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SUMMARY

A previous analysis of turbulent heat transfer and flow with vari-
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E-U.LC J..LU.J.U. pLropcr L;.LC?.S .I.LI. BUOLULL pabSages J.B exvenu.eo. 1:0 .E_LOW over a IJ.E-'U
plate at high Mach numbers. Velocity and temperature distributions are
calculated for a boundary laeyer in which the effects of both frictional
heating and external heat transfer are sppreciable, The viscosity and
thermal conductivity are sssumed to vary as & power of the temperature,
while the Prandtl number and specific heat are taken as comstant. Skin-
friction and heat-transfer coefficients are calculated and compared with
the incompressible values. The relation between boundary-layer thickness
and distance slong the plste is cobtained for variocus Mach numbers. The
analytical results are compared with representative experimental data.

INTRODUCTICON

The current emphasis on high-speed flight has caused much interest
in research on compressible boundary layers. The skin friction in high
Mach number flight constitutes a large part of the total drag. There-
fore, the accurate prediction of skin friction is desireble for the de-
sign of high-speed aircraft. Prediction of heat-transfer coefficients
in high Mach number flow is also importent, because frictional heating
of the surface necessitates cooling to prevent structural fallures.

The prediction of laminar boundsry layers from the basic equations
of momentum, energy, and continuity has reached a high state of develop-
ment. A considersble smount of anslytical work on turbulent boundaxy
layers has also been carried out. In the turbulent case, however, the
results of the variocus snalyses disagree markedly because of the differ-
ent assumpticns made by the various authors. These analyses are reviewed
in references 1 to 3. The introduction of assumptions into the treatment
of turbulent boundary layers is at present unavoidsble, since solving the
problem from the instanteneous equations of momentum, energy, end conti-
nuity alone is not yet possible. In some respects, however, the model
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used for solving the problem might be improved. In nearly all the anal-
yses, the flow is divided into a laminar region, where turbulence is sup-
rosed to be absent, and a fully turbulent region. The effect of varis-
tion of fluid properties on the laminar region is generally neglected.
Measurements of turbulent velocity profiles indicate that considerable
turbulent shear exists within the so-called lsminar layer (ref. 4), so
that & more realistic model for the region close to the wall than that
used in previous analyses is desirable.

A somewhat improved treatment of the region close to the wall is
given in references 4 to 6, where the effects of turbulence and of vari-
gble fluid properties in this region are cousidered. In the region awsy
from the wall the von KArmfn similsrity expression has been considered
the most reasonable expression avaeilsble (ref. 7). In reference 8, fully
developed turbulent flow and heat transfer in smooth passages for air
with varieble properties are analyzed, and the results agree well with
experimental data. The analysis is extended to the entrance regions of
passages and to high Prandtl numbexrs in references S and 10, where good
agreement with experiment is agein obtained. Since the analyses apply
well to entrance regions, the assumptions made in the anelyses should
apply also to a compressible boundary layer. The analysls is extended
to flow and heat transfer in a boundary layer at high Mach numbers in
this paper. (Some preliminery results were presented in ref. 11.) The
varistion of properties due both to frictional heating and to external
heat transfer 1s comnsidered. The viscosity and thermal conductivity are
assumed to vary as & power of the temperature, while the Prandtl numbexr
and specific heat are teken as constant.

SYMBOLS
A canstant
a ratio of diffusivities, & /e
B constant
C constant
Ce friction coefficient, er/psug
cp gpecific heat of fluid at constant pressure
D constant
a exponent for viscosity variation with temperature, taken as 0.68

for air
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Re
Rea

5t

constant

enthalpy

heat-transfer coefficient, q.f(t. - t, )
thermal conductivity

Mach number based on free-streem properties and velocity,

VAN

canstant, 0.109

Prandtl number, cpp./k

heat transfer in y-direction per unit time per unit area
perfect gas constant

Reynolds number based on X, xuspS/p.S

Reynolds number based on &, 911.5p8/p.8

Stanton nunmber, h/cpuspa

total temperature, t + (uZ/2c o), deg sbs

(b, - ‘I‘)cp'rw - (z/+,)

%Vl Py "

total-temperature parameter,

static temperature, deg abs

(g = tlegty _1- (t/%;)

temperature parsmeter,

GV Tl Py g
2(ty - tlegpy 1 - (t/6.)
temperature pasrameter, = = =
W

velocity in x-direction
velocity parameter, u/ -‘/-rw7pw
velocity 1n y-direction

longitudinal distance along plate
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distence perpendicular from plate

¥+ Tw7 Py

wall distance parameter,
B/ Py

lowest value of y“' for which equation for region ewsy from wall
spplies

frictional-heating parameter, T/ 2e b0y
GV Tyl Oy
cpthW
ratio of specific heats, teken as 1.400 for aixr

heat-transfer perameter,

flow boundary-layer thickness

. B4/ 7pw
flow boundary-leyer-thickness parameter
’ ”'w; Py
thermal boundary-layer thickness
| BVl Py
thermal boundary-layer-thickness parsmeter, WD—
W

eddy diffusivity of momentum

eddy diffusivity of hest

ta.w t&
temperature-recovery factor, 5
u,(5 2c
P
5 e u u
momentum thickness f —_ (l - —\dy
" P U “6)
tum-thickn ter Vryloy
momentum- ckness parame
i oy
constant, 0.36
viscosity
density

ghear stress, force per unit area

9T97%
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Subseripts:

aw pertaining to adisbatic wall conditions

i incompressible; constant fluid properties

W pertaining to wall

e} pertaining to edge of boundary layer or free stream
1 pertaining to edge of wall layer

Superscripts:

* reference

! pertaining to fluctustions fram time average except in tt'

time-aversged value

ANAT.YSTS AND DISCUSSION
Basic Equations

The instantaneous velocities, temperature, snd fluid properties in
the equations of momenbtum, energy, and continuity can be divided into
mean and fluctuating components. If time averages are teken, the follow-
ing equations for shear stress and heat transfer, spplicable to flow in
a boundary layer, are obtained (appendix A):

'1'=u--;%rl-QU-_'V7 (l)
q:-k%+pcp t'v’ -up.g'—;+upu'v' (2)

where constant specific heat is assumed. The bars denote time aversges,
end the primes indicate fluctuating components. Equations (1) and (2)
are the same as equations (A9) and (Al4) in appendix A if the bars over
the time-averaged velocities, temperatures, and properties are dropped.
The various terms in equations (1) and (2) mesy be inberpreted as follows:

du
4 a molecular shear stress

-p u'v? turbulent shear stress

-k EE molecular heat transfer

dy
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pcp t'v'! turbulent heat transfer

- -g'—; molecular dissipation

up u'v’ turbulent dissipation

Equations (1) and (2) suggest the form of the turbulent transfer
equations but contain the unknown quentities u'v' and t'v', so that
assumptions must be mede before solutions can be obtained. For meking
these assumptions it is convenient to introduce the relations

— du — at
1! = t = . —
u'v! = t—:3 and t'v'! = ehi

where € and €, are the eddy diffusivities for momentum and heat trans-

fer, the values of which depend upon the amount and kind of turbulent
mixing at & point. When these relations are introduced, equations (1)
and (2) become

T=(p+pe)%——; (3)

a= - (k+pepe) £ - ulu+ pe)3 ()

The physical significance of € and ¢, lies in the fact that e/(u/p)

is the ratio of turbulent to molecular shear stress (ref. 12), and
€,/ (k/pc_) is the ratio of turbulent to molecular heat tremsfer. Equa-

tions (3? and (4) can be written in dimensionless form as

oo (e, e \au©
R (“W+DW“;°w) ay* (5)

k 1 . p e\ att o+ . p_€ j)du*
== + -2 a — - 2=u + —_— (s8)
) (p'w Py BulPy | ay*

The subseripts w refer to values at ¥y = O; that is, at the wall. The
quantity o 1s a frictional-hesting parameter that is an indication of
the varistion of properties due to f£rictional heating, and B is a heat-
flux parameter that is an indication of the variation of properties due
to heat transfer. The parameter o 1s always positive or zero, a value
of zero characterizing low-speed flow (i.e., Mg = 0). A zero velue of

B refers to a vanlshingly small heat transfer or an insulated plate.

gTaP
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A positive velue of B indicabtes heating of the fluid, while negative
B means that the fluid is being cooled. It is sometimes convenient to
write equation (6) in the following slternative dimensionless form:

Ba _(E L o e \att' o +fp . p _e \aut
d‘qw_(kwprw+pwampw)dy+ o (qu'pwHJpw)aﬁ ()

This equation is particularly convenient when B = 0, for which case
equation (6) becomes indeterminate.

Expressions for Eddy Diffusivity

In order to meke practical use of equations (5) to (7), the eddy
diffusivity e must be evaluated for each portion of the flow. For this
purpose the boundary layer is divided into two portions termed the "re-
gion away from the wall" and the "region close to the wall."

Region awsy from wall. - In the region awsy from the wall, 1t is
assumed that the turbulence at a point is a function mainly of local con-
ditions - that is, of the relative velocities in the vicinity of the
point (ref. 13). This is probably not a good assumption in the region
neaxr the edge of the boundary leyer, where consgiderasble diffusion of the
turbulence occurs (ref. 14) and, in addition, the turbulence is inter-
mittent. However, in that outer region the velocity or temperature
gradients are so small with respect to these gradients nearer the wall
that the error in calculated velocities or temperatures should not be
large. A Taylor series expansion for u as a function of transverse
distance, then, indicates that € 1s a function of du/dy, dzu/dyz,
d3u/dy>, and so forth. If, as a first epproximation, € is considered
as a function only of the first and second derivatives, and dimensional

analysis is applied,
2 !-@EF
dy (d?u)
2
dy

This expression wasg obtained by von Kérmén and is generally known ss the
Kérmén similarity hypothesis (ref. 7). The constant % is to be deter-
mined experimentally.

Region close to wall. - In the region close to the wall it is as-
sumed that € is a function only of quantities measured relative to the
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wall - that is, of u and y.l This assumption includes, to a first
approximation, an effect of the derivative du/dy. Since the flow be-
comes very nearly laminar as the wall is approached, the first derive-

ve approaches the value u/y and hence may be omitted, since u and
y already appear in the functional relation. By using dimensional

analysis,
e = e(u,y) = nuy (9)
where n 1s an experimental comstant.

Equations (8) and (9) cen be considered as reasonable first approx-
imstions for €. Whether these approximetions are adequate or not can
at present be determined only by experiment.

Determination of experimental congtants. - The constants n and %
were determined from pipe date in which the properties were essentially
constant. Equation (5), with equation (8) or (9), was integrated (con-
stant properties and 'rs for the regions close to and away from the wall
in reference 4. The molecular shear stress was neglected in the region
away from the wall, and the well-known K rmin-Prandtl logarithmic equa~-
tion was cbtained in that region. In matching the two solutions it was
asgumed that the veloclity is continuous at the junction of the two
regions.

The integrated equations (ref. 4) for the regions close to and away
from the wall are plotted in figure 1 with the constants n = 0.109 and
= 0.36 determined from pipe deta (refs. 4 and 14). The data indicate
that the equetion for the region close to the wall applies for y‘+ < 26,
and the equation for the region away from the wall applies for y > 26.
Included in the plot are date for a low-speed boundary layer with zero
pregsure gradient from reference 15, The agreement with the curve is
satisfactory.

The values for the constents n = 0.109 and % = 0.36 should apply
to flow with variable as well as constant properties if the basic assump-
tions made for € in the preceding sections apply to variabls properties;
that is, if e = €(u,y) close to the wall and e = e(du/dy, d a;ZD
awey from the wall. The constant y’]“., however, requires further consid-

erstion end is discussed in the next section.

lReference 10 shows that the kinematic viscosity has an effect on
€ in the region very close to the wall. However, that effect becomes
important only for heat or mass transfer at Prandtl or Schmidt numbers
appreciably greater than 1.

aTo%
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Additional Assumptions

In sddition to the assumptions for eddy diffusivity discussed in
the preceding section, several additional assumptions must be made for
solving equatians (5) to (7).

Variation of properties with temperature. - For gases, the viscosity

varies epproximately as td, where d has an average value of 0.68 for
temperatures between 0° and 2000° F. The Prandtl number (Pr = 0.73) and
specific heat cp are assumed constant, because thelr variations with

temperature are of a lower order of magnitude than the variations of the
other properties. If ey and Prandtl number are considered constant,
the thermsal conductivity k will vary with temperature in the same way
as the viscosity, or as td, For comstant pressure scross the boundary
layer, the density p is inversely proportional to +t.

With the preceding assumptions, the property ratios in equatlions
(5) to (7) can be written as

d 0.68
hede(5) () el
e =

From the definitions of B and t+,

= =1-ptt (12)
W

or, if equation (7) rather than equation (6) is used,

4
Et_ =1 - oot+ (13)
W

The property retios in equatioms (5_2;150 (7) can therefore be written in
terms of p end t¥ or o and t7 .

Variations of T and g across boundary layer. - The momentum
equation (A7) indicates that, for a flat plate (zero pressure gradient),
dt/dy = a(pdu/dy)/dy = O at the wall. Since T is zero at the
edge of the boundary layer, the actual variation of T across the
boundary layer might be expected, in general, to lie between a linear
variation (t/t =1 - (y/8)) and 'r/'rw = 1. Deta on low-speed isothermal
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flow over a flat plate (ref. 15) show that this type of varistion does
exist, except in a narrow region near the edge of the boundary layer.
For determining the sensitivity of the velocity or temperature profile
to shear-stress variation, it should therefore be gufficilent to compare
the profiles for a constent and for a linearly varying shear stress.
Appendix B shows that </t = for e flat plate if the Prandtl num-

ber is 1.

W’

Figure 2 shows ut or TF plotted ageinst y' for a Prendtl num-
ber of 1 for both a comstant and a linearly varying shear stress and
heat transfer, where T' is the total-temperature parameter. Curves
are shown for B = 0 and o = 0, 0.005, and 0.008, which cover much of
the range of Mach number and Reynolds number of interest. The equations
for calculating the curves are given in gppendix D. The eguation for
the region away from the wall was taken to apply for ¥yt > 30 rather
than > 26 when the shear stress was variable, in order to give better
agreement with the datas for constant properties. The curve for o = 0.008
is cut off at the point shown because the Mach number becomes infinite,
as can be seen from equation (D3) (for asu'? = 1). The curves indicate
that variable shear stress and heat transfer have bubt a slight effect on
the velocity and tempersture profiles. Similar curves were obteined in
figure 11 of reference 6 for B % O and o = 0. The same concliusions
should gpply to Prandtl numbexrs differing slightly from 1, so that the
effects of the variations of T and g acrosgs the boundany layer are
neglected for solving equations (5) to (7).

Ranges of appliceblility of equations for flow close to and away
from wall. - It was determlned from the data for constant propertiles
that the lowest value of y for which the equation for the reglon
away fram the wall applies is y = 26 when the varistion of shear stress

with y 1s neglected and the molecular shear stress is neglected in the
region away from the well. The question arises as to how yl varies

vhen the properties axre varisble. The simplest assumption is that yl'

is constant and equal to 26. This assumption, which implies that the
wall properties govern the thickness of the wall layer

(y{ = ¥, /7 Jo/ (i /ey)), is similar to von Kérmén's assumption (ref.
168). TFigure 12 of reference 6 shows thet essentially the same curves
are obtained when the molecular shear stress is neglected in the region
away from the wall as when it 1s consldered, the difference being that,
when the moleculsr shear stress is included, yl has the constant value
of 16 rather than 26.

Another assumption, which mlght be somewhat more reasonsble than
assuming yi constant, is that yi occurs at a given comstant ratio

of turbulent to molecular shear stress €/(u/p). That is, the turbu-
lence changes from that described by equstion (9) to thaet described by

IE

9197
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equation (8) when the ratio of turbulent to molecular shear stress
reaches a certain value. In this case the more complete equations are
used for the region away from the wall, in which the molecular shear-
stress and heat-transfer terms are retained and the slopes of the equa-
tions for flow close to and away from the wall are matched at yl

(yl 16 for B =oa = 0).

In figure 3, uwt or Tt is plotted against y+ for g Prandtl num-
ber of 1 using the two assumptions for y{ discussed in the preceding
paragrephs. Curves are shown for B = O and « = 0, 0.003, and 0.008.
The equations for calculating the curves are given in appendix C. The
curves indicate that the velocity and temgerature profiles ere spparently
insensitive to the assumption used for Similsr results were cbh-

tained in figure 13 of reference 6 for B % O &and o = 0. The simpler
procedure of neglecting the molecular shear stress and heat transfer in
the region awsy from the wall and assuming y{ = constant = 26 is there-

fore adopted in the following calculations.

Ratio of eddy diffusivities for heat and momentum transfer. - In
most analyses the ratio of eddy diffusivities a +that occurs in equa-
tions (6) and (7) is set equal to 1; that assumption has given heat-
transfer coefficients in good agreement with experiment (ref 8). It is
of Interest that Prandtl's mixing-length theory, which assumes that a
turbulent particle moves a given distance and then suddenly mixes with
the fluid and transfers its heat end momentum, gives a value of a = 1.
Although the actual turbulence mechanism may be more complicated than
indicated by that theory, it does indicate that a value of &a on the
order of 1 is not unreasonable.

In the present analysis the assumption of &a = 1 is retained, but
in some cases the calculations are also carried out for a = 1.07 in
order to determine the effect of varying a. A ratio of diffusivities
of 1.07 was obtained from some preliminary experiments on recovery fac-
tors for fully developed flow in a tube.

Velocity and Temperature Distributions in Boundary Layers

For obtaining velocity and temperature distributions close to the
wall, equations (9) to (13) are substituted into equatioms (5) to (7).
Equatlons (5) end (6) become, in integral form, with /7, = g/q, = 1,

+ Al (1)

(1 - pe1)® 4 g wPutyt
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&Y gt
(l+2Bu)dy
(1 - ptH)e a

Pr +l;B't+

t* = (15)

néutyt
0]

Equations (14) and (15) can be solved simultaneously by iteration; that
is, assumed relations between u' and y* and t+ and y*+ are sub-
stituted Into the right sides of the equations, and new values of ut
and t* are calculated by numerical integration. These new values are
then substituted into the right sides of the equations and the process
is repeated until the values of ut and t¥ do not change appreciably.
Equations (14) and (15) give the relatioms among ut, t+, end y+ for
various values of o and B for flow close to the wall (y* < 26). For
B=0Ogzand a# 0, t¥ becomes infinite, so that equations (5) and (7)
must be used. These equations, with equation (13), become

-+

J +
ut = dy (16)
(l - d,t"")d + l—l_'b":T n2u+y+
0O - &
+
7 (E + 2u+)dy+
t+' = +,“é (17)
(1L - at ) + 1 2ytyt

n
Pr 1 - CI;t+'

0
Bquations (16) and (17) are solved similarly to equations (14) and (15).

In the region away from the wall, the molecular shear stress and
molecular hest transfer are neglected. Dividing equation (6) by equa-
tion (5) gives, with 'r/'rw =a/g, =1,

o+ att
1 +2 =1 =8 —— 18
B aut ( )

Integrating equation (18) fram yI to yt gives

+
+ U
t+=t'{+u?——l+

a 2 a 42
a -B_a. u - — (19)

pa 1

9TOP
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From equations (11), (12), and (19),

1
£ - (20)
P + Bu-{ o +2 _ puf o 42
L-Bh+ =+ -5 -5

Substitution of equations (8) and (20) into (5) and one integration give,
for the region awasy from the wall,

L

. m-l\: 2ail +B
aut /e ~/B2+4a(a-apttepulraut?)
K, o e (21)

By letting

Z =

-+
i‘l’.‘l.-l 2 + B (22)

s
Va/e _\EE.‘ + 4a(a - aBt{ + Bu{ + cnu{z)

and integrating equation (21),
z

e
Y+=—_-im—(cos 'fojaz+'vi;a sin@z)+1{ (23)
14+ 2 .
auz

The constant K 1is evaluated in the ususl way by letting

du /dy =» at y' =0 in eg_ua:tion (21) (ref. 7) end substituting (21)
into (22) end (23) at y* = 0.2 By using this procedure, K = 0. To
determine K, set ut = u__L vhen y& = yl Then,

YI e? [cos(@ z) + J@E sm(@ z)]

K

) B (B ]

+ o

y =
Z

vhere 2z is given by equatiom (22) and 3z; 1is the value of z at
yl 26. Equations (22) and (24) give the relation between u" amd y*

(24)

1

27hig agssumption can be avoided by including the moleculsr sheax
stress and heat transfer in the region away from the wall and evaluasting
K by assuming s continuous velocity derivative at y']': (£ig. 12, ref. 6).
This essumption gives essentially the same results as that made in the
text.
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for various values of o and B. The quantity 7 can then be caleu-
lated from equation (19).

For B =0Oand a# 0, t% becomes infinite, and +*' = (B/a)tt
must be used. Equation (19) becomes, in terms of ¥,

+2
g B S B e, u?
o=t wh e Tttt (25)

Equaetions (22) and (24) apply to the cese for B =Oand o # 0 if cr:b':::l
is substituted for Bt7 in equation (22).

For « = O, equation (23) becames indeterminate, and equation (21)
for zero frictional heating from reference 6 can be used.

Typical velocity and temperature distributions for various values
of the frictional-heating parameter o and of the heat-flux parameter
B are presented in figures 4 to 6. Positive values of B correspond
to heat addition to the air; negative values, to heat extraction. The
curves of ut against y* (fig. 4) indicate considersble flattening of
the velocity profile as either « or B increases positively. This is
caused by the decreasing temperstures in the outer regions of the bound-
ary layer compared with the wall temperature when either the Mach nunber
is high (high o) or the heat transfer from the surface to the air is
high. Thus, the density is higher in the outer regions of the boundary
layer, with consequent flattening of the profile (eq. (5)). Negative
values of B produce the opposite effect. For certaln conbinations of
o« and B (with B negative), the effect of B on the curves should
tend to cancel the effect of o, and the resulting profile should not
differ greatly from the o = B = 0 curve. The curve for o = 0.002,
B = -0.05 in figure 4 is close to the curve for o = B = 0. Included
in figure 4 for comparison are experimental date from reference 17 for
an o of 0.00176, B = O, and a corresponding Mach number My of 2,82.

The data are in reasonable agreement with the predicted prbf:L'Les.

In figure 5 T 1is plotted against y+ for various values of o
and B. The total-temperature parameter Tt ig plotted rather than t"',
because the trends asre somewhat more comsistent, although some crossing
over of the curves occurs even with T". For calculation purposes, a
better representation can be obtained by plotting ot against ut. The

quantity T  is related to t' by the reletion

T = ¢t - % ut2 (26)

.aTo%
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Skin-Friction Coefficients

The skin-friction coefficilent is defined as

2T
Cf = WZ (27 )
P5Us

where the subscript & refers to values outside the boundary layer.
BEquation (27) becomes, in dimensionless form,

Py 2 _2(1 - at§ " 2(1 - tg)

£ = P u:gz 1%-2 ugz

For comparison with experimental date, it is convenient to introduce the

momentun thickness,
S
ezf _p_l"_(l-_l"_)dy (29)
L Ps N Us

which in dimensionless form is

(28)

5+
+l l + +
= (1 - aty ) — = (- Z " (30)

o L-att ug U

Then the Reynolds nunber based on the momentum thickness and free-stream
properties is

Fuels _ gt Mw P (51)

Re
7 b “ Ty Mg Py

where the property retios asre cbtained from equations (10) to (13). The
Mach number for a perfect gas is

118

S-S, Y B~ (32)

Yo = =L | [COERI Y

If values ere given to «, B, and &', where 8% is the va.lue of
y* at the edge of the flow boundary layer, then values of u'g B tS , and
so forth can be read from curves similar to those in figures 4 to 6.
Values of Cg, Rey, and My cen then be calculated from equations (28),

(31), and (32). This procedure essumes that the thermal and flow boundary
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leyers are of equal thickness. From the calculations in a later section,
where relatlons between boundery-layer thickness and distance along the
plate are calculated, it can be shown that this is a good assumption for
geses when the thermel and flow boundary layers begin at the same point.
For the case of Pr = & = 1 the agsumption holds exactly, as can be seen
by substituting ut = Tt into equations (42) and (43), which are then
identical.

Predicted skin-friction coefficients are plotted agailnst Reg 1in
figure 7 for various values of Mach number for an insulated plate
(B = 0). These curves are for ¢, /e = a = 1. The effect on the curves

of changing a %o 1.07 was negligible. The values of C decrease
considerably as Mach number increases. Included in the plot are experi-
mental data of a number of investigators for Mach numbers up to 4.93.
In general, the date are in good agreement with the predicted curves.

The ratio of the friction coefficient to the incompressible coeffi-
cient is plotted against Mach number for various velues of Reg for

B =0 in figure 8. The values of Cf/Cf’i decrease with Reg, but at

a decreesing rate. For comparison purposes the analytical curve of
Cf/Cf,i against Mg for a value of Rey of 6000 is plotted in figure

9 together with data taken nesr this value of Ree.

If heat transfer occurs between the plate and the stream, it is
convenient to specify the ratio of the actual wall temperature to the
adiabatic well temperature for a given Mach number and Ree. For an in-

sulated plate the adiabatic wall temperature msy be written as
i
ta.w = 'bs + 1 'Z—E— (35&)
P
where 1 is the temperature-recovery factor, the calculation of which

is discussed in the next section. Egquation (33a) can be written in
dimensionless form as

tw 1

= 33b)
t + +2 (
aw L = Bts + maug

Figure 10 is similar to figure 7, except that the plate is now
cooled (b, /t,, = 0.5). The trends are similar to those of figure 7, but

all the curves are dlsplaced upward. This increase in frictlon coeffi-
cient was also obtained for flow in & tube with cooling (ref. 5). Also
included in this figure are wind-tunnel data (ref. 18) obtained at high
Mach number using nitrogen as the working fluid. The agreement with _
theory appears to be within experimental efror.

aToY
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Figure 11 is similaxr to figure 8 but is for a value of 0.5 for
tw/taw. It is of interest to note from both figures 8 and 11 that the
rercentage effect of varying Reynolds number is much greater for the
higher Mach numbers. Thus, figure 8 indicates that for a Mach number of
20 the velue of Cf/bf,i for Ree of 10° is less than half that for

3
Re6 of 10v.

Reference Temperatures and Extension of Results to
Greater Cooling Rates
The defining equation for reference temperature is

*
t7 =ty + C(t, - tg) + D(tg - t.) (342)

where C and D are constants to be evaluated from theoretical or ex-
perimental results. Dividing equation (34a) by tg and sssuming that

the recovery factor is constant at 0.88 and that 1 = 1.40 result in a
more useful form of the equation:

*

%5=(1-c)+Ec-n)%+1{)(1+o.17smg)

According to the concept of reference temperature, the relation be-
tween incompressible friction factor and Reynolds number should hold for
varisble-property flow if the properties are evaluated at the reference
temperature. The results of this analysis could not be represented ac-
curately in such a manner. It was necessary to write the incompressible
relstion in the form

E

Co : = ———or
f£,i 338.0744

where E is a constant. It should be noted that this is not the true
incampressible relation and is used only for reference temperature pur-
poses. If the properties are evalusted at the reference temperature,

the result is
. - E (Ef)[0.875
£ 362.0744 ta
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Dividing this equation by the previous one gives

c x,~0.875 .
£ £
_cf,i = (?s-) (34b)

For Re, OFf 105, evaluating the constante € and D in the refer- i

ence temperature equstion from the results in figures 8 end 11 and equa-

tion (34b) gives C = 0.56 and D = 0.184. The reference tempersture g_
can then be written B
* +
X - 0.40 + (0.576 2 + 0.184(1 + 0.176 M2 (34c)
Ty taw

The results of the use of equations (34b) and (34c) are shown as dashed
lines in figures 8 and 11. Thus, by use of equations (34b) end (34c) it
should be possible to extend the results of this anslysis to values of
tw/taw other then 1.0 and 0.5 if the value of Rey is near 10°.

An egtimste for lower Reynolds numbers may be cbtained by first
using the preceding method to find the friction factor at Re9 = 10°
and then finding the ratios_of friction factor at the desired Reymolds
nuwber to that at Reg = 10° from figures 8 and 11. These ratios can

then be interpolated or extrapolated to the desired value of t/tg..

Thig procedure can be Justlified since the ratio does not vary greatly

with b/t ..

o

Stanton Numbers and RecoveTXy Factors

The Stanton number based on the difference between the wall and the
adigbatic wall temperabure, with properties evalusted et the free-gitream
temperature, is given by

ts
1l- E
St = h - 1 _t_ W . L (55)
°pisfs ++PE . "B a2 _ -
s8Y% P t, NoUg

where equation (33a) is used. The temperature and density ratios are
determined from equations (11) and (12) or (13). For B =0 and o # O,
equation (35) becomes indeterminate. For that case set

+! + . +! ; _ -
1- (4 /1'-,W) = oty and tf = (d,/B)ts . With these substitubions equa
tion (35) becomes . S
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St = B 36
ag(pg/p M8 - mit?) (3)

From equations (7) and (5) (q/q, = /1, = 1),

) N s+
€

k 1 P
— =+ g — =+ 8
0 ky Pry by WPy o K Fry ey “; Py

The second integral in this equation can be replsasced by (t'g') 8=0" But
equation (33a) can be written in dimensionless form as »
1
mui? = (68 )o_g (38)

Substituting equations (37) end (38) into (36), with the second integral
in equation (37) replaced by (t‘é’ )B=O’ glves

_ 1
gt = = (39)
w2 .
Py X L €

1
—_— a
0 ky Pry Py ”w; Py

For evaluating equation (39) in the region close to the wall,
e/ (/o) = néutyt. For the region away from the wall, € could be ob-

tained from equation (8). However, it is more convenient to obtaein e
from equation (5), which for the region away from the wall becames

b __€ _ 1
Py l"‘w/pw gut/ayt
Equation (39) can be used for B = O or B # 0. For given values of

8%, a, and B, values of Stanton number, Mach mumber, t./tg,, and Reg

can(be)calculated from equations (39), (32), (33b), (30}, (3L}, and (10)
to (13).

Predicted Stanton numbers are plotted against Be9 for various
Mach numbers for tw/taw = 1 in figure 12. The case of tW/taw =1 is
a limiting case that can be approached as closely as desired by making

the heat flux small. When 'bw/'baw = 1, there is no effect of variable
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properties due to heat flux. The Stanton numbers in figure 12 show
trends simllar to those of the friction coefficlents in figure 7. In-
cluded in the figure are experimental data for low heat flux obtained by
a nunber of investigators. In general, the data are in good agreement
with the predicted curves. The curves in figure 12 are for eh/e = &= 1,

Similar curves for an a of 1.07 were 3 to 5 percent higher for a Mach
number of O, but the difference decreased at higher Mach numbers. The
curves for a = 1 are in slightly better agreement with the data than
those for a = 1.07. '

L]

>
22}
The ratio of Stanton number to the incompressible Stanton number is P~
plotted against Mach number for various values of Reg for tw/taw =1
in figure 13. These curves are very nearly the same as those for
Cf/Cf,i in figure 8.
Flgure 14 is similar to figure 12, except that twlﬁaw = 0.5. As
was the case for the friction coefficients in figure 10, the Stanton
numbers increase as tw/taw decreases. The corresponding plot of
S‘b/Sti against Mach number for various values of Rey and tw/taw = 0.5
is shown in figure 15. L

Temperature-recovery factors, as calculated from equation (38), are
shown in figure 16 for Mach numbers from O to 8. Curves are shown for
a=1and a=1.07. The curves for a = 1.07 are in somewhat better
agreement with most of the experimental data than those for a = 1.

This does not mean that an a of 1.07 should be used for celculating
hest trensfer or Stanton numbers. According to Reichardt'’s hypothesis,
the value of & should be close to 1 at the wall and Iincrease with dis-
tance from the wall (ref. 12). The tempersture profiles for calculating
hegt-transfer coefficients are very steep near the wall, so that the im-
portant charges with distance take place near the wall where a 18 close
to 1. In the case of recovery factors, however, the plate 1s insulated,
so that the temperasture gradient is zero at the wall. The gradients near
the wall will therefore be smeller than in the case of heat transfer, and
important changes of temperature with distence might occur in regions
away from the wall where a is somewhaet greater than 1.

Figures 17(a) and (b) show the curves of the Reynolds analogy factor
25t/C; against Mach mumber for various Rey, for t./t,, equal to 1.0

and 0.5, respectively. If Reynolds' analogy held strictly (Pr = a = 1),
the Stanton number would be equal to one-half the friction factor and
ZSt/Cf would be unity. Figure 17 shows a variation of the Reynolds
snalogy factor over the range 1.065 to 1.280. 1In genexral, ZSt/Cf in-

creases with increasing Mach number and with decreasing Reynolds numbexr
and increases slightly with decreasing tw/taw at the higher Mach
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nunbers. These results are in gpproximste agreement with those of
Rubesin (ref. 19), who estimated that 2St/C; would be in the range
1.18 to 1.21 at lemst up to My of 5.

To obtain approximgte values of St as a function of Ree and Mg
for tw/taw other than 1.0 and 0.5, it is recommended that the results
of flgure 17 be interpolated or extrapolated to give the value of ZS'l'./Cf
at the desired condition. Then C¢ can be found from equations (34p)
and (54(:) asg previously described, and thus the value of St is obtained.

Relation between Boundary-Layer Thickness and Distance along Plate

From the results given in the preceding sections, the skin friection
or heat trensfer for a given houndary-layer or mamentum thickness can be
calculated. In order to calculate the relations between thermal or flow
boundaery-layer thickness and distance along the plate, the well-lknown
integrael momentum snd energy equations msey be used. These equations may
be written as follows for a flat plate (zero pressure gradlent):

e}
T = di:.c“[: Eau(us - u)d;{l (40)
Oh -
Q= -(%{—f pru(T - Ta)dy] (41)
0 )

If 8=25%, =0 for x = 0 and equations (40) end (41) are integrated
with respect to x, they become, in dimensionless form,

[]p o o
& +2 1 p t, + 4y -+
Re, = = al— = £ - 42
Sx | o, B us%[ pwu(us u)ay (42)
[] o " 5
- + 8 gl w\ L L. (ot +
Re, = T'gua . a (%) = "[ o ¥ (TB T)ay (43)

where the bracket for the upper limit of integration refers to the value
of the varisble of integration et that point. These equations glve the
relations between &% and Re, and 6‘1‘; and Re,. The property ratios

are cbtained from equetions (10) to (13).
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Equation (42) can be written in the more convenient form

Re9
dRee
Re, = 2 5 (44)
0 T

The Reynolds number based on momentum thickness Bee is plotted against

Re,, as found from equation (44), for an insulated plate in figure 18.

The value of Ree decreases at a given Re, as the Mach number increases
if the free-stream properties remain constent. This is caused (eq. (44))
by the decrease of friction factor with increasing Mach number (fig. 7).
Data included in figure 18 agree reasonably well with the analytical
curves.

Figure 19 is similar to figure 18, except thet t./tgy; = 0.5. For

given values of Re, and Mach number the values of Reg are generally
a little higher for tw/taw of 0.5 than for t,/tg, of 1. This trend

can be understood from exsmination of equation (44), since Cp is higher
for t.,/tg, of 0.5 (fig. 10) than for ty/tgy of 1.0 (fig. 7).

Predicted skin-friction coefficients for an insulated plate are
plotted against Rex in figure 20. The trends with Mach number sre
gimilar to those obtained when Cr 1is plotted against Reg but are
less pronounced, because the boundary-layer thickness at a given x de-
creases with increasing Mach number. Experimental dats for low-speed
flow included in the figure are in good sgreement with the predicted
curve for & Mach number of zero. Data for higher Mach numbers are slso
in reasonable agreement with the predicted curves but are somewhat more
scattered than the data in figure 7, where Ce 18 plotted against Ree.
This scatter is apparently caused by uncertainty as to the point at which
the boundary layer actually starts in a supersonic flow.

In figure 21, the theoretical curves are replotted as Cp/Cr 1

against Mach number for various Reynolds numbers based on x. The
effect on cf/cf,i of varying Rey, becomes appreciable at high Mach
nunbers.

Stanton numbers for an insulated plate ere plotted against Rey

for a Mach number of zero in figure 22. Curves for higher Mach numbers
and for tw tgy ©Of 0.5 involve considerably more calculation and were

not obtalned.

Figures 23 and 24 are analogous to figures 20 and 21, respectively,
except that they are for t./tg, of 0.5. The friction factors, as ex-

pected, are higher for the larger rates of cooling.

aT9% .
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Reference Tempereture for Re, Results

The customsry use of a reference temperature concept requires that
the Reynolds number dependence of Cf and of St be the same for all

Mach numbers so that Cf/Cf 1 end St/st; should not be functions of
Reynolds number. Ebcamina:bion of the predicted curves of Cf/Cf i and
St/st; against Mach number as shown in figures 8, 11, 13, 15, 21, and
24 shows, however, that Cf/cf,i and St/Sti are strong functions of

Reynolds number at the higher Mach numbers. Therefore, the present the-
ory cannot be represented accurately by one reference temperature valid
for all Reynolds numbers.

For purposes of comperison, however, the results obtained by using
Eckert's suggested reference temperature (ref. 3) are shown in figures
21 and 24. Agreement with the present theory for Re = 108 is guite

good.. Use of Eckert's reference temperature method to solve for Cf/Cf 17
is recommended, then, if large values of Re, (near 108) are considered.
In order to solve for Cp, the value of Cf ;4 can be taken from the
curve for Mg = O in figure 20. 4An approximation (within 5 percent) to
this case is

Cp = 0.0292 Rey > 1ot

In order to solve for values of Cp at values of tw/ta.w other then
1.0 and 0.5 and for values of Re, other than lO8 ; the same approximste
procedure as recommended for Ree as the variable can be employed. For

this case, however, instead of figures 8 and 11, figures 21 and 24 and
Eckert's reference temperature should be utilized.

To obtain an approximate relation between Stanton number and Re,

the following procedure is recommended: Find the value of Regy corre-
sponding to the specified Rey by interpolation or extrapolation of fig-
ures 18 and 19. From this value of Reg find the Reynolds analogy fac-

tor by similar use of figure 17 for the specified values of tw/taw and
My. This value of the Reynolds analogy factor and the value of Cg ob-

tained as shown in the previous paragraph are sufficient to solve for
the Stanton number for the specified conditions.

Closing Remaxrks

No atbtempt has been made in this analysis to include the effects of
dissociation, shock waves, radiation, slip flow, or induced pressure
gradients.
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A rough estimate of the effect of dissociatlion masy be inferred, as
pointed out by Eckert (ref. 3), from the theory of laminar boundary
leyers. Thus, both Crown (ref. 20) and Moore (ref. 21) conclude that
the effect of dissociation on friction factor and heat flux for the lam-
inar boundary layer will be small if the wall bemperature is less than
the air dissociation temperature, which, even at a pressure of 0.0001
etmosphere, is above 3000° F. Their calculations were made for Mach num-
bers up to 20. Where dissociation is appreciable, it is recommended
that the heat-transfer coefficients presented in this report be inter-
preted as bagsed on an enthaelpy difference instead of a temperature dif-
ference, Thus,

and

8t = 3
(Hyy - Hay)ugPs
where H 1s the enthalpy.

Although in practice there would be a shock wave originating near
the leading edge of the flat plate for high Mach numbers, the effect on
temperature and pressure distributions appears too complicated to be
taken Into account. Therefore, constancy of free- stream pressure and.
temperature has been assumed.

The possibility of encountering slip flow at high Mach number must
also be considered. According to Eckert (ref. 3) the assumption of &

0.499 Reg
than 0.0l. To cbtaln a conservative egtimate for the range of condi- 4
tions considered in this report, values of My and Reg of 20 and 107,

respectively, are used. For these values the Knudsen number is
0.00298, which is well below the criterion for slip flow.

5 M
continuum is valid ss long as the Knudsen number [;: 8 is less

SUMMARY CF RESULTS

The following results’ were cbtained from the analysis of turbulent
flow and heat transfer over‘a flat plate at high Mach numbers:

1. The frictional heating that occurs at high Mach numbers produced
a flattening of the velocity profile, as does heating the plate by other
meens. Cooling the plate caused the velocity gradients nesxr the ocuter
edge of the boundery leyer to increase.

L 47
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2. The skin-friction coefficients and Stanton numbers at a given
Reynolds number decreased as Mach number increased.

3. The curves for the ratio of frictlon coefficient to the incom~
pressible coefficient against Mach number agreed closely with the curves
for the ratio of Stanton number to incompressible Stanton nunber against
Mech number.

4. Cooling the plate to offset the effects of frictional heating
increased the friction coefficlients and Stanton numbers.

5. Frictional heating at high Mach numbers produced & thinning of
the boundary layer at a given position on the plate for the same free-
tr

em nropnerties.
regm propertlies.

n

6. The predicted friction coefficients and Stanton numbers agreed
closely with representative experimental data.

7. The Reynolds number effect on both friction factor and Stanton
number incresses grestly with increasing Mach number.

Lewls Flight Propulsion Laboratory
National Advisory Committee for Aeronsutics
Cleveland, Ohio, January 17, 1958
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APPENDIX A

DERIVATION COF TURBULENT MOMENTUM AND ENERGY EQUATIONS
Momentum Eguation

The momentum equation for compressible boundary-layer flow past a
flat plate cen be written as

pu%—z+pV%l=§—y(ug}-;) (A1)

ais -
ég;—ul+-a-§§—v2-=o (A2)

Time derivatives and pressure gradients are neglected in equations (Al)

and (A2), as they drop out when time averages are taken. i
The instantaneous quantities in equation (A1) are now replaced by

thelr time averages and fluctuating components, which are written as

u=1u-+ u' p=p+op!

(A3)

<l

v=v+v o=

end time averages are taken term by term. The following order-of-
megnitude criteria are used for both the momentum and energy equations:

53; = 0(1)

%so(s

0, TJ-, T o~ o(1)

-l)

v = 0(5)
X, B ~ 0(8%)

wv', p've, ete. ~ 0(8)

o'u'v!, p'u'?, etc. = 0(83/2)

3
Double correlations conteining k' and u' = 0(8")

9ToY,
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The first five of these criteria are the usual boundary-leyer assumptions.
The sixth results from assuming that the laminar and turbulent shear
stresses are of the same order of magnitude. The seventh is consistent
with the sixth, since a triple correlation should be roughly of the mag-
nitude of a double correlation raised to the 3/2 power. The eighth
appears Jjustified since it might be expected that k' and p' should

be at least one-half order of magnitude less than k and p.

With the preceding criteria, the time-averaged momentum equation
becomes, on neglecting terms of magnitude & and less,

sa%+cah_—prvr)%%%(a%-s—urv-) (ae)
and the continuity equation,
4;;——” pﬁ + ag):_r) + B[pé;rr' =0 (AS)

Considering the relation
v + P = pv (46)

equations (A4) and (A5) can be rewritten

BG%E+BG%E=%(E%E-EW) (a7)
and
2Gi) aa%;) e (25)

Comparison of equations (AL) and (A7) leads to the definition of T as

T=E%"-Eu'v‘ (A9)

Energy Equation

The energy equation for compressible boundary-layer flow past a

flat plate is 2
puc % + pvey % = % (k. %7‘-3) + 1 (%) (A10)
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Time derivatives and pressure gradients are again neglec'bed as time-
averaging cancels them. If the momentum equation (Al) is multiplied
through by u and then added to equation (Al0), the result is

d u? d w2 _ d [, 3t d
u t+ 2 )+ pv t+ Y )= k + pu 8 A1l
P = (cp > [ 5 Cp 5 X S5 e 3 ( )
where cp is considered constant.
Again substituting for the instantaneous quantities the sum of the

time-averaged and fluctuasting components, and then neglecting terms of
small order of magnitude on teking time averages, equation (All) becomes

Bﬁ%(cp’o+—2)+ (Bv+pv)§w—(cpt+—z-) =

z (z LR E - e, VE - B _u‘v') (a12)

Agein employing equation (A6), equation (Al2) becomes
-= AR BTG
(cpt + z)+ pv?y("pt +_2')=‘
d (%3t -z e TTET - oo T
-5; E-‘- qu-pch - pu u'v (Al5)

A comperison of equations (A1l) and (A13) shows that

- (_E %—;G: + pu %u - Ecp v't' - pu u'v') (A14)

It should be noted that this treatment gives no density fluctuation
terms In the expressions for T and g. This same result was found by
Van Driest (ref. 22) and by Rubesin (ref. 19). Combining p'v' with
ov and writing the sum as pv present no difficulty, because, in a
complete solution, pv could be eliminated from the momentum and energy
equations by the equation of continuity. An assumption for o o'V’ would
be necessary only if it were desired to calculate v,

| 9T9P
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APPENDIX B

'

PROCF THAT -T = 9 FR Pre=ga-=1
Tw Gy =

In terms of eddy diffusivities, the momentum and energy equations
may be written as follows:

a2 @ pe)T] | (1)
2 — =
- (cpt+—)+pv§;(cp_t+_2_)=%I:(E+Ecpeh)%§+ﬁ(ﬂ+ﬁe)%€}

(B2)
The energy equetion (B2) can be rearrsnged to read

=2 - - T2
pu % (cpf + Pé—) + pv % (cpt + 52—)

= 3 {:Pr + peh 5? (c 'b) + (— + p€) (—2)] (33)

For Pr = a = 1, equation (B3) becomes

- %(cpvg . _E:.) + 57 %(cp% + '-‘32—2) - %[@ + e) %(cpz . %Z)J (54)

If equations (BL) and (B4) are each solved for pu and the results
equated, there is cbtained

[:(- + Be) a‘r] S [c' + Pe) B;(cpt . —2):\ -5 %(cp% . %2-)
> —2
& (cpt . —)

The assumption is now made that

(B5)

- T2 -
cpt+u?=Au+B (B6)

The expression given by equation (BS) for cp¥ + ;— is substituted into

the right side of equetion (B5). Since the right side becomes identical
with the left side upon this substitution, equation (B6) is a valid
relation.
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The constants A and B 1in equation (B6) are evaliiated as follows:

at y = 0: 4

at y = O
- du _ = dt W
I-l?y—'rw, k'&j—qW;A "',1:; g
With the constants thus evaluated, equation (B6) becomes (dropping the I_C?
bars for convenience)
a Gy
u S e we——
PPt =T vt oty (B7)
If equation (B7) is made dimensionless » 1t becomes simply
ot = ot ' (B8)
Previously cbtained relatioms for 7/, and qfq, are o
+ -
T B P € du :
—_ = g —7— —_— 5) -

9 (21,0, € \Nat© oo sfp o e \aut
e (%Prw“”pwam ay+ zﬁu(uw+pwm)dy+ (6)

If use is made of equations (B8), (10), and (26) and the fact that
Pr = a =1, the resulting equation cen be reduced to

?g%:%, ) (s9)
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APPENDIX C

VELOCITY AND TEMPERATURE FROFILES FOR CONSTANT RATIO OF TURBULENT
TO MOLECULAR SHEAR STRESS AT y']‘: AND MOLECULAR SHEAR STRESS
AND HEAT TRANSFER IN REGION AWAY FROM WALL (Pr = 1)
The equation for velocity profile used near the wall is equation
(16), where 1 - abt' =1 - qut2 for Pr=1 and B = O (see eqs. (B8),
(26), and definitions of +¥ and t+').

Previously, the expression for 'r/'rw was shown to be

__T_=_|.idu+ p € duF
T.

w Moyt pwp‘W;pW?iF (5)

and far from the wall (eq. (8)),

2 (d_u‘“)s
€ _ ay*

Wl Py (d2u+)2

ayte

Cambining equations (5) and (8) and asssuming constant shear stress across
the boundsry layer give

(du+)3-1
+ +
1= 4,2 MY /) de (c1)
B Py (d2u+) ay
dy+2 ]
The variations of density and viscosity with temperature are
0.68 )
L _[E
M (tw) g
c2
. (c2)
e X
P, E
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For Pr=a=1 and B = 0, the temperature ratio is expressed as

t +2 -
=1 -au
T, (c3)

Substitution of equations (C2) and (C3) into (Cl) yields

+240. 2 + + .
l - ( d2u+) dy c
| dy*g i
Solving for dzu"‘/ ayt2 gives i
_ x( du )
qPut dy*

- (cs)
v V(T' aw*?) [1 - (1 - aut?)0-8 g:] )

If a change in verisbles is made as

equation (C5) can be integrated to give

_f wxaut
T 2 [1m (1oou*210 66
e o ___V(lcm .)E-_(l”_ ) J (c6)

The solutions for u’ as a function of y+ can be obtained by a process

of iteration. Assumed velues of v for a given increment in ut are
substituted into the right side of equaticn _506) until it equals the
left side. The relation between ut and is then calculsted from

+
+ _ du
Yy —f -~ (c7)
0

From equation (BB), = T" for qfq, = t/7,, s0 that the relation be- v
tween Tt and yt is also known.
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APPENDIX D

VELOCITY PROFILES FOR LINEAR VARTATION OF SHEAR STRESS
AND HEAT TRANSFER ACROSS BOUNDARY LAYER (Pr = 1)
Because the varistion of shear in the thin region near the wall is
negliglble, the seme equations are used in the present case as were used

in sppendix C.

From equation (5), the equation for t/t, far from the wall, neglect-
ing the viscous stress, is

T e dut
T, pW w /o dy+
The expression for e¢/(u./p,) far from the wall is, from equation (8),
Ez<duf)5
* +
€ - dy
dy+2

For a linear varistiom in shear stress,

T i
— =1 - (D1)
TW 5+

Combining the foregoing equations yields

Kz d'll+ 4
+
1-L -2 Ay (p2)

For B=0, Pr=a=1 (1/t = q/q,),

o)
T R R (p3)
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Substituting equation (D3) into (D2), rearranging, and teking the square
root of both sides give

(du_)z _
aBy* - % \dy*
= (p4)
dy*a - a2 +

V2 '\/éag?

aTra=

Letting v = du /dy in equa.tion (D4) and integrating give

+
A’l_ +2 —— = E_
6+ 8+ v
l

v="v]e (ps)

Equation (D5) can be solved by iteration for B =0 and a given a and .

5"‘, to give ut as a function of y"'. From equation (B8), = Tt for

q/qw = 'r/'rw, so that the relation between T* and y¥ is also known.
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ture distributions. Preundt) number, 1; hest-flux pearsmeter B, C.

30 LELELELLRL T T T 17711
Linear variatlion of shear stress
or heat transfer 1% I" |0
— —— (onstant shear stress or heaat
trangfer /<5+ = 5000
25 i ;
/
LA
== !
LT Mo « 100!0
20 .—"’\_ T |
8 5% e = 0.008
/
= - 5
1% o+ | Ne* = 2000
p= = 300
15 =~
// =
// -
Zginas
10 / ] Bt - 52
//,
//
5 >
e d
/‘
_’/
Q
1 2 4 -] 10 20 40 80 100 200 400 800 1000 2000 4000

292% ML VOVH

6%




Valocity parameter, u+, or totgl-teupersture paramater, T+

S0 T T T TTT1 T |
— ~— — Constaot y{
y;’_ at constent ratio of fur-

bulent to viscous shear streas

25 1
Fﬂctgnal-heqbima
parameter, |~
[+ 2
0 d d
1
20 ///
|~
”d ,_ﬂ’ 0.003
1 —
15 L = /
| /f":’
— /:;;
/
Iﬁfé?f TP
10 ]
1
r
"y
yd
)
1
.//
—
0
L 2 4 [ 10 20 40 80 100 200 400 600

Wall distance parameter, ¥y

Figure 3. - Effect of various asaumpticns for verletion of y{ on genarslized velocity or tewperature distribution.

Praxdtl mmiber, 1; heat-flux parameter B, O.

! . : _ L : _ - 9T9%

1000

oy

2927 NI VOVN




4b16

L=t

NACA TN 4262

10,000

Y A \ 1
T\ Y
s b VALY Y
N r/ r:/ / m
NS od
s [Pt g
| . .
..IQ-O /l -f /4 V’ / MO
i ﬂﬂ, f/ /f/ V ﬂ T -
=ol BB N A =083 g
[N
nwa” Yz ./// / / /_\ W-
bl - B NAN \ /F_u_:_ g
0..0. -4.. /rf / / T\\
‘s TSN LV
e 2 ATAVAWAN { 8
L& AN 5 b\
&3 RN IR :
& 2ol ANV e
' 81 N T
Chok IR AN 8
Ay I
" SRR AT
2 //W,V A\ 8
"o TN Y
RN
AN C//..,
X g
N .
S AL
L,
8
g
-
o
-
s 2 o | ] ] e

...= ¢ raqaamred £1720T84

¥Well distence paremeter, ;r"'

41

Prandtl

Figure 4. - Predicted generalized velocity distribution for air with heat tremsfer and frictional heating.
nugber, 0.75.



4z NACA TN 4262
Ay % k) A 1 m:
N 1 3
8 [~y \ .
TN DA AN f Ef
LB L N T W T 1 : m
e NN (s s
W /x/ 1 ge o a
ao SN NSl fve 88 g i
b Y @ B.Errlmo 8 ol
2.?”// ® won &
\ ' @
35 NN \ P i
7 AN 13 1 m ]
" AT . Y
@B AN \ g
- RXEAY \ M ]
W\ \ ] “
AN §
/ /., / 18 m 2
AN |
éy A g5 9
N // § &
R\
S gd f
Y WL W W o B
YA ¢ g
NOVRR £ 3
,,.wm,/ s 83 M
AN\ Om
z../” /—._f_ e .m
XY
SN _f
W = 4
/hr//. .m
q ¢
= ol
i
g
] yno
~ MO.
\ =
I3
\ |4
5 2 g n g "R

+I faegemeaed sanjesednes-TwioL

aToy



Temperature perameter, t+'

" CN-6 back 4618

700
/ pa
g
Frictional-hemting 1
parameter,
800 [+
74
500 A 0.001,4 =
( / T
/
L
|/ 0.00
400 /}/
1
L |
/// -
// gd
300 v
Vi
LA
800 /4/
7
100 /
|~
/“’
“1 10 20 0 80 100 200 400 600 1000 2000 4000 10,000

vall distance parsmeter, y"'

Filgure 6. - Predicted tewperature distribution for eir with frictionel heating on insuleted plate, Prandtl number, 0.73.

292% ML VOVN

zF




WACA TH 4282

= iiE s Eim At a== =Rl
{ [t J U /

[ | { f1 ] /

[ ] N7 7 m
NI ITITI T
7] :
\\\: [/ ] !
__—\_“_\ Fi .W m
f gL yifid / i/

of fife Bt [ /

L | g1 /17 M
al lf AVEIAY

Figure 7. - VYeriation of predicted skin-friction coefficient with momentum-thickness Reynolds mmber and Mach

10—2

[/ \\ [V m £
\ \\ / m. m.
77 i
\ e i ¥
\\ \\k\ _.mvm m
= F] 1f AR Arimyiwa I_._m
lmm / 17717 TY g _ ¢
¢ ™ a1 S g _
¥ __m AV ENRY TR m
" - 8}
1
mm%ﬁmﬁﬁﬁoj i
mm 4“5522222 _1 am
a$oegobegnda
IS ITIEEA m
% _ 9 i

Fy ‘quetorsyeos UOTROTIZ-UTHS

919w



1.0

.8

-6

Cr/Cs 4

.4

«2

4616 ' J

lated plate.

Free-gtream Mach mumber, HB

Flgure 8. - Variation of cf/cf,i with Mach mumber for verious values of mamentum-thickness Reynolds number for insu-
Prandtl mmber, O.73; heat-flux parameter B, C.

.18
\\
A4 P, \-. Mcamentum-thickness
\ \ Reynolgz mmber,
N, \\ 038
1.
N ~4
=10 \ \" \P—
p——
\\\ \ <] //-105
IR I~ Reference temp.
%.._ % for Re, = 10°
\ /-Refereme ‘temp, -08 1 S .. |
N\ | for Rey = 10° =
k\\\ .02
\.\
- 10°
Q\ — /—lO4
] R— /,/
4 8 B 10 12 14 16 18 20

¢92% NI VIVN

o
(4}




1.0

(0]
\\
8 \\ Reference
AN D23
N o 2
A 24
. o 2
L3 6 8] 1
L N a 27
o
4 \%D ‘
.
\\
]
0 1 2 3 4 5 6 7 8

Free~gtream Mech number, My
Figure 9. - Varlation of Cf/Cf ,1 with Mach mumber for momentum-thicknegs Reynolds

munver of 6000 for insulated plate and comparison with experiment. Prandtl humber,
0.73; heat-flux parameter £, Q.

~ - | | o : 919% g

g%

292TF ML VOVN




46816

NACA TN 4262

5

Free-gtrean
Mach rumber,

My

O~}

hl s SR

2‘-.

o ool

1

24
e e
505-0.558
T1Tl

Prese.gtrean
Mach mmber,
Hb
"'9.
-8.
mumber for tyftg, of 0.5 and comperison with experiment. Prandtl number, 0.75.

e NI =
H— m
[ (Y4 2
o ] :
NIEEREITIN Y R
SO S
L [ g
u.? \ g
:/m\ 1 \ \\ i 4mem
o 7 Rm
W 7 7 g g
AT ] 7 L
wa ry e L/ / g i
ST et Y 17 ¥
\\\ \ \\\\7 / \ / ;
| | : i g
1/ \\\\1\\ RS
1hm

|

E

E

:

Y

02

1072
10~3
1074

1

¥y fquerotzIece mOTIOLL-UTNE



1.4

l.2

1.0

Ce/Ce,s

N
~Refersncs temp \ Nomantum-thlcimass
~ for Reg = 10° N Reynolda maber,
A NN
) NN
W N |-10* \
12 Y <
\ -
R\ \\
.08 / \“‘-i:\
\ Reforence t;Ev.
far Re, = 10° T
\\ -04
Y
NS
. s’
~ g [ b _105
I s o o e
2 4 8 8 10 12 14 18 18 20

Fres-straam Mach muber, My

Figure 1. - Variation of cf/c:,i with Mach mmber for vericus values of mcumentum-thickness Reynolds number and

tyftay of 0.5. Prandtl nowber, 0.73.

919%

8y

2929 NL VOVN




49

B s

eynolds mmber and HMech nuxber

£

10

16°

Homeotum-thicinsss Reynolds mmhar, Res

\m_ f oy \ \\ \\ \ f \
I ] AN A
I UL A 1T /
INERINIVA NI
\Q:‘ Hinayave
niinae
m. Il ~\~\\\\\ \\ 4 \\ m 8334
“mmo- \z 7 \.a 7 %.N[ 7 k,
¥ mm +888
jg7 Sedne
b 040

NACA TN 4262

919%

L=ND

10

48 frequnu uojuels

10-4.

-5

Figure 12. - Variation of predicted Stanton mmber with maomentum-thickness R

for insulated plate and comperisan with experiment. Prendtl mmber, 0.73.



st/st,

1.0

«20|
™.
™~
1s Mamen tun-thickness
\ \ Reynolzsnmber?
\ st
‘\\\/éuﬁ
" \\E\ \‘\
a
~"\‘ st /_,104 = | —
\\‘xf
.08
\(\ \\
\ ~'q-*bh--
T
\ ) —
\&\
N
::::::*sﬁhxﬁh_> 105
~l
I e e e gy s =4
N s e
2 4 6 8 10 12 14 16 18 20

Free-gtrean Mach mmber, My

Figure 15. - Variation of Bt/Bti with Mech numbex for various values of momentum-thickness Reynolds mmber for ingu-

lated plate.

Prandtl mmbar, 0.75; beat-flux persmeter B, 0.

| 9137

oS

2927 ML YOVH




51

NACA TN 4262

105

St T e
I, / /
1 7
AR TN,
Wi
B
N\T\.\~ \ fl [ ~\\ Gm
T3 1 [ mJ7 /i
\\hu \ [IMI \ \ \ \ \
i/ | ARV [
My rr vyl 4/
\\:\\\ a1/
\2\\\\\\\\\\
/
m \~ \\\\\\ \ \\ ..w
T
£
ki
i % . I %
9197 0Bq L-ND . .

Mamentum-thickness Reynolds number, Reg
Figure 14. - Variation of predicted gtanton mmber with momentum-thickness Reynolds mumber and Hech mmber

for tyftgy of 0.5. Prandtl oumber, 0.75.



84/8t,

1.4

l.2

22 b

MRS
A\ 1IN N
\ ' T

Flgure 15. - Variation of St/8t; with Mach pusber for various values of mmenitm-~thickness Reynolds mmber and t/te,

of 0.5.

\ 51 <
RN >
AN < .08
\\Q\\
\ 105
§\\:\~ At
2 & -] 8 10 12 14 16 18 20

Prandt]l numsber, 0.73.

Free-stresm Mach mumber, My

gL9¥

28

292% Ml VOVN




53

NACA TN 4262

bt}
-
L

| A

et [t
//1//4 o

—l

L]

=

L1

L]

]

>

L~

feansmm=

o=l

—al

sl

p"

L~

Prandtl mumber, 0.73.

10t

; U \ // VAW
VANNEEAR Y
Im-all_ wfq/ \ / Y / / //A/ I~ / / /\/ // //
mu EARTRA SIS SO
[ 8 N AN VY RWAN VWALV VAN
2 / ANAVAANAINY W VA
# WAV SN A\VRRRIN

ture-recovery factor with momentum-thickness

-
/
//
e
v
f
/
=
L1

e
=
=

AR \ R AR LER I
e OH N M N W~

105

Free-gtream

Mach mumber
/
L~
/
v
L~
/
L

Momentum-thickness Reynolds mumber, Reg

Reynolds mumber end Mach number for epfe =& = 1 .and 1.07.

Figure 16. - Predicted varistion of

o8
.96
.94

9

& g g

li ¢z0q087 Lreaooat-samyviodusy,

.86

9T9% . '

102

B84



Beynolds analogy fastor, 284/C,

1.3

1l

1.5

1.2

la

Hmaan—-thJ.clmess
Reynolds mmber,
Beg
103
I
_——-""'—-—.—
_—-—""'"_—‘—
T | /.104.
‘_.-—F'/ _____J-—"’" /,_105
P s
._-—-7""_"—
{a) Meuvlated plate. Heat—flox Pexameter B, O,
J-I.O5
/ -'-_-—
-_-—""'
foraee—] /'104
/ /
/
// [ s
. | |10
/ /""‘F—’ Fa
//— e
"]
d—"‘-—-

Figure 17. - Predicted vrlatlon of
Preodtl mmber, 0.75.

Q 2 4 6 8 10 12 14 1a 18

Fme--trmmchmuhnr,lle

{0} tyftaw = 0.5.
Reynolds anelogy factor with momenitun-thickness Roynolds muxiber and Mach mxber.

g92% NEL VOVN




4616

NACA TN 4262 ' 55

Homentum-thickness Reynolds mmber, Reg

]
= ot
[ Free-stream Reference Mech number,
L Mach number, Mg %
MS AQ
I yon
— O 4.53 2 -
Q 3.70 2 4
— A 3.05 24 (natural transition)
v 3.05 24 (artificial transition) LA s
o] 2.82 17 / P //
10°]— b 2.58 2 . ai oy y
— 0 2-5 l = 7 7
— O 2.48 26 - /// 7 p
o 0 27 L
AL L A 4L
WLy dyat /// A Az0
/] q a9’ / Ve'd
v e
// /4 A
4 A
4 Pa A A
10 - —
y_ L | 7 2 L4
Va0, ARV AN 4
V7 71 A
A - ve"d
Vd,/ AV .
,/// / //
v .
// & N ////
-
e
1 L~
10° garz
. oz
¥
7
dPZ
LA
L
108
10° 108 107 108 10°

Longitudinal-distance Reynolds mumber, Re,

Figure 18. - Predicted variation of momentum-thickness Reéynolds munmber with longitudinal-
distence Reynolds nmumber and Mach number for insuleted plate and comparison with experi-
ment. Prandtl number, 0.73; heat-flux parameter §, O.



56

10

10

Momentum-thickness Reynolds mmber, Ree
[
X

[
2

102

""" NACA TN 4262

-Free-stream
Mach mmber
My 16
A 12
////
//’///4
/'6
al ///// 8
// Z 1 2. T
A /// 7 =
7 LA y. d Ay
A LA 7 L7 LA 420
XA AT AT
////// %
//’,/ //////l///
A A AH
'4 I//' ,/
» // A
/r // z 4
e
/; ///’/// :////
ydb / //,1/ M
4 1
1 M,/ §§§/V
LA e
i
A 7
N7
v
105 108 107 108 109

Longitudinal-distance Reynolds number, Rex

Figure 19. - Predicted vaeriation of momentum-thickness Reynolds number with longitudinsl-
distance Reynolds mmber and Mach number for = t,/tg, of 0.5. Prandtl mmber, 0.73.

919¥%



Skin-friction coefficient, Cf

4616

1072

r- T
r 1 4 Frec-atresm
~I m# .ﬁ Mm:_
-
ret I R SE11 A SR an;
Frem- Reference ] ,’5‘1*—?-h A T
10-3 - gtremm ] ‘\ \"- 1 .‘\\ N-__—"-‘"‘—-z
I Mach e
L mumber, s e S o — e
[ & 4.58 2 e . ] i —
I g g'gg zi T~ T N e 8
. B T ]
| o 2.82 17 B N e s S s ™ 8
2.8 25 I~ — ] t_ ]
- \ -
X 2.58 2 [
L A 2.5 1 KR - i F—
O 2.46 26 rﬁ
- "\4
0o 27 -
g 0 52 T ‘4\-\__%‘“
a 0 . , 53I . —F

1074 -
105 105 107 108 109
Longitudinal ~distance Reynolds mmber, Re,

HMgure 20. - Predicted variation of askdn-frietion coefficlent with lomgitudinal-distance Reynclds number and Mach mmber
for insulated plate and comparison with experimspt. Prandtl mumber, 0.75; heat-flux paremetsr B, 0.

292% ML VOVN

1s




.2 P
\ Longd tudi nal -distance
T N Bmolg:xmnber,
N I~ e
L . N
~
8 \\ \
. .14# \‘:\ \ 107
N B}

By Eckert's reference
K[tenp. method (ref. 3)

L/
7
/&

Ce/Cp 4
/|

E.

;

Vi

[y, =
o]
. e ———
\\'“‘— e
'--._‘_"_..‘-‘.___
T =t
] 2 & 6 8 10 12 14 16 15 20

Free-strean Mach muober, Mg

Flgure 21, - Variation of Cf/(.‘-r,i with Mach mmber for variocus velues of longltudinral-distance Reynclds mmbar for in-
sulated plate. Prandtl mmber, 0.73; heat-flux parsmwtar B, 0.

. . 9197

85

Z292% NI YOVN




- q ¢ 4616

10'2
O Ref. 31
P —

ﬁ hﬁﬁ?)“-_“__
" J——
& —t—~tl_]
; T —
510'5 T o ——
8 ——
;
73]

-4

10

10° 108 107 108 10°

Longitudinal-distance Reynolds mmber, Re,

Figure 22. - Predicted variation of Stanton number with longitudinal-distance Reynolds num-

ber for ilnsulated plate and camparison with experiment for low-speed flow. Prandtl num-
ber, 0.73; Mach number, O.
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Figure 23. - Predicted variation of skin-friction cosfficlent with longitudinal-distance Reynolds mmber and Mach mumber
for ty/tay of 0.5. Prandtl mmber, 0.73.
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FMgure 24. - Vardatlon of Cf/Cf,i with Nach number for various valuss of longitudinel-Aistance Reynolda mumber and
tyftgy ©f 0.5. Prandt] mumber, 0.75.
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