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SUMMARY

The wave drag of a family of open-nosed bodies of revolution was
computed by six approximate theories, first-order perturbation theory,
second-order perturbation theory, generalized shock-expansion theory,
second-order shock-expansion theory, tangent-wedge theory, and impact
theory, and by the method of characteristics for Mach numbers between
2.0 and 4.0. The best agreement with the method of characteristics was
provided by second-order perturbation theory and second-order shock-
expansion theory with the latter being the most attractive from the
standpoint of computing time required versus accuracy obtained.

The wave drag, for bodies of the type investigated in this study
with the same initial lip angle and the same diameter ratio (initial to
maximum diameter), was found to increase sharply for fineness ratios less
than 3 but to be nearly constant for fineness ratios above 3. The wave
drag was found to decrease nearly linearly as the diameter ratio increases
for bodies having the same initial lip angle and fineness ratio.

An approach is given for adapting the method of characteristics to
automatic computing machine procedure.

INTRODUCTION

For aircraft configurations employing a pod-nacelle arrangement to
house an air breathing propulsion system, the external wave drag of the
engine housing can be a significant portion of the total drag of the
aircraft. In the absence of systematic experimental data to aid in
estimating this wave drag, the usudl approach is to calculate it theoret-
ically. At present there are a number of different theoretical methods
which can be used for such calculations. However, the results obtained
from the various methods are not consistent over a wide range of Mach
numbers and body shapes and the computation time differs widely among
the methods. The investigation described herein was made, therefore,
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to compare the theoretical wave drag as computed using six approximate
methods with that from the method of characteristics in order that a
choice from the viewpoint of average computing time required and

accuracy obtained could be made. The theories which were compared to

the method of characteristics were: first-order perturbation theory

(refs. 1 and 2), second-order perturbation theory (ref. 2), generalized
shock-expansion theory (refs. 3 and 4), second-order shock-expansion
theory (ref. 5), tangent-wedge theory (ref. 6), and impact theory (ref. T).

To provide a reference for the comparison, the study was conducted
for a family of open-nosed bodies of revolution having a fineness ratio
of 5, a ratio of initial to maximum diameter of 0.742, and lip angles
between 1.478° and 35.8&&0. This family was selected since its contours
are representative of the nacelles of present day pod-nacelle arrange-
ments for jet engines. Thus the wave-drag characteristics of such a
family are of interest in themselves. The effects of varying fineness
ratio and diameter ratio were also determined using the method of charac-
teristics and generalized shock-expansion theory.

THEORETICAL METHODS

Although the various theoretical methods used in the present study
have been discussed in detail in their respective references, it is con-
sidered appropriate to this report to discuss briefly each of the methods,
pointing out in particular their approach to the solution of the super-
sonic flow field about an open-nosed body of revolution and their expected
range of applicability. All of the theories used in this analysis have
as their basis a solution of the gasdynamics equation shown below:

u2\ du v2\dv _uv fou  Ov) K6 VvV _
(l';z‘ x+<l'a—e e b

where the symbols are defined in appendix A. Since this equation, which
is applicable to any steady inviscid flow of a perfect gas, is nonlinear,
simplified methods of solution must be used for most problems. The
simplified methods of solution which have resulted in the theories used
in this study are: numerical solution of equation (1), linearization

of equation (1) with subsequent analytical solution of the linearized
equation, and approximate solutions of equation (1) which are applicable
to certain flow regimes. In the application of the theories, the follow-
ing conditions were imposed:

(1) The flow entered the nose of the body at supersonic speed (Leeis;
mass-flow ratio of unity).

(2) The bodies were immersed in an ideal gas.

(3) The bodies were at zero angle of attack.
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Method of Characteristics

One method of solving the gasdynamics equations is by numerical
means. Such a method is greatly facilitated in the present case of
supersonic flow since the gasdynamics equation is a hyperbolic differ-
ential equation and of a type that is integrable on characteristic sur-
faces which correspond to Mach lines. It is then necessary to rewrite
equation (1) in a form suitable for numerical integration along the Mach
lines, and several different forms have been derived (refs. 8, 9, and 10).
One form of the compatability equation for the method of characteristics
which was considered to be the most satisfactory for the present study
since it contains only two flow-field variables is as follows:1

e x(as + % sin  sin 6) (2)
where
L eyp
R St 20 (3)

with the upper sign referring to the first family Mach line and the lower
to the second family Mach line as shown in figure 1. Equation (2)
expresses the relationship between static pressure, stream angle, and
Mach angle along Mach lines in the flow field and is applicable to either
rotational or irrotational steady flow of an isoenergetic gas. When
applied to rotational flow, as in this study, the change in entropy
normal to the streamlines is taken into account by considering the change
in total pressure along the Mach lines. This method is limited to bodies
with supersonic flow behind the nose shock.

In the actual solution of the flow by the method of characteristics,
the compatability equation is put into finite difference form and solved
point for point in the flow field. If solved by purely numerical means,
the computations are very long and laborious for any practical problems
and become feasible only with the use of automatic computing machines.

In the present study, the computations were made using an automatic
computing machine. The equations used as well as a discussion of some
considerations in the adaption of the method of characteristics to
automatic computing machine procedure are given in appendix B.

First-Order Theory

In contrast to the numerical integration of the nonlinear gasdynamics
equation by the method of characteristics, first-order theory introduces

1This form is not given directly in either references 6, 9, or 10
but can be obtained by a suitable combination of equations 3.21 to 3.23

in Chapter I of reference 10.
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a perturbation function into the equation and linearizes the resulting
expression so that it may be solved analytically. This is done by con-
sidering the magnitude of the velocities in the following manner

u="U+ up LA

(L)

up and.vp < U Up and vp K a

and defining a perturbation potential such that

_ 99 _ 99
Up ox P or

Equation (1) can be put into the following form

2 2 2 2 2
i 53;)]5_59 [ (ésa Jé_ce 13 _,39 3 3%
[l <U+a vl il oy B <% (5)

If the squares and products of derivatives of the perturbation potential
are neglected, the following equation results

2 2
99 _p239, 139 _, (6)
or2 3x2 r or

vhere B2 = M2-1. Equation (6) is the linearized form of the potential
flow equation. Details of the integration of this equation are given in
references 1 and 2. Such a solution is applicable to the calculation of
flow fields at values of the hypersonic similarity parameter, Mydg, less
than 1.0. It in effect neglects entropy losses due to the presence of
the body since entropy losses are of third order in the perturbation
potential.

Second-Order Theory

The third approach to obtaining a solution of equation (1) is to
use an iteration procedure, an approach first considered by Busemann
and later extended by Van Dyke (ref. 2). For this method, a first-order
solution is obtained as described previously. This solution is substi-
tuted into the right-hand side of equation (5) and a second-order
perturbation potential is found. The method of solution is given in
reference 11. Therein it was stated that the initial angularity of the
body must be less than the free-stream Mach angle.

In the present study the computations were done using an automatic
computing machine since they are lengthy when done by hand. The initial
angularity of the bodies was restricted to 13° or less because of the
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limitations in the automatic computing machine program, an angle con-
siderably less than that permitted by the theory. This theory is also
applied only in the range of Mxdo < 1.0.

Generalized Shock-Expansion Method

A method which has as its basis an approximate solution of the exact
equation of motion is the well-known generalized shock-expansion theory.
The approximation made for this theory consists of neglecting the term
(ds/r)sin p sin & of equation (2) for cases in which the rate of change
of surface angle of the body is large compared to its divergence. The
resulting expression is seen to be a differential form of the Prandtl-Meyer
equation. The flow field downstream of the nose shock wave can then be
considered of the Prandtl-Meyer type. The aforementioned assumption
regarding the body shape is made in this theory so it could be expected
to become accurate when My Po >> 1.0 and when the area ratio of the body
(maximum to initial area) is near 1.

The application of this method begins by first approximating the
body by a series of straight-line elements, tangent to the original body.
The flow at the nose is defined by means of the Rankine-Hugoniot relations
for an oblique shock wave. Since the flow downstream of the nose is of
the Prandtl-Meyer type, the pressure can be found on any tangent line if
the pressure and Mach number on the preceding tangent-line element are
known. The pressure is taken to be constant on any given tangent-line
element. The method is limited as is the method of characteristics to
bodies that have supersonic flow behind the nose shock wave. The calcu-
lations for this method can be made efficiently using a desk calculator
and the tables and charts of reference 12.

In the present investigation, the body contour was approximated by
13 straight-line elements.

Second-Order Shock-Expansion Theory

Second-order shock-expansion theory was developed to provide a
closer approximation to the flow field for the cases when M, ©5 dis near
1.0. This was done by developing an approximation to the part of equa-
tion (2) that was neglected for the generalized method. Two significant
differences from the generalized method arise out of this closer approxi-
mation. First, the exact pressure gradient at the nose of the body is
found from the method of characteristics. Secondly, along each tangent
line used to approximate the body contour, the pressure is found to vary
exponentially. The asymptote of the exponential pressure variation is
assumed to be equal to the pressure on a cone having the same slope as
the tangent-line element and at the same free-stream Mach number.
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The application of this method is similar to that of the generalized
method except the pressure gradient on each tangent line is found by the
relations given in reference 5. The results can be obtained by means of
a desk calculator but the process is somewhat tedious.

In the present investigation, the body contour was approximated by
13 straight-line elements.

Tangent-Wedge Method

An approximation to the generalized shock-expansion method is the
tangent-wedge method. This approximation is based on the assumption that
the pressure on the body at any point is a function of the net flow deflec-
tion angle from the free stream. Thus in this method, the pressure at any
point on the body can be found from the Rankine-Hugoniot relations for
oblique shock waves (for bodies inclined into the free stream) or the
Prandtl-Meyer relations (for body surfaces inclined away from the free
stream) in which the deflection angle and the upstream Mach number used
in these relations are the local angle of the body and the free-stream
Mach number, respectively. The method is therefore limited to bodies with
angularity less than the detachment angle of a two-dimensional shock wave
and could be expected to become accurate in the same regions as the gener-
alized shock-expansion method. The computations for this method are very
simple and can be made efficiently by means of a desk calculator and the
charts of reference 12.

In the present investigation, the pressure was computed at 14 points
along the body.

Impact Theory

A direct approximation to the tangent-wedge method for certain flow
fields has resulted in defining an area where Newtonian impact theory
becomes applicable. For flows at infinite Mach number, wherein y = 1.0
and the shock wave is coincident with the body contour, the expression
for the pressure coefficient at any point on the body as given by the
tangent-wedge method can be shown to reduce to

Cp =2 sin®3
This expression was obtained by Newton by neglecting centrifugal forces and
assuming that the component of the momentum of the free-stream air that is
normal to the body surface is absorbed, thereby creating a force on the
surface. This theory which is applicable to any body contour would be
expected to become applicable for M, §,>> 1.0. Computations for this theory
are very simple and can be made efficiently using a desk calculator.

In the present investigation, the pressure was computed at 14 points
along the body.
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COMPUTATIONS

Body Contours

Throughout this investigation, a family of profiles whose contours
are a function of initial lip angle, d,, the diameter ratio do/dm and
the fineness ratio Z/dm was used. The equation relating the bodies is
given in reference 13 and has the following form:

1, = T - (tn-ro) (1-x)" (8)
where 7 1is the relating parameter for the family of curves and is
defined by

tan
N = o it Ol b
To
rm('m
The diameter ratio, do/dm, was varied from 0.707 to 0.898. However,
for the majority of the investigation, a value of 0.742 was used. This
diameter ratio is in the range of values considered in reference 1k and
of those necessary to envelop existing turbojet and ramjet engines at

about M, = 3.0. The diameter ratio was varied while the initial 1lip
angle and fineness ratio were held constant.

(9)

The majority of the theoretical investigation was conducted with
profiles having a fineness ratio of 5. These profiles are shown in fig-
ure 2. A small part of the theoretical investigation was concerned with
varying the fineness ratio of the bodies from 0.625 to 10 while the
initial lip angle and diameter ratio were held constant.

Wave-Drag Computation

The wave drag was obtained from the following relationship

Cp =fcpd (%) (10)

The methods discussed previously were used to calculate Cp as a function
of Ab/Ao. The above integration was carried out graphically.

RESULTS AND DISCUSSION

Pressure Distributions

The distribution of the external pressure coefficients as computed
by the seven theories described earlier is presented in figures 3 through
9, and are in the form of static-pressure coefficient, Cp, as a function

of local area ratio, Ab/AO. These curves were subsequently integrated
to obtain the wave-drag coefficients.
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Comparison of typical pressure distributions is shown in figure 10.
From these curves three general comparisons can be made as to the agree-
ment between the method of characteristics and the various approximate
theories. The first point of comparison is the magnitude of the initial
pressure rise at the nose of the body. Generalized shock-expansion,
second-order shock-expansion, and tangent-wedge theory (omitted from the
figures because of its closeness to generalized shock-expansion theory)
have the same initial static-pressure coefficient as the method of
characteristics since all of these theories use the exact pressure at
the nose. First-order perturbation theory and impact theory give lower
values of initial static-pressure coefficient than the method of charac-
teristics whereas second-order perturbation theory gives a higher value.
The second point of comparison is that only second-order perturbation
theory and second-order shock-expansion theory predict an initial pres-
sure gradient which is similar to that predicted by the method of
characteristics. It should be mentioned that the initial pressure
gradient of the second-order shock-expansion method is inherently iden-
tical to that of the method of characteristics. Finally, the predicted
variation of static-pressure coefficient downstream of the nose differs
for the various theories. For a curved body such as investigated herein,
the method of characteristics predicts positive pressure coefficients
over most of the body and an overexpansion with resulting negative static-
pressure coefficients near the base of the body. Three of the theories,
first- and second-order perturbation theories, and second-order shock-
expansion theory, compare favorably with the method of characteristics
for predicting negative static-pressure coefficients for curved bodies.
However, positive pressure coefficients were predicted over the entire
body by generalized shock-expansion theory, tangent-wedge theory, and
impact theory. To summarize, the results of figure 10 indicate that
second-order perturbation theory, and second-order shock-expansion theory
provide the best agreement with the method of characteristics for these
body shapes and Mach numbers.

The variation of the static-pressure coefficient for bodies of
varying fineness ratio (1/dy of 0.625 to 10), but with constant initial
lip angle and diameter ratio, is shown in figure 11 for M, = 2.5. These
distributions were computed by the generalized shock-expansion theory
(fig. 11(a)) and the method of characteristics (fig. 11(b)). Both
theories indicate that at a given area ratio (Ap/Ay), a lower static
pressure can be obtained with a body of higher fineness ratio. The
significance of this will be discussed later.

The effect upon the static-pressure coefficient distributions of
varying the diameter ratio, while the initial lip angle, fineness ratio,
and M, are held constant, is shown in figure 12. It can be seen that
the pressure distributions for the bodies are similar in that at the same
proportionate area, the pressure is approximately the same.
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WAVE DRAG

The theoretical wave-drag coefficients for the bodies having a
fineness ratio of 5 and a diameter ratio of 0.742 at Mach numbers of
2.0, 2.5, 3.0, and 4.0 are presented in figure 13. As indicated, there
is a large difference in the results as obtained from the various methods
throughout the Mach number range of the investigation. These differences
are seen better in figure 14 in which the wave drag computed by the method
of characteristics is used as a reference and the error in the wave drag
as computed by the six approximate methods is shown. The error is given
as a function of the two-dimensional hypersonic similarity parameter,
Modo. It can be seen that both generalized shock-expansion theory and
tangent-wedge theory overestimate the wave drag while impact theory
underestimates the wave drag throughout the entire range of Mg
investigated. The error for each of these methods is sizable for values
of M 3o < 1.0 but decreases as M d0 increases. The two perturbation
theories have good accuracy at low values of MacSg (N&SO —1 {81k el (012
but start becoming inaccurate as M8, increases. The iteration in
second-order perturbation theory is seen to be effective in increasing
the range of accuracy over that of the first-order solution. Second-
order shock-expansion theory has good accuracy in the range near
M = 1 but becomes inaccurate at extremely low values of MEo.h The
apparent regions of applicability of the various theories are as would be
expected from their assumptions discussed previously. A summary of the
wave drags obtained by the method of characteristics is pbresented in
figure 15 in the form of a wave-drag parameter, CD (O.7Mw2), as a function
of Mo (ref. 15). It is seen that the wave drags correlate well with
& curve representing the mean of the values at any given MoBg »

The effect of varying the fineness ratio, 1/dy, on the wave drag as
computed by the method of characteristics and generalized shock-expansion
theory is shown in figure 16 for bodies with an initial lip angle of
21.1560 and a diameter ratio of 0.742, and at a Mach number of 2.5.

As was mentioned earlier, the bodies with higher fineness ratios had a
lower static pressure existing at the same area. Thus these bodies would
have a lower wave drag. The results as shown indicate that the wave drag
of open-nosed bodies of revolution (mass flows of unity) is a function of
the fineness ratio and that a fineness ratio of at least 3 is necessary
to obtain near minimum wave drag.

The variation in wave drag with changes in diameter ratio is shown
in figure 17 for generalized shock-expansion theory and the method of
characteristics. The data show that the difference in wave drag as
computed by the two theories decreases as the diameter ratio approaches
1, a result that could be expected from the assumptions of generalized
shock-expansion theory. The wave drag is also seen to decrease almost
linearly as the diameter ratio increases.
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Computing Time

The final choice of which theory to use in any given case must be
governed by the accuracy desired and the computing time available. The
computing time and accuracy of the various theories are shown in the
following table.

Computing time,

Theory hr Accuracy
Method of characteristics 40 Best
First-order perturbation 16 Fair
Second-order perturbation 24 Good
Generalized shock expansion 2 Pooxr
Second-order shock expansion 8 Good.
Tangent wedge e Poor
Impact 1 Poor

The computing times given are for one person using a desk calculator.

A1l solutions except the method of characteristics are for 14 points on

the body. The computing time given for the method of characteristics is
for a solution in which the mesh size was allowed to become large

(c/r = 1.0). Such a solution will give wave-drag coefficients slightly
less than those presented in this study. If greater accuracy is desired
(finer mesh size) the computing time for hand computation can be considered
to increase in proportion to the square of the ratio of the mesh size for
¢c/r = 1.0 divided by the mesh size used (efe < 170).

CONCLUDING REMARKS

The wave drag of a family of open-nosed bodies of revolution was
computed by six approximate theories and the method of characteristics
for a Mach number range of 2.0 to 4.0. Using the results from the method
of characteristics as a reference, the investigation showed that the
three theories which required the shortest computing time, generalized
shock-expansion, tangent-wedge, and impact theories were in general the
least accurate. TFirst- and second-order perturbation and second-order
shock-expansion theories gave more accurate results, predicting the wave
drag to within 10 percent of that from the method of characteristics over
much of the ranges of Mach number and body shapes investigated. The range
of applicability of the theories was found to vary with the perturbation
theories giving good results at MxOp < 1.0, second-order shock expansion
giving good results near Mo of 1.0 with the generalized shock-expansion,
tangent-wedge, and impact theories starting to give good results at
M®Bo > 1.0. 1In general, considering computing time as well as accuracy,
second-order shock-expansion theory was the most attractive within the
range of variables investigated herein.
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The effect of varying the fineness ratio, Z/dm, on the wave drag was
investigated by the use of two theories, the method of characteristics
and generalized shock-expansion theory. The results of both theories
indicate that for bodies of the type investigated in this study and having
the same initial lip angle and diameter ratio, near minimum wave drag can
be obtained with a fineness ratio above 3.0.

The wave drag was also computed for bodies having various diameter
ratios with the same initial lip angle and fineness ratio. For these
bodies, both the method of characteristics and generalized shock-expansion
theory predict a near linear decrease in wave drag as the diameter ratio
increases.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 21, 1958
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APPENDIX A

NOTATION

For convenience the list of symbols has been divided into two groups
those used throughout the paper and those used exclusively in appendix B.
Following are those symbols in the first group.

)

A area, sq ft
a speed of sound, ft/sec
Cp wave-drag coefficient, L
Qoo DD
Cp static-pressure coefficient, =
Qoo
o) distance from point to point along Mach lines in method of

characteristics solution divided by 1

D drag, 1lb ¢

d body diameter, ft

1 total length of body, ft 3

M Mach number

P static pressure, 1lb/sq ft

Pt stagnation pressure, 1b/sq ft

q dynamic pressure, lb/sq ft

T radial distance divided by 1

s distance along Mach lines in method of characteristics

U free-stream velocity parallel to x axis

u axial component of velocity

v radial component of velocity

X distance along axis of body from origin divided by 1

B M2 - 1 L

7 ratio of specific heat at constant pressure to specific heat -
at constant volume
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o} stream angle, radians
n parameter relating body shapes (see eq. (9))
0 shock-wave angle, radians
A S—fng“
V) Mach angle, sin_l %, radians
0 mass density, slugs/cu ft
® rerturbation potential
Subscripts
b body
m maximum geometric characteristic of body
(o) characteristics of body at origin
P perturbation quantities
00 free-stream conditions

The following symbols are used exclusively in appendix B which lists
the equations used in calculating the wave drag by the method of character-

isties.

Ce distance along first family Mach line from computed point to
immediately preceding upstream point divided by 1

Cg distance along second family Mach line from computed point to
immediately preceding upstream point divided by 1

n number of the computed point
(The number sequence proceeds from point nearest body to shock
wave and from ray to ray in downstream direction (see fig. 1).)

N number of points in input ray (N = 5 in fig. 1)

€ a small arbitrary number indicating closeness of approximation

in iterative methods
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Subscripts

g characteristics at point whose number is n-1 and which
lies on first family Mach line immediately preceding
computed point

n characteristics at point of number n

s characteristics at point whose number is n+l-N and which
lies on second family Mach line immediately preceding
computed point

W characteristics at point whose number is n-N and which
lies on shock wave immediately preceding computed point

on shock wave

1,2,...1 number of iterations

Superscripts

LD | iterations
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APPENDIX B

CALCULATIONS BY METHOD OF CHARACTERISTICS

Solutions by the method of characteristics presented in this paper
were computed by an automatic digital computing machine. The equations
used in the solution are also applicable to manual computation. They
are therefore listed and discussed herein for ready reference of the
interested reader.

In the application of the method of characteristics to the calcu-
lation of the static pressure on a body of revolution, the axially
symmetric flow field bounded by the body surface and the nose shock wave
is subdivided by a network of lines inclined to the local streamline
at the local Mach angle (see fig. 1). Points are defined as the inter-
section of a pair of such lines (field.points), the intersection of a
line with the body contour (body point), or the intersection of a line
with the shock wave (shock-wave point). A ray is defined as the line
containing a series of points connected by first family Mach lines.

Thus in figure 1, points 1 to 7 and 8 to 14 lie on two separate rays.

Two types of equations are required in the solution, those which
define the coordinates of the point and those which define the aero-
dynamic properties at the point. The calculation of the coordinates
and aerodynamic properties proceeds from point to point along a ray,
commencing at the body and ending at the shock wave, and then from
ray to ray in the downstream direction until the end of the body is
reached. In the following discussion, the equations will be grouped
according to whether the point is on the input ray, or a field, body,
or shock-wave point downstream of the input ray. The equations are
given in terms of an arbitrary point so they can be used in the
repetitive type of calculation required by the method of characteristics.

Characteristics of Points on Input Ray

The input ray is located on a first family Mach line sufficiently
close to the nose of the body that the flow properties at the points can
be obtained with the assumption that the shock wave is two-dimensional.
In the present case the input ray intersected the body at ", <0500
The coordinates of points on the input ray are o

xn =i Xp + E: (Bl)

1 [rb-xbtan(p+6)-ro]
1| ten 6-tan(u+d)
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and

(B2)

P = N-n oA el {?rb—xbtan(p+8)]tan 0-roten(p+d)
N-1 N-1 tan 6-tan(p+d)

where 6 1is the two-dimensional shock-wave angle corresponding to a
deflection equal to ®y; and p and & are the flow characteristics
behind the wave.

It should be mentioned that the equations discussed hereinafter are
adaptable for determining the entire flow field about a closed-nosed
body of revolution as well as the open-nosed bodies studied in this paper.
In the former case, the flow behind the nose shock must be supersonic.

Characteristics of Field Points

The equations for the coordinates of the field points are:

Xo=Xf+rgcot(u-8) g+rrecot(u+d) £

= B
n cot(p-8) g+cot(p+d) ¢ (23)

and

Xy = (rg-rn)cot(u-8)g+xs (BL)
The distances along the Mach lines from the calculation point to the
preceding known points are given by:
I'n-rf
sin(u+d) ¢

]

Cf (B5)

S o= (B6)
sin(u-8)g
The first and second family compatibility equations, equation (2)
in the body of the paper, are put in finite difference form expressing
the difference between the aerodynamic properties at point n and the
preceding points along the first and second family Mach lines, and are
solved simultaneously to give for the stream angle at point =n

- 2 [©40.6):6;

ce(N sin p sin 8)p 7 ce(A sin p sin 8)g

(B7)

re Iy
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and the static-pressure ratio

<;Q> Ko[% i (sin i581n 6).] (58)

Assuming the total pressure to vary linearly with distanc¢e normal to
streamline and the variation of stream angle to be small in the vicinity
of point n gives

G, - (i) |G G ),
Pte/n  \Cfsin pp+cgsin pg Pte/s \Pto/r| \Pto/f

The ratio of local static pressure to local total pressure is

GRONCONE -

from which
1-7
2 P Y
S o (O -1 B11l
and hence
I o
= sin = =— B12)
Hy e (

Characteristics of Body Points

The body point n is at the intersection of the second family Mach
line from point n + 1 - N and the body contour. Hence the coordinate
equations are dependent on the analytic expression for the body contour.
If the expression is not simple, an explicit solution of the intersection
point may be impossible, as in the present case. In such cases Newton's
approximation can be used to solve for the axial location of the point
as follows. Let the difference between the body radius and the radial
distance of the second family Mach line from point n + 1 - N at the
same value of x be expressed as

£(x) = rp(x)-re+(x-xg)tan(p-3)s (B13)

where rb(x) is the analytic expression for the body contour, so that
at point of intersection

£(xy) = O (BL4)
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To solve for x,, let X = x; = Xg and solve

PR { - ) SIS ERY. .- L
o af(x)/ax e af (%, ) /ax )

Repeat this operation letting x = x, and continue until

2
X{-Xi-1 < € (B16)

The value of xp dis taken to be xj. Then the radius at the inter-
section point is

rn = rg-(xn-xs)tan(p-%)s (B17)

The distance along the second family Mach line from point n to
the preceding point, cg, is given by equation (B6) and the stream angle,
®n, is given by the slope of the body contour. These two values are used
in equation (B8) to determine the static pressure on the body at point n.
The static-pressure coefficient is then given by

(p/P,) -1

8
(7/2)M? L

Cp =

Since the body contour is a streamline, the total pressure remains
constant along the body. The remaining flow characteristics are
determined from equations (B10O) to (B1l2).

Characteristics of Shock-Wave Point

The shock-wave point, n, is at the intersection of the first family
Mach line from point n-1 and the shock wave from point n-N. The
coordinates are given by
Xytan Oy-xgtan(p+d) f+re-Ty
X = (B19)
tan Oy-tan(pu+d)

and
Ty = (Xp-xg)ten(p+d) p+rs (B20)

The distance along the first family Mach line, cg, is given by equa-
tion (B5).

A simple explicit relation involving the static pressure and
deflection angle immediately behind a shock wave is not available. It
is therefore impractical, and probably impossible, to determine the static




NACA TN L4368 19

Pressure and deflection angle at the shock-wave point by solving simul-
taneously the equation relating pressure and deflection angle across the
shock and the one compatibility equation available. Iterative methods
are therefore used. The compatibility equation available is

<Cv> -( DQ>I

P P ce(sin w gin B

Oy = ————E———-— + Of - f( )£ (B2l)
Af re

To commence the iterative procedure, let

@@, - @) 2

and find o' from equation (B21l). The stream angle ©d,' is taken
as the deflection angle for a two-dimensional shock wave at point n
and the shock-wave angle computed from

sin®6n'+g sin%gn'+h sin®gp'+j = 0 (B23)
where
= h
2
g = - :Mm; - 7 Sinzan,
Mo
aMFi - [(ea)® | ()
B = i + AL sin26n' > (B2k)
Mo b Moo
o cosZdy "
Moo® J

Equation (B23) is solved most readily by Newton's approximation.
Briefly let

£(6') = sin®9'+g sin%9'+h sin26'4+j (B25)

so that at point n

£(e') = f(en') = 0 (B26)
To solve for 6n', let 6' =6,' = 6, and solve
sin20,' = sin®9' - £(6') = sin2g,' - £(61")
af(e')/d sin26"' af(e,')/d sin 6,

(B27)
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Repeat the operation letting 6' = 6,' and continue until
0i'-0i-1' < € (B28)
The value of 6pn' is taken to be 61i'.

The static-pressure ratio across a shock wave corresponding to a
given shock-wave angle is

D _ 2yM«Psin?6-(y-1)

(B29)
Peo 7+1
The static pressure at point n is then taken as
" 1
P 1 D 2yMo=sin0-(y-1)
B =l + (B30)
* 2 e 7+1
Iet
1"
L) = (2
(Poo)n - (Poo)n (B}l)
in equation (B21) and solve for ®,". The process involving equations
(B23) to (B31l) is repeated until
dpl-dpi-1 < ¢ (B32)
Then
al
(_P_ _ (_P_
PR, SR (B33)

By = Bpt

The total pressure loss through the shock wave is given by

Y
2., 2 y-1 2
(@t 2 _ (7+1)M, sin“e, <§{>1-7 (B34)
Pt (7-1)MPsin2on+2 09

The remainder of the aerodynamic characteristics are found by means of
equations (B1O) to (B1l2).
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Mesh Size

Accurate solutions of the method of characteristics require that
the distance between points, mesh size, be small. However, when the
mesh size, c/r, becomes large, it is necessary to iterate the points
affected. This iteration consists of averaging the aerodynamic properties
of the known and computed points, assigning them to the coordinates of the
known point and recomputing the computed point. In the actual machine
computation, a c/r of 0.25 was used as the criterion for iteration when
N = 10 and 0.10 when N = 20, and the iteration was performed only once.

The computing time (on an IBM 653) for 10 and 20 point solutions
was 3/4 and 3 hours, respectively. For curved bodies, the difference in
static-pressure coefficient distribution from 10 and 20 point solutions
was insignificant. For straight bodies, however, it was found necessary
to start at x < 0.001 in order to obtain a pressure distribution with
no discontinuities.
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Figure 1l.- Schematic diagram of method of characteristics solution.
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Static-pressure coefficient, Cp

Local-area ratio , A, /A,

(a) Mo = 2.0

Figure 3.~ The variation of static-pressure coefficient with local-area
ratio; method of characteristics; fineness ratio = 5.0; diameter
ratio = 0.7k2.
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Static-pressure coefficient, Cp
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Figure 6.- The variation of static-pressure coefficient with local-area
ratio; generalized shock-expansion theory; fineness ratior=r o0
diameter ratio = 0.T742.
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Static-pressure coefficient , Cp

Local-area ratio , A, /A,

(d) My, = 4.0

Figure 6.- Concluded.

20

NACA TN L4368




3T

NACA TN L4368

Jusn1yJe0d ainssaid JyDIS

Local area ratio , Ay, /A,

= 2.0

(a) M

t with local-area

icien

Figure 7.~ The variation of static-pressure coeff

= 5.0;

ratio; second-order shock-expansion theory; fineness ratio

0.7k2.

diameter ratio




NACA TN L4368

20

18

s

T

16

s

FET

14
Local area ratio , A /A,

1

S

1.2

233331
SRSz iaass B

1.0

d1 ¢ Juai01}Ja00 aunssaid J4DIS

38

2.5

1l

(b) M

Figure 7.- Continued.



39

NACA TN 4368

d9 ¢ uaiyge00 aunssaid oyDiS

Local area ratio , Ap /A,

(¢) M = 3.0

d.

Figure 7.~ Continue



co)
\O
o0
=y
=
=
S
=

L0

do “Juaioyye09 aunssaid dyDIg

Local area ratio , Ap /Aq

(4) M = 4.0

Figure T7.- Concluded.




41

9]
O
o
=iy
=
=
3
=

d5 yuaniyye00 ainssaid-oyoig

,Ap 7Aq

area ratio

Local

2.0

(a) My

t with local-area

diameter

icien

i

ic-pressure coe
fineness ratio = 5.0

f stat

ation o

ak

Figure 8.- The var

.
J

ratio; tangent-wedge theory;
0. Th2,

ratio




NACA TN 4368

: T : 1 : T f - + T : ~
ixn HHH SEEEEEIE
: : : Frbr R
E ! : t : i EE
o T + 1 FHHT s sEERREEE + s + : - T + H w8 s
3 i - - :
= : = : = e i 3 Seeas deed s i
x T + s H : EEHH ; + T HHHHHHH T H t o
] s e , i : £ i : =
= T
FEEEELEE - : : )
= = : ; : = : = ; Bt e :
el e e f ; ThEE ! S : o)
- ~ - e e T - : e = Q
T 7 ; F : i fEEs s b o 7 o o =
T : L : 5 : = 1 M
FEHE : R " i : m
i i Fon b RSP _ > .
IiIiii: HH S : : © % i\
: 51 5557, % B . i
F T 31 sraiteat oo, agi o ey 4 6 g
: _n ,, ot T 2 £t -!\_ i t m = o
: i 2 ©
AE -
T .
TS e
T 1
¥ =) ’
m N~—
=1
: FHHT
: £ o ol
: Tk = =
; :
:
:
i T
-
i

d ¢ 4uaia0d anssaid-ouniS

L2




L3

NACA TN L368

dye JuaI01}J209 aunssaid-oyDiS

,Ap 7Aq

Local-area ratio

inued

Figure 8.- Cont




Ly

Static-pressure coefficient, C p

Local-area ratio , Ay /Aq
(d) Me = 4.0

Figure 8.- Concluded.

NACA TN L4368




NACA TN 4368 L5

[}
L
B e e e

Static-pressure coefficient, Cp

/’ 4 It %5 ‘4“ s

Gl P e B e e i s

7 ; SEREHEE :
/ s 3

///
]

14 16 18 20
Local-area ratio , Ap, /A,

Figure 9.- The variation of static-pressure coefficient with local-area
ratio; impact theory; fineness ratio = 5.0; diameter ratio = Qih2;




46 NACA TN L4368
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Figure 13.- Continued.
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Figure 13.- Concluded.
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