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SUMMARY 

A previous analysis of turbulent heat transfer and flow with vari- 
able fluid properties in smooth passages is extended to flow over a flat 
plate at high Mach nlzmbers. Velocity and temperature distributions are 
calculated for a boundary layer in which the effects of both frictional. 
heatFng and external heat transfer are appreciable. The viscosity snd 
thermal conductivity are assumed to vary as a power of the temperature, 
while the Prsndtlntier and specific heat are taken as constant. Skin- 
friction and heat-transfer coefficients are calculated and ccqsred with 
the incompressible values. The relation between boundary-layer thickness 
and distance &long the plate is obtained for various %.ch numbers. The 
analytical results are ccmpared with representative experimental d&a. 

The current emphasis on high-speed flight has caused much Interest 
in research on compressible boundary lsyers. The skin friction in high 
Mach n&er flight constitutes a large part of the total drag. There- 
fore, the accurate prediction of skin friction is desirable for the de- 
sign of high-speed aircrsft. Prediction of heat-transfer coefficients 
ti high Mach nMber flow is also important, because frictional heating 
of the surface necessitates cooling to prevent structural failures. 

The prediction of lsminar boundary layers from the basic equations 
of momentum, energy, and continuity has reached a high state of develop- 
ment. A considerable mount of anslyticalwork anturbulentboundary 
layers has also been carried out. In the turbulent case, however, the 
results of the various analyses disagree markedly because of the differ- 
ent assumptions made by the various authors. These analyses are reviewed 
in references lto 3. The introduction of assumptions Fnto the treatment 
of turbulent boundary layers is at present unavoidsble, stice solving the 
problem from the instantaneous equaticms of manentum, energy, and conti- 
nuity alone is not yet possible. In scme respects, however, the model 
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used for solving the problem might be improved. Innearly allthe anal- 
Y-3, the flow is divided into a laminar region, where turbulence is sup- 
posed to be absent, md a fully turbulent region. The effect of varia- 
tion of fluid properties on the laminar region is generally neglected. 
Measurements of turbulent velocity profiles indicate that considerable 
turbulent shear exists withFn the so-called laminar layer (ref. 4), so 
that a more realistic model for the region close to the wall than that 
used ti previous analyses is desirable. 

-, 

L 
.- 

A somewhat improved.treatment of the region close to the wall is 
given Fn references 4 to 6, where the effects of turbulence and of vari- 
able fluid properties in this region are considered. In the region away 
frm the wall the von K&L&I similarity expression has been considered 
the most reasonable expression available (ref. 7). In reference 8, fully 
develcrped turbulent flow and heat transfer in smooth passages for air 
with variable properties are analyzed, and the results agree wel.l tith 
experkxmtal data. The am,lysis is extended to the entrance regions of 
passages and to high Prandtl m&era in references 9 and 10, where good 
agreement with experiment is again obtained. Since the analyses apply 
well to entrance regions, the assumptions made in the analyses should 
apply also to a compressible boundary layer. '-The analysis is extended 
to flow and heat transfer in a boundary layer at high Mach numbers in 
this paper. (S me preliminary results were presented in ref. 11.) The 
variation of properties due both to friction@ heating and to external 
heat transfer is considered. The viscosity and them1 conductivity are 
assumed to vary as a power of the temperature, while the Prandtl nuttiber 
and specific heat are taken as cmstant. 

SYMBOLS 

A 

a 

B 

C 

Cf 

"P 
D 

d 

constant 

ratio of diffusivities, Eh/e 

constant 

constant 

friction coefficient, 2Tw/p8< 

specific heat of fluid at constant pressure 

constat 

exponent for viscosity variation with temperature, taken as 0.68 
for air 
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t+ 

t+’ 
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V 
l 

X 

constant 

entha1py 

heat-transfer coefficient, qw/(tw - taw) 

thermal conductivity 

I&ch number based on free-streaa'properties and velocity, 
u$m 

cC[nst8llt, 0.109 

Prandtl number, cpp/k 

heat transfer Fn y-direction per unit time per unit are8 

perfect gas constant 

Reynolds nmber 

Reynolds nmiber 

Stanton number, 

total temperature, t + (u2/2cp), deg aba 

total-temperature parameter, 
(.tw - T>"p"w 

qW+JG 

static temperature, deg abs 

tarperature 

temperature parameter, 
2(t, - tkpPw 1 - (t/t,> 

= 
5 a 

W 

velocity in x-direction 

(t/t,) 
paramter, 

(‘Gw - tb-gw = 1 - 

%.7-W 
B 

velocity parameter, u/dFi 

velocity in y-direction 

longitudinal distance alcmg plate 
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distance perpendicular from plate 

wall distance parameter, 
ya 
TJG-- 

lowest value of y+ for which equation for region away from wall 
applies 

I 

u 

frictional-heating parmter, Tw/2cp+9w . $ 
K 

heat-transfer parsmeter, 
qwmw 

gw=w 

ratio of specific heats, t&en as 1.400 for air 

flow boundary-layer thickness 

flow boundary-lsyer-thictiess parmter, seW 

-Tz 

therm&boundary-layer thickness 

thermal boundary-layer-thickness parameter, %a 
-XT 

eddy diffusivity of momentum 

eddy diffusivity of heat 
t 

temperature-recovery factor, al - % 

d2"P 

momentum thickness, 

c 

mcmentum-thickness parameter, 
e+whw 
--c&- 

constant, 0.36 

viscosity 

density 

shear stress, force per unit area 
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Subscripts: 

&W pertaining to adiabatic wall conditions 

1 incompressible; constant fluid properties 

W pertaining to wall 

. 

;;i 

. 

d 

6 pertaining to edge of boundary layer or free stream 

1 pertaining to edge of wall layer 

Superscripts: 

* reference 

t pertaining to fluctuations frcmtime average except in t+' 
- 

time-averaged value 

ANALYSIS AKDDISCUSSICN 

Basic Equations 

The instantaneous velocities, temperature, and fluid properties in 
the equations of momentum, enera, and continuity csn be divided into 
mean and fluctuating components. If time averages are taken, the follow- 
ing equations for shear stress and heat transfer, applicable to flow in 
a boundary layer, are obtained (appendix A): 

T= pu’y’ (11 

q-kg +pCpFF-up~+upUp 
ay (21 

specific heat is assumed. The bars denote time averages, _ . where constant 
andthe primes indicate fluctuating components. Equations (1) snd (2) 
are the ssme as equations (A9) and (Al4) in appendix A if the bars over 
the time-averaged velocities, tqeratures, and properties are drapped. 
The various terms in equations (1) and (2) may be interpreted as follows: 

molecular shear stress 

-p 77 turbulent shear stress 
-k g molecular heat transfer 
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pep t’V’ turbulent heat transfer 

-qJ e molecular dissipation 

upu'v' turbulent dissipation 

Equations (1) and (2) suggest the form of the turbulent transfer 
equations but contain the unknown quantities u'v' and t'V', sothat 
assumptions must be made before solutions can be obtained. For makFng 
these assumptions it is convenient to introduce the relations 

u’v’EmBdu and ~'V'E-s dt 
ay hdy 

where c and sh are the eddy diffusivities for momentum and heat trans- 
fer, the values of which depend upan the amount and kind of turbulent 
mtiing at a point. 
and (2) become 

When these relations are introduced, equations (1) 

q = - (k + pc 
Ph dY 

E ) g - u(p + pe’$ 

The phySiC&l SigdfiCSme Of E and eh lie6 in the fact that s/(u/o) 
is the ratio of turbulent to molecular shear stress (ref. 12>, and 
Eh/(k/PC 

P 

> is th e ratio of turbulent to molecular heat transfer. Equa- 
tions (3 and (4) can be written in dimensionless form as 

a -= x 
7 

W ctr 
(5) 

end 

The subscripts w refer to values at y = 0; that is, at the wall. The 
quantity a is a frictional-heating parameter that is an indication of 
the variation of properties due to frictional heating, and i?, is a heat- 
flux parameter that is an indication of the variation of properties due 
to heat transfer. The parsmeter a is always positive or zero, a value 
of zero characterizing low-speed flow (i.e., % = 0). A zero value of 

. 

p refers to a vanishingly small heat transfer or an tisulated plate. 
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A positive value of 6 indicates heating of the fluid, while.negative 
6 means that the fluid is being cooled. It is scmetimes convenient to 
write equation (6) in the following alternative dimensionless form: 

l!s=kl p 
a qw ( 

qPr,+p,a 
r) 

Epw $-2u+ $+-&.aw $ 
( ) 

(7) 

This equation is psrticularly convenient when j3 = 0, for which case 
equation (6) becomes indeterminate. 

Ekpressions for RddyDiffusivity 

In order to make practical use of equations (5) to (7), the eddy 
diffusivity E must be evaluated for each portion of the flow. For this 
purpose the boundary lsyer is divided into two portions termed the "re- 
gion away from the wall" and the '*region close to the wall." 

Region away from wall. - In the region away from the wall, it is 
assumed that the turbulence at a point is a function mainly of local con- 
ditions - that is, of the relative velocities in the vicinity of the 
point (ref. 13). This is probably not a good assumption in the region 
near the edge of the boundary layer, where considerable diffusion of the 
turbulence occurs (ref. 14) and, in addition, the turbulence is inter- 
mittent. However, in that outer region the velocity or temperature 
gradients are so small with respect to these gradients nearer the wall 
that the error in calculated velocities or temperatures should not be 

A Taylor series expansion for as a function of transverse 
gz=ce, then indicates that E is aUfunction of du/dy, d2u/dy2, 
a3u/ay3, and 8; forth. If, as a first approxmtion, e is considered 
as a function only of the first and second derivatives, and dimensicms3 
analysis is applied, 

. 

d2u 
2 

C-1 ay" 

This expression was obtained by von K&m& and is generally hewn as the 
K&m& similarity hypothesis (ref. 7). The constant x is to be deter- 
mined experimentally. 

. 
Region close to wall. - In the region close to the wall it is as- 

sumed that E is a function only of quantities measured relative to the 

Y 
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wall - that is, of u and y.l This assumption includes, to a first 
approximation, an effect of the derivative du/dy. Since the flow be- 
comes very nearly lamina r as the weJ,l is approached, the first deriva- 
tive approaches the value u/y and hence may be omitted, since u and 
y already appear in the functional relation. By usFng dimensional 
analysis, 

E = c(u,y) = n2yy 

where n is anexper~ntalconstent. 

Equations (8) and (9) ten be considered as reasonable first approx- 
imations for 6. Whether these approximations are adequate or not can 
at present be determined only by experiment. 

. 

P 

Determination of experimental constants. - The constants n and x 
were determined from pipe data in which the properties were essentially 
constant. Equation (5) with equation (8) or (91, was integrated (con- 
stant properties and T I for the regions close to and away frcxu the wall 
in reference 4. The molecular shear stress was neglected in the region 
away from the wall, and the well-known X&m&-Prandtl logarithmic equa- 
tion was obtained in that region. 5.1 matching the two solutions It was 4 
assumed that the velocity is continuous at the junction of the two 
regions. f 

The integrated equations (ref. 4) for the regions close to and awey 
from the wall are plotted Fn figure 1 with the constants n = 0.109 and 
x = 0.36 determined from pipe data (refs. 4 and 14). !The data tidicate 
that the equation for the region close to the wall applies for fl < 26, 
and the equation for the region awey from the wall applies for y+ > 26. 
Included in the plot are data for a low-speed boundary layer with zero 
pressure gradient fram reference 15. The agreement with the curve is 
satisfactory. 

The values for the constants n = 0.109 and x = 0.36 should apply 
to flow with variable as well as constant properties if the basic assump- 
tions made for E: in the preceding sections apply to variabl 

c(u,y) close to the wall end B = e(du/dy, 
pr erties; 

that is, if E: = d u/ z z-4 
away from the wall. The constant $, however, requires further consid- 
eratian end is discussed in the next sectian. 

b eference 10 shows that the kFnematic viscosity has an effect on 
B in the region very close to the wall. However, that effect becomes 
important only for heat or mass transfer at Prandtl or Schmidt numbers 
appreciably greater than 1. 

- 
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Additional Assumptions 

In addition to the assumptions for eddy diffusivity discussed in 
the preceding section, several additicmal assumptions must be made for 
solving equations (5) to (7). 

Variation of properties with temperature. - Far gases, the viscosity 
varies approximately as td, where d has an average value of 0.68 for 
temperatures between 0' and 20CO" F. The Prandtl number (Pr = 0.73) and 
specific heat cp are assumed constant, because their variations with 
temperature are of a lower order of magnitude then the variations of the 
other properties. If Fe and Prandtl number are considered constant, 
the thermal conductivity k will vary with temperature in the seme way 
as the viscosity, or as td. For constant pressure across the boundary 
layer, the density p is Inversely proportional to t. 

With the preceding assu@ions, the property ratios in equations 
(5) to (7) can be written as 

From the deftiitions of p and t+, 

t x= I- - pt+ (12 > 

or, if equation (7) rather than equation (6) is used, 

t 
Tr=1-at 

+’ (13) 

The property ratios in equations (51!to (7) can therefore be written in 
terms of 6 and t+ or a and t . 

Variations of 'c and q across boundary layer. - The momentum 
equation (A7) tidicates that, for a flat plate (zero pressure gradient), 
dq/dy = d(pdu/dy)/dy = 0 atthe wall. Since 't is zero at the 
edge of the boundary layer, the actual variation of T across the 
boundary layer might be expected, in general, to lie between a linear 
variation (T/T~ = 1 - (y/S)) and T/T~ = 1. mta on low-speed isothermal 
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flW over a flat plate (ref. 15) show that this type Of variation does 
exist, except in a narrow region near the edge of the boundary layer. 
For determzlning the sensitivity of the velocity or temperature profile 
to shear-stress variation, ft should therefore be sufficient to compare 
the profiles for a COnStsdJ and for a linearly Varying Shear BtreBB. 
Appendix B shown that T/T~ = q/9, for a flat plate if the Prendtl num- 
ber is 1. 

1 . 
- 

P 

Figure 2 shows u+ or e plotted against y+ for a Prandtl num- 
ber of 1 for both a constant and a linearly varying shear stress and CG 
heat transfer, where Tt is the total-temperature parameter. Curves G 
are shown for 8 = 0 and a = 0, 0.003, and 0.008, which cover much of 
the range of Mach number and Reynolds number of interest. The equations 
for calculating the curves are given in appendix D. The equation for - 
the region away from the wall was taken to apply for p > 30 rather 
than '26 when the shear stress was variable, in order to give better 
agreement with the data for constant properties. The curve for a = 01B8 
is cut off at the point shown because the Mach number becomes infintie,. - 
as can be seen from equation (D3) (for au+2 = 1). The curves indicate 
that variable Shear BtreBB and heat trW.Xfer have but a Slight effect on 
the velocity and temperature profiles. Similar curves were obtained Fn 
figure 11 of reference 6 for p # 0 and a =- 0. The ssme conclusions 4 
should apply to Prandtl numbers dirfering slightly from 1, so that the 
effects of the variations of T and q across the boundary layer are L 
neglected for solving equations (5) to (7). 

Ranges of applicability of equations for flow close to and awsy 
from wall. - It was determined fromthe data for constant properties 
that the lowest value of yf for which the equation for the region 
awey from the w&u applies is yl + = 26 when the variation of shear stress 
with y is neglected and the molecLikr shear stress is neglected in the 
region away from the wall. The question arises as to how yz varies 
when the properties are variable. The Simplest assumption iB that y'i 
is constant and equal to 26. This assumption, which implies that the 
wall prOpertie govern the thiCknef36 of the wall layer 
(Y; = Y,JqFJ(PJP,> 1) is similar to van K&Y&I's assumption (ref. 
16). Figure 12 of reference 6 shows that essentially the Bsme Curve6 
are obtained when the molecular shear stress is neglected in the regicm 
away from the wall as when it is considered, the difference being that, 
when the molecular shear stress is included,. yz has the constant value 
of 16 rather than 26. 

Another assumptiac, which might be BcmeWhat more reasonable than 
assumFng y; C~Stallt, iS that y; occurs at a given constant ratio 

+/P) l of turbulent to molecular shear stress That is, the turbu- 
lence chsnges from that described by equation (9) to that described by 

L - - 

- -a- 
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equation (8) when the ratio Of turbulent t0 molecular shear stress 
reaches a certain value. In this case the more ccurrplete equations are 
Used for the region away from the wall, in which the molecular shear- 
stress and heat-transfer terms are retaFned and the ~lqpe~ of the equa- 
tions for flow close to and away from the wall ere matched at y: 
(Yf = 16 for 8 = a = 0). 

Ln figure 3, u+ or T+ is plotted agatist y+ for a Prsndtl num- 
ber of 1 using the two assUmpticns for 3 discussed in the preceding 
paragraphs. Curves are shown for B = 0 and a = 0, 0.003, and 0.008. 
The equations for calculating the cUrves are given Fn appendix C. The 
cUrves indicate that the velocity and t em$erature profiles are appsrently 
insensitive to the assUurption Used for yl. Similar results were ob- 
tained in figure 13 of reference 6 for 8 # 0 and a = 0. The simpler 
procedure of neglecting the molecular shear stress and heat transfer in 
the regim awsy froJnthe wall and assuming yl = constant = 26 is there- 
fore adopted in the following calculations. 

Ratio of eddy diffusivities for heat and momentum transfer. - In 
mo6-t analyses the ratio of eddy diffuBiVitie6 a that OCCUTB 5n equa- 
tions (6) and (7) is set equal to 1; that assU@Lon has given heat- 
transfer coefficients in gocd agreement with experiment (ref. 8). It is 
of titerest that Prsndtl's mixing-length theory, which ~SSLIXEB that a 
turbulent particle moves a given diBtaIEe and then suddenly mixes with 
the fluid and transfers its heat and momentum, gives a value of a = 1. 
Although the actual turbulence mechanism may be more complicated than 
indicated by that theory, it does indicate that a value of a on the 
order of 1 is not Unreasonable. ' 

In the present analysis the assumption of a = 1 is retained, but 
in some cases the CalCulatiOnS are alSO carried out for a = 1.07 in 
order to determine the effect of varying a. A ratio of diffusivities 
of 1.07 was obtained from some preliminary experiments on recovery fac- 
tors for fully developed flow in a tube. 

Velocity and Temperature Distributfons in Boundary Layers 

For obtaining velocity and temperature diBtribUtiOn6 close to the 
wall, equations (9) to (13) are substituted into eqU&icXE (5) to (7). 
Equations (5) and (6) become, in integral form, with ~~~~ = s/s, = 1, 

s 

Yf 
u+ = ay+ 

0 - pt+p + 1 1 n2u+y+ 
0 - pt+ 

(l-4 

-- 
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+ 
t+ 3. 

6 
( 

a (1 - 6t+)d + 
Pr n2u+y+ 

0 1 - p-t+ 

05) 

Equations (14) and (15) can be Solved simultaneously by iteration; that 
is, aSSLImed relations between u+ and y+ and t+ and y+ are Sub- 
stituted into the right 6ide6 of the equations, and new values of u" 
and t+ are calculated by numerical integration. These new values are 
then BulXItitUted into the right Side6 of the equatims and the process 
is repeated until the values of u+ and t+ do not change appreciably. 
Equa;tioIM (14) and (15) give the relations among u+, t+, and y+ for 
various values of a and p for flow close to the wall (yf < 26). For 
p=Oand a#O,t+ becomes infinite, so that e (5) and (7) 
must be used. These equations, with equation (13 

s 

Y+ 
+ u = dy+ 

(16) 
(1 - at+')d + ' , n2u+y+ 

0 1 - at+ 

s 

Y+ 

t+’ = 
(1 - at+'jd + 

07) 
1 

Pr ' l-at+' 
n2u+y+ 

0 

Equations (16) and (17) are solved similarly to equations (14) and (15). 

In the region away from the wall, the molecular shear stress and 
molecular heat transfer are 
tion (5) gives, with T/T~ = 

Dividing equation (6) by equa- 

l.+.zfuf=adt+ 
du+ 

(18) 

Integrating equation (18) frcnn yl to y+ gives 

t+ 
uT 

= t': + $ - a + E u+2 - $ ":2 

Pa 

I 

I 

- 
(19) 

c 

Y 
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From equations (ll), (X2), and (19), 

. 

J. 

(20) 

Substitution of equations (8) and (20) into (5) end one integration give, 
for the region awsy from the wall, 

-- & Si& 2au++p 
p2+4a(a-agtf+f3~-mKJ2) I 

(21) 

By letting 
x Z = - S& 2au+ + j3 

VV 
1 

P2 + 

and integrating equation (211, 

y+ = se" 
l+a. 

ax2 

The COnStad K IS ev&Luated 
du+/dy+ = 
into (22) 
determtie 

Z+*BiIl@Z +K (23) x x 
) 

ti the usual way by letting 
* at y+ = 0 Fn equation (21) (ref. 7) and substituting (21) 
and (23) at y+ f 0.2 By UsFng this procedure, K = 0. To 

%J set u+ = "1 when y+ = y:. Then, 

y+ = 
y’: ez -COB (+ z) ++%(+Z) 

a 

eZ1 [,OB (+ Zl) + e Sti (e zl)j 

- (24) 

where z is given by equation (22) and zI is the value of z at 
y; = 26. Equations (22) asd (24) give the relation between u+ and y+ 

2This assumption can be avoided by including the molecular shear 
BtreBB and heat tIXnBfer in the region awSy from the Wall- and evaluating 
K by assuming a continuous velocity derivative at y: (fig. 12, ref. 6). 
%iS aBBLR@iOn gives essentially the BSIIE ~SIlltS a6 that made in the 
text. 
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for various values of a and j3. The quantity t+ can then be calcu- 
lated from equation (19). 

For p = Oand a#O, t+ 
must be used. 

became6 infinite, and, tfr = (p/a)t+ 
Equatim (19) becomes, in terms of t+ J 

t+’ t+’ a + = UZ2 p + U+2 
1 -muyy+-Jl +a (25) 

Equations (22) and (24 
! 

apply to the case for p = 0 and a # 0 if at:' 
is Substituted for pt, in eqU&iOn (22). 

For a= 0, equation (23) beccmes indeterminate, and equation (21) 
for zero frictional heating from reference 6 can be used. 

Typical velocity and temperature distributions for various values 
of the frictional-heating parameter a and of the heat-flux parameter 
p are presented in figures 4 to 6. Positive values of p correspond 
to heat addition to the air; negative values, to heat extraction. The 
curves of u+ against y+ (fig. 4) Indicate considerable flattening of 
the velocity profile a8 either a or p increases positively. This is 
caused by the decreasing tpsrperatures in the outer regions of the bound- 
ary layer compared with the wall temperature when eitheY the Mach nmiber 
is hi& (high a) or the heat transfer from the surface to the air is 
high. Thus, the density is higher in the outer regions of the boundary 
layer, with consequent flattening of the profile (eq. (5)). Negative 
values of j3 produce the opposite effect. For certain cc&inations of 
a and j3 (with p negative), the effect of p on the curves should 
tend to cancel the effect of a, and the resulting profile should not 
differ greatly frcm the a = p = 0 curve. The curve for a = 0.002, 
B = -0.05 in figure 4 is close to the curve for a = ~3 = 0. Included 
in figure 4 for ccmrparison are experimental data frcm reference 17 for 
an a of 0.00176, p = 0, and a corresponding Mach nmiber MS of 2.82. 

l 

*- 

The data are Fn reasonable agreement with the predicted profiles. 

In figure 5 T' is plotted against y' for various values of a 
and j3. The total-temperature parameter !I? is plotted rather than t', 
because the trends are BcPnewl?Ebt mace COIIBiBted, althou& some CrOBBing 
over of the curves occur8 even with @. For calculation purposesJ a 
better representation can be obtained by plottFng @ agajnst u+. The 
quantity 6 is related to t+ by the relation 

@ = tf - ; u+2 (26) 
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The skin-friction coefficient is defined as 

where the SUbSCript 6 refers to values OutSide the boundary layer. 
Equation (27) beCCXIEBJ indimensi~eBBforTUJ 

Skin-Friction Coefficients 

27W 
CfE - 

WE 
(27) 

pw 2 
cf=ps+2= 

2(1 - ati') 20 - m&l 
+2 = +2 (28) 

us us "s 

For comparison with experimental data, it is convenient to introduce the 
mmentun thickness, 

which in dimensiCxl~ess form is 

e+ = (1 - 

s+ 
at:') s 1 l.2 

( > 

1 U+ 
F+ -7 o 1 - at+ s 

w+ 
us 

(30) 

Then the Reynolds number based on the mcmentum thickness and free-stream 
properties is 

(31) 

where the property ratios sre obtatied from equations (10) to (13). The 
MachnMerfor aperfectgas is 

%=d&=q/z (32) 

If values are given to a, 6, and sf, where Sf is the value of 
Y+ at the edge of the flow boundary layer, then values of u$, t&, and 
so forth can be read from curves sFmilar to those in figures 4 to 6. 
Values of CfJ Re6, and s can then be calculated frcxn equations (28), 

(311, and (32). This procedure ~SBI~I~B that the thermal and flow boundary 
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* 
layers are of equal thi&tIeBB. From the calculations in a later section, 
where relations between boundary-layer thickness end distance Alcoa the 
plate are calculated, it can be shown that this is agood assumption for Y 
gases when the thermal and flow boundary layers begin at the same point. 
For the case of Pr = a = 1 the assu@ion holds exactly, as can be seen 
by Bubstitut~ u+ = Tt- into equations (42) and (431, which are then 
identical. 

Predicted Bkti-friction coefficients are plotted against Reg in 
figure 7 for various values of Mach number for an FnBLii&ed plate 
(j3 = 0). These curves are for ch/~ = a = 1. The effect on the curves 
of changing a to 1.07 was negligible. The values of C decrease 
considerably as Mach nuziber increases. Included in the p f ot are experi- 
mental data of a number of investigators for Mach numbers up to 4.93. 
In general, the data are in good agreement with the predicted curves. 

'phe ratio of the friction coefficient to the inCCR.XpIXBBible coeffi- 
cient is plotted against Mach number for various values of Ree for 
B =0 infigure8. The values of Cf/Cf,i decrease with ReeJ but at 
a decreasing rate. For comparison purposes the analytical curve of 
Cf/Cf,i against e for a value of Ree of 6OCO is plotted in figure 
9 together with data taken near this value of Rec. 

If heat transfer occurs between the plate and the stream, it is 
convenient to specify the ratio of the actual wall temperature to the 
adiabatic wall temperature for a given Mach nwriber and Reg. For an in- 
sulated plate the adiabatic wall temperature may be written as 

Y 

where 7 is the temperature-recovery factor, the calculation of which 
iS discu6sed in the next Section. Equation (33a) can be written in 
dimenSiOnleSS fOZVl a6 

tW 1 -= 
t (33b) 

aw l- B"i + wJJg2 

Figure 10 is stiilar to figure 7, 
cooled (t,/t, = 0.5). 

except that the plate is now 
The trends are similar to those of figure 7, but 

all the curves are displaced upward. This increase ti friction coeffi- 
cient was also obtained for flow in a tube with cooling (ref. 5). Al.60 
included in this figure are wind-tunnel data (ref. 18) obtained at high 
Mach number using nitrogen as the working fluid. The agreement with 
theory appears to be within experimental error. 
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i 
Figure ll is similar to figure 8 but is for a value of 0.5 for 

twltaw' It is of interest to note frcan both figures 8 end ll that the 
percentage effect of varying Reynolds number is much greater for the 
higher Mach numbers. Thus, figure 8 indicates that for a Mach number of 
20 the value of Cf/CfJi for Ree of 105 is less thsn half that for 

Ree of 103. 

Reference TemperatKreB and Rxkk~iOn Of ReSul.tS t0 

Greater Cooling Rates 

The defining equation for reference temperature is 

t* = ts + C(t, - ts) + D(t, - t,> (W 
where C and D are constants to be evaluated from theoretical or ex- 
perimzntal results. Dividing equation (34a) by tB and assuming that 
the recovery factor is constant at 0.88 and that y = 1.40 result in a 
more useful form of the equation: 

t* -= 
% 

(1 - > + D 
aw I( 1 + 0.176 4) 

According to the concept of reference temperature, the relation be- 
tween incompressible friction factor and Reynolds number should hold for 
variable-property flow if the properties are evaluated at the reference 
temperature. The results of this analysis could not be represented ac- 
curately in such a manner. It was necessary to write the inccxmpressible 
relation in the form 

'f,i = 
E 

Reg.0744 

where E is a constant. It should be noted that this is not the true 
incompressible relation and is used only for reference twerature pur- 
POBeB . If the properties sre evaluated at the reference temperature, 
the result is 

-E -0.875 
Cf = E t 

Re0.0744 5 
8 0 
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DividFng this equation by the previous one gives 

For Ree of 105, evaluating the constants C and D in the refer- 
ence temperature equation from the results in figures 8 and 11 and equa- 
tion (34b) gives C = 0.56 and D = 0.184. The reference tenrperature 
can then be written 

t* - = 0.44 + 
% 

-I- 0.184 
I( 

1 + 0.176 4 
> (34cI 

The results of the use of equations (34b) and (34~) are shown as dashed 
lines in figures 8 &dlJ.. Thus, by use of equations (34b) and (34~) it 
should be possible to extend the results of this analysis to values of 
Vtaw other than 1.0 and 0.5 if the value of Ree is near 105. - 

An estimate for lower Reynolds numbers may be obtained by first 
using the preceding method to find the friction factor at Ree = lo5 
and then findFng the ratios of friction factor at the desired Reynolds 
number to that at Ree = lo5 from figures 8 and 11. These ratios csn 
then be interpolated or extrapolated to the desired value of tw/taw. 
This procedure can be justified since the ratio does not very greatly 
with tw/taw. 

Stanton Number6 and RecoveTTy Factors 

The Stanton number based on 
adiabatic wall temperature, with 
temperature, is given by 

the difference between the wall and the 
properties evaluated at the free-stream 

1 % 
-r 

Str c-&EgPg = t+; ps 
--- “w 
tg 

s s,l-~-l&2 
W 

(35) 

where equation (33a) is used. The te erature and density ratios are 
determined frcrm equations (ll) and (12 or (13). For p = 0 and a # 0, 7 
equation (35) becomes indeterminate. For that case set 
1 - (k/t,) = at;' and ti = (a/p)tg'. With these 6UbBtitUti~B equa- 

tion (35j beCCE6 

\ 

- 
e 
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St =. 
~(pdpw,(t~’ - v-g21 

Frcm equations (7) and (5) (q/s, = r/~~ = l), 

19 

(36) 

s 
s+ tg =$ (37) 

0 

The second integrti in this equaticm can be replaced by (t~')P=o. But 
equaticxl (33a) can be mitten in ~nBio?ileBB form as 

(38) 

Substituting equations (37) and (38) into (361, with the secmd integral 
in equation (37) replaced by (ti ),=,, gives 

St = 1 
sf 

+ ps 
+jp, -- 

s 

ayf 
"+&-a E 

0 ST-w pw EKT 

(39) 

For evaluating equatim (39) In the region close to the wall, 
~/(!-+JP,> = n2u+y+. For the region awsy frcmthe wall, E could be ob- 
tatied from equation (8). However, it is more convenient to obtain E 
fram equation (51J which for the region away from the wall beCCmE6 

P E 1 
pw* = du+/dy+ 

Equation (39) C~II be used for 6 = 0 or 6 # 0. For given values of 
S+, a, asd pJ values of Stanton nuuiber, Wch nmiber, tw/tawJ and Re6 
can be calculated from equations (391, (32), (33b), (30), (31), and (10) 
to (13). 

Predicted Stanton n&em are plotted against Re6 for various 
Mach numbers for tw/taw = 1 in figure 12. The case of tw/taw = 1 is 
a limiting case that can be approached as closely as desired by making 
the heat flux small. when tw/taw = 1, there is no effect of variable 
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properties due to heat flux. The Stanton numbers in figure 12 Show 
trends similar to those of the friction coefficients in figure 7. In- 
cluded in the figure are experimental data for low heat flux obtained by 
a number of investigators. In genm&J the data are in good agreement 
with the predicted curves. Thecurves infigure12arefor fh/e=anl. 
Similar curves for an a of 1.07 were 3 to 5 percent higher for a Mach 
number of 0, but the difference decreased at higher Mach numbers. The 
curves for a = 1 are in slightly better agreement with the data than 
those for a = 1.07. 

I 

3 

The ratio of StarhOn number to the incompressible Stanton number is 
plotted against Mach number for various values of Ree for tw/taw = 1 
in figure 13. 
CfiCf,i 

These curves are very nearly the same as those for 
in figure 8. 

Figure 14 IS s%xI.~~.EI~ to figure 12, except that tw/taw = 0.5. AS 
was the case for the friction coefficients in figure 10, the Stanton 
numbers increase as twbaw decreases. The corresponding plot of 
St/Sti against Mach number for various values of Ree and tw/taw =I 0.5 
iS shown in figure 15. *- 

Temperature-recovery factors, as calculated frcm equation (38), are 
Showa in figure 16 for Mach numbers from 0 to 8. Curves are shown for. 
a = 1 snd a = 1.07. The curves for a = 1;07 are in somewhat better 
agreement with most of the experimental data than those for a = 1. 
This does not mean that sn a of 1.07 should be used for calculating 
heat transfer or Stanton numbers. According to Reichardt's hypothesiBJ 
the value of a should be close to 1 at the wall and increase with dis- 
tsnce from the wall (ref. 12). The temperature profiles for calculating 
heat-transfer coefficients are very Steep near the wall, so that the im- 
portant charges with distance t&e place near the wall where a is close 
to 1. In the case of recovery factors, however, the plate is insulated, 
so that the temperature gradient is zero at the wall. The gradients near 
the wall will therefore be smaller than in the case of heat transfer, and 

l 

wor-tsnt chsnges of twrature with distance might occur 
away from the wall where a is somewhat greater than 1. 

Figures 17(a) and (b) show the curves of the Reynolds 
2St/Cf against Mach number for vsrious ReeJ for tw/taw 
and 0.5, respectively. If Reynolds' analogy held strictly 
the ,Stanton number would be equal to one-half the friction 

in regions 

analogy factor 
equal to 1.0 
cPr l)J =a= 

factor and 
2St/Cf would be unity. Figure 17 shows a variation of the Reynolds 
analogy factor over the range 1.065 to 1.280. In general, 2St/cf in- 
creases with increasing Mach number and with decreasing Reynolds number 
and increases slightly with decreasing t,/t, at the higher Mach 
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nlmibers. These results are in approximate agreement with those of 
Rubesin (ref. 19), who estimated that 2St/Cf would be in the range 
1.18 to 1.21 at least up to M6 of 5. 

To obtain approximate values of St as a function of Ree and Mg 
for tw/taw other than 1.0 and 0.5, it is recommended that the results 
of figure 17 be interpolated or extrapolated to give the value of 2St/Cf 
at the desired condition. Then Cf csn be found froan equations (34b) 
and (34~) as previously described, and thus the value of St is obtained. 

Relation between Boundary-Layer Thictiess and Distance along Plate 

Frcm the results given in the preceding sections, the Skin friction 
or heat transfer for a givenboundary-layer or momentum thiCkm?BB fan be 
calculated. In order to calculate the relations between thermal or flow 
boundary-layer thickneB6 and di6tmCe alang the pli&e, the Well-knOWn 
integral mmntum and energy equations mey be used. These equations may 
be written as follows for a flat plate (zero pressure gradient}: 

d 
5 = dx 

If "=S =0 for x= 0 and equations (40) and (41) are integrated 
with respect to x, they becm, in dimensionless form, 

where the bracket for the upper limit of integration refers to the value 
of the variable of integration at that point. These equations give the 
relations between S+ and Rex and 6: and Rex. The property ratios 

are obtained fraPn equations (10) to (13). 
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Equation (42) ten be written in the more convenient form 
. 

pRee 
mee rt (44) k Rex = 2 

I 
Jo 

The Reynolds nu&er based on momentum thi&leBB Ree iS plotted against 

R%J as found from equation (44)J for an insulatedplate infigure18. 
G value of Ree decreases at a given Rex as the Mach nu&er increases tF 
if the free-stream prOpertie r-in constant. 'phi6 is caused 

t 
eq. (44)) ti 

by the decrease of friction factor with increasing Mach number fig. 7). 
Data included in figure 18 agree reasonably well with the analflical 
curves. 

Figure 19 is similar to figure 18, except that tw/taw = 0.5. For 
given values of Rex and ?&ch number the values of Ree are generally 
a little higher for tw/taw of 0.5 than for tw/taw of 1. This trend 
can be Und@rBtOod fram -ation of equation (44), since Cf is higher 

for $Jtaw Of 0.5 (fig. 10) than for tw/taw Of 1.0 (fig. 7). z 

Predicted Skin-friction coefficients for an insulated plate are 
plotted against Rex fn figure 20. The trends with Mach number me 
similar to those obtatied when Cf is plotted agaF218t Ree but are 
less pronounced, because the boundary-layer thickness at a given x de- 
creases with increasjng Mach number. Experimental data for low-speed 
flow included in the figure are in good agreement with the predicted 
curve for a Mach nurdber of zero. Data for higher Mach numbers are also 
in reasonable agreement with the predicted curves but are somewhat more 
scattered than the data in figure 7, where Cf is plotted against Rec. 
This scatter is apparently caused by uncertainty as to the point at which 
the boundary layer aCtUaUy Bta?Y& in a SUperSOniC flow. 

In figure 211 the theoretical curves are replotted as Cf/C!f,f 
against Mach nmber for various Reynolds nunibers based on x. The 
effect on Cf/Cf,i of varyFng Rex becomes appreciable at high Mach 
numbers. 

Stanton nuder6 for an inBU&ted plate are plotted against Rex 
for a Mach number of zero in figure 22. Curves for higher Mach numbers 
and for t,/t, of 0.5 involve considerably more calculation and were 
not obtained. 

Fig'UreB 23 and 24 are analogous to figures 20 and 21, respectively, 
except that they are for tw/taw of 0.5. The friction factors, as ex- 
pected, are higher for the larger rates of cooling. 
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Reference Teqerature for Rex Results 

The customary use of a reference temperature concept requires that 
the Reynolds nmiber dependence of Cf and of St be the same for all 
Bch numbers so that Cf& and St& should not be functions of 
Reynolds nMber. 
St/Sti 

Examination of the predicted curves of Cf/Cf,i and 
against Mach number as shown in figures 8, IL, 13, 15, 21, and 

24 shows, however, that Cf/Cf,i and St/Sti are strong functicms of 
Reynolds nmiber at the higher Mach nu&ers. Therefore, the present the- 
ory cannot be represented accurately by one reference temperature valid 
for allReynolds nmibers. 

For purposes of ccmparison, however, the results obtained by using 
Eckert's suggested reference temperature (ref. 3) are shown in figures 
21 and 24. Agreement with the present theory for Rex = lo8 is quite 
good. Use of Eckert's reference temperature method to solve for CfICf ir 
is recomnended, then, if large values of Rex (near 108) are considered: 
Ln order to solve for Cf, the value of Cf i can be taken from the 
curve for Mg = 0 in figure 20. An appraxi&tion (within 5 percent) to 
this case is 

cf = 0.0292 Reiom151 

In order to solve for values of Cf at values of tw/taw other than 
1.0 and 0.5 and for values of Rex other than 108, the same approximate 
procedure as recomen ded for Re6 as the variable can be employed. For 
this case, however, Instead of figures 8 and ll, figures 21 and 24 and 
Eckert's reference temperature should be utilized. 

To obtain as approxtite relation between Stanton nmiber and Rex 
the following procedure is recommended: Find the value of Re6 corre- 
sponding to the specified Rex by interpolatim or extrapolation of fig- 
ures 18 aud 19. Frcmthis value of Re6 find the Reynolds analogy fac- 
tor by similar use of figure 17 for the specified values of t,/t, and 
Ma. This value of the Reynolds malogy factor and the value of Cf ob- 
tabed as shown in the prev-ious paragraph are sufficient to solve for 
the Stanton number for the specified conditions. 

Closing Remarks 

No attempt has been made in this analysis to include the effects of 
dissociation, shock waves, radiatim, slip flow, or induced pressure 
gradients. 

. 
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A rough estimte of the effect of dissociation may be inferred, as 
pointed out by Eckert (ref. 3), from the theory of laminar boundary 
layers. Thus, both Crown (ref. 20) and Moore (ref. 21) conclude that I 
the effect of dissociation on friction factor and heat flux for the lam- 
inar boundary layer will be small if the wall temperature is less than 
the air dissociation temperature, 
atmosphere, is above 3000' F. 

which, even at a pressure of 0.0001 
Their calculations weremade forMachnum- 

bers up to 20. Where dissociation is appreciable, it is recomaended 
that the heat-transfer coefficients presented in this report be inter- 
preted as based on an enthalpy difference instead of a teqerature dif- 
ference, Thus, 

and 

St =i 
where H is the enthalpy. 

Although 5x1 practfce there would be a shock wave originating near 
the leading edge of the flat plate for high Mach nm.&ers, the effect on 
temperature and pressure distributions appears too colrrplicated to be 
taken Fnto account. Therefore, constancy of free-stream pressure and 
twerature has been assumed. 

The possibility of encountering slip flow at high Mach number must 
also be considered. According to Eckert (ref. 3) the assumption of a 

continuum is valid as long as the Kimdsen number L *- is less 

tm 0.01. To obtain a conservative estimate for the range of condi- 
tions considered in this report, values of s and Reg of 20 and 104, 
respectively, are used. For these values the Knudsen number is 
0.00298, which is well below-the criterion for slip flow. 

STJMMARY CF RESULTS 

The followirg results.$re obtatied from the analysis of turbulent 
flow and heat transfer over:a flat plate at high Mach numbers: 

1. The frictional heating that occurs at high Mach numbers produced 
a flattening of the velocity profile, as does heating the plate by other 
means. Cooling the plate caused the velocity gradients near the outer 
edge of the boundary layer to increase. 
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2. The skin-friction coefficients and Stanton nunibers at a given 
Reynolds nm&er decreased as Mach nmber ticreased. 

3. !&e curves for the ratio of friction coefficient to the Fncom- 
pressible coefficient against Mach nu&er agreed closely with the curves 
for the ratio 'of Stanton nmiber to inccmpressible Stanton number against 
Mach nmiber. 

4. Cooling the plate to offset the effects of fricticmal heating 
increased the friction coefficients and Stanton nuu&ers. 

5. Frictional heating at high Mach numbers produced a thinning of 
the boundary layer at a given position on the plate for the ssme free- 
stream properties. 

6. The predicted friction coefficients and Stanton nutrbers agreed 
closely with representative experimental data. 

7. The Reynolds nmiber effect on both friction factor and Stanton 
number increases great-with increasingMachmmber. 

Letis Flight Propulsim Laboratory 
National Advisory Cmtmittee for Aeronautics 

Cleveland, Ohio, January 17, 1958 
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Mcmentum Equation 

The momentum equation for compressible boundary-layer flow past a 
flat plate can be written as 

ad the conttiuity equation as 

Time derivatives and pressure gradients are;neglected in equatims (Al) 
and (A2), as they drop out when time averages are taken. 

The instantaneous quantities in equation (Al) are now replaced by 
their time averages and fluctuating ccmponents, which are written as 

u=U+u P =p+p 

v=V+v' P =yi+p' 
> 

(A31 

and time averages sze taken term by tern. The following order-of- 
magnitude criteria are used for both the momentum and energy equations: 

etc. = O(6) 

---z ptulvl, plu , etc. = o(s312) 

Double correlations containing k' and ~1' J O(S3) 
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The first five of these criteria are the usual boundary-layer asslmrptions. 
The sixth results from assuming that the mar and turbulent shesx 
stresses are of the same order of magnitude. The seventh is consistent 
with the sixth, since a triple correlation should be roughly of the mag- 
nitude of a double correlation raised to the 3/2 power. The eighth 
appears justified since it might be expected that &' and ,ct' should 
be at least one-half order of magnitude less than k and ~1. 

With the preceding criteria, the t--averaged momentum equation 
becomes, on neglecting terms of magnitude S and less, 

and the conttiuity equaticm, 

ag3 + xp + a(y) _ o 

(A41 

(A51 

Considering the relation 

pq + p1v’ = ps w 

equations (A4) and (A5) can be rewritten 

and 

xp+xp_, 

(A71 

w 

C!cmpaxison of equations (Al) and (A7) leads to the definition of T as 

Energy Equation 

(A91 
The energy equation for cmressible boundary-layer flow past a 

flat plate is 
at 

PUCp -a?; + PV (AM 
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Time derivatives and pressure gradients are again neglected, as time- 
averaging cancels them. If the momentum e (Al) is multiplied 
through by u and then added to equation result is 

Pu~(,t+$)+pv~(c$+~)=~(k~+~u22) (ALL) 

where cp is considered constant. 

Again substituting for the instantaneous quantities the sum of the 
time-averaged and fluctuating components, and then neglecting terms of 

onler of magnitude 

(q+$)+ (-6-t 

on taking t5me averages, equation (All} becomes 

(A6), equation (A12) beccmes 

A comparison of equations (All} and (Al3) shows that 

9 =- 

It should be noted that this treatment gives no density fluctuation 
terms in the expressions for 7 and q. This same result was foundby 
Vm Driest (ref. 22-j and by Rubesin (ref. 19). Combining p'v' with 
pv and writing the sum as pv present no difficulty, because, in a 
complete solution, ie could be eliminated from the mcmentum and energy 
equations by the equation of continuity. An assum@ion for p'v' would 
be necessary cnly if it Were desired to calculate v. 



NACA T!!I 4262 29 

APPEEDIXB 

Tw qw -: 
In terms of eddy diffusitities, the momentumandenergy equaticxs 

may be written as follows: 

The energy equation (B2) can be rearranged to read 
(=I 

(B3) 

For Pr= a = 1, equation (B3) becomes 

If equations (Bl) and (B4) are each solved for 
equated, there is obtained 

r - r / 

$i and the results 

035) 
The assumption is now made that 

-2 
C.&T + + =A;+B w 

T12 The expressian given by equation (B6) for cp% + 2 is substituted Into 
the right side of equation (B5). SFnce the right side beecanes identical 
with the left side upon this substitution, equation (B6) is a valid 
relation. 
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The constants A and B in equation (B6) 
w 

are evaltited as follows: 

at y=O: 

at y=O: 

1 

With the constants thus evaluated, equation (B6) becmes (dropping the 
bars for convenience) 

U2 cpt + 2 = 
s, 

-y-u+ct 
W -PW 

If equation (B7) is made dimensionless, it-beccmes simply 

u+ = T+ (=0 

Previously obtained relations for +w and s/s, are 1c 

If use is made of equations (B8), (lo), and (26) and the fact that 
pr= a = 1, the resulting equation can be reduced to 

P T =- 
Q Tw 

(B7) 

(5) - - 

(B9) .- 
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APFENDIXC 

VELcEITYmD TFXPEZATUFGPl3UFIlESFORCCNS!UNTRhTTOCP'ZWB~ 

TOMOLECXLARSIFEARS'pREsSAT y; ANDMOLEEULARSHEARSZ!REE%3 

ANDHWTRANSFERINRECXONAKAYFRoMWLL(Pr=1) 

The equation for velocity profile used near the wall is equatim 
(la, where 1 - c&+' = 1 - au+2 for Pr = 1 and @ = 0 (see eqs. (B8>, 
(26)j and definitions of t+ and t+'>. 

Previously, the expressian for 't/'rw was shown to be 

7 rid 
<=sw+ 

and far from the wall (eq. (811, 

(5) 

Cmbintig equations (5) and (8) and assum3ng constant shear stress across 
the boundary layer give 

2 
PW 

du+ 
7 

The vsxiatims of density and viscosity with tqerature are 

t 0.68 
= 0 tu 

P tW -=- 

PW 
t 

(Cl) 
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For Pr=a=l and j3= 0, the t~erature ratio is expressed as 

Substitution of equaticms (C2) and (C3) into (Cl) yields 

1 _ ,+7m3 + x2 au+ 
1 - a+2 dY+ 

(W i c 

SolvFng for d2u+/w2 gives 

( \ du+ 2 -Y - 
d2u+ +2= -I w+ J dy (C5) 

(1 - ax+2 ) 1 - (1 - cGu+2)o*68 du 
a 

If a change ti variables is made as 

equatim (C5) can be integrated to give 

v=vle 

The solutions for u+ as a function of y+ can be obtained by a process 
of iteration. Assumed values of v for a given increment in u+ are 
substituted into the right side of equation 
left side. The relation between u+ and I 

C6) until it equals the 
y is then calculated from 

- 

s U+ 
y+ = du+ 

v 
0 

N7) 

From equation (B8), u+ = T+ for q/qw = T/T~, so that the relation be- 
tween !I? and y+ is also bnown. 
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APPENDIXD 

VFJXXIYPR~~FOR 

ANDHFLAT!mANsmz ACROSS BOUNTURYIWER (Pr=l) 

Because the variation of shear in the thin region near the wall is 
negligible, the same equations are used in the present case as were used 
irt append& C. 

From equation (51, the equation for 
ing the viscous stress, is 

du+ 
7 

The expressian for ~/(h/p,) far from the wall is, from equation (8), 

For a line= variation in shear stress, 

7 Y+ -=I-- 
T 

W ts+ 

Combining the foregoing equations yields 

1 y+ e --= 
s+ Pw 

For B=O,Pr=a=l(.F/7W=q/qW), 

t 
<=I - cLuf2 = P, 

P 

far frcm the wall, neglect- 

(Dl) 

CD21 

CD31 
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Substituting equation (D3) 
root of both sides give 

NACA TN 4262 

into (D2), 
. 

rearranging, and taking the square 
< 

L 

(--A du+ 2 

= f/Y+- aLli2 
\ay+/ 

II- 1 Y+ 
-s+ 

(W 
Letting v = du'/dy in equation (D4) and integrating give 

v=vle 

-x~~@p (D5) 

Equation (D5) csn be solved by iteration for 8 = 0 and a given a snd L 
S+, to give 
9/Q, = dyq, 

u+ as a function of y+. From equation (B8), u"' = T+ for 
so that the relation between @ and yi is also known. 
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