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NATIONAL ADVZSORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 4408

TEE TKEORY CIl?DIFFUSION IN STRAINED SYSTEMS

By Louis A. Girif.alcoand Hubert H. (%rimes

SUMMARY

Because the current theory of solid-state diffusion is limited to
unstrained crystals and cannot be applied readily to strained systems~
Fickts first and second laws were generalized to include the effects of
strain on the diffusion rates. The nonhomogeneity introduced into the
atomic jump frequency by strain was found t.acontribute strain-dependent
terms to the diffusion equations in addition to the terms containing the
concentration gradient.

q
~ From a consideration of the effect of strain on the free energy of
. activation, it can be shown that for simple strains, such as those re-

sulting from compression, tension, shear, and hydrostatic pressure, the
diffusion coefficient is an exponential function of the lattice psmmeter.

+ An examination of the available experimental data for the variation of
diffusion coefficients with pressure confirms this theoretical.prediction.

The theory presented herein states that the magnitude of the varia-
tion of the diffusion coefficient with pressure depends on the interatomic
forces as the diffusing atom moves from its equilibrium position to the
activated position. On the basis of this theory, a parameter depending
upon the interatomic forces can be computed from the experimental data.
b all cases investigated, the magnitudes of this parameter were in agree-
ment with the known characteristics of the interatomic potential-energy
functions of the systems.

The effect of plastic flow on the diffusion rate was also studied
by considering the rate at which vacancies sre produced by dislocation
motion and the rate at which vacancies condense at Inhomogeneities in
the crystal. The resulting equations predict that for a vacancy mecha-
nism the diffusion coefficient varies linearly with the strain rate.
This conclusion is in agreement with experiment.

L
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INTRODUCTION

The theory of diffusion in solids has been the subject of a great
deal of investigation in recent years and satisfactory theoretical.model~
have been constructed that adequately describe the basic diffusion proc-
esses in many simple solids. Present theories, howev=, are Wnited to
unstrained crystals and are not strictly applicable to strained systems.
Since the diffusion rate is determined by the energy of interaction be-
tween the diffusing atom and the crystal lattice, and since this energy
depends on the interatomic distances, it is to be expected that the dif-
fusion coefficients’will”bealtered by a strafn superimposed on the crys-
tal. Some experimental evidence is available that indicates that elastic
strain can increase the self-diffusion coefE1.cientby as much as a factor
of 2 (ref. 1) and that plastic strain can increase the self-diffusion
coefficient by an order of magnitude (refs. 2 smd 3). Also, it is well
known that hydrostatic pressure decreases the diffusion coefficient; in
fact, a pressure of 7500 atmospheres is sufficient to lower the self-
diffusion coefficient of sodiumby an order of magnitude at 90° C
(ref. 4).

●�

w

If the crystal is strained in a nonhomogeneousmanner, another fac-
tor becomes operative in addition to those that control the change in the ,
diffusion coefficient. According to the theory of irreversibleprocesses
(ref. 5), every thermodynamic flux is proportional to every thermodynamic ●

—.

force so that the diffusion flux Is proportional not only to the concen-
tration gradients, but is also proportional to the strain gradients in
the crystal. Thus, not only is the magnitude of the diffusion coefficient

b=

changed by a generalized strain, but the basic chsracter of the diffusion
equations is also changed. ., ,.

Because of the important role played by diffusion processes in many
solid-state phenomena such as otidation, the annealing of radiation damage,
creep, and rupture, and in view of the wide variety of applications in
which materials are under strain, a thorough understanding of the effects
of strain on diffusion is highly desirable.

In this report the theory of diffusion in strained systems is developed
from the point of view of molecular kinetics, the fundamental physical fac-
tors involved are discussed, and the resulting theory is compared with ex-
isting experimental data.

BASIC EQUATIONS OF DIFFUSION TEEORY

Generalizations of Fick’s first and second laws ere obtained for the
diffusion of a single species in a crystalline lattice by a modification
of the method of conditional transition probabilities (ref. 6). The dif-

4

fusion equations are expressed in terms of qtomic jump frequencies without
P
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the usual condition that the jump frequency is independent of position.
In this form, the equations can easily be applied to a strained lattice.

Consider a volume element @ in+the crystal centered about the
point defined by the position vector r. The number of particles of the
diffusing species contained in d# is given by N(#,t)d5? ~ere l@,t)
is the concentration of diffusing species at the position r and time t.
In general, the nuniberof particles in the volume element ti+ is not
constant because Psrticles are continually jumping out of d? while other

co particles we jumping into @ from adjacent portions of the crystal.
: The rate at which N(?,t) changes as a result of these two processes can
+

be calculated as follows: H A(:,~t,t] &?tdt is the conditional.proba-
b~lity that an atom in the volume element *+ jumps to the volume el~ment
drt during time dt, then, the nuniberof particles that jump from dr to
&’ in time dt is given by

@?,t) A(?,?’,t)ti+&’ dt (1)

Ao and the total nuniberof particles that jump out of &? during time dt
z is obtained by integrati&g
y

@ I@t)ti+dt

a where &-(?,t) is the rate
&.

Similarly, the nuniber
ing time dt is given by

and the total number
the crystal is given

of
by

—
over-all *+ij tbt iS,

= N(?,t)& dt (~- A(?,?’,t)&’ (2)

at

of

Jr’

which particles leave the

particles that j~ from

volume element

@ to d? dur-

(3)I@jt) A(%,?,t)&&’ dt

particles that jump into @ from other parts of

where ~+(?,t) is the rate at which psrticles enter the element h+. The

net rate of increase of I@,t) is obtained by subtracting equation (2)
from equation (4):

!2= *, !N(?t,t) A(?’jY?jt)@ - N(?,t) +, A(*,5?c,t)@’ (5)
r
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At this point >t is convenient to
the jump distance (r~-~ by performing
that

express.equation
a transformation

~=~f-;

In terms of the jump vector ?, equation (5) becomes

NACA TN 4408

(5) in terms of
of variables so

(6)

The function A(~+%j~,t)+is the probability frequency that a par-

ticle at ?+ ~ will jump to r, and if the vector
+
X would always

terminate at a point that is capable of accommodating the diffusing par-
ticle, A would equal the atomic jump frequency. There are cases, how-
ever, such as in diffusion by the vacancy mechanism, in which the terminus

of ? cannot always accommodate the migzating particle. The jump fre-
quency must then be multiplied by the probability that a+~cant site
exists at the end of the atomic @rep. Therefore, if l’(r,X)is the atomic

3W? frequency with jump vector ? and n(~t) is the probability that
a site at .~ is vacant (i.e., it can accept the jumping particle), then,

(8)

Substituting equation (8) into equation (7) and arbitrarily replacing ~
-2 in the first integral ofwith the equally valid negative W$ument

equation (7) gives

(9)

In crystalline solids, r is zero for all jump vectors except for a

SM1l number of X!s, which may be denoted by Ii; r D=Y then be =m=ssed
as a delta function

(10)

where a is the tot~l number of possible jumps a particle can make out

of its position at r. The set of possible jump vectors ~ and the

.*

t

.

v

—

.

?

.-
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value of a are determined by the crystsl structure of the
Substituting equation (10) into equation (9) and making use
ties of the delta function @eIds

5

lattice.
of the proper-

.
It will

pressed as a4
taining only

(U)

now be assumed that the functions N, and n can be ex-
Taylor expansion in powers of Xi about the point %, re-

the first three terms of the expansion. Therefore,

N(7 - ti,t) ri(~-li) s Ni%) ri(3 +~ ● vmi++ (~i “ V)2 mi

(12)

and

(13)
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The derivatives are evaluated at the point ~. Equation (n)
now be written as

or

4408
*

Cs.n
r

(14)
.-

(15)

Equation (1.5)is a generalization of Fickts second law and is valid
for any system regardless of the nature of ~i or of the coordinate

system chosen. Also, if the strain is homogeneous, Vri = O. With these

restrictions, equation (15) reduces to

The position vector ? in e~ation (16) is referred to an arbitrary
coordinate system. It is always possible to find a transformation of
coordinates so that the position vector is referred to the principle axes

of diffusion in which mixed derivatives} such as #@Xhy, vanish.

.

2
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In this case,

are now referred to the

Since Fickts first
continuity,

-b

principle axes of diffusion.

and second laws are connected

(17)

l%e coordinates

by the equation of

(18)

& where ~N is the flux of species N, Fickts first law corresponding to

the second law given by equation (17) is

where Jx, J
Y)

and Jz are the components of ~N.

The physicel significance of the theoretical development up to this
point can be seen most clesrlyby a consideration of equation (14). In
the usual expression for Fickts second law in unstrained systems, all
terms except those involting the second derivative of N we zero. The

*
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other terms appear in equation (14), however, because it was not assumed
in the presetitdevelopment that ri .and n are independent of position.

The third term does not sw+to zero since, in general, it is not composed
of terms antisymmetric in xi. Furthermore, since ri and n are func-

tions of position, they must be retained in the differential operators,
and terms dependent on the first and second derivatives of ri and n

appear in equation (14).

In the case of a uniform homogeneous strain, equation (14) reduces
to equation (17). If the gradient of n is zero, equation (17) becomes
equivalent to Fick’s second law. In this simple case, it is necessary
only to calculate the effect of the homogeneous strain on ri and n in

order to specify the effect of strain on diffusion. The effect of strain
on the jump frequency can be analyzed in terms of rate theory. This analy-
sis is presented in the following section. The effect of strain on n is
dependent upon the diffusion mechanism. For interstitial diffusion, n = 1
provided that the concentration of interstitial is low and that strains
do not affect this value. For diffusion by a vacancy mechanism, however,
n is the vacancy concentration and will vary with strain. An analysis
of this vsriation is presented in the section DEPENDENCE CO?VACANCY CON-
CENTRATION ON STRAIN.

DEPENDENCE OF JUMP FREQUENCY ON STRAIN

ii
:
c

According to the statistical theory of rate processes, the jump fre-
quency is determined by the ratio of,two configurationalyartition func-
tions, one referring to the activated state smd the other referring to
the normal state. In analyzing the effect of strain on the Junp frequency,
the formulation of the rate process theory in solids given in reference 7
is used in which the jump frequency is given by

J exp (-q/k’T) da

r
()

~ 1/2 a
‘5

J
exp (-cp/kT)dv

v

(20)

where k is Boltzmsmnts constant, T is the temperature, and q is the
potential energy of the system as a function of all the coordinates of
all the atoms in the crystal. The integral in the numerator of equation
(20) is evaluated over a hypersurface a in the configuration space so
that the surface passes through the point corresponding to the diffusing
atom at its activated position with all other atoms at their equilibrium
position. The hypersurface i.salso required to be perpendicular to
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*

contours of constant
s

hypersurface defined
two symmetric parts.

9

potential energy in the configuration syace. The
in this manner ditides the configuration space into
The integral in the denominator is evaluated over

the configuration volume v of one of these symmetric parts.

Equation (20) was derived for the case of an unstrained ~ystal.
However, it is applicable to strained crystals if the potential energy
q is taken to be a function of the six strain components %$ as well

al
as the atomic coordinates

ml
m erence 8 in an analysis of
+ Thus, the potential energy

$3

El
Q

“*

q.
ii

A similar procedure has
t e statistical mechanics of
in equation (20) is given by

where qi represents the set of all atomic coordinates

sents the set of six independent strain components.

been &ed in ref-
crystal lattices.

(21}

The potential q can be expanded in a Taylor series about the nor-
mal lattice configuration in the unstrained state to give

z ‘qdi%d.jo+o● ●

J,a,p

(22)

where o
‘3 represents the set of atomic coordinates when all the atoms

are in their mean positions for the normal state of the crystal, and the
double zero subscript indicates that the derivatives are evaluated at the

point (q~,O).
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If the potential energy is expanded abouf the point (q~,O), where

cl: represents the mean atomic coordinateswhen the system is in the

activated state, then,

1!-
U3
m
a

(23)

The subscript t.,0 indicates that the derivatives are evaluated at the ;

point (q?,O).
v

IJ

Since

atoms in a
tial well,

the point (q~jO) corresponds to an unstrained crystal with all
P

mean position so that the crystal is at the bottom of a poten-
the first derivatives in equation (22) vanish:

(24)

TIM point (q~,O) corresponds to a saddle point with respect to the

atomic coordinates !lJ> so that the derivative of -q with respect to

‘j also vanishes at this point. HoweVer~ (q~~O) is not a saddle point.-
or a minimum point with respect to the strains and, therefore, the deriva-
tive at this point with respect to the strains does not vanish:

()aqq+,o= o (25)

()af$

+ *,O
+0 (26)
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G

Equations (22)
*

u.

and (23) therefore become

(27)

Substituting equatione (27) and (28) into the denominator and numera-
tor of equation (20), respectively, gives

(n
l/2

rfi=—
s

g(s)

(29)

*



12 NACA TN 4408

where r~ is the jump frequency in the strained system and where the

functions $(e~~ fx(q)l and fo(q) are defined by

g(C) = exp ()* *,.-

( )]1& 0,0

and

(30)

and

f$(!d =,:XP
[

- +P(c$o) -*~(*)*5flqJ”k]’31)

(32)

The functions f+(q) and fo(q) are the Boltzmann factors of the

potential energy expanded about the saddle point of the activated state
and about the minimum of the normal crystal. Thereforej in the unstrained
case, equation (20) may be written as

ru

Therefore, multiplying

frequency in the unstrained

(33)

~d dividing equation (29) by I’u,the jump

crystal, gives

(exp
rs = ru g(~) ‘

([z

1
exp——

m
j,a,f3
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where the statistical mechanical averages

)=a
13

are given by

r -1

(35)

and

! fo(d dv

v

(36)

If the exponential in
two terms in each expansion

1-

*

equation (34) are expanded and only the first
are retained,
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However, in both the
placement of,an atom from

and equation (37) reduces

If the
relative to
(34) gives

NACA TN 4408

*

activated and normal states, the average dis-
its mean position is zero; that is, b

(%).=h)v = 0
to

ti
quadratic terms in the strain in equation (30) are neglected m

the linear terms, substituting equation (30) into equation

(39)

Equation (39) shows that the jump frequency has a simple e~onential
dependence on the strains and that t~s dependence is contro~ed by the
derivatives of the potential energy with respect to the strains evaluated
at the saddle point of the activated state.

.
Equation (39) gives the general relation between the jump frequency

and the strain that till be used in this report. If the strain matrix
and.the interatomic forces sre known, the effect of the strain on the ●

jump frequency cm”be computed.

To illustrate the application of equation (39), three special cases
will.be considered:

(1) Uniform compression or expansion in which

=Xx= %Y=e==c (40)

(all other strains = O)

(2) Simple shear in which

‘W=%=es (41)

(all other strains = O)
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(3) Simple elastic tension or compression in the x-directfon, in
which

~xx=‘L I (42)

‘Y-Y= ‘Zz = -~%

where p is Poisson[s ratio

For these three cases, equation (39) gives:

For uniform compression or expansion,

For simple shear,

.
For simple elastic tension or compression in the x-directicm,

(43)

(44)

Since strong repulsive forces come into play as the diffusing atom
moves to the activated position, the derivatives in equation (39) and
equations (43) to (45) ars all negative. Thus, negative strains, cor-
responding to a compression of the lattice, decrease the jump frequency
and positive strains, corresponding to an expansion of the lattice, result
in an increase in the @mp frequency. This conclusion is in accord with
what is expected on a simple physical basis.

The preceding equations are in agreement with the results of refer-
ence 9. On the basis of a simple model, which takes into account only
nearest neighbor interaction, the effect of internal strains resulting
from impurity atoms on the diffusion coefficient was computed (ref. 9),
and it was found that the diffusion coefficient is an exponential func-
tion of the strain.

DEPENDENCE OF VACANCY CONCENTRATION ON STRAIN

It was pointed out in the section RASIC EQUATIONS OF D~SION THEORY

8 that the quantity n appearing in the generalized Fickrs laws (eqs. (17)
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w

and (M)) has a different interpretation for different mechanisms of dif-
fusion. For dilute interstitial diffusion, n = 1 provided there are no u

sources of interstitial, and Vn = O whether or not the system is
strained. For diffusion by a vacancy mechanism, however, n is the atomic
fraction of vacancies in the crystal given by

‘vn=—
NT

where

% vacancy concentration

(46)

NT total number of lattice sites per cc.

It is therefore necessary to investigate the variation of nv with strain.

The concentration of vacancies in a crystal at equilibrium is given
by

nv= NT exp (-AGv/kT) (47)

where

.

●

‘v vacancy concentration in the absence of strain

AGV Gibb’s free energy of formation of a vacancy

In a strained system, the free energy of formation of a vacancy may
be different from that in an unstrained system, so that the vacancy con-
centration depends on the strain.

If the strains are constant in time, the vacancy concentration is
also constant in time. However, during plastic deformation, vacancies
are produced at a rate that depends on the strain rate (ref. 10). The
general equation for the vacancy concentration is then

(48)

where

Gx excess average concentration of vacancies srising from the plastic .

strain

AGS Gibb’s free energy of formation of a vacancy in the strained system Q
v
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The analysis in
of static strains on

17

this section consists of two parts: (1) the effect
the free energy of vacancy formation, and (2) the

effect of plastic flow on fix.

The Ee3mholtz free energy A of a perfect crystal is given by sta-
tistical mechanics as

Iexp (-A/kT) = .

for a system of N psrticles,

. .Iexp (-*@I’)

where *O is the

3N

n
dp3 dqj

*1

energy of the

(49)

system

expressed as a function of the coordinates ~j and momenta pj. For a

crystal containing a single vacancy> the Hebholtz free energy is given
by

H 3N

em (-&/m) = . . . (50)exp (-i@cT) ~ dpj d~j

y j+

&
- where *O and ?fV are the energies of the system in the perfect and

imperfect crystsZs, respectively. Thereforej since AG=AA+PAV, the
Gibbes free energy of vacancy formation is givenby

-

H..0 exp (-Y#dC) ~d~j W3

e- (-AG+T} =In’=+”(-p’v
(51)

where

P pressure

AVV volume change upon formation of a vacancy
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v

If the phase integral is separated into configuration and momentum
integrals, assuming the classical statistics of a crystal vibrating with c
normal mode frequencies, equation (51) becomes

J
n

(“o)jexp (-Qv/kT) dq

e~ (-AGv/kT)=

-~e”(-’’v”’(” )”) g

%

‘h vibrational mode inwhere (wo)j is the vibration frequency of the j

the perfect crystal and (vv)j is the frequency of the jth vibrational

mode in the crystal containing a vacancy. The integrals in equation (52)
are for the entire configuration space.

In a strained crystal.,the free energy of vacancy formation is given
by an equation analogous to equation (52)

\
exp (-@sT) dq n (Vo)j

exp (-AG~/kT)

J

where the index

An estimate

s

of

refers to the

the effect of
be made from Gruneisen’s relation

(53)

strained crystal.

strain on the vibration frequencies can
(ref. 11)

dlnv _
dln V ‘y

where

v volume

T positive constant

(54)
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Integrating equation (54) for each of the vibrational modes as the
crystal goes from the unstrained to the strained state yields

(55)

It is etident that GruneisenZs relation
products of frequency ratios in the strained
that conibiningequations (52) and (53) gives

leads to an equality of
snd unstrained systems,

the
so

exp
[ 1-&AG;-AGv) =

r r

J J
(56)

The volume difference (A% - AVV) is given by

where

v volume of

v~ volume of

Vv volume of

@v volume of

(A~-Avv)= (~-vs) -

=(l+vv)-

perfect unstrained crystal

perfect unstrained crystal

unstrained crystal containing

strained crystal containing a

(Vv- v)

(Vs - v)

a vacancy

vacancy

.
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r

For small strains, the volume change resulting from the strain should
be relatively insensitive to whether or not the crystal contains a vacancy. .

The volume differences (YV - Vv) and (VS - V) are therefore very nearly

equal and it is sufficiently accurate to take the dl.fference(A~v - AVV)

equal to zero, so that the pressure-volume terms can be dropped from
equation (56).

If the potential energy functions q; and (p: are now expanded in
*..

terms of the strains and the atomic displacements about the set of points a
N

corresponding to zero strains and mean atomic positions in the imperfect m.

and perfect crystal, respectively, results tiogous to equations (22)
and (23) are obtained. Continuing the analysis leading to equation (39)
shows that, to the first order, the free energy of vacancy formation
depends upon the derivatives of the potential energy with respect to the
strains, evaluated at the points in configuration s~ace corresponding to
the atoms in their mean positions in the perfect and imperfect crystals..
However, the states corresponding to the perfect and imperfect unstrained
crystals when sll the atoms are in their mesm positions are both equilib-
rium states in which the systems are in potential wells with respect to
both atomic coordinates and strains. Thus, the first derivatives sre sll
zero and the free energy of formation of a vacancy is Independent of the
strains to a first-order approximation: .

.

The terms quadratic in the strains are, of course, not zero.

The analysis shows, therefore, that the jump frequency is more sensi-
tive to strains than the energy of vacancy formation. In any diffusion
process, the effect of strain is felt most strongly through the jump fre-
quency, and for static strains this is usually the only factor that must
be considered. Thus, to the first order in the strains, equation--(48)
may be written in the simple form -.

snv= =x + ~ exp (-AGv/w)

~he only problem remaining is to calculatethe effect of plastic flow on
nx.

Theory and experiment both indicate (refs. 2, 10, and 12) that for
simple types of deformation, the number of vacancies produced by plastic
strain is proportional to the strain rate. In this report only sirqple
plastic deformations that can be described by a single strain parsmeter
are considered, including tension, compression, and shear.
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Accordingly, for the production rate
is assumed that

where

& strain rate

K1 a constant

Since the vacancy concentration
the thermodynamic equilibrium value,

21

of vacancies during plastic flow it

Kli (57)

during plastic flow is greater than
the acess vacancies will tend to

precipitate out of the crystal matrix. It has been shown that vacancy
condensation is most probably a heterogeneous nucleation process (refs.
13 and 14) in tich the vacancies precipitate at imperfections in the
crystal such as grain boundaries, foreign inclusions, and voids. For such
a mechanism it is reasonable
the lattice by a first-order
is given by

to postulate that vacancies sre removed from
process. That is, the rate of destruction

so that the differential equation

&x
x=

governing the vacancy

K16 - K2=X

(58)

concentration is

(59)

where

t time

K2 a constant

On a microscopic scale, it is obtious that the excess concentration
of vacancies may vaxy considerably from one point in the crystel to
another, depending upon the distribution of the imperfections in the latt-
ice, which act as vacancy sources and sinks. Eowever, in macroscopic
diffusion experiments, interest lies in the over-all average vacancy con-
centration. Accordingly, a bsr is placed over ~ to indicate the space
average of the vacancy concentration.

Integration of equation (59) gives

(60)
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and equation (48) becomes

s Kl;

%=- [ 11 - exft(-K2t) + NT exp (-AG#T)

.

(61)

The mode of production of vacancies by moving dislocations is dis-
cussed in some detail in references 10 and 12. As pointed out in these
references, a number of possible mechanisms exist by which moving dislo-
cations can generate vacancies. At present it does not seem possible to
perform an accurate calculation of the rate of production of vacancies
and therefore K1 must be treated as an empirical parameter to be deter-
mined by experiment. However, it can be noted that if the generation
mechanism involves dislocation climb, K1 will be proportional to the

coefficient of self-diffusion as well as to the dislocation density. If
a purely geometric mechanism is involved, K1 will depend only upon the

dislocation density. Thus, for production by a geometric mechanism,

and for production by a thermally activated mechanism,

where

.

.

cl> C2 temperature independent constants

E energy of activation for self-diffusion

The rate of destruction of vacancies is detemninedby K2. Refer-

ences 13, 15, and 16 are concerned with calculating the rate of absorption
of vacancies by various types of’vacancy sinks} and the remaining discus-
sion of this section is largely an extension and development of this work.

The constant K2 depends on the nature of the vacancy sinks in the.—
material. Obviously, different kinds of vacancy sinks are possible. ““

—

Thus, a foreign inclusion may collect vacancies and give rise to a void
that acts as a spherical or ellipsoidal sink, and large grain boundaries
may act as two-dimensional sinks. Dislocations may act as sinks for
vacancies in two ways: If the energy of interaction between a vacancy
and a dislocation line is great enough, a-vacancy becomes immobile and is
essentially removed from the diffusion region when it gets closer to the
dislocation line than some specified distance Ro. The dislocation line -

then gives a rise to a cylintiical sink of radius” Ro. This type of sink
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is proposed in reference 16. If the energy of interaction between a
dislocation and a vacancy is large only at certain discrete points along
the dislocation line, such as dislocation jogs, then ~ depends on the

frequency of collision between a vacancy and a jog. This type of sink
is postulated in reference 13 in studies of precipitation of vacancies
during diffusion. Thusj four types of idealized vacancy sinks are con-
sidered: spherical, platelike, cylindrical, and discrete-point sinks.

Spherical Vacancy Sinks

It is assumed that a spherical sink of radius

center of a spherical region of ~adius R. During

R. is located at the

plastic flow, the pro-
duction rate of vacancies is Kl&) so that the spherically symmetric

steady-state diffusion equation is

where

Dv diffusion

‘V d—.

()

#4 “
r2 dr

~ +K1e=O

coefficient for vacancies

(62)

r radial distance from the center

o steady-state conditions

For the purpose of this calculation, the effect of the deformation
on the coordinates in equation (62) is neglected snd it is also assumed
that Dv is independent of position.

The boundsry conditions chosen for the solution of equation (62) sre

#(Ro, t) = O

() I

%? .0
T I=R

(63)

Equations (63) imply that the sink is a perfect absorber of excess
vacancies and that the sinks me uniformly distributed through the crys=

. in such a way that the distance between them is 2R.

%
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The solution of equation (62) with the boundsry conditiorm givenby
equations (63) is

The average concentration ~ throughout the spherical
radius R is given by

Performing the integration in equation (65) gives

If RO<CR, so that the distance between sinks is much

their radius, then, at steady state,

But from e~ation (59), the steady-state condition gives

Kl; = K2=~

which, combined with equation (67), gives

3 R. Dv

%= R3

or, if there are f sinks per unit volume,

~ = 4YrRofDv

(64)

volume of

(65)

(66)

s

larger than

(67)

(68)

(69)

(70)

.

“
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Platelike Sinks

For platelike sinks of thickness ~ and a distance 2L apart, the

boundary-value problem analogous to equations (62) and (63) is

where x is the
equation (71) is

or,
the

if Lo-=<L,

d2#
Dv — +Kl;=O

~2

1

perpendicular

.

25

(71)

distance from the plate. The solution of

1
n~=~~Lx-LLo)-~(x2.-#) (72)

v

the average concentration is

(73)

2DV
K2=3 (74)

if the area of the platelike sinks is approximately L2 (as would be
case in a material of uniform grain size), then,

K2 e 2K#L (75)

.
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Cylindrical Sinks

For cylindrical sinks, the boundary-value problem becomes

where

‘o radius of cylindrical sink

2r1 distance between sinks

(%)r=.=OJ

The solution of equation (76) is

and

%=

“

.

—

(76)

.

.
(77)

(78)

(79)

—

If the sinks ae dislocations of length 2, the volume per sink is

xr& and equation (79) can be expressed as

21iD92

%=- (80)

Iny
o

.
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But, fl is the number of dislocation Unes per square centimeter, that
is, the dislocation density ~, so that

21cD#?~
K2=—

r~ (81)

l.n—
‘o

Discrete Point Sinks

If the vacancies are destroyedby an atomic collision process, as
would be the case if only certain points, such as dislocation jogs, are
effective in trapping vacancies, the rate of vacancy destruction is pro-
portional to the co~ision frequency between vacancies and Jogs.

The jump frequency of a vacancy is roughly Dv/k2, and if C~ is

the dislocation jog concentration, the collision rate between excess
vacancies and jogs is

where Cj/~ is the

Dv

~ ‘x

probability that

(82)

when a vacancy jumps, it runs into

a jog. If it is assumed that all collisions result in a destruction of
the excess vacancy,

(83)

Inspection of the various expressions for K2 shows that K2 is
proportional to the diffusion coefficient for vacancies and to ithecon-
centration of vacancy sinks, and depends on the geometric character of
the sink.

In addition to the mechanisms involting migration to sinks, vacancies
may disappear by combining wtth interstitial. Since interstitial are
much more mobile than vacancies (ref. 16, ch. 5), only the diffusion rate
of the interstitisls must be considered in the recotiination process.
The jump frequency of an interstitial is Di/X2 where Di iS the diffu-

sion
tion

coefficient for the motion of interstitial atoms.. If the concentra-
of interstitial is ni, ~ is given by

Dini
%2 .6 (83b)
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Thus, if the vacancies are destroyed by reconibination
stitialsj K2 is proportional to the diffusion coefficient

NACA TN 4408
w

with inter-
for inter-

.

stitials rather than to the diffusion coefficient for vacancies.

In an actual crystal, several of the production and annealing mecha-
nisms may be operating simultaneously, in which case the constants K1

and ~ are given by sums of the special cases described previously.

@co
DIFFUSION COEFFICIENT AS FUNCTION OF STATIC AND DYNAMIC STRAINS

m~.

In the pretious sections, the theoretical framework for an analysis
of the effect of strain on diffusion has been developed. In this sec-
tion, the previous results are combined to give the final functional.
dependence of the diffusion coefficient on the strains.

.

From equation (19) it is evident that for an isotropic solid under
homogeneous strain the diffusion coefficient for the flow of species N
is given by

D8 = a% ns r8

where

(84)
.

X8 lattice parameter

a constsnt that is determined by the crystal structure

The subscript s refers to the strained crystal.

Four special cases of the general equation (84) are considered:

(1) Diffusion by an interstitialmechsmism in the presence of static
strain (strain rate, zero)

(2) Diffusion by a vacancy mechanism in the presence of static strains

(3) Diffusion by an interstitialmechanism during plastic deformation
(strain rate not zero)

(4) Diffusion by . vacancy mechanism during plastic deformation.

The four diffusion coefficients correspondingto these four cases will

be labeled D(:), D(~~, D(~), and D(y), respectively.
e C

. —.
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For case

COWENTRATION

(43) to (45).

1, n~ = 1 as discussed in the

ON STRAIN and I’s i~ given by

29

section DEPENDENCE @ VACANCY

one of the equations (39), or

For the purposes of this discussion it is assumed that the
deformation is a uniform lattice contraction, so that equation (43) gives
the dependence of the jump frequency on strain. The extension to other
types of strain is obvious. Using equation (43) and the fact that the
strained lattice parameter is related to the unstrained lattice parameter
by the factor (1 + 6) for case 1 yields

@ = CLk2(1 +- &)2~u exp [%(%),,; (85)

For case 2, the vacancy concentration is governedby equation (47),
and to a first-order approximation is unaffected by strain. Since

‘s = nv/NT, and for the homogeneous deformation case being considered I’s

is given by equation (43), the diffusion coefficient for case 2 is given
by

~(;) =a~2a
I?~

rn (l+&)2exp
~%($$~,~ (86)

Since plastic flow does not affect the number of interstitial sites,
ns = 1 even in case 3, and a result identical to that of equation (85)

is obtained

(87)

A significant difference between equations (87) and (85) is that in
equation (87), the strain and, therefore, the diffusion coefficient, is
a function of time. Also, in equation (85)> the strain that must be con-
sidered is the actual lattice strain and not the observed macroscopic
strain. For plastic deformations, these two strains are not, in general,
equal.

For case 4, the vacancy concentration is givenby equation (61).
Thus, again using equation (43) and the fact that ns = n.#~ for case
4 gives

(88)
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For interstitial diffusion, the diffusion coefficient in the un-
strained case is

~(i) = akz

and for diffusion by a vacancy mechanism

rn (89)

in the unstrained case

n
~(v) 2 v=ak rnz

Therefore, equations (85) to (88) maybe written as

(90)

(91)

(92)

(93)

These equations show how the effects of various types of strains on
the diffusion coefficient can be taken into account for different diffu-
sion mechanisms. The extension of this analysis to other diffusion mecha-
nisms is completely analogous to the present development and tilJ.not be
given here.

It should be noted that in the. expression for D(y), the strain rate

in equation (93) is the macroscopic strain rate, altho~gh the strain
e(t) is the microscopic lattice strain.

COMPARISON OF T13XORYW~ E?4PIRICALDATA

The theory presented in this report makes a number of predictions
that can be checked by existing experimental data. In this section, an
analysis of the validity of the theory is made by comparing the theoreti-
cal results with diffusion data. The equations developed thus far are

,

&

N
0

.

.

.—
.—

—

.
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not always in the form most suitable for comparison with experiment.
Whenever necessary, therefore, the equations will be transformed into
convenient form.

The only literature data available for testing equation (91) are
concerned with the effect of hydrostatic pressure on the diffusion
coefficient.

The experimental data usudd.y
function of pressure, so that from
material, the data can be obtained
pressure-volume data are generally

venient to express e as a volume

pressure). The strain & is

.

for
the

so that, in terms of volume strain,

.

give the diffusion coefficient ~ a
the pressure-volume relation of the
as a function of strain. Since
given in terms of A!I/Vo,it is con-

strain (V.

small strains. Therefore, using equations
fact that

changes equation (91) to

is the volume of zero

(94)

Therefore,

against AV/Vo

31

a

(96)

(97)

it is evident that aplot of in D(;) (l+AV/Vo)-2/3

should be linear with a slope m given by

(?) 1m=-
e *,O m

(98)

and an intercept given by in D(v),



32 NACA TN 4408
●

Several investigators have obtained data on the variation of the
diffusion coefficient with pressure that is suitable for testing equation -
(97). Reference 4presents data fortheseH-diffusion coefficient as a
function of pressure for sodium, phosphorus, and mercury up to pressures
of 12,000, 4000, and 8000 atmospheres, respectively. The self-diffusion
coefficient of liquid gallium up to pressures of 10,000 atmospheres is
given in reference 17. The self-diffusion coefficient for single crystal
zinc up to pressures of 10,000 atmospheres for diffusion in the directions
parallel to and perpendicular to the c-axis is determined in reference 1.

t.
{
rc

The electric conductivitiesof silver chloride and silver bromide
have been measured as a function of pressure up to 300 atmospheres (ref.
18). Since the conductivity is proportional to the diffusion coefficient
of the silver ion by the Nernst-Einstein relation, the data of reference
18 are suitable for testing equation (97).

Plots of the variation of the quantity logD(~) (1-f-AV/Vo)-2/3

against AV/Vo for the self-diffusion of sodium, phosphorus, mercury,

and gallium are shown in figure 1. The quantities logD(~) (l+AV/Vo)-2/3

for single crystal zinc were plotted against the fractional.change in
lattice parameter AX/X, since this is a more natural unit for discussing ‘
diffusion in anisdropic crystals and the linear compressionsperpendlcu- -
lar and psxallel to the c-axis are avaf.1.sble.The zinc data are plotted
in figure 2.

.

Figure 3 gives log ~ plotted against AV/Vo for silver chloride

and silver bromide where R is the resi.st-ivity.The volume change AV/Vo

is small enough for the pressure range considered so,that (l+AV/Vo)-2/3

does not appreciably affect the results and can be ignored.

Compressibility data (refs. 19 to 23) were used to obtain the appro-
priate value of AV/Vo for zinc, sodium, mercury, silver chloride, and

silver brotide. For gallium, AV/Vo was computed from the data of refer-

ence 22 assuming that the form of AV/Vo as a function is the same as

that for mercury. The vslues of AV/Vo for white phosphorus were com-

puted from data from reference 24 assuming that the vsriation of the
fractional volume change with pressure has the same form as that observed
in reference 25 forllack and red phosphorus.

In all cases, the available compressibility data were extrapolated
to the diffusion temperature.

.
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The linearity of the plots presented in figures 1 to 3 shows that

the form of equation (97) is valid for those systems investigated within
the probable inaccuracies of the experiments and the calculations.

The slopes of the plots given in figures 1 to 3 are related to the
interatomic forces through equation (97). If the repulsive potential is
steep for a certain metal, that is, the atoms me “hard”, then for a given
atom displacement arising from a lattice strain, the rate of change of
the potential energy with strain is much greater than for a similarly
strained crystal containing “soft” atoms. Thus, (&p~c)Z,O shouldbe

large for hard atoms and small for atoms hating slowly varying yotential
functions. The qusntity -l/k (?@&)$,O = nfl has been calculated from

the slopes of the plots of D(:) (1 +AV/Vo)-2/3 plotted against AV/V

and the absolute temperatures of the available diffusion e~eriments.
Table I summerizes these values of m and W.

The lowest values of fl sre those for mercury and gallium. This
is to be expected since they have relatively “softi~potential functions,
and being in the liquid state, their atoms are highly mobile so that
they can adjust to the motion of the diffusing atom to give the lowest
possible values to the interatomic forces. The values of mT for the
silver halides are among the highest, and this is entirely reasonable in
view of the steeply rising repulsive potential a silver ion meets as it
migrates from one stable position to the nefi. In zinc, K@ is much
larger for diffusion perpendicular to the c-axis than for diffusion
parallel to the c-axis. This is in accord with the fact that the nearest
neighbor distances sre closer in the perpendicular direction, so that
when an atom tigrates to the activated position, the chsmge in the inter-
atomic forces is ~eater than for a corresponding process in a direction
parallel to the c-axis. Of all the solids listed, sodium has the lowest
value of ti. The interatomic potential varies relatively slowly for
sodium; in fact, recent calculations (unpublishedNACA data) show that
the potential well is so broad that the pairwise potential is repulsive
to distances as fax out as 1.4 times the nesrest neighbor distance in
solid sodium. Thus the low value of d for sodium is in agreement with
its interpretation in terms of the interatomic forces.

The fact that dl! is so much smeller for the liquid metals than for
any of the solids including sodium is indicative of the difference in the
mechanism of diffusion in liquids and solids. In a liquid, the atoms are
not constrained to remain at lattice positions so that diffusion occurs
by a cooperative process involting the migrating atom and its nearest
neighbors. Thus, the change in the interatomic forces can be kept.to a
minimum throughout the diffusion process and, consequently, mT would be
very low.
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Dependence of Diffusion Coefficient on Strain

In the absence of strain, the diffusion coefficient
usual expression

D = Uk2V n exp (-AG/kT)

*

Rate
.

D is given by

(99)

diffusion by a vacancy mechanism, n is the atomic fraction of vacan-
cies in the crystal at equilibrium. In a crystal undergoing plastic 1+

deformation, the diffusion coefficient is -E
m

D(v) 2
E s s s exp (-&*/kT)=a.knv (loo)

As usual, the subscript s refers to the strained system.

If it could be postulated that at the stress levels at which plastic
flow occurs at diffusion temperatures, the effect of the strain on the
quantities A, v, and AG are negligible compared with the effect of the
strain rate on the vacancy concentration,then to a good approximation the

(v)/D(v) would be giVen byratio D ~

D(;) .
>

~=n (101)

-.
This postulate is a reasonable one since it is well known that moving

dislocations produce large numbers of vacancies. Also, plastic flow occurs
by the displacement of large blocks of material as a result of dislocation
motion, so that the microscopic strains defining the relative atomic

—

positions.are much smaller than the macroscopic strains. In fact, it is
highly probable that the microscopic straiti-tie always below the elastic
limit of the material.

Recent measurements (unpublishedNAC!Adata) of the effect of dynamic
plastic flow on the rate of diffusion of hydrogen through nickel substan-
tiate this hypothesis. The diffusion coefficient has been found to be
independent of the state of plastic strain for tensile strain rates of

-1
0.02 to 0.4 hour . Since hydrogen diffuses through nickel”by an inter-

—

stitial mechanism, any effect of strain on the diffusion coefficient must
manifest itself through the quantities k, v, and AG. The hydrogen dif-
fusion experiments CM therefore
effect of plastic deformation on
centration is negligible.

be intefirekd as indicating that the
quantities other than the vRcancy con-

<_
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For the simple types of dynamic strains discussed in the section
DEPENDENCE OF VACANCY CONCENTRNIION ON STRAIN, ns/n is obtained by di-

tiding equation (61) by equation (47), so that

Equation (102) shows that Ds increases with
steady state at which

(102)

time up to an asymptotic

(103)

The time required to reach the steady state depends upon the value of
K2. In order to obtain an estimate of K2, it will.be assumed that the

predominant type of vacancy sink
so that equation (81) is valid:

%

is a cylinder around a dislocation line,

2fiD#D
=

rl (104)

ln—
‘o

Typical values of Dv at approximately l@ C are in the range of 10-7

to 10-9 centimeter squared per second and a value of about 107 for
2fiND/~ (rl/ro) has been given in reference 2~, so that K2-is in the

range of 1 to 10-2.
1

Consequently, the factor 1 - exp (-K2t)] reaches a

value of 0.9 in a time somewhere between 0.04 and 4 minutes. For the ex-
ample stated, a diffusion experiment should last at least several hours if

Dv = 10-9, and at least several minutes if I)v is as high as 10-7.

The only data available in the literature on the effect of plastic
deformation on diffusion is for the case of iron over a restricted range
of strain rates (refs. 2 and 3). Although the data are not extensive,
and some doubt exists concerning the absolute magnitude of the effect
(ref. 3), a linear relation between the diffusion coefficient and the
strain rate seems to be valid. This is in a@eement with the steady-state
equation (103). In tiew of the scarcity of the data in this field, not
much more can be said concerning the a~eement of the theory with experi-
ment. Additional experimental work in this area is highly desirable.
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Volume of Activation

From a comparison of equations (97), (98], and (100), the free energy
.

of activatiorifor diffusion in a system subjected to hydrostatic pressure
vsries with the volume strain according to

AV
AGs=AG-m~~ (105)

o
+

since ‘s * v for small lattice strains. Applying the definition of the :.
m_

activation volume for small lattice strains gives

[1b(AV/Vo)
AVs =

-m ~T

But ,

(106)

—

(107)

where p is the compressibility,so that the activation volume is given
by

.

AVs = mPkT (108)

Table 11 presents values of the activation volume calculated from
equation (108) at atmospheric pressure for those systems for which data
are available. Fi~re 4 is a comparison of the activation volume of
self-diffusion in sodium calculated from equation (108) with the activa-
tion volume calculated in reference 4 from experimental data. The agree-
ment is seen to be good.

CONCLUSIONS

A theory was developed that relates diffusion rates to the state of
strain of the material. Fickts laws of diffusion were generalized to

—

include the strain. The generalized equations differ from the ordinary
diffusion equations in that the flux of diffusing material is proportional
to terms containing the strain gradient as we~ as to terms containing the
concentration gradient. IQ addition, a molecular-kinetic theory was

.-

developed that relates the diffusion coefficient to strain in terms of
the atomic properties of the system.

.—
—

.
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The effect of dynamic plastic deformation on the diffusion coeffi-
cient was investigated by considering the rate of production of vacancies
by meting dislocations and the rate of precipitations of vacancies at
V8C~Cy sinks. The resulting equation states that the diffusion coeffi-
cient is a l.inesrfunction of the strain rate.

Several predictions that can be checkedby etisting experimental data
may be made from the theory:

1. For diffusion as a function of hydrostatic pressure, the diffusion
coefficient is an exponential function of the volume strain.

2. The rate of change of the diffusion coefficient with strain is
related to the interatomic forces. The relations is explicit enough that
the variation of the diffusion coefficient with pressure can be interpreted
in terms of the interatomic potential.energy functions of the material.

3. For diffusion und= hydrostatic pressure, the activation volume
can be calculated from the compressibility and the rate of change of the
diffusion coefficient tith volume strain.

4. Dynamic plastic deformation increases the diffusion rate, the
diffusion coefficient being linesxly related to the strain rate at steady
state.

. In every case for which data are available, these conclusions sre In
a~eement with experiment.

The general frsmework of the tkry provides a basis for understanding
the effect of strain on diffusion in terms of the molecular-kinetic prop-
erties of the system and should provide a valuable tool for compming
diffusion rates for different states of strain, as weJJ.as for investigat-
ing the mechanism of diffusion.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, Sept. 2, 1958
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TABLE I. - COMPARISON OF VALUES OF mT

FOR VARIOUS METAIS

Metal Temperature, m mT
T,
oK

sodium 363 27.9 10,120
Zinc (1) 580 86.6 50,200
Zi.nc(ll) 580 34.7 20,100
Mercury (liquid) 303 6.5 1,970
Gallium (liquid) 303 6.5 1,970
Silver in silver chloride 573 91.9 52,600
Silver in silver bromide 573 128.0 73,000

T.ABLX11. - ACTIVATION VOLUMES FOR SELF-DIl?FUSIONOF

VARIOUS MEmUS AT 1 ATMOSPHERE CxLcum

FROM IQUATIOFl(108)

Temperature, Activation volume,
T, AV8,
oK

cc~g-atm

I Metal

L CalculatedI ~erimentsl

363 12.3 12.3 (ref. 4)ISodium
Phosphorous

(white)
zinc (1)
Zinc (11)

[

Mercury liquid)
Gallium liquid)
Silver.in silver
chloride

Silver in silver

314 71.7

{

30.0 ref. 4)
580 3.0 4.9 ref. 1)
580 8.3 . 16.9 ref. 1)
303 .62 .57 (ref. 4)
303 .62 .55 (ref. 16)

573
I

10.3
I

573 I 13.7 II bromide
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Figure Z.
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12i A Nachtrieb,ref.4
0 Equation(134)
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