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RESEARCH MEMORANDUM 

INVESTIGATION OF THE 1-40 JET-PROPULSION ENGINE IN TEE


CLEVELAND ALTITUDE WIND TUNNEL 

III - ANALYSIS OF TURBINE PERFORMANCE AND EFFECT 

OF TAIL-PIPE DESIGN ON ENGINE PERFORMANCE 

By Richard P. Krebs and Frederick C. Foshag 

SUMMARY 

Turbine-performance characteristics of an 1-40 Jet-propulsion 
engine installed in an airplane fuselage were determined. A com-
parison of engine performance with three different tail pipes is 
also presented. The investigation was conducted in the Cleveland 
altitude wind tunnel over a range of simulated altitudes from 
10,000 to 40,000 feet and a range of ram pressure ratios from 
0.98 to 1.76. 

Turbine characteristics are presented as functions of turbine 
pressure ratio, corrected gas flow, and corrected turbine speed. 
Changes in corrected net thrust, corrected net thrust horsepower, 
and specific fuel consumption based on net thrust horsepower with 
three different tail pipes are discussed. 

A maximum turbine efficiency of approximately 0.835 was 
obtained. This efficiency is somewhat lower than the true turbine 
efficiency, inasmuch as the bearing friction, accessories drive, 
and tail-pipe losses have been charged against the turbine. Turbine 
efficiency was unaffected by changes in altitude or the tail-pipe 
designs but varied with changes in ram pressure ratio. 

The most satisfactory engine performance was obtained with a 
constant-diameter tail pipe having a short nozzle at the outlet. 

INTRODUCTION 

An investigation has been conducted on an 1-40 jet-propulsion 
engine in the Cleveland altitude wind tunnel. Reference 1 contains 
a description of the engine and its installation in the tunnel and 
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a summary of the engine performance characteristics. The com-
pressor performance is analyzed in reference 2. 

The investigation was conducted over a range of simulated 
altitudes from 10,000 to 40,000 feet and a range of rem pressure 
ratios from 0.98 to 1.76. These ram pressure ratios correspond to 
true airspeeds from 0 to approximately 650 miles per hour. 

Changes in turbine operation brought about by changes in 
altitude, rem pressure ratio, and tail-pipe configuration are 
analyzed. Performance curves for the turbine, which cover only 
the range of conditions encountered by the turbine operating in 
the jet-propulsion engine, are presented. A comparison of engine 
performance with three different tail pipes at two ram pressure 
ratios is made.

DESCRIPTION OF TURBINE AND TAIL PIPES 

The 1-40-3 jet-propulsion engine is equipped with a single-
stage impulse turbine (fig. 1). The turbine drives the compressor 
at a maximum speed of 11,500 rpm. 

The turbine rotor has an outside diameter of 25.95 inches. 
It is overhung at the rear of the shaft, which Is supported by a 
roller bearing about 4 inches ahead of the center plane of the rotor 
and a ball thrust bearing at the front. Both bearings are lubri-
cated by jets of oil pumped from the accessory section. The rotor-
disk diameter is 17.835 inches. The disk thickness decreases from 
4.25 inches at the shaft to approximately 2.29 inches at the periph -

ery. Fifty-four solid square-ended blades 4-1- inches long are 

dovetailed to the disk. The radial tip clearance for the wheel is 
about 0.06 inch and the axial clearance between the leading edge 
of the rotor blades and the trailing edge of the nozzle blades 
varies from 0.80 inch at the root to 0.88 inch at the tip. 

A cooling fan on the forward face of the turbine rotor is 
supplied with air from the rear compressor inlet. (See fig. 2.) 
The air passes rearward over the outside of the turbine support 
casing and the rear bearing then radially outward through the fan 
and the diffuser. After cooling the rotor, the air turns and passes 
forward beneath the combustion chambers and outward between them. 
The discharged air does not enter the tail-pipe gas flow. The 
cooling air constitutes about 2 percent of the air flow through the 
engine at maximum speed.
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In the airplane fuselage. used the tail pipe extends from the 
exhaust cone to the rear extremity of the fuselage. For this inves-
tigation an instrumented ring was connected to the exit of the 
exhaust cone. The tail-pipe was connected to the instrumented ring 
by a detachable clamp ring and was supported in the fuselage rear 
section on rollers that rode on tracks located on both sides of the 
fuselage. Tail pipes could be easily changed after the fuselage 
rear section had been removed. 

Engine-performance runs were made with three tail pipes of 
similar construction but slightly different dimensions. The tail-
pipe stock was 0.03-inch stainless steel. The-tail-pipe insulation 
consisted of 0.01-inch 14-mesh stainless-steel screen longitudinally, 
corrugated and two layers of 0.004-inch aluminum foil pressed into 
the corrugations. The screen and foil were held in place by 

a-inch asbestos-covered wire spirally wrapped around the tail pipe 

with a pitch of 1 inch. 

The three tail pipes, designated 1, 2, and 3, had the follow-
ing physical characteristics (fig. 3): 

1. Tail pipe 1 conformed to the standard production tail pipe 
except that it was 4 inches shorter to accommodate the instrumented 
ring. It was 93.31 inches long and had a constant taper from a 
diameter of approximately 21 inches at the entrance end to 19 inches 
at the outlet end. 

2. Tail pipe 2 was similar to 1 except for a 2-inch extension 
on the outlet end, which reduced the exit diameter to 18.8 inches. 

3. Tail pipe 3 was an experimental model. It had the same 
outlet area as tail pipe 1, but consisted of a 21-inch-diameter 
section 86.12 inches long followed by a nozzle 7.19 inches long, 
which reduced the diameter to 19 inches at the outlet. 

INSTRUMENTATION 

The instrumentation used to obtain the data presented was 
installed at the stations shown in figure 2. All of the measure-
ments were made by unshielded instruments except where noted. 
Details of the instrumentation at these stations were as follows: 

Total pressure at station 2 was measured by 14 shielded total-
pressure tubes at the front compressor inlet and 28 shielded tubes 
at the rear compressor inlet. Temperature was measured by 7 thermo-
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at the rear compressor inlet. Temperature was measured by 7 thermo-
couples at the front compressor inlet and 14 thermocouples at the 
rear compressor inlet. Compressor-inlet instrumentation was located 
on an imaginary cylindrical surface, which was 6 inches greater in 
diameter than the inlet screen (fig. 2), and as near as possible 
to the axial center of the inlet. 

At station 5 the turbine-inlet total pressure was measured by 
total-pressure tubes located in three of the burners. The tubes 
were located approximately midway between the center line and the 
outside surface of the burner and about 2.5 inches from the forward 
edge of the nozzle diaphragm. Thermocouples were inserted in each 
burner to determine which burners were lighted. 

Data from instrumentation at station 6 have not been used 
herein because they were apparently in error. The error was caused 
by excessive swirl and by radiation from the hot turbine gases. 

The diffuser vanes in the exhaust cone removed most of the 
swirl at the tail-pipe-nozzle outlet and the thermocouples in the 
tail-pipe-nozzle outlet were sufficiently remote to be unaffected 
by radiation from the hot gases. The instrumentation at station 8 
consisted of 18 total-pressure tubes, 3 static-pressure tubes, 
4 static wall orifices, and 10 thermocouples. Tail pipe 1 was also 
instrumented with 4 additional static wall orifices. All of the 
instrumentation with the exception of the wall orifices was carried 
on a single vertical rake fastened to the end of the tail pipe. The 
plane of the instrumentation was 1 inch inside tail pipes 1 and 2 
and 3/8 inch inside tail pipe 3. 

RANGE OF INVESTIGATIONS 

Engine-performance runs with tail pipe 1 were conducted over 
a range of simulated altitudes from 10,000 to 40,000 feet and over 
a range of ram pressure ratios from 0.98 to 1.76. Comparative runs 
with tail pipes 2 and 3 were conducted at a simulated altitude of 
20,000 feet at ram pressure ratios of 1.03 and 1.27. Ram pressure 
ratio is defined as the ratio of the average total pressure at the 
front and the rear compressor inlets to the free-stream static 
pressure in the tunnel. In these runs the temperature of the inlet 
air could not be maintained to simulate precisely altitude conditions.
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SYMBOLS 

The following symbols are used in the calculations: 

A	 cross-sectional area, square feet 

Fj jet thrust, pounds 

Fn net thrust,.pounds 

g	 ratio of absolute to gravitational units, (32.17) 

K	 gas-flow calibration factor for tail-pipe-nozzle outlet rake, g	
(0.964) 

Ma mass air flow, slugs per second 

N	 engine speed, rpm 

P	 total pressure, pounds per square foot 

p	 static pressure, pounds per square foot 

P	 gas constant (at elevated temperatures), foot-pounds per 
pound OR (53.86) 

T	 total temperature, OR 

Ti indicated temperature, OR 

t	 static temperature, OR 

thp net thrust horsepower 

u	 turbine-rotor tip speed, feet per second 

V0 effective airspeed, feet per second 

v	 turbine-nozzle jet speed, feet per second 

Wf fuel flow, pounds per hour 

W 
	 gas flow, pounds per second 

a,	 thermocouple impact-recovery factor, (0.86) 

ratio of specific heats
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8	 pressure correction factor, P12116, local total pressure 
divided by NACA standard atmospheric pressure at sea level 

Tit turbine efficiency 

e	 temperature correction factor, YT/1.4 X 519, product of local 
temperature and y divided by the product of temperature 
and y for air at NACA standard atmospheric conditions at 
sea level 

Subscripts: 

0	 free strewn 

2	 compressor inlet (average of measurements at front and rear) 

5	 turbine inlet 

8	 tail-pipe-nozzle outlet 

t	 turbine 

x	 annular increment of area in tail-pipe-nozzle outlet 

METHODS OF CALCULATION 

Efficiency. - Turbine efficiency was calculated by the follow-
ing equation:

T8 

nt	

1--
T5 

1 (P58 ) Y 

This efficiency is based on the total-pressure drop across the 
turbine. Pressure losses in the tail pipe are charged to the 
turbine because tail-pipe-nozzle outlet measurements were used 
instead of corresponding turbine-outlet measurements. 

Because the thermocouples at station 5 were subjected to the 
radiation from the hot burner gases, they were not satisfactory for 
the computation of T5 . An indirect method of determining T5 was
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therefore used. The enthalpy drop across the turbine was assumed 
equal to the enthalpy rise across the compressor. The value of 

was computed from T8 and the turbine enthalpy drop by means of the 

charts in reference 3. The fuel (kerosene) had a hydrogen-carbon 
ratio of 0.175 and a lower heating value of 18,600 Btu per pound. 

The value of y was determined from a curve relating 7 and 
temperature at a constant. fuel-air ratio of 0.02 and -a burner 
efficiency of 70 percent. The temperature used was the average of 
T5 and T8 . The error in turbine efflciçncy introduced by con-

sidering fuel-air ratio and burner efficlencyoonstant in computing 
y was less than 1/2 percent. 

The work output of the turbine •should Include the work put 
into the compressor, the compressor themal-radiation losses, and 
the work required to overcome bearing friction and to drive the 
accessories. In the computatiort of the work output of the turbine, 
however, only -the work put intO the ,compressor was considered. 
Although the. resultant efficiency value is lower than the actual 
adiabatic efficiency of the turbine, it is considered sufficiently 
accurate to justify comparisons among the efficiencies-for changes 
in altitude, ram pressure ratio, and tail pipe. 

Gas flow. - Gas flow was determined from measurements taken at 
the tail-pipe-nozzle outlet, station 8. Inasmuch as the total and 
static pressures and Indicated temperatures varied across the tail 
pipe, the area at the plane of survey was divided into a series of 
annuli and the gas flow through each annulus was calculated. .A 
summation of the incremental values determined the total gas flow 
through the engine. The following equation was used: 

	

7-1	
J	

7-1	 12 

	

t,\	 ID

Px	
1 

W	 K	

\Y

 

1(p1-it +tj

xl 	

(x\

-
2vg /	 A	

X/	 J 	 \/	 c g -	 P8y_i)R/_ I 	 T. 

	

-	 - 

where C is an area-correction factor dependent on temperature. 
This gas-flow equation Is derived in reference 1. 	 - 

Temperatures. - Tail-pipe-nozzle outlet static temperature was 
calculated from indicated temperature by the use of the equation
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t8 =	 T1,8 
1	 y-1 

'"
+ P 

(—P88J 

Tail-pipe-nozzle outlet total temperature was computed by 

y-1 

T8 = t8 
(P8) 7 

Effective airspeed. - The calculation for effective airspeed 
was based on the assumption of 100-percent ram efficiency in the 
inlet duct. The effective airspeed in terms of compressor-inlet 
values is

0	

r 7-1 

= __ L - 1 
L\o) 

Net thrust. - Net thrust was determined by subtracting the 
initial free-stream momentum of the air from the jet thrust. 

F =F. -MV n	 3	 aO 

Net thrust horsepower. - Net thrust horsepower was calculated 
from the net thrust and effective airspeed by the following relation: 

Fn V0 

thp = 550 

RESULTS AND DISCUSSION 

Method of Presentation 

The data are presented with the aid of corrected coordinates. 
The use of corrected coordinates in jet-propulsion-engine analysis 
is discussed in references 4 and 5. Two of these coordinates, 

Wg i./j 
corrected turbine speed 111 %f_55 and corrected gas flow 87/14'
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as well as turbine pressure ratio P 5/P8 , are used in describing 

the turbine performance. Corrected - net thrust	 and corrected 

net thrust horsepower thp/52,/02 are used in the tail-pipe 
comparison. 

The coordinate u/v usually used in the presentation of tur-
bine data is not used because the range of u/v for all engine 
operating conditions was only between 0.45 and 0.51. The turbine 
operating line used is defined as the plot of turbine total-pressure 
ratio against corrected gas flow. A jet-propulsion engine has a 
single turbine operating line if secondary effects such as changes 
in specific heat and Reynolds number are neglected. 

Turbine Performance 

Turbine pressure ratio is plotted against corrected gas flow 
and corrected turbine speed for several altitudes and ram pressure 
ratios with tail pipe i in figures 4 and 5, respectively. Although 
these data show that altitude and ram pressure ratio have no 
appreciable effect on the two plots, a more complete analysis of 
additional data taken with tail pipe 1 showed an altitude effect 
on the operating line. From the derivation of corrected gas flow 
given in reference 5, the assumption was made that the gas flow 
corrected to turbine-inlet conditions would be constant for tur-
bine pressure ratios exceeding 1.8. Accordingly, all corrected gas 
flows corresponding to turbine pressure ratios above the critical' 
turbine pressure ratio for several ram pressure ratios for each 
altitude were averaged together. This procedure was based on the 
assumption that changes in rain pressure ratio had no effect on the 
turbine operating line. The results of this averaging process are 
presented in the following table: 

Altitude Average corrected 
(ft)	 gas flow 

(lb/sec) 

	

10,000	 42.04 

	

20,000	 41.89 

	

30,000	 41.59 

	

40,000	 41.37 

This table definitely indicates that the turbine operating line 
shifts toward lower corrected gas flows as the altitude increases
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Turbine efficiency for several altitudes is plotted in fig-
ure 6 as a function of turbine pressure ratio at a ram pressure 
ratio of 0.98. This figure shows that the turbine efficiency is 
independent of altitude. 

Turbine efficiency for various rem pressure ratios is plotted 
against turbine pressure ratio and corrected turbine speed in 
figure 7. Data points have been omitted in order not to obscure 
the curves.	 - 

A maximum turbine efficiency of about 0.835 was obtained at a 
ram pressure ratio between 1.1 and 1.2 with a turbine pressure 
ratio between 1.6 and 2.0, corresponding to a range of corrected 
turbine speeds from 4400 to 5400 rpm. This efficiency is somewhat 
lower than the true turbine efficiency, inasmuch as the bearing 
friction, accessories drive, and tail-pipe losses have been charged 
against the turbine. The engine speed in this region of maximum 
turbine efficiency is between 6600 and 8700 rpm. In this range of 
turbine operation the curves are fairly flat for rem pressure 
ratios of 1.09 and 1.21. The curves for ram pressure ratios of 
0.98, 1.03, and 1.76 are steeper than the curves for 1.09 and 
1.21 ram pressure ratios and peak at a turbine pressure ratio of 
about 2.25. 

The values of peak turbine efficiency and turbine efficiency 
at maximum engine speed for six different rain pressure ratios are 
tabulated as follows: 

Barn pressure Peak turbine Turbine efficiency at 
ratio	 efficiency	 maximum engine speed 

0.98 0.82 0.805 
1.03 .82 .81 
1.09 .835 .82 
1.21 .835 .805 
1.38 .83 .805 
1.76 .81 .80

Cross plots taken from figure 7 of turbine efficiency as a 
function of ram pressure ratio for three turbine pressure ratios 
that would prevail during flight operation are shown in figure 8. 
The variation of turbine efficiency with rain pressure ratio is 
assumed to be the result of changes in compressor performance. 
The compressor efficiency is greatly affected by changes in ram 
pressure ratio, especially at low engine speeds. (See reference 2.) 
The change in compressor efficiency alters the flow pattern of the 
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compressor-discharge air. These flow modifications may persist 
through the combustion chambers and influence the turbine 
efficiency. 

Effect of Tail-Pipe Design on Engine Performance 

The turbine operating line and a plot of turbine pressure ratio 
against corrected turbine speed for the three tail pipes are shown 
in figure 9. The data were taken at an altitude of 20,000 feet and 
a rain pressure ratio of 1.03. The turbine operating line is altered 
by a change in tail pipe. The data indicate that corrected gas 
flows are higher with tail pipes 2 and . 3 than with tail pipe 1. The 
turbine pressure ratio plotted against corrected turbine speed is 
the same for the three tail pipes. 

Turbine efficiency is plotted against turbine pressure ratio 
at several altitudes and a ran pressure ratio of 1.03 for tail 
pipes 2 and 3 in figure 10. These curves match the efficiency 
curve at a ran pressure ratio of 1.03 for tail pipe 1 shown in 
figure 7 except for a slight decrease in turbine efficiency with 
tail pipe 2 at low turbine pressure ratios. 

An over-all engine-performance comparison with the three tail 
pipes was made at ram pressure ratios of 1.03 and 1.27. Corrected 
net thrust is plotted against corrected engine Speed for the three 
tail pipes at a simulated altitude of 20,000 feet in figure 11. 
Because no data were available for tail pipe 1 at a rain pressure 
ratio of 1.27, the curve shown in figure 11 for this tail pipe was 
obtained by cross-plotting and interpolating data from other rain 
pressure ratios. The engine operating at maximum engine speed 
(11,500 rpm) corresponding to a corrected turbine speed of about 
12,000 rpm produces 51 percent more corrected net thrust with tail 

pipe 3 than with tail pipe 1. 

In figure 12 corrected net thrust horsepower Is plotted 
against specific fuel consumption based on net thrust horsepower. 
Over the entire operating range for a rain pressure ratio of 1.03 
tail pipe 3 gives the most economical fuel consumption. At a ram 
pressure ratio of 1.27 and a corrected net thrust horsepower above 
2500, tail pipe 3 maintains a similar advantage over the two other 
tail pipes. Tail pipe 2 gives an engine performance generally 
intermediate to those obtained with tail pipes 1 and 3.
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SUMMARY OF RESULTS 

From an investigation of the 1-40 jet-propulsion engine, the 
following results were obtained on the turbine performance and the 
effect on engine performance of three different tail pipes: 

1. A maximum turbine efficiency of about 0.835 was obtained 
at a ram pressure ratio between 1.1 and 1.2 with a turbine pressure 
ratio between 1.6 and 2.0. This efficiency is somewhat lower than 
the true turbine efficiency, inasmuch as the bearing friction, 
accessories drive, and tail-pipe losses have been charged against 
the turbine. The maximum turbine efficiency obtained at maximum 
engine speed was 0.82 at a ram pressure ratio of 1.1. 

2. Turbine efficiency was independent of changes in altitude 
and was inappreciably affected by changes in tail-pipe design but 
varied with changes in ram pressure ratio. 

3. A constant-diameter tail pipe, having a short nozzle at the 
outlet, gave the generally most satisfactory corrected net thrust 
and fuel economy. 

Flight Propulsion Research Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio.
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Figure I. - Single—stage impulse turbine of I—CC jet—propulsion engine.
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Tail pipe I 

Tail pipe 2

Tail pipe 3 

Figure 3. - Elevation of three tail pipes used in investigations of 

1-40 jet—propulsion engine.
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