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TECHNICAL NOTE k343

A COMPARISON OF TWO METHODS FOR CALCULATING
TRANSTENT TEMPERATURES FOR THICK WALLS

By James J. Buglia and Helen Brinkworth
SUMMARY

A comparison is made of two different methods of calculating tran-
sient temperatures for thick walls with arbitrary variation of heat-
transfer coefficient and adisbatic-wall temperature. Although numerical
calculations for special cases for which the exact solutions sre avail-
able show that both methods give satisfactory results, Hill's method
(NACA Technical Note 4105) consistently gives nearly exact results with
considerably less computing time, except for the case in which a tempera-
ture profile through the thick skin is desired. For this case,
Dusinberre's method (Trans. A.S.M.E., vol. 67, no. 8) is much faster,
though less accurate.

INTRODUCTION

.No exact analytical method is availsble for computing the transient
temperature for the general case of thick walls. Various finlte-difference
methods have therefore been proposed and used to compute transient wall
temperatures. With the increased importance of high temperature in alr-
craft structural design, an evaluation of the merits of representative
methods is warranted.

The existence of several other methods is fully acknowledged and
no comprehensive comparison of all available methods is intended. It
is intended merely to select two representative methods and to compare
their results and computing times. The methods of Hill (ref. 1) and
Dusinberre (ref. 2) have been selected for this purpose. In this paper
only the basic one-dimensional case has been considered. Hand calcula~
tions with a desk computer were made rether than resorting to an elec-
tronic computer, because in many engineering aspplicetions fast and direct
answers are required, and in some problems, programing time on a computer
becomes excessive. :

The first application of the finite-difference method for determining
thick-wall temperatures is credited to Schmidt (ref. 3). This method
employs a ratio of incremental time to increment of distance into the
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wall that is fixed by the material properties of the wall. Dusinberre
has Introduced an extension of Schmidt's method whereby the ratio of
time Increment to distance increment can be varied to introduce smaller
time steps 1f desired. An increase of accuracy relative to Schmidt's
method is thereby possible. Dusinberre's method includes Schmidt's
method and can be reduced to it by the adjustment of a coefficient.

Hill's method represents a considerably different approach to the
thick-wall problem. Finlite differences are taken only in the time var-
igble, the equations used being slready integrated with respect to
distance. S

Following e description of both methods, sample problems are solved.
Problems permitting exact solutions were chosen to make possible an
evaluation of the accuracy of the methods. A time study of the methods
was also made to determine the relative lebor involved. An attempt is
made to point out the areas of application wherein one method might be
more advantageous than the other.

It should be mentioned that Hill's method allows the outer-surface
temperature to be readily determined if the time history of the inner-
surface temperature is known. Thils fact makes Hill's method extremely
advantageous to investigators in the field of serothermodynamics where,
generally, thermocouples are mounted on the inside surfaces of specimens
and the heatlng rates and outer-surface temperatures are desired. The
calculation of the outer-surface temperatures from the inner-surface

temperatures can also be made with Dusinberre's method, but the process
is much more laborious and less straightforward.

SYMBOLS

c specific heat, Btu/(1b)(°F) -
coefficlent in Dusinberre's method
heat-capacity parameter, pci, Btu/(sq f£t)(°F)
heating-rate parameter, nox2/ 16G
heat-transfer coefficient, Btu/(hr)(sq £t)(°F)

diffusivity, K/cp, (sq ft)/hr

R ¥ P H @ H

conductivity, (Btu)(ft)/(hr)(sq £t)(°F)

1 wall thickness, ft
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M memory coefficient in Hill's method
m step number

P = cp(ax)2/ KB

Q = h(ax)/K

T radiation rate, Btu/(hr)(sq f£t)

R radiation-rate parameter, ron2/ 166
t time from stert of heating, hr

T tempersture, °r

] time interval, hr

s weight density, 1b/cu ft

6 memory coefficlent

nx distance increment, £t

Subscripts:

aw adisbatic wall

i inner

J distance increment number

m step number

OUTLINE OF PROBLEM AND METHODS

The two methods were used to calculate the inner- and outer-surface
temperatures of a thermally thick plane copper wall. Wall thicknesses of
1/2 inch, 1 inch, and 3 inches were used. The walls were assumed to be
insulated at the inner surface and thelr thermal properties were assumed
to be constent. The given Input function was a time history of adisbatic-
wall tempersasture and heat-transfer coefficient.
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Hill's Method

Reference 1 gives a complete discussion and derivation of the equa-
tlons for Hill's method of computing transient temperatures of thick
walls for any erbitrary variation of adilsbatic-wall temperature and heat-
transfer coefficient. The final equations, as presented in reference 1,
are glven here for convenience.

Outer-surface temperature.- The outer-surface temperature at the
time md 1is given by

T - (Iﬂlaw)m"' (Hraw" HI-'1)m--IL - MpTpy - MsTy o - - e L@nTl_" Ry - B3 (1)
" My + Hy
where
g - box? (2
e (2)
R - X022 (3)
16G
G = pcl (&)
For example,
T = (HTaw)l + (HTaw)O - By - Ro (5)
1- M, + H
1 1
T = (HTaw)z + (HTaw - HT)l -MT; -R - Ry (6)
2 My + By

Values of the memory coefficients M are taken from teble I (most
of which is reproduced from ref. 1). Interpolation in table I is avoided
by working with a time increment & that results in s value of kB/Z
listed in the table.

Inner-surface temperature.- The inner-surface temperature at the
time md 1s given by

Ty m=Tg = (01Tp + 6Ty + - - - + 6Ty) (7)

Values of 6 are taken from table I.
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Dusinberre's Method

Dusinberre's method essentially consists of dividing the wall into
a finite number of slabs and taking & heat balance for each slaeb. The
relations used in calculating the transient-temperature time histories
by this method are taken from reference 2 and repeated in this section.

A remsrk to clarify the subscript notation is in order. The first
subscript on the temperature denotes the block for which the temperature
is being calculated and the second subscript is the time at which the
temperature is being calculated. On the averaging coefficients (the
F-coefficients) the first subscript denotes the temperature used in the
averaging process and the second subscript shows the block for which the
temperature is being calculated. Subscript 1 is the inner surface and

subscript |J 1s any intermediate block. The following sketch shows this
notation:

- 1
—A A
A O T Tisd 1 T T
Ti,m  |To,m J-L,m{Tj,m J*l,m 1-1,m|Ti,m
Tow, m—a $ ) ) ] ] ] 4
4 A
v
Outer-surface temperature.- For the outer surface,
T1,m = Faw,1Taw,m-1 + F1,1T1 w1 + F2,0To 1 (8)
where
=28 _nk2
FaW',l = h K P (9)
=2
Fo,1 =5 (10)
F1,1=1-Fgr1-Fa1 | (11)
q = hAx (12)
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end P 1is some number such thet
PZ2+2Q (13)

The parameter P can have any value which satisfies equation (13), the
gize of P chosen dictating the time interval used, as shown by the
relation

Equations (13) and (14) impose s maximum time increment for a given
Ax but there is no limit to the minimum value of time increment which
can be used by lncreasing the parameter P. Obviously, a time interval
could be chosen and a value of P calculated from equation (14). If
the P selected is large enough to be greater than 2 + 2Q for all
values of heat-transfer coefficilent, a constant & can be used which
makes computing conslderably faster and easier, the reason for this
being that only Few,l and Fl,l have to be computed for each time

interval. The other F-coefficients ere constant throughout the problem.

Inner-surface temperature.- For the inner surface,

Ti,m = Fio1,4Tio1,m-1 + Fi 1Tt ;3 (15)

where the subscript i i1s the number of the last cube, and

Fi,0=1-TFi,1 - (17)

Intermediate wall temperastures.- The following equ=tion permits a
calculation of temperatures in the interior of the wall:

Ty = Ts-1,m-1 + (M - 2)T3 m1 + Tyl m-1 (18)
’ M
Use of this equation allows temperature profiles through the slab

to be calculated without any difficulty. Indeed, it 1s a consequence of
this method that the entlre temperature profile must be calculated, because
the temperature at sny point in the sleb depends on the temperatures on
either side of it at the preceding time intervel as well as its own tem-~
perature at the preceding time interval. This may be adventageous
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because Hill's method uses & series of cosine terms for the calculation
of internsl temperature profiles, which makes this calculation consider-
ably more awkward.

Numerical Calculations
In the numerical calculations special casee were chosen for which
exact analytical answers could be obtained, in order that the accuracy
of each method might be determined.

The transient-temperature histories of thick copper walls were com-
puted by both methods. The following thermal propertles were assumed:

K = 227 (Btu)(£t)/(br)(sq ££)(°F)
¢ = 0.09192 Btu/(1b)(°F)

p = 560 1b/(cu £t)

k = K/ep = 4.41 (sq £%)/br

Two different heating cases were considered.

Case I.- The heat-transfer coefficient h was sssumed to be
100 Btu/(hr)(sq £t)(°F) and to be held constant. The adisbatic-wall
temperature was assumed to increase linearly with time, from a value
of 0° F at zero time to a value of 10,000° F at 10 seconds. The tran-
sient temperatures of 1/2-, 1-, and 3-inch-thick copper walls were com-
puted. The outer- and inner-surface temperatures for case I are given
in figures 1 to 3.

Case IT.- The heat-transfer coefficient and adisbatic-wall temper-
ature were assumed to have an arbitrary variation for the 1/2-inch and
the 3-inch copper wall. Velues of h are the same for both examples,
whereas Tgy 1s slightly different. The values of 'h and Ty, used

in this case were obtained as follows: An outer-surface temperature was
assumed and the heat imput required to give this temperature was calcu-
lated by an exsct analytical method. This heat input was then used to
determine values of h and Tg,. This was done so that a solution with
h wvariable could be obtained from an analytical method. The tempera-
tures calculated by the methods of Hill and Dusinberre were then compared
wilth the original assumed temperatures. The values of h and Ty used

are given in the following table:
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T -
s OF, for -
Time, sec h,
1/2-in. wall 3-in. wall (br)(sq £t)(°F)
0 0 o} 36.0
1 2,485 2,484 k5.0
2 Ly 09k 4,088 52.2
3 4,932 ' 4,915 60.0
L 5,263 5,227 66.6
5 5,387 5,325 69.0
6 5,356 5,265 — 66.6
7 5,107 - 4,986 60.0
8 4,335 . 4,184 52.2
9 2,769 2,591 %5.0
10 297.5 100 36.0

The results for case II are shown in figures 4 and 5.

Computations.- For Dusinberre's method a choice must be made of the
size of distance increments into which the wall 1s divided. One 4diffi-
culty of the Schmidt or Dusinberre method for relatively thin walls is
the smell time step required by equation (14), and therefore computing
times which are long relative to the time required for thicker walls.

To keep the computing times within reason, the l/2-inch wall was divided
into only two increments. The increments selected for the different wall
thicknesses are as follows:

Wall thickness, in. Number of increments
1/2 2
1 2
3 6

Hill's method uses the whole wall thickness, and thus removes the
necesslty of choosing an incremental thickness.

RESULTS AND DISCUSSION

In case I, wherein the adiabatic-wall temperature increases from
0° F to 10,0000 F in 10 seconds, typical results were as follows:
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Case I
Dusinberre Hill
1, Maximum error Comp . Meximum error Comp
in. - —
5, sec op | Percent ti?i’ 5, sec op | Percent t;gi’
mex. temp. mex. temp.
1.4172| 3 <1 28
1/2] 0.15 | 11 <2 183 { 7086 1 <1 50
.5 25 6 62
1 {.25 18 I 103 1.131 | 1 <1l 26
3 .6 15 4 98 | 1.020 | 2 <1 32
For the 1/2-inch wall the error with Hill's method is about-1/L
and the computing time about 1/5 that of Dusinberre's method. For the

3~inch wall the error is about 1/8 and the time is sbout 1/3 that for
Dusinberre's method. In general, the maximum time interval was used in
computing by Dusinberre's method. However, it has been found that =
smaller © improves the accuracy, as shown in figure 2. Since the
value of P used for Dusinberre's method was close to 2, the results
for Schmidt's method would be similar. As shown by the results from
alternate time Increments, since Hill's method gilves accurate results
from substantially fewer steps, it is a waste of time to use very fine
steps. For the thermally thinner walls - for example the l/2-inch wall -
the small & required to satisfy the Dusinberre (or Schmidt) relations
necessitates a long computation time. .

In case IT, wherein the adiabatic-wall temperature both rose and
fell in a 10O-second period while the heat-transfer coefficient varied
also, the results were: +

Case IT
Dusinberre Hill
, Maximum error Meximum error
in. Computing : Computing
5, sec O Percent [time, min 5, sec op Percent {time, min
max. temp. max. temp.
1/21 0.15 | 2 <1 128 0.7L lo.5| <1 60
3 .6 3 2 57 1.020| .5/ <1 34
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In this case the meximum error in the Dusinberre method was only
20 F for the 1/2-inch wall. However, for an equal error, Hill's method
required only 1/5 as long. For the 3-lnch wall the times were about
twlce as large for Dusinberre's as for Hill's method. On the inner sur-
face the error in Dusinberre's method, while small, was a substantial
percentage of the rise of the inner-surface temperature.

Dusinberre's method 1s well suited to obtaining the temperature
distribution through the wall since in all cases the distribution is
obtained as a necessary consequence of the computaetion. Such distri-
butions sre shown for case I for the 3-inch-thick wall in figure 6. At
6 seconds a temperature distribution computed from an exact formula from
reference 1 i1s shown for comparison. The maximum error is 12° F or about
T percent. It 1s also possible to compute the temperature distribution
by Hill's method. This was done by the equation of appendix C of refer-
ence 1. The results are in almost perfect agreement with the exact theory.

CONCLUDING REMARKS

From the examples presented herein, as well as from other examples
presented in reference 1, it appears that for any reasonable step size
Hill's method 1is, practically, an exact method. On the other hand,
Dusinberre's method, with reasongble step sizes, gives a good approxi-
mation. The same statement applies to the Schmidt method. Hill's method
is also substantislly faster then Dusinberre's method (or Schmidt's
method) if only the two surface temperatures are required. If tempera-
ture distributions through the wall are required, Hill's method is slower
but practicelly exact. Eilther method is sultable for machine calcule-
tions. Exact (classical) methods are not available except for special
cages.

Langley Aeronautical Leboratory,
National Advisory Committee for Aeronsutics,
Lengley Field, Va., May 16, 1958.
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TAELE I.- VALUES OF MEMORY COEFFICIENTS

{a) Values of M

0.0L 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0

1 0.09281491 | 0.1312514T | 0.20752122 | 0.26934TTh6 | 0.41495581 1 0,6472821T [0.85683729 | 1.02954122 | -1.15145ke0
2 ~.01564178 [ ~.02252780 | -.03560872 | -.05052075 | -.07856600 | -.228L7195 |-.511ka0ks | - . Bp682879 | ~1.06520825
3 ~.02682329 | -.0379L25) | -.06002358 | -.08722T26 | -. 14861514 | -.30052435 {-.31662004 | -.2012759% | -.08224560
L -.00957530 | -.01354153 | -.02166582 | -.05696546 | -.075380803 | -.08405219 | -.02634648 | -.00142616 | ~.00000036
5 =.00555000 | - 00782681 1 - 01320008 | - 02628367 | - 0hha3zkL | | oolhTroh |- 00po3z1 1 L 0000105 | - .00000000
6 | -.00373390 | -.00528488 | -.00983262 | -.02025561 | -.02724662 | -.00712803 | -.000L89L8 | -.00000007

7 ~.00274116 | -.00389295 | ~.00809228 | - .0L579610 | -.01663398 | -..00207T5TT | - .0000LE0T

8 | -.00212%89 | -.00304410 | ~.006955G4 | - .01233887 | -.01015501 | -.000604L9 | -.00000136

g9 -.00L70888 | -.00249268 | -.00608368 | -.00964054 | -.00615962 | -,000LT60 | - .00000012

10 | -.001k1415 | -.00211866 | -.00535620 | -.00753254 | -.00378485 | -.00005126 | - .0000000L

11 | -.00119613 | -.00L8553L | -.00472Th9 | -.00588550 | -.00231065 | -.00001493

12 ~.00103005 | -.0OL6630L | -.00kLTEME | - 00450860 | -.00141064 | ~.00000%35

13 | -.00090099 | -.0015170% | ~.00369098 | -.00359308 | ~.00086120 | ~.00000127

14 -.00079666 | ~.00140LT73 | -.0032603k | - 00280743 | ~.00052576 | -.0000003T

15 -.000T7L65L | -.00130718 ! -.00288362 | -.0021935T | -.00052097 | - .0000001L

16 | -.00064769 | -.00122688 | -.0025%890 | -.00171393 | -.00019595 | -.00000003

17 ~.00059289 | ~.00115664 | ~.00225306. | - 00133917 | -.00011953 | -.00000001

18 | -.00054 714 | -.00109385 | ~.00199156 | -.00LOL635 | -.0000730%

19 -.00050882 | -~.00103656 | -.00LT6041 | - .0008LTS6 | -.00004459

20 -.oooE765e -.00098373 | -.00155610 | -.00063880 | -.00002722

21 | -.00044898 | ~.00093L4G | -.00137549 | -.00049912 | -.00001662

22 ~.000L253L | ~.00088826 | -.0012158: | -.00038998 | -.00001015

23 ~.0004OU Tl | ~.00084LT3 | -.001074T3 | - .000304TL | -.00000619

2h -.00038678 | ~.00080357 | -.0009%999 | -.00023809 | -.00000378

25 | -.0003708L | -.00076573 | -.00085973 | -.000L8602 | -.00000231

26 | -.00035655 | -.00072753 | ~.0007h22T | - .00014535 | -.000001h1

27 | -.000343T0 | ~.00069238] -.00065612 | -.0001135T | -.00000086

28 | -.00033195| -.00065804 | ~.00057997 | -.0000887 | - 00000052

29 -.00032118 | ~.00062716| -.00051265 | - .00006933 | ~.00000032

30 -.0003112% | -.00059693 | -.00045315 | - .00005417 | -.00000020

T
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{b) Valves of o

ey
o

E

(=

I_'l
[o)
L]
n

0.05 0.1 0.2

(=]
W
I._I
o
no
(]
R
o]

kB EBw oo Fuwm -

1.00000000 | 0.99999990 | 0.99956261 | 0.9887%5107 | 0.92596579 | 0.690U5538 | 0.45623848| 0.24814437 | 0.09999955
.00000019 | -.00019242 | -.02166158 | -.12553131 | -.31355030 | - .48642965 | ~ 41618822 | - 24630212 | ~.09999908
-00002493 | - .00533067 | ~.06963678 | -.17636952 | -.25787104 | -.15098865 | -.03665380 | -.00L82900 | - .00000045
00033480 | -.01195026 | -.09012000 | ~.14882049 | -, 1587796 | -. 04396967 | - 00310842 | ~.00001315 | ~.00000000
00144190 | -.02167827 | -.08988005 | - .1LTH906T | =.08906596 | -.01280454 | ~.00026361, | - .00000009

0034h27h | ~,02904T7T | ~.08284990 | ~.09193126 | -.05437468 | -.00372885 | -.00002236 | ~.00000000

0059560k | - 03381670 | - O7hIRAR T O7L8440g | -.03519564 | ~.00108585 | -.00000150 .
0085572 | - 05599626 | -.06600621 | - 05613647 | - 02026587 | -.00031622 | - .00000016 '
01092536 | - .03687745 | -.0585467L | -.0k386205 | -.01237227 | -.00009209 | - .00000001

01296009 | -,03679326 | -.05L79LT7L | ., 0342T135 | -.00755525 | -.00002682 | -.00000000

0146145k | -.03611078 | - .0hk579381 | ~.0267TTTL | - 0046112k | - .0000078L

01590655 | ~.0350718e | -.0k0k8318 | -.02092260 | ~.00281516 | -.00000227

0L6876TL | -.0538%23L | -.03578599 | ~.OLE34TTh | ~.00171865 | -.00000066

OLT57368 | -.052k9148 | -.05163302 | -.01277520 | ~.00104923 | - .00000019

0100442k | -.05111188 | -.02T96LTh | -.00998026 | -.00064055 | ..00000006

01833036 | -.02973243 | ~.02bTIG: | -, 00779802 | ~.00039106 | - .00000002

0186820 | ..02837588 | -,02184780 | -.00609253 | -.00023874 | -.00000000

.01&83]&? -.0270%%0 ~.01931(2)&6 - 2(H]
01841 -.02%78770 | -.01707 - .003TLYT2 | -.0000
.01.826876 -.022_56606 -.01508936 | -.0f 8

01806620 | -.023%9609 | -.01333804 | -.00227088

11+ 1 r1 110 31lIOTY OB OLOLOERLEITODILOTOYTOLOL
“ = w & e

-0L782001 | -,0222TT82 | ~.0L178996 | ~.001TT43Y4 | -.00002025
01754197 | ~.02121042 | -,01042159 | -.00138637 | -.00001236
01723931 | -.0201925)4 | -.00921205 | -.00108325 | -.00000755
01691016 | ~.01ge224k | - 00814285 | -.00084638 | -.00000460
01638696 | -.01829829 | - .Q0TL9TT6 | - 00066131 | -~.00000281
-O1624686 | - 01741809 | -.00656236 | -.000516TL | -.000001T2
.01590228 | -.01658000 | -.00562352 | -.000403T3 | -.00000L05
.01555588 | -.01578204 | -.00497119 | -.00051545

01520973 | -.015302236 | -.00439422 | -.00024648 | - 00000039
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800 I T e e — I —
L___Hllls method, & = .7086 second ;
computing time=50 minutfes
— — — — Dusinberres method, S = .15 second 3
700} computing time =183 minutes,
E AX =1/4 inch.
O OQuter surface
}Exccf theory #
I Inner surface H
) H
600 5 £
x
500 _ E
Wall z
surface HH]
temp.,, 400 i
OF :E
300 : =
ayAn
]
200 i
Il
100
0 2 4 6 8 10
Time,sec

Figure 1.- Case I. Temperatures of 1/2 inch- copper wall surfaces.
Adlebatic-wall temperature varies linearly from 0° to 10, 000° in
10 seconds; h, = 100 Btu/(hr)(sq £t)(°F).
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Wall
surface
temp.,
°F

450

400

350

300

250

200

150

100

50

Hill's method, 3 =1.131 seconds,
computing time =26 minutes 7
E - Dusinberres method, & =25 second, 7
E computing time =[03 minutes ”_d
— — — Dusinberre's method, 8 =5 second, Faisit
E computing time = 62 minutes i
AX=1/2 inch. :
E Outer surface 3
_ -2 lnnet-' surface }Exoct theory
rars FH
2 4 6 8 10
Time,sec )

Figure 2.~ Case I.
Adisbatic-wall temperature varies linearly from 0° to 10,000° in
10 seconds; h = 100 Btu/(hr)(sq £t)(°F).

Temperatures of l-inch copper wall surfaces.

15
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4 00 prrerrrr— e eeuersmetmeranssRmEEERsdeannnunzoi saazisuan:
: Hill's method , & =1.02 seconds,
t _ computing time =32 minutes
i ———— Dusinberre's method, & =.6 second
3501 computing time =98 minutes ,
AX=1/2 inch.
i O Outer surface £ i
300 f O lnner surface} xact fheory
250
Walli
surface 200
temp.,
°F
150 718
1Q0 ’
50
ST L EREFEHHEEHE
o 2 4 6 8 10

Time, sec

Figure 3.- Case I. Temperatures of 3-inch copper wall surfaces.
Adisbatic-wall temperature varies linearly from 0° %o 10,000° in
10 seconds; h = 100 Btu/(hr)(sq £t)(°F).
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360

A ENNNS AN RE ]

T I
gy JEgyNE AN ARG pRREauRan |

Hills method,d =0.7! second,
computing time = 60 minutes .
Dusinberre’s. method, § =.15 second,

computing time = 128 minutes,
AX=1/4 inch,

O Quter surface
(m| Inner surface

} Exact theory

wa

HH

320 :
4
280
240
200
Wall
surface

temp., (60
°F

120

80

40

Figure 4.- Case IT.

2 4 6 8 [0
Time,sec

Temperatures of l/zlinch copper wall heated

according to asslgned history of h and P

17
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180 e e T e T
Hills method ,® =1.02 seconds,
computing time =34 minutes
160 Dusinberre’s method, 3 .6 second,
computing time =57 minutes,
~ AX=1/2 inch
O  Quter surface: act theor
140 O  Inner surface Ex gory H
120
aé
100
Wali
surface
temp.,
°F 80
60
40
20
0 2 4 6 8 10
Time,sec

Figure 5.~ Case II. Temperatures of 3-inch copper. wall heated according
to assigned history of h and Tg.
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Figure 6.- Case I. Temperature profiles through 3-inch copper wall.
Adisbatic-wall temperature varies linearly from 0° to 10,000° in
10 seconds; h = 100 Btu/(hr)(sq £t)(°F).
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