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A COMPARISON OF TWO METHODS FQR CALCULATING

TRANSm TEMPIimTums FOR ‘l?HICKWlUJJ5

Brinkworth~ James J. Buglia and Helen

suMMARY

A comparison is mde of two different methods of calculating tran-
sient temp&atures for thick walls with arbitrary varfatim of heat-
transfer coefficient and adiabatic-wall temperature. Although numrical
calculations for special cases for which the exact solutions are avail-
able show that both methods give satisfactory results, ESilltsmethod
(NACA Technical Note 4105) consistently gives nearly exact results with
considerably less ccmputing timey except for the case fi which a te@=a-
ture profile through the thick skin is desired. For this case,

* Dusinberrels method (Trans. A.S.M.E., vol. 67, no. 8) is much faster,
though less accurate.

.
INTRODUCTION

.No exact analytical method is available for
temperature for the general case of thick walls.
methds have therefore been proposed and used to

computing the transient
Various finite-difference
compute transient wall

temperatures. With the increased importance of high
craft structural design, an evaluation of the merits
methods is warranted.

The existence of several other methods is fully
no comprehensive comparison of all available methods

temperature in air-
of representative

aclumwledged and
is intended. It

is intended merely to select two representative methods and to compqre
their results and computing times. The methods of Hill (ref. 1) and
Dusinberre (ref. 2) have been selected for this purpose. In this paper
only the basic one-dimensional case has been considered. Hand calcula-
tions with a desk computer were made rather tb resorting to an elec-
tronic cqu.ter, because in many engineering applications fast and direct
answers are required, and in some problems, programing time on a computer
becomes excessive.

h
The first application of the finite-difference method for determining

thick-wall temperatures is credited to Schmidt (ref. 3). This method
. employs a ratio of incremental time to increment of distance into the
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wall that is fixed by the material properties of the wall. Dusinberre
has introduced an extension of Schmidt’s method whereby the ratio of

—

time increment to distance increment can be varied to introduce smaller
k

time steps if desired. An increase of accuracy relative to Schmidt’s
method is thereby possible. Dusinberre’s method includes Schmidt’s
method and can be reduced to it by the adjustment of a coefficient.

Hill’s method represents a considerably different approach to the
thick-wall problem. Finite differences are taken only in the time var-
iable, the equations used being almeady integrated with respect to
distance.

Following a description of both methcds, sample problems are solved.
Problems permitting exact solutions were chosen to make possible an
evaluation of the accuracy of the methods. A time study of the methods
was also made to determine the relative labor involved. An attempt is
made to point out the areas of application wherein one ~thod might be
more advantageous than the other.

It should be mentioned that Hill’s method allows the outer-surface
temperature to be readily determined if the time history of the inner-
surface temperature is lmown. This fact makes Hill’s method extremely #

advantageous to investigators in the field of aerothermodynamicswhere,
generally, thermocouples are mounted on the inside surfaces of specimens .
and the heating rates and outer-surface temperatures are desired. The
calculation of the outer-surface temperatures from the inner-surface
temperatures can also be made with Dusinberre’s method, but the process
is much more laborious and less straightforward.

SYMBOLS
—

c

F

G

H

h

k

K

z

specific heat, Btu/(lb)(%)

coefficient in Dusinberre’s method

heat-capacity parameter, PCZ, Btu/(sqft)(%)

heating-rate parameter, h5fi2/16G

heat-transfer coefficient, Btu/(hr)(sq ft)(%)

diffusivity, K/cP, (w ft)/hr

conductivity, (Btu)(ft)/(hr)(sqft)(%)

wall thictiess, ft
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M memory coefficient in Hill’s method
4

m step number

P= cp(Ax)%5

Q = h(@/K

r. radiation rate, Btu/(hr)(sq ft)

R radiation-rate parsmeter, r5f12/16G

t time ftcomstsr% of heating, hr

T temperature, %

5 time interval, hr

P weight density, lb/cu ft

e mmory coefficient

Ax distance increment, ft

Subscripts:

aw adiabatic wall

i inner

L1 distance increment nuniber

In step nuniber

OUTLINE OF PROBIJ34AN0 METEODS

The two methods were used to calculate the inner- and outer-surface
temperatures of a thermally thick plsme copper wall. Wall thicknesses of
1/2 inch, 1 inch, and 3 inches were used. The walls were assumed to be
insulated at the inner surface and their thermal properties were assumed
to be constant. The given input function was a time history of adiabatic-
wall temperature and heat-trsnsfer coefficient.
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Hill’s Method
k

Reference 1 gives a complete discussion and derivation of the equa-
tions for Hill’s method of computing transient temperatures of thick
walls for any arbitrary variation of adiabatic-wall temperature and heat-
transfer coefficient. The final equations, as presented in reference 1,
are given here for convenience.

Outer-surface temperature.- The outer-surface temperature at the
time b is given by

, (~aw)m+ (~aw-~)m-l-%Tm-l- M~Tm-*~* . ●-%lTl-%-%n-l (1)
m=

Ml+%

where

Mn?E=—
16G

fifi2
R=—

16G

G = pcz

For example,

~1 (~aw)l+ (~aw)O-Rl-RO=
Ml + HI

(2)

(3)

(4)

(5)

.

.

Values of the memory coefficients M are taken from table I (most
of which is reproduced from ref. 1). Interpolation in table I is avoided
by working with a time increment 5 that results in a value of kb/12

—

listed in the table.

Inner-surface temperature.- The inner-surface temperature at the
time IT5 is given by

Ti,m = Tm - (elTm+ e2Tm-1

Values of e are taken from table I.

+... + emTl) (7)
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Dusinberre’s Method

Dusinberre’s method essentially consists of dividing the wall into
a finite number of slabs and taking a heat balance for each slab. The
relations used in calculating the transient-temperaturetime histories
by this method are taken from reference 2 and repeated in this section.

A remark to clarifi the subscript notation is in order. The first
subscript on the temperature denotes the block for which the temperature
is being calculated and the second subscript is the time at which the
temperature is being calculated. On the averaging coefficients (the
F-coefficients) the first subscript denotes the temperature used in the
averaging process and the second &bscript shows th& block for which
temperature is being calculated. Subscript i is the inner surface
subscript
notation:

‘raw,m~

where

j is any intermediate block. The follo’wbg sketch shows

~z~

the
and
this

I
A. A I

‘lfm ‘2,m ‘j-llm ‘j)m ‘j+l,m ‘i-ljm Ti,m
4) I) () I) I

A. A

LA Ax 14 ‘ 14

Outer-surface temperature.- For the outer surface,

‘l,m = ‘aw,lTaw,m-l + ‘l,lTl,m-l + ‘2,1T2,m-l

aw,l=$=h~$F

F2,1 = $

‘1,1= 1 ‘Faw,l ‘F2,1

h Ax
Q=F

(8)

(9)

(lo)

(n)

(u)
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and P is some nunibersuch that

p~2+2Q (13)

The parameter P can have any value which satisfies eqqation (13), the
size of P chosen dictating the time interval used, as shawn by the
relation

5 = cp(A.y

KP
(14)

Equations (13) and (14) impose a maximum time increment for a given
& but there is no limit to the minimum value of time increment which
can be used by increasing the parameter P. _.Obviously,a time interval
couldbe chosen and a value of P calculated from equation (14). If
the P selected is large enough to be greater than 2 + 2Q for all
values of heat-transfer coefficient, a constant b can be used which
makes computing considerably faster and easier, the reason for this
being that only Faw,l and Fl,l have to be computed for each time
interval. The other F-coefficients are constant throughout the problem.

Inner-surface temperature.- For the inner surface,

Ti,m = ‘i-l,iTi-l,m-l + ‘i,iTi,,m-l (15)

.

.

where the subscript i is the number of the last cube, and

%-l)i =$ (16)

Fi,i = 1 -Fi-l,i (17)

Intermediate wall tertrperatures.-The following equ~tion permits a
calculation of temperatures in the interior‘of-thewall:

‘jjm
Tj-I m-l+ (M - 2)Tj ~-1 + Tj+I -l= (18)

M

Use of this equation allows temperature,profilesthrough the s-lab
to be calculated without any difficulty. Iiideed”,it is a consequence of
this method that the entire temperature profilemust be calculated, because
the temperature at any point in the slab depends on-the temperatures on
either side of it at the preceding time interval as well as its own tem- .
perature at the preceding time interval. This may be advantageous

-—.
.
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because Hill’s m=thod uses a series of cosine terms for the calculation
of internal temperature profiles, which makes this calculation consider-
ably more awkward.

Numerical Calculations

In the numerical calculations special cases were chosen for which
exact analytical answers could he obtained, in order that the accuracy
of each method might be determined.

The transient-temperaturehistories of thick copper walls were com-
puted by both methods. The following thermal properties were assumed:

K=227 (Btu)(ft)/(hr)(sqft)(°F)

c = 0.09192 Btu/(lb)(%)

P = 560 lb/(cu ft)

k= K/cP = 4.41 (Sq ft)/hr’

Two different heating cases were considered.

Case I.- The heat-transfer coefficient h was assumed to be
100 B“-)(sq f%)(%) and to he held constant. The adiabatic-wall
temperature was assumed to increase linearly with time, fran a value
of 0° F at zero time to a value of 10,000° F at 10 seconds. The tran-
sient temperatures of 1/2-, l-, and 3-inch-thick copper walls were com-
puted. The outer- and inner-surface temperatures for case I are given
in figures 1 to 3.

Case II.- The heat-transfer coefficient and adiabatic-wall temper-
ature were assumed to have an arbitra~ variation for the l/2-inch and
the 3-inch copper wall. Values of h are the same for both examples,
whereas Taw is slightly different. The values of h and Taw used

in this case were obtained as follows: An outer-surface temperature was
assumed and the heat imput required to give this temperature was calcu-
lated by an exact ana&tical method. This heat imput was then used to
determine values of h and Taw. This was done so that a solution with
h variable could be obtained from am analytical method. The tempera-
tures calculated by the methods of Hill and Dusinberre were then compared
with the original assumed temperatures. The values af h -d Taw used

are given in the following table:
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Time, sec

K=-l==

o
1 2,48; 2,4$
2 4,094 4,088

4; 932
: 5,263
5 ‘5,387
6 5,356
7 I 5,107

4; 915
5,227
5,325
5,265 –
4,9%

8 4;335 4;184

I 9 2,769 2,591
10 297.5 100

“ (kw)(s:t)(w

36.0
45.0
52.2
60.0
66.6
69.0
66.6
60.0
52.2
;&

.

.

w

The results for case II are shown in figures 4 and 5.

Computations.- For Dusinberre’s method a choice must be made of the
size of distance increments into which the wall is divided.

.
One diffi-

culty of the Schmidt or Dusinberre method for relatively thin walls is
—

the small time step required by equation (14), and therefore computing
times which are long relative to the time required for thicker walls.

.

To keep the computing times within reason, the l/2-inch wall was divided
into only two increments. The increments selected for the different wall
thicknesses are as follows:

Wall thickness, in. lhmnberof increments

1/2 2
2

; 6

Hill’s method uses the whole wall thiclmess, and thus removes the
necessity of choosing an incremental thickness.

RESULTS AND DISCUSSION

In case 1, wherein
0° F to 10,000° F in 10

the adiabatic-wall temperature increases from
seconds, typical results were as follows: ●

.
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Case I

9

I Dusinberre I Hill
1, Maximum error Comp. Maximum error

Comp.
in. 5, sec Perce@

time, 5, sec
Percent

time,
9?

max. temp.
min %? W. temp. min

1/2 o.1~ 11 <2
{

1.4172 3 <1
183

28
.7086 1 <1 w

1
{

.5 25 62

.25 18 : 103 }
1.131 1 <1 26

3 .6 15 4 98 1.020 2 <1 32

For the l/2-inch wall the error with Hill’s methcd is about--l/4
and the computing time about 1/5 that of Dusinberre’s method. For’the
3-inch wall-the &ror is about’1/8 and the time is about 1/3 that for

. Dusinberre’s method. In general, the maxim time interval was used in
computing by Dusinberrels method. However, it has been found that a
smaller 5 improves the accuracy, as shown in figure 2. Since the
value of P used for Dusinberre’s method was close to 2, the results
for Schmidt’s method would be similar. As shown by the results from
alternate time increments, since IH1l’s method gives accurate results
from substantially fewer steps, it is a Waste of time to use very ftie
steps. For the thermally thinner walls - for example the l/2-inch wall -
the small 5 required to satis& the Dusitierre (or Schmidt) relations
necessitates a long computation time.

In case II, wherein the adiabatic-wall teirperatureboth rose and
fell in a 10-second period while the heat-transfer coefficient varied
also, the results were:

Case II

.

I Dusinberre

1, Maximum error

‘n“ 8, sec Computing
~ Percent time, min

max. temp.

1/2 0.15 2 <1 I I-28

3 I .6 131 2 I 57

0.71 0.5 <1 60

1.020 .5 <J- 34
I
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In this case the maximum error in the Dusinberre method was only
2° F for the l/2-inchwall. However, for an equhl error, Hill’s methd .

required only 1/5 as long. For the 3-inch wall the times were about
twice as large for Dusinberre’s as for Hill’s method. On the inner sur-
face the error in Dusinberre’s method, while small, was a substantial
percentage of the rise of the inner-surface temperature.

Dusinberre’s method is well suited to obtaining the temperature
distribution through the wall since in all cases the distribution is
obtained as a necessary consequence of the computation. Such distri-
butions are shown for case I for the 3-inch-thick wall in figure 6. At
6 seconds a temperature distribution computed from an exact fo~a fyom
reference 1 is shown for comparison. The maximum error is 12° F or about
7 percent. It is also possible to compute the temperat~e distribution
by Hill’s method. This was done by the equation of appendix C of refer-
ence 1. The results are in almost perfect agTeement with the exact theory. —

CONCLJJDINGREMKRKS

From the examples presented herein,
.

as well as from other exsmples
presented in reference 1, it appears that for any reasonable step size
Hill’s method is, practically, an exact method. On the other hand,

,—

Dusinberre’s method, with reasonable step sizes, gives a good approxi-
mation. The same statement applies to the Schmidt method. Hill’s method
is also substantially faster than Dusinberre’s method (or Schmidt’s
methcd) if only the two surface temperatures are required. If te~era-

—

ture distributions through the wall are required, Hill’s method is slower
but practically -act. Either method is suitable for machine calcula-
tions. Exact (classical) methods are not available except for special
cases.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., 14ay16, 1958.
—
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(a) Values of M

0.1
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Figure 1.- Case 1. Temperatures of l/2-inch-copper wall
Adiabatit-wall temperature varies linearly from 0° to
10 seconds; ~ = lCQ Btu/(hr)(sq f%)(%).
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Figure 2.- Case 1. Temperatures of l-inch copper wall surfaces.
‘Adiabatic-wall temperature varies IJnearly from 0° to 10,000° in

10 seconds; h = 100 Btu/(hr)(sq f%)(%).
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Figure 3.- Case 1. Temperatures of 3-inch copper wall swfaces.
Adiabatic-wall temperature varies linear~ from 0° to 10,000°
10 seconds; h = 100 Btu/(hr)(sq ft)(%) .
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Figure 5.- Case II. Temperatures of 3-inch copper.wall heated
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Figure 6.- Case 1. Temperature profiles through 3-inch copper wall.
Adiabatic-wall temperate varies linearly from 0° to 10,000° in
10 seconds; h = 100 Btu/(hr)(S~ ft)(%) .
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