory wsm generally
within 10 percent.

Only smsll changes in the incompressible profile parsmeter (Hi) were
. obtained in the cases of the favorable and moderate adverse pressure

gradient. Large changes, however, were-obtained for the compressible
profile parsmeter (H). Therefore, for rough a~roximations in these
cases and when initial conditions are known quite well, it may be per-
missible to hold Hi constant and determine H from equation (25) only,
thus eliminating the use of equation (24). Obviously, the elimination
of equation (24) would not be permissible for boundary layers in the
region of large adverse pressure gradients.

CONCLUDING REMAIU@

A method has been presented herein which enables a determination of
the compressible boundary-layer growth and profile over both two-
dimensional and axisymmetric bodies. Ibth momentum thickness and profile
parameter are obtained by simple quadrature. The method includes both
laminsr and turbulent flow; however, the experimental check involved
mainly turbulent flow. The momentum thickness at the transition point
was calculated to be approximately 10 percent of the total momentum
thickness for the cones and axisymmetric bodies. Comparison was made
between theory and experiment for flows with zero, adverse, and favorable.
pressure gradients in the direction of boundary-layer travel. For most
cases studied, agreement between experiment snd theory was within 10

. percent.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, April 16, 1957
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APPENDIX -

The modified

TRANSFORMATION
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OF MOMENTUM AND ENERGY EQUATIONS
.

and for axisymmetric
invariant with these

These relations
and e~ergy equations

Stewartson transformation

flow

3T-1x

x
10

ae T-1
=

o
%

J

Y

Y=% -!?-dy
a. o Po

~i’~e=~u

a.Ui=—u
%

used in

dx

it will be shown that the
transformations so that

R=r.

this report is:

radius is

(Al)

.

will be used to transform the compressiblemomentum
to corresponding equations of the incompressible

.

form. In like manner, it couldbe shown that these relations canbe used
for the inverse transformations, that is, from the incompressible to the
compressible form.

It willbe assumed that there is no heat transfer, that the Prandtl
number equals onej that static pressure is constant in the y-direction
for os y< 5, and that the flow etiernd to the ho~dq laYer iS
Isentropic.

Any of the equations in this appendix can be applied to two-
dimensional flow by omitting the r and R terms.

Momentum Equation

The K&m& momentum integral equation for axisymmetric compressible
flow can be written as follows:

(A2) s

.
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a

To transform this equation, some useful relations will be derived.
By definition

then also

{A3)

By definition

with equation (Al)

since

.

.

Pe

()

2

—=#=l+~M:l- ~
Pe u:

(A4)

(A5)



From equation (Al)
4y-2 3y-1

()

dUi ~ ‘-1
fl( )
d—
“e % ‘-’

F’ ~
~+u *

~

and

since

and

Therefore,

and

r-1

()%P02
‘= Gae

dpe = -P=U dU

dlJ—=
dx

4T-2

(:)-=%

-12
l++%

(A6]

(A7)

(A6)

(M)

By substituting equations (Al), (A3), (A5), (A6), and (A.6)in equation
(A2)

—

.
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●

After using equation (A9) and collecting terms, there results

.

CD
N
to
d+

21

(Ale)

and thus the momentum equation takes the incompressible form if
f U2 This transformation of the friction term(~/ae)2~~/PeU2 =~i,w PO i.

is discussed in the THEORY section of this repm?t.

Energy Equation

The kinetic energy integral equation of Wieghsrdt for axisymmetric
compressible flow may be

1 ~ &(pe@ra*)
2peU r

.

written in the following integral form:

(All)

Equations (Al), (A6), and (A8) are substituted in equation (All) to give:
.

*@y$R&] -

Poaogx+
= peae i
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By using equations (A4) and (A9) in equation (A12),

(A13)

which is the incompressible form of the Wieghardt kinetic energy equation

‘f (~/ae)2 ~w/PeU2 =~i,w/PoU~. ~US, ifthefriction transformation is

satisfied in the momentwn equation, it is satisfied in the Wieghardt
kinetic energy equation.
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