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SUMMARY 

The wave drag of a family of open -nosed bodies of revolution was 
computed by six approximate theories, first -order perturbation theory, 
second-order perturbation theory, generalized shock- expansion theory, 
second-order shock- expansion theory, tangent-wedge theory, and impact 
theory, and by the method of characteristics for Mach numbers between 
2 . 0 and 4 . 0 . The best agreement with the method of characteristics was 
provided by second- order perturbation theory and second-order shock­
expansion theory with the latter being the most attractive from the 
standpoint of computing time required versus accuracy obtained. 

The wave drag, for bodies of the type investigated in this study 
with the same initial lip angle and the same diameter ratio (initial to 
maximum diameter), was found to increase sharply for fineness ratios less 
than 3 but to be nearly constant for fineness ratios above 3. The wave 
drag was found to decrease nearly linearly as the diameter ratio increases 
for bodies having the same initial lip angle and fineness ratio. 

An approach is given for adapting the method of characteristics to 
automatic computing machine procedure. 

INTRODUCTION 

For a ircraft configurations employing a pod-nacelle arrangement to 
house an air breathing propulsion system, the external wave drag of the 
engine housing can be a significant portion of the total drag of the 
aircraft . In the absence of systematic experimental data to aid in 
estimating this wave drag, the usugl approach is to calculate it theoret­
i cally. At present there are a number of different theoretical methods 
which can be used for such calculations . However, the results obtained 
from the various methods are not consistent over a wide range of Mach 
numbers and body shapes and the computation time differs widely among 
the methods . The investigation described herein was made , therefore, 
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to compare the theoretical wave drag as computed using six approximate 
methods with that from the method of characteristi cs in order that a 
choice from the viewpoint of average computing time required and 
accuracy obtained could be made. The theories which were compared to 
the method of characteristics were: first -order perturbation theory 
(refs. 1 and 2), second-order perturbation theory (ref . 2), generali zed 
shock-expansion theory (refs. 3 and 4), second-order shock-expansion 
theory (ref . 5), tangent- wedge theory (ref. 6), and impact theory (ref. 7). 

To provide a reference for the comparison, the study was conducted 
for a family of open-nosed bodies of revolution having a fineness ratio 
of 5, a ratio of initial to maximum diameter of 0. 742, and lip angles 
between 1. 4780 and 35.8440

. This family was selected since its contours 
are representative of the nacelles of present day pod-nacelle arrange ­
ments for jet engines . Thus the wave - drag characteristics of such a 
family are of interest in themselves . The effects of varying fineness 
ratio and diameter ratio were also determined using the method of charac ­
teristics and generalized shock- expansion theory. 

THEORETICAL METHODS 

Although the various theoretical methods used in the present study 
have been discussed in detail in their respective references, it is con­
sidered appropriate to this report to discuss briefly each of the methods, 
pointing out in particular their approach to the solution of the super­
sonic flow field about an open-nosed body of revolution and their expected 
range of applicability. All of the theories used in this analysis have 
as their basis a solution of the gasdynamics equation shown below : 

o (1) 

where the symbols are defined in appendix A. Since this equation, which 
is applicable to any steady inviscid flow of a perfect gas, is nonlinear, 
simplified methods of solution must be used for most problems. The 
simplified methods of solution which have resulted in the theories used 
in this study are: numerical solution of equation (1), linearization 
of equation (1) with subsequent analytical solution of the linearized 
equation, and approximate solutions of equation (1) which are applicable 
to certain flow regimes . In the application of the theOries, the follow­
ing conditions were imposed: 

(1) The flow entered the nose of the body at supersonic speed (i.e., 
mass-flow ratio of unity) . 

(2) The bodies were immersed in an ideal gas . 

(3) The bodies were at zero angle of attack . 

• 

.. 
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Method of Characteristics 

One method of solving the gasdynamics equations is by numerical 
means. Such a method is greatly facilitated in the present case of 
supersonic flow since the gasdynamics equation is a hyperbolic differ­
ential equation and of a type that is integrable on characteristic sur­
faces which correspond to Mach lines . It is then necessary to rewrite 
equation (1) in a form suitable for numerical integration along the Mach 
lines, and several different forms have been derived (refs . 8, 9, and 10) . 
One form of the compatability equation for the method of characteristics 
which was considered to be the most satisfactory for the present study 
since it contains only two flow- field variables is as follows: l 

dp = + A(dO ± d: sin ~ sin 0) (2) 

where 

A = 2,p (3) 
sin 2~ 

wi th the upper si gn referring to the first family Mach line and the lower 
to the second family Mach line as shown in figure 1 . Equation (2) 
expresses the relationship between static pressure, stream angle, and 
Mach angle along Mach lines in the flow field and is applicable to either 
rotational or irrotational steady flow of an isoenergetic gas . When 
applied to rotati onal flOW, as in this study, the change in ' entropy 
normal to the streamlines is taken into account by considering the change 
i n total pressure along the Mach lines . This method is limited to bodies 
with supersoni c flow behind the nose shock . 

In the actual solution of the flow by the method of characteristics , 
the compatability equation is put into finite difference form and solved 
point for point in the flow f i eld . If solved by purely numerical means, 
the computations are very long and laborious for any practical problems 
and become feasible only with the use of automati c computing machines . 

In the present study, the computations '''ere made using an automatic 
computing machine . ~e equations used as well as a discussion of some 
considerations in the adaption of the method of characteristics to 
automatic computing machine procedure are given in appendix B. 

First-Order Theory 

In contrast to the numerical integration of the nonlinear gasdynamics 
equation by the method of characteristics, first -order theory introduces 

l This form i s not given directly in either references 8, 9, or 10 
but can be obtained by a suitable combi nation of equations 3.21 to 3.23 
i n Chapter I of reference 10 . 
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a perturbation function into the equation and linearizes the resulting 
expression so that it may be solved analytically . This is done by con ­
sidering the magnitude of the velocities in the following manner 

u = U + up 
(4) 

up and vp « u up and vp « a 

and defining a perturbation potential such that 

vn = 95£ 
.l:"' or 

Equation (1) can be put into the following form 

[
1 - (U + ~cp,\2J ~2X2CP + [1 _ (95£,\2J 02cp + ~ 95£ -2 ocp ocp 02cp (5) 

\' u~ 0 \~;) or2 r or - ox or ox or 

If the squares and products of derivatives of the perturbation potential 
are neglected, the following equation results 

02cp _ 13 2 02cp + ~ ocp 
or2 ox2 r or 

o (6) 

where 132 = M2-1 . Equation (6) is the linearized form of the potential 
flow equation. Details of the integration of this equation are given in 
references 1 and 2. Such a solution is applicable to the calculation of 
flow fields at values of the hypersonic similarity parameter, MooBo , less 
than 1.0. It in effect neglects entropy losses due to the presence of 
the body since entropy losses are of third order in the perturbation 
potential. 

Second-Order Theory 

The third approach to obtaining a solution of equation (1 ) is to 
use an iteration procedure, an approach first considered by Busemann 
and later extended by Van Dyke (ref . 2). For this method, a first -order 
solution is obtained as described previously. This solution is substi ­
tuted into the right-hand side of equation (5) and a second-order 
perturbation potential is found . The method of solution is given in 
reference 11 . Therein it was stated that the initial angularity of the 
body must be less than the free-stream Mach angle. 

In the present study the computations were done using an automatic 
computing machine since they are lengthy when done by hand. The initial 
angularity of the bodies was restricted to 130 or less because of the 
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limitations in the automatic computing machi ne program, an angle con­
siderably less than that permitted by the theory. This theory is also 
applied only in the range of M0050 < 1.0. 

Generalized Shock-Expansion Method 

5 

A method which has as its basis an approximate solution of the exact 
equation of motion is the well-known generalized shock- expansion theory. 
The approximation made for this theory consists of neglecting the term 
(ds/r)sin ~ sin 5 of equation (2 ) for cases in which the rate of change 
of surface angle of the body is large compared to its divergence. The 
resulting expression i s seen to be a differential form of the Prandtl-Meyer 
equation. The flow field downstream of the nose shock wave can then be 
considered of the Prandtl-Meyer type . The aforementioned assumption 
regarding the body shape is made in this theory so it could be expected 
to become accurate when ~o» 1 . 0 and when the area ratio of the body 
(maximum to initial area ) i s near 1. 

The application of this method begins by first approximating the 
body by a series of straight - line elements, tangent to the original body . 
The flow at the nose is defined by means of the Rankine-Hugoniot relations 
for an oblique shock wave. Since the flow downstream of the nose is of 
the Prandtl-Meyer type, the pressure can be found on any tangent line if 
the pressure and Mach number on the preceding tangent - line element are 
known . The pressure is taken to be constant on any given tangent- line 
element . The method is limited as is the method of characteristics to 
bodies that have supersonic flow behind the nose shock wave. The calcu­
l ations for this method can be made efficiently using a desk calculator 
and the tables and charts of reference 12 . 

In the present i nvestigation, the body contour was approximated by 
13 straight-line elements. 

Second-Order Shock-Expansion Theory 

Second- order shock- expansion theory was developed to provide a 
closer apprOximation to the flow field for the cases when Moo0o is near 
1 . 0 . This was done by developing an approximation to the part of equa­
tion (2) that was neglected for the generalized method . Two significant 
differences from the generalized method arise out of this closer approxi ­
mation . First, the exact pressure gradient at the nose of the body is 
found from the method of characteristics. Secondly, along each tangent 
line used to approximate the body contour, the pressure is found to vary 
exponent i ally . The asymptote of the exponential pressure variation is 
assumed to be equal to the pres sure on a cone having the same slope as 
the tangent-line element and at the same free - stream Mach number. 
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The application of this method is similar to that of the generalized 
method except the pressure gradient on each tangent line is found by the \ 
relations given in reference 5. The results can be obtained by means of 
a desk calculator but the process is somewhat tedious . 

In the present investigation, the body contour was approximated by 
13 straight- line elements. 

Tangent- Wedge Method 

An approximation to the generalized shock- expansion method is the 
tangent-wedge method. This approximation is based on the assumption that 
the pressure on the body at any point is a function of the net flow deflec ­
tion angle from the free stream. Thus in this method, the pressure at any 
point on the body can be found from the Rankine -Hugoniot relations for 
oblique shock waves (for bodies inclined into the free stream) or the 
Prandtl-Meyer relations (for body surfaces inclined away from the free 
stream) in which the deflection angle and the upstream Mach number used 
in these relations are the local angle of the body and the free - stream 
Mach number, respectively. The method is therefore limited to bodies with 
angularity less than the detachment angle of a two - dimensional shock wave 
and could be expected to become accurate in the same regions as the gener­
alized shock- expansion method. The computations for this method are very 
simple and can be made efficiently by means of a desk calculator and the 
charts of reference 12. 

In the present investigation, the pressure was computed at 14 points 
along the body . 

Impact Theory 

A direct approximation to the tangent -wedge method for certain flow 
fields has resulted in defining an area where Newtonian impact theory 
becomes applicable. For flows at infinite Mach number, wherein 1 = 1 . 0 
and the shock wave is coincident with the body contour , the expression 
for the pressure coefficient at any point on the body as given by the 
tangent -wedge method can be shown to reduce to 

Cp = 2 sin2 5 

This expression was obtained by Newton by neglecting centrifugal forces and 
assuming that the component of the momentum of the free-stream air that is 
normal to the body surface is absorbed, thereby creating a force on the 
surface. This theory which is applicable to any body contour would be 
expected to become applicable for Moo~» 1.0. Computations for this theory 
are very simple and can be made efficiently using a desk calculator . 

In the present investigation, the pressure was computed at 14 points 
along the body. 
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COMPUTATIONS 

Body Contours 

Throughout this investigation, a family of profiles whose contours 
are a function of initial lip angle, 00' the diameter ratio do/dm and 
the fineness ratio I/dm was used. The equation relating the bodies is 
given in reference 13 and has the following form: 

TO = rm - (rm-ro)(l-x)~ (8) 
where ~ is the relating parameter for the family of curves and is 
defined by 

~ = ~(l - ~~) 
The diameter ratio, dol elm, was varied from 0.707 to 0.898. Hm.,rever, 

for the majority of the investigation, a value of 0.742 was used. This 
diameter ratio is in the range of values considered in reference 14 and 
of those necessary to envelop existing turbojet and ramjet engines at 
about Moo = 3.0. The diameter ratio was varied while the initial lip 
angle and fineness ratio were held constant. 

The majority of the theoretical investigation was conducted with 
profiles having a fineness ratio of 5. These profiles are shown in fig­
ure 2. A small part of the theoretical investigation was concerned with 
varying the fineness ratio of the bodies from 0.625 to 10 while the 
initial lip angle and diameter ratio were held constant. 

Wave-Drag Computation 

The wave drag was obtained from the following relationship 

CD = J Cpd (~) (10) 

The methods discussed previously were used to calculate Cp a s a function 
of Ab/Ao . The above integration was carried out graphically. 

RESULTS AND DISCUSSION 

Pressure Distributions 

The distribution of the external pressure coefficients as .computed 
by the seven theories described earlier is presented in figures 3 through 
9, and are in the form of static-pressure coefficient, Cp , as a function 
of local area ratio, Ab/Ao. These curves were subsequently integrated 
to obtain the wave - drag coefficients . 
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Comparison of typical pressure distributions is shown in figure 10. 
From these curves three general comparisons can be made as to the agree ­
ment between the method of characteristics and the various approximate 
theories. The first point of comparison i s the magnitude of the initial 
pressure rise at the nose of the body . Generalized shock- expansion, 
second-order shock-expansion, and tangent- wedge theory (omitted from the 
figures because of its closeness to generalized shock- expansion theory) 
have the same initial static - pressure coefficient as the method of 
characteristi cs since all of these theories use the exact pressure at 
the nose. First-order perturbation theory and impact theory give lower 
values of initial static- pressure coefficient than the method of charac ­
teristics whereas second- order perturbation theory gives a higher value. 
The second point of comparison is that only second-order perturbation 
theory and second-order shock- expansion theory predict an initi~l pres ­
sure gradient which is similar to that predicted by the method of 
characteristics. It should be mentioned that the initial pressure 
gradient of the second- order shock- expansion met hod is inherently iden­
tical to that of the method of characteristic s . Finally, the predicted 
variation of static - pressure coefficient downstream of the nose differs 
for the various theories . For a curved body such as investigated herein, 
the method of characteristics predicts positive pressure coefficients 
over most of the body and an overexpansion with resulting negative static ­
pressure coefficients near the base of the body. Three of the theories, 
f i rst - and second-order perturbation theories, and second-order shock­
expansion theory, compare favorably with the method of characteristics 
for predicting negative static - pressure coefficients for curved bodies . 
However, positive pressure coefficients were predicted over the entire 
body by generalized shock- expansion theory, tangent- wedge theory, and 
impact theory. To summarize, the results of figure 10 indicate that 
second- order perturbation theory , and second-order shock- expansion theory 
provide the best agreement with the method of characteristics for these 
body shapes and Mach numbers . 

The variation of the static- pressure coefficient for bodies of 
varying fineness ratio (I/dm of 0.625 to 10), but with constant i niti al 
lip angle and diameter ratio, is shown in figure 11 for Moo = 2 . 5 . These 
distributions were computed by the generalized shock- expansion theory 
( fig. ll(a)) and the method of characteristics (fig . ll(b)) . Both 
theories indicate that at a given area ratio (Ab/Ao ), a lower static 
pressure can be obtained with a body of higher fineness ratio. The 
significance of this will be discussed later . 

The effect upon the static- pressure coefficient distributions of 
varying the diameter ratio, while the initial lip angle, fineness ratio, 
and Moo are held constant, is shown in figure 12. It can be seen that 
the pressure distributions for the bodies are s imilar in that at the same 
proportionate area, the pressure i s approximately the same . 
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WAVE DRAG 

The theoretical wave- drag coefficients for the bodies having a 
fineness ratio of 5 and a diameter ratio of 0. 742 at Mach numbers of 
2.0, 2.5, 3.0, and 4.0 are presented in figure 13. As indicated, there 
is a large difference in the results as obtained from the various methods 
throughout the Mach number range of the investigation. These differences 
are seen better in figure 14 in which the wave drag computed by the method 
of characteristics is used as a reference and the error in the wave drag 
as computed by the six approximate methods is shown. The error is given 
as a function of the two - dimensional hypersonic similarity parameter, 
Mooeo . It can be seen that both generalized shock- expansion theory and 
tangent-wedge theory overestimate the ,,,rave drag while impact theory 
underestimates the wave drag throughout the entire range of Mooeo 
investigated. The error for each of these methods is sizable for values 
of ~eo < 1.0 but decreases as Mooeo increases . The two perturbation 
theories have good accuracy at low values of Mooeo (Mooeo = 0.1 to 0.2) 
but start becoming inaccurate as Mooeo increases . The iteration in 
second-order perturbation theory is seen to be effective in increasing 
the range of accuracy over that of the first - order solution. Second­
order shock-expansion theory has good accuracy in the range near 
Mooe = 1 but becomes inaccurate at extremely low values of Mooe. The 
apparent regions of applicability of the various theories are as would be 
expected from their assumptions discussed previously . A summary of the 
wave drags obtained by the method of characteristics is presented in 
figure 15 in the form of a wave - drag parameter , CD (0.7Moo2 ), as a function 
of Mooeo (ref . 15) . It is seen that the wave drags correlate well with 
a curve representing the mean of the values at any given Mooeo ' 

The effect of varying the fineness ratiO , 2/dm, on the wave drag as 
computed by the method of characteristics and generalized shock-expansion 
theory i s shown in figure 16 for bodies with an initial lip angle of 
21 .1560 and a diameter ratio of 0. 742, and at a Mach number of 2. 5. 
As was mentioned earlier , the bodies with higher fineness ratios had a 
lower static pressure existing at the same area . Thus these bodies would 
have a lower wave drag. The results as shown indicate that the wave drag 
of open-nosed bodies of revolution (mass flows of unity) is a function of 
the fineness ratio and that a fineness ratio of at least 3 is necessary 
to obtain near minimum wave drag . 

The variati on in wave drag with changes in diameter ratio is shown 
i n figure 17 for generalized shock- expansion theory and the method of 
characteristics . The data show that the difference in wave drag as 
computed by the two theories decreases as the diameter ratio approaches 
1, a result that could be expected from the assumptions of generalized 
shock- expansion theory. The wave drag is also seen to decrease almost 
linearly as the diameter ratio increases. 
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Computi ng Time 

The final choice of which theory to use i n any given case must be 
governed by the accuracy desired and the computi ng time avai lable . The 
computing time and accuracy of the various theories are shown in the 
following table . 

Computing time, 
Theory hr Accuracy 

Method of characteristics ~ Best 
First- order perturbation 16 Fair 
Second-order perturbation 24 Good 
Generalized shock expansion 2 Poor 
Second-order shock expansion 8 Good 
Tangent wedge 1 Poor 
Impact 1 Poor 

The computing times given are for one person using a desk calculator . 
All solutions except the method of characteristics are for 14 points on 
the body. The computing time given for the method of characteristics is 
for a solution in which the mesh size was allowed to become large 
(c/r = 1 .0) . Such a solution will give wave - drag coefficients slightly 
less than those presented in this study . If greater accuracy is desired 
(finer mesh size) the computing time for hand computation can be considered 
to increase in proportion to the square of the ratio of the mesh size for 
clr = 1.0 divided by the mesh size used (c/r < 1 . 0) . 

CONCLUDING REMARKS 

The wave drag of a family of open-nosed bodies of revolution was 
computed by six approximate theories and the method of characteristics 
for a Mach number range of 2.0 to 4 .0. Using the results from the method 
of characteristics as a reference, the investigation showed that the 
three theories which required the shortest computing time , generalized 
shock-expansion, tangent- wedge, and impact theories were in general the 
least accurate . First- and second-order perturbation and second-order 
shock-expansion theories gave more accurate results, predicting the wave 
drag to within 10 percent of that from the method of characteristics over 
much of the ranges of Mach number and body shapes investigated. The range 
of applicability of the theories was found to vary with the perturbation 
theories giving good results at MooBo < 1 .0, second-order shock expansion 
giving good results near M0050 of 1.0 with the generalized shock- expansion, 
tangent-wedge, and impact theories starting to give good results at 
M0050 »1. 0 . In general, considering computing time as well as accuracy, 
second-order shock- expansion theory was the most attractive within the 
range of variables investigated herein . 
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The effect of varying the fineness ratio, l/dm, on the wave drag was 
investigated by the use of two theories, the method of characteristics 
and generalized shock- expansion theory. The results of both theories 
indicate that for bodies of the type investigated in this study and having 
the same initial lip angle and diameter ratio, near minimum wave drag can 
be obtained with a fineness ratio above 3.0 . 

The wave drag was also computed for bodies having various diameter 
ratios with the same initial lip angle and fineness ratio. For these 
bodies, both the method of characteristics and generalized shock-expansion 
theory predict a near linear decrease in wave drag as the diameter ratio 
increases . 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Aug. 21, 1958 
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APPENDIX A 

NOTATION 

For convenience the list of symbols has been divided into two groups, 
those used throughout the paper and those used exclusively in appendix B. 
Following are those symbols in the first group. 

A 

a 

c 

D 

area, sq ft 

speed of sound, ft/sec 

D wave-drag coefficient, ~ 
~-Poo 

static-pressure coefficient, ~ 

distance from point to point along Mach lines in method of 
characteristics solution divided by I 

drag, lb 

d body diameter, ft 

I total length of body, ft 

M Mach number 

p static pressure, lb/sq ft 

Pt stagnation pressure, lb/sq ft 

q dynamic pressure, lb/sq ft 

r 

s 

u 

u 

v 

x 

radial distance divided by I 

distance along Mach lines in method of characteristics 

free-stream velocity parallel to x axis 

axial component of velocity 

radial component of velocity 

distance along axis of body from origin divided by I 

ratio of specific heat at constant pressure to specific heat 
at constant volume 

It 

t 
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Tj 

e 

p 

cp 

b 

m 

o 

p 

CXl 

stream angle , radians 

parameter relating body shapes ( see eq . (9) ) 

shock- wave angle, radians 

2yp 
sin 21-1 

. -~ 1 Mach angle, s~n -, radians 
M 

mass density, slugs/cu ft 

perturbation potential 

Subscripts 

body 

maximum geometric characteristic of body 

characteristics of body at origin 

perturbation quantities 

free - stream conditions 

13 

The following symbols are used exclusively in appendix B which lists 
the equations used in calculating the wave drag by the method of character­
istics . 

cf distance along first family Mach line from computed point to 
immediately preceding upstream point divided by 2 

Cs distance along second family Mach line from computed point to 
immediately preceding upstream point divided by 2 

n number of the computed point 
(The number sequence proceeds from point nearest body to shock 
wave and from ray to ray in downstream direction (see fig . 1).) 

N number of points in input ray (N = 5 in fig . 1) 

E a small arbitrary number indicating closeness of approximation 
in iterative methods 
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Subscripts 

characteristics at point whose number is n - l and which 
lies on first family Mach line immediately preceding 
computed point 

characteristics at point of number n 

characteristics at point whose number is n+l-N and which 
lies on second family Mach line immediately preceding 
computed point 

characteristics at point whose number is n - N and which 
lies on shock wave immediately preceding computed point 
on shock wave 

1,2, ••• i number of iterations 

tit· 
, ,1 iterations 

Superscripts 



.. 

NACA TN 4368 15 

APPENDIX B 

CALCULATIONS BY METHOD OF CHARACTERISTICS 

Solutions by the method of characteristics presented in this paper 
were computed by an automatic digital computing machine. The equations 
used in the solution are also applicable to manual computation. They 
are therefore listed and discussed herein for ready reference of the 
interested reader. 

In the application of the method of characteristics to the calcu­
lation of the static pressure on a body of revolution) the axially 
symmetric flow field bounded by the body surface and the nose shock wave 
is subdivided by a network of lines inclined to the local streamline 
at the local Mach angle (see fig. 1). Points are defined as the inter­
section of a pair of such lines (field pOints)) the intersection of a 
line with the body contour (body point)) or the intersection of a line 
with the shock wave (shock-wave point). A ray is defined as the line 
containing a series of points connected by first family Mach lines. 
Thus in figure 1) points 1 to 7 and 8 to 14 lie on two separate rays. 

Two types of equations are required in the solution) those which 
define the coordinates of the point and those which define the aero­
dynamic properties at the point. The calculation of the coordinates 
and aerodynamic properties proceeds from point to point along a ray) 
commencing at the body and ending at the shock wave) and then from 
ray to ray in the downstream direction until the end of the body is 
reached. In the following discussion) the equations will be grouped 
according to whether the point is on the input ray) or a field) body) 
or shock-wave point downstream of the input ray. The equations are 
given in terms of an arbitrary point so they can be used in the 
repetitive type of calculation required by the method of characteristics. 

Characteristics of Points on Input Ray 

The input ray is located on a first family Mach line sufficiently 
close to the nose of the body that the flow properties at the points can 
be obtained with the assumption that the shock wave is two-dimensional. 
In the present case the input ray intersected the body at xb < 0.001. 
The coordinates of points on the input ray are 

(Bl) 
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and 

Where e is the two - dimensional shock- wave angle corresponding to a 
deflection equal to 00 and ~ and 0 are the flow characteristics 
behind the wave . 

It should be mentioned that the equations discussed hereinafter are 
adaptable f or determining the entire flow field about a closed- nosed 
body of revolution as well as the open -nosed bodies studied i n this paper. 
In the f ormer case , the flow behi nd the nose shock must be supersoni c . 

and 

Characteristi cs of Field Points 

The equations for the coordinates of the field poi nts 

Xo-xf+rscot ( ~- o ) s+rfcot ( ~+o ) f 

cot ( ~- o ) s+cot (~+o ) f 

are : 

The distances along the Mach lines from the calculati on point to the 
preceding known points are given by : 

I'n - rf 
cf = ----­

sin ( ~+o ) f 

r s - I'n 
C s = -----

sin ( ~- o ) s 

(B3 ) 

(B4) 

(B5 ) 

(B6) 

The first and second family compatibility equati ons , equati on (2 ) 
in the body of the paper, are put in finite difference form expressi ng 
the difference between the aerodynamic properties at point n and the 
preceding points along the f irst and second family Mach lines , and are 
solved si mult aneously to give for the stream angle at poi nt n 

On 1 [Gp) Gp0 (- ) (- ) -- - -- + AO + AO -
Af +As Poe f P s f s 

CfC?\ sin ~ sin o ) f cf (A sin ~ si n 
5 ) 5 J + (B7) 

rf rs 

, 

J 
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and the static-pressure ratio 

(B8) 

Assuming the total pressure to vary linearly with distance normal to 
streamline and the variation of stream angle to be small in the vicinity 
of point n gives 

The ratio of local static pressure to local total pressure is 

from which 

and hence 

. - 1. 1 
S1.n 

Characteristics of Body Points 

(B10) 

(Bll) 

(B12) 

The body point n is at the intersection of the second family Mach 
line from point n + 1 - N and the body contour. Hence the coordinate 
equations are dependent on the analytic expression for the body contour. 
If the expression is not simple, an explicit solution of the intersection 
point may be impossible, as in the present case . In such cases Newton's 
approximation can be used to solve for the axial location of the point 
as follows. Let the difference between the body radius and the radial 
distance of the second family Mach line from point n + 1 - N at the 
same value of x be expressed as 

(B13) 

where ~(x) is the analytic expression for the body contour, so that 
at point of intersection 

o (B14) 
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To solve for xn, let x = x1 = Xs and solve 

x - f(x) --..:..-:...- = xl -

df(x)/dx 
(B15) 

Repeat this operation letting x = x2 and continue until 

(B16) 

The value of Xn is taken to be xi. Then the radius at the inter­
section point is 

(B17) 

The distance along the second family Mach line from point n to 
the preceding point, cs, is given by equation (B6) and the stream angle, 
on, is given by the slope of the body contour. These two values are used 
in equation (B8) to determine the static pressure on the body at point n. 
The static-pressure coefficient is then given by 

Since the body contour is a streamline, the total pressure remains 
constant along the body. The remaining flow characteristics are 
determined from equations (B10) to (B12). 

Characteristics of Shock-Wave Point 

(B18) 

The shock-wave point, n, is at the intersection of the first family 
Mach line from point n-l and the shock wave from point n-N. The 
coordinates are given by 

and 

Xwtan ew-xftan(~+o)f+rf-rw 

tan ew-tan(~+o)f 
(B19) 

(B20) 

The distance along the first family Mach line, cf, is given by equa­
tion (B5). 

A simple explicit relation involving the static pressure and 
deflection angle immediately behind a shock wave is not available. It 
is therefore impractical, and probably impossible, to determine the static 

J 
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pressure and deflection angle at the shock-wave point by solving simul­
taneously the equation relating pressure and deflection angle across the 
shock and the one compati bility equation available. Iterative methods 
are therefore used. The compatibility equation available is 

(B21) 

To commence the iterative procedure, let 

(B22) 

and find on' from equation (B21). The stream angle on' is taken 
as the deflection angle for a two-dimensional shock wave at point n 
and the shock-wave angle computed from 

where 

g 
Mex,2+2 . 25 ' := - 1 s~n n 

M002 

h := 2Moo
2

+1 + [(/+1 )2 + (/ -l)}in25 ' (B24) 
M:04 4 M:,02 n 

j cos25n ' 

M:04 

Equation (B23 ) is solved most readily by Newton's approximation. 
Briefly let 

(B25) 

so that at point n 

fee') = f(en ') := 0 (B26 ) 

To solve for en', let e' = e~' := ew and solve 

r(e ' ) sin2e~' _ f(e~') 
df(e~')/d sin e l ' 

(B27) 
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Repeat the operation letting S ' = S2 ' and continue until 

(B28 ) 

The value of Sn' is taken to be Si ' . 

The static- pressure ratio across a shock wave corresponding to a 
given shock- wave angle is 

p 2'1Mx,2sin2S - C/, - l) 
- = 
Poo '1+1 

(B29 ) 

The static pressure at point n is then taken as 

(B30 ) 

Let 

(B31 ) 

in equation (B21) and solve for 
(B23 ) to (B31) ,is repeated until 

<:. II Un . The process involving equations 

(B32 ) 

Then 

(B33 ) 

The total pressure loss through the shock wave i s given by 

G ~ [ 
( ) 2 2 J '1~ J. Pt '1+1 Moo sin B.n 

p-- = ('1 - l)Moo2sin2Sn+2 
(B34) 

The remainder of the aerodynamic characteristics are f ound by means of 
equations (B10 ) to (Bl2 ). 



NACA TN 4368 21 

Mesh Si ze 

Accurate solutions of the method of characteristics require that 
the distance between pOints, mesh size, be small. However, when the 
mesh si ze, c/r, becomes large , it is necessary to iterate the points 
affected. This iteration consists of averaging the aerodynamic properties 
of the known and computed pOints, assigning them to the coordinates of the 
known point and recomputing the computed pOint . In the actual machine 
computation , a c/r of 0.25 was used as the criterion for iteration when 
N = 10 and 0.10 when N = 20 , and the iteration was performed only once . 

The computing time (on an IBM 653 ) for 10 and 20 point solutions 
was 3/4 and 3 hours, respectively_ For curved bodies, the difference in 
static -pressure coefficient distribution from 10 and 20 point solutions 
was insignificant. For straight bOdies , however, it was found necessary 
to star t at x < 0.001 in order to obtain a pressure distribution with 
no discontinuities. 
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Figure 16. - The variation of external wave -drag coef fi ci ent as a functi on of 
finenes s ratio for 50 = 21,1560

; ~ = 2 . 5; diameter ratio = 0 . 742 . " 
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Figure 17. - The variation of external wave - drag coefficient as a function of 
diameter ratio for °0 = 21 .1560 

and M = 2.5j fineness ratio = 5.0. 
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