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TECHNICAL NOTE 4249 

A'IHEORETICAL~SIS OFTHEEFFECT OF 

ENGINE ANGULAR MOMENTUM ONLONGHPUDSNALANDD~CTIONAII 

STABILITY~STEAlSYROI33NGMANE=l 

By Ordway B. Gates, Jr., and C. H. WoodlUg 

The effect of engine momentum on the 1ongitudFnal and directional 
stability of aircraft in steady rolling maneuvers has been investigated. 
The results presented indica$e that the gyroscopic moments produced on 
the aircraft by a rotating engine Fn roll&q maneuvers can have an 
appreciable effect on the range of roULng velocities for which longf- 
tudinal or directional instability might occur. 

INTROIXJCTION 

The analysis presented in reference 1 of the effect of steady rolling 
on the longitudinal and dfrectional stability of a-lrcraft was made for the 
.assumption of zero engfne momentum; hence, the results presented were 
independent of the direction of rolling. Some of the present-day aircrsft 
have exhibited different characterfstics in left and right rolle which csn 
be attributed to the asymmetric moments produced on the aircraft by the 
rotating engine. The purpose of this analysis is to present the aircraft 
equations which include these asymmetric engFne gyroscopic moments and to 
demonstrate the effects of these terms on the divergence boundaries pre- 
sented in-reference 1 for the steady rolling case. The divergence bound- 
sries presented in this paper sre for aircraft hating static stability. . 

SYMBOLS 

w weight, lb 

T total aerodynamic moment, lb-ft 

kkpersedes recently declassified NACA Resesrch Memorandum L55GO5 
by Ordway B. Gates, Jr., and C. H. Woodling, 1955. 
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rolling momentj-lb-ft 

pitching moment, lb-f-t 

yawing moment, lb-f-t 

angulsr momentum, slug-ft2/sec 
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moment of inertia about-body X-axis, slug-ft2 

moment of inertia about body Y-axis, slug-ft2 

moment of inertia about body Z-skis, slug-f72 

product of inertia. in X,Z-plane (positive when principal 
X-axis is below body X-axie at nose), slug-ft2 

moment ofinertia of engine about body X-axis, slug-ft2 

rotatioxal ve.lo.city.about body X+xis, radians/set 

rotational velocity about body Y-axis, radisns/sec 

rotational velocity about body ZGxis, radisns/sec 

engzine rotational velocity, radisns/sec 

aircraft velocity, ft/sec 

component of V along X-body axis, .ft/sec - 

component ofp--V along Y&body axis, ft/sec 

component of V along Z-body axis, ft/sec 

angle of attach of X-body axis, w/u, radians' 

angle of sideslip, v/u, radians 

total aerodynamic force, lb . 

FXI %I .Fz components ofthe aerodynsmic force along X-, Y-, and. 
Z-&tee, lb - - 

X3 , mjj n3 direct-ton cosines relating aircraft body‘axes to esrth 
z-axis 
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t time, set 

a% 
J%=r 

50, Q ratio of dsmping to critical dsmping in pitch and yaw, respectively 

a4? a3j a2’ al> a0 coefficients of characteristic equation 

D differential operator, d(.)/dt 

D 
Dt 

total time derivative 

A dot over a symbol indicates differentiation with respect to time. 

EQUATIONS OF MUCION 

The aircraft equations of motion written in vector form ere: 
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(1) 

. 

L 

- 
where D 

E 
refers to total differentiation with respect to time, H is 

the angular momentum vector, T represents the aerodynamically applied 
moments, 7 is the aircraft velocity vector, F represents the aerody- 
namically applied forces, and w' is the weight of the--aircraft. A 
.right-handed system of axes is chosen which originates at the center of 
gravity of the aircraft and which is fixed in the aircraft. The X-sxie 
is assumed to be coincident with the X-axis of the engine and the 
X,Z-plane is considered to be the plane of symmetry of the aircraft. 
Also, the mass distribution of the engine 18 assumed to be smtrical 
about the X-es, and the engine is assumed to be rotalAng with constant 
speed. The rotational velocities about the X-, Y-, and Z-axes are p, 
q, and r, respectively, and the components of F in this system of 
axes axe u, v, and w. 

For the previous conditions, the vector momentum is given by 

H= T(I$F- L& + IXeu+) +JrysfI;&r - l&p) Y 

.- 

where r, 3, and E are unitvectors in X-, Y-, and Z-direct-lonsj IX, 

'$2 and Iz .-tie the..nlOmdX3 of iIEHAaj 1~ is the product of inertia 
in the XZ-plane; 1~ is the moment of inertia of the engine about the - _-... 
X-axis; and CL& is the rotational velocity of the engine about this 
axis, taken positive in the same sense as the rolling velocity p. 

Equations (1) become, after differentiation k&d resolution into 
x-, Y-, and Z-components: 

Pitching: 

IYq - (Iz - Ix)pr + I*(p2 - r2)+ IXecJer =x My (2-b) 
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Yawing: 

1~; - (Ix - Iy)Pq - Irczi, + $Zqr - IXeUeq =>% (-1 

X-force: 

m(li + qw - VT) = Fx + WZ3 

Y-force: 

m(+ - pw+ur)=)Fy+Wm3 

Z-force: 

m(G + pv - uq) = FZ + Wn3 

(2d) 

(2e) 

(2f) 

The terms Z3, m3, and n3 are the direction cosines between the earth 

Z-axis and the axes being used, which are fixed in the body. The equa- 
tions which relate 23, m3, and n3 to the airplane rotational velocities 

PI q, and r are. 

i 3 = m3r - n3q 

Certain assumptions beyond that of a constant roILIng velocit are 
necessary in order to linearize these equations. The term p2 - r H in 
the pitchFag equation (2b) is taken aa approximately eqttEtl to p2; the term 
*xzw in the yawing equation (2~) is considered negligible; and it is 
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assumed that no change occurs in the X-component of the forward velocity. 
Further, it is assumed that 

Z-P Wsza 
U 

and, for the assumption ofsmall out-of-trim aerodynamic forcee, the 
Y-force and Z-force equations (2e) and (2f) sre approximately 

b=pa-r 

. a=q - PB 

Also, the aerodynamic moments sxe taken as : 

Mz = Nrr + N@ 

Equations (2), for these assumptions and substitutions, become in determi- 
nant form .- 

4 bu P r i 

-- ( Ix IY) Iv= ..- -. - PO - 0 -- NP .D 
N 

-2 =o 
IZ IZ IZ 

0 
-PO 

D 1 

-1 II .. PO 0 =o .- 

where p, refers to a constant value of the rolling velocity p and 

co, ‘to the initial value of the angle. of attack. -8iQI-I Of this 

deter@rant with the right-hand side set equal to zero yields a charac- 
teristic equation of the form 



7 

(3) 

[ 
( Ix - *Y)Po + *G”e 

IZ 1 
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a&D4 + a$13 +a2D2+alD+ag=0 

where 

a4 = 1 

Nr5z &3 =-- - 
*z IY 

a1 =-N,po2 --po2 % 
IZ IY 

-MB+3 
IYIZ 

MqNr p 2 _ p %=- 
"B (Iz -.=x)po - Ix,% 

=y=z O "=z i-- IY I- 

SNs *Y)po + I&% -- p M,(Ix- 

[ 

_ 
IYIZ O *y IZ 1 
po2 

[ 
(Iz - Qpo - *xpe (Ix - *Y)po + *xpe 

=Y ILL-I 
If the following substitutions me de 

-%I 25,93 = - 
IYPO 



these coefficients become 

a4 = --1 

&3 = Po(2fp$ + 25&j) 

a2 = PO2 
-.-.-- [ 

1 f aq2 + .we2 - 

a1 = PO3 
( 2w+ 

+ 2g,(u, + 2Ql43uJ42 +-WP~') 

= PO4 [ 4s,ywl) - "J,2 ( 
Iz - Ix - 

a0 1%r> 
IY 

+ cl+%e2 +---- 

which are essentially equivalent to the coefficients presented on page 9 
of-reference 1, with the exception ofthe en&n.e momentum terms. I-kwill- 
be noted that the po_ factors w-hich titiply the coefficients shown 
here do nota@p&r in reference T 'rhFs differ&xx+ is attributable to the 
fact--that the differential operator used in thLs paper is a time operator, 
whereas in reference 1 the operator has beefi made a fY.mction of rolLl.ing 
velocity. 

_- 

- 
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ANALYSIS AND DISCDSSION 

9 

The combinations of ukq and w that result in a negative value 
for the constant term s.0 of equation (3) for given values of 50, 5$' 
and T and hence give aperiodic instability are of primary interest. 
For an airplane with given values of natural frequency In pitch and yaw, 
these values of q, and CQ define the rolBng velocLties for which 
this instability till exist. 

A sample of these aperiodic divergence boundaries is shown ti 
figure 1 for 7 = 0 (* 5 0) for EOEq = 0 and 0.0031. The mass and 

aerodynamic characteristics of the airplane for which these boundaries 
were constructed are presented in table I. It should be noted that 
boundaries constructed for a constant value of E-&q do not correspond 

to a constant value of %iNr -; instead, every point on the curve repre- 
Ly=z 

sents, dimensionally, a dirferent value of this parameter. In this 
plane, the frequencies in pitch snd yaw of a given airplane, for sll 
values of po, lie along a straight tie similar to the one shown in 
the figure. The point shown for p. = 1 rsdian/sec defines the fre- 
quencies of the airplane chosen for this illustration. The slope of 
this line is determined from the ratio of the squsre of the natural 
frequencies in pitch and yaw. For the case shown, the frequency locus 
of this s.Jrplsne passes through the divergence boundary constructed for 
wqi = 0.0031 for p, = KL.8~radians/sec and remains on the unstable 

side of the boundary up to p. = 22.3 radlsns/sec. Generally, the char- 
acteristic roots of the system Ln the unstable region of this plane are 
a pair of stable complex roots, one stable real root, and one unstable 
real root. 

It would be possible to take into account the engine momentum by 
plotting boundsries for various values of Ix,T, but, as was mentioned 

in the discussion of SllrE8, these boundaries would not correspond to a 
constant value of engine momentum. Also, both positive and negative 
values of I&T would have to be considered Fn order to cover both the 

left and right rolling conditions. The former difficulty can be avoided 
for both these cases by plotting the b oundsries as a function of the 
dimensional frequency parameters rather than Fn terms of q2 snd CI$. 
Presentation in this form necessitates the construction of a boundsry 
for each rolLLUg velocity, but this construction is relatively simple. 
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%5 A sample of these boundmies is shown in figure 2 for -= 0.044 
-.. IY*z 

and I *=o. For this case the boundsries for left and right rolling x, 
are identical. The effect-of the engine momentum on these boundaries 
can be seen in figure 3 for the case of Ixe% = 17,554 slug-ft%c. 

Boundaries are presented for both right a&left rolls, and the critical 
roll velocities are shown on the figure for both rolling conditions. 
For positive (right) rolling the unstable range of p is between 
Po = 2.1 radisns/sec and p,= 2.5 radiags/eec and for negativ+(left) 
rolling this range is between p. = -1.7 radians/see and 

P 07 -2.2 radians/set. In order to specify the absolute rage of the 
roll rate which might be critical for.a given airplane, it is necesssry 
to know the critical values of p for both the left and right rolls. 
For the value of Ixeu+ considered here,.this unstable range for the 

example airplsne would be defined as being 

l-7 < 1~~1 < 2.5 

Curves sxe plotted in figure 4 to show the effect of engine momentum on 
the values of critical p (p both negative and positive) for the par- 
ticulsrai.rpLane being considered. It cau be seen that, for Ixeu& = 0, 
the absolute rage of critiCal p is between 
per second and increases to PI of 1.5 ElzLd. 2. 4 

PI of 1.8 and 2.3 radians 

40,000 slug-f%*/sec. 
radians per second for 

Ix,% = Thus, the rangeof rolX.ng velocities for 

which a given airplane might experience instability, baaed on this steady 
rolling assumption, can increase appreciably with the magnitude of the 
momentum of the rotating engine; hence, the effect of engine momentum 
should be considered in the analysis. 

A point of interest with respect to the construction of the diver- 
gence boundaries in the dimensional frequency plane is that it-is poe- 
sible to obtain mathematically the envelope of these boundaries by plot- 
ting the locus of-the points of maximum &vaturk of the respective 
CuTveS. The mathematical expression for the curvature of a given func- 
tion c&n be found in any calculus~text-book (for example, ref; 2), and 
in order to obtain the desired envelope itis necessary only to maximize 
this expression in the proper mamer. Fmm this envelope and the zero 

and asymptotic values of NB and -Mu 

Iz 
-, tiich are rather easy to calculate, 
=Y . 
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the divergence boundaries for sny given value of roll rate for specified 
inertia characteristics can be approximated tith reasonable accuracy. 
In any event, the envelopes of the brtiches of the curves will define, 
for the steady rolling case, the combinations of pitch and yaw frequency 
for which there wLll be no roll-induced instability. The equations from 
which the envelopes c&z1 be calculated, and expressions for the pretiously 

Nf3 -h 
mentioned asymptotic values of - snd - sre: 

=z IY 

(a) Equations for determination of zero and asymptotic values of 

NB a& Ma: 
IZ IY 

M, 
0 

Po*XeL"e - 
qa =- 

( Iz - IX PO* 

B IY 
- 

MsNr 2 

Ma. = 

0 F 

-- _ Iyrz po %P~o _ (Iz - Iy)PcF 

Np, IX - IY,2 + *xe%Po + IY IY 

xi- *z O *Z 

e)% = -[(Ix - “)‘c + Ixeuao] 
-200 
=Y 

0 

2 qNr 
"p r - IyIz PO 

Izq 
Ix - =Y 2 _ *xe~&o 

4 
k$=O _ (I2 - IX)Po2 - % ( ) po Iz 

IY *Y IY 
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_-. (b) Equations for determination of envelope of divergence boundaries: l 

NP - _ Ix 
[ 
( - Iy)Po?+ Q&+po 

IZ Iz . ..I 
_ k _ _ IX)Po* l$“ePo - (IZ - 

IY [ IY I 

..- 

=cjb 

The equations presented for determination of the envelopes of the diver- 
gence boundar ies require some further explanation. The combinations of 
NB and -Mcc 
Iz 

- which define the envelopes arr& 
IY 

and 

1 

-.- 

NTB -= 
IZ 

a+b 

-2=,-b 

-.. 
- -.-.- 

%=a-b 
IZ _ ---. -.. 

%L --=c+b 
=Y 

c 

-- 

The branch of the fm.KLy of divergence bound&es to'&& each combina- 
tion applies depends on th&sign.of the row velocity. A sample of 
the envelopes calculated for the boundskies of figures 2 and 3 is show-n 
in figure 5. 
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CONCLUDING REMARKS 

An 5na.lysis has been presented to examine the effects of engine 
momentum on the longitudinal and directional stability of aircraft. 
The results tidicate that the ranges of roUg velocity for which the 
aircraft might experience a roll-induced aperiodic divergence in steady 
rolling msneuvers csn be appreciably increased by the engine momentum. 
For apsrticulsr airplane used ina sample calculation, the range of 
critical rolling velocity p was calculated to be, when engine momen- 
tum was assumed zero, 

1.8 < lp] < 2.3 

and, when an engine momentum of 17,554 slug-ft*/sec was considered, 
the rangewas extendedto 

l-7 < [P 

For values of engFne momentum higher than that assumed for this illus- 
trative example, the range would, of course, be further expsnded. 

Calculations to showthe effects of including engine momentumon 
the constructfon of the divergence boundsries were also presented, and 
an alternate method of construction to that presented in NACA Technical 
Note 1627 was discussed. 

Lsngley Aeronautical Laboratory, 
National Advisory CommIttee for Aeronautics, 

Langley Field, Va., June 30, 1955. 
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TABLE I.- MASS AND AERODYNAMIC CHARAC~ISTICS 

OF EXAMPLE AIRPLANE 

Ix, slug-& . . * . . . . . . . . . : . . ::. . I . . . . . . . . 
IYJ slug-f&Y........ i............... 

IZ' slug-ft* . . . . ;L. . . . . .; . . i . C i l; . . . . . . . 

%w slug-ft* . . . . . . . . . . . . . :. . . . . . . . . . 
Ix,-oe, slug-ft*/sec . . . . . . . . . . . . . . . . . . . . . 

Nr 1 -> 
=z 

- . . . . . . . . . . . . . . . . . . . . . . . . . . . set 

21 
=Y 

- . . . . . . . . . . . . . . . . . . . . . . . . . . . 
set 

M, 1 -,-. . . . I.. . . . , . . . . . . m 
*Y set’ 

. . . . . . . . . - 

Np 1 -- .. 
-9 - . . . . . . . . . . . . . . . . . . 
IZ sect* 

. . y . . . . . . . 

V, ft/sec . . . . . ; . :: i v. :. i . i . .C. . . . . . . . 

10,976. 
57,100 
64,975 

942 
17,554. 

-0.105 

-0.421 
I 

-5.30 - 

2.38 

691. 

c 

. 
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Figure l.- Boundaries in the %*, %* plane tiich define regions of 

aperiodic divergence for example aircraft, I&uJe = 0. 



16 NACA TN 4249 

8 

7 

6 

5 

-Ma I 
-a- 

IY sec2 4 

3 

2 

I 

Pi, radionskec 

1.0 1.5 
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\ 
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unstable 
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Figure 2.- Boundaries .in .the Nil%, M& plane for ex+mpii aircraft 
which define regions of aperitiic divergence as a function of row 

velocity. IX,* = 0; 
MqNr - = ‘0.044. 
IYIZ 
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PO, radianslsec . 

l 

6 

5 

-M, I -,- 
1-f sec2 

4 

3 

. 

2 

I 

0 

1.0 1.5 2.1 2.5 

P 01 

radianskec 
\\\\C 2.5 

0 I 2 3 4 5 6 

NB ’ -,- 
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(a) Right rolls. 

Figure 3.- Boundaries in the N p/ z, I M&y plane for example aircraft 
which define regions of aperiodic divergence as a function of rollFng 

velocFty. Iypg = 17,554 sl--ft 
set 
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- PO, radians Lsec 
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radianslsec 

F 
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0 I 2 3 4 5 6 
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-‘sec2 IZ 

(b) Left rolls. 

Figure 3.- Concluded. 
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Figure Ic.- Effect of erghe racuientm Ixe0)e on rol.ling-velmity rang 

for which example aircraFt is ueiable. 
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Fipe 5.- &welopes of divkrgence bc%.Wdarie~~&esent%d in figures 2 and3. 
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