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a RESEARCH MEMORANDUM
THEORETICAL CHARACTERISTICS OF TWO-DIMENSIONAL

SUPERSONIC CONTROL SURFACES

By Robert R. Morrlissette and Lester F. Obc;':rny
SUMMARY

The 'Busemann second-order-spproximation theory" for the pressure
distribution over a two-dimensional alrfoll in supersonic flow was used
to determine some of the aerodynamic characteristlics of uncambered
symuetricel parabolic and double-wedge alrfolls with leadlng-edge and
trailing-edge flaps. The investigation was originslly intended for
application to alleron studies but, since the analysis 1s based on two-
dimensional flow, the results are a.pplica.‘ble to all types of control
surfaces. The use of the term "alleron’” mey comsequently be replaced in
the present paper by the term 'control surface.”" The characterlstics
presented and discussed are: alleron effectiveness factor, rate of
change of hinge-moment coefficient with alleron deflection, rate of
change of the pitching-moment coefficient ebout the midchord with aileron
deflection, and the locatlon of the center of pressure of the alrfoll-
alleron combination. In supersonic flow leading-edge allerons wers found
to be much more effective than tralling-edge allerons. Nelther aileron,
however, ls as effective In supsrsonlic flow as the tralling-edge aileron
In subsonic flow. The calculatlons show that, for a given thlckness
ratio, trailing-edge allerons are more effectlve on wedge alrfolils than
on parabolic alrfolls; whereas leading-edge ailerons are more effective
on parabolic alrfoills than on wedge alrfoils. The magnitude of the
values of the rate of chenge of the hinge-moment coefflcient with alleron
deflectlion and the rate of change of pltching-moment coefficlent about
the mldchord with alleron deflection is greater for lesding-edge allerons
then for trailing-edge allerons.

INTRODUCTION

In investligations of the asrodynemlc characteristice of allerons,
the Influence of certaln factors is not found in the predictions based
on & linearized solution. Higher-order solutions are therefore neces-
sary and cornsequently the analysils must be made for a tTwo-dimensional
wing. The results are applicable not only to allsrons but to all types
of control surfaces.

Several mothods are ln use at this time for calculating the pressure
distribution over thin airfoils in a supersonic alr stream. The
prevalling methods are: the graphical method of references 1 and 2, the

AN
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Ackeret thin-alrfoll. theory, the Busemann second-order approximation

used in reference 3, and the power series of references 2 and 4. None
of these methods are exact as they do not consider the effect of the
boundary layer on the airfoil.

In this paper the Busemasnn second-order approximation is used as
the best compromise because thls approximation gives expressions which
are simple enough to be used in design work and which are probably as
accurate as could be expected of any method thatresglects the boundary-
layer thickness. The Busemamn approximation uses only the first two
terms of the power series found in references 2 and 4. TFigures 2, 12,
and 13 of reference 2 show that the first two terms of the power series
glve results that are close spproximations to the results obtained by
use of the oblique-shock equations and the isentroplc-expansion and com-
preasion equations. The method used herein 1s a closer spproximation
than the Ackeret theory as the Busemann gpproximation takes into account
the effects of Mach number, alrfoil thickness, and airfoil shape.

The second-order &approximation is limited to small angles and thin
alrfoils. Reference 2 states that the theory used is not consldered
accurate for Mach numbers less than approximately 1.3. This lower limit
has been used arbitrarily in this analysis. Also, the theory is not
good for Mach nunmbers below that at which the shock wave detbaches.
Reference 2 glves values for the minimm Mach number for the existence of
an attached shock as a function of the flow-deflectlon angile.

The factors varied in this analysils are airfoil thickness ratio,
Mech number, alrfoil shape, ratio of aileron chord to wing chord, and
location of aileron. The characteristics Investigated included aileron
effectiveness factor, rate of chenge of hinge-moment coefficlemnt with
alleron deflection, rate of change of pitching-moment coefficient with
alleron- deflection, and locabtlon of center of pressure of—the alrfoll-
alleron combination. The equations used herein and a sample derivation
are found in the section entitled "ANALYSIS."

SYMBOLS
c chord of airfoil (taken as = 1.0 herein)
Cg chord of alleron, fraction of alrfoll chord
Cy and 02 constants used in Tirst and’ second T,erms of Busemsnn
approximstion for pressure coefficient in supersonic

flow

Ch, aileron section hinge-moment coefficient l( he /q oCa? )
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C1

Lp/g

dcza/dsa

Ty [8a

glrfoll section 1l1ft coefficilent

. alrfoil sectlion pitching-moment coeffliclent about

midchord (mo . 5/qoc2)

center of pressure measured from leading edge, fractlon
of chord

alleron sectlon hinge moment

alrfoil section pilitching moment about midchord
free-stream Mach number

free-gtream dynamic pressure ( %povoa)

neximm thickness of airfoll section

free-gstream veloclty

distance behind leading edge, fraction of chord

ordinate from chord line to any polnt on surface of
airfoil, fraction of chord

pressure coefficlient
alleron effectiveness factor

alrfoll angle of attack

deflection of ailercn relatlve to chord line (considered
posltive when it glves alleron a positive angle
of attack)

geometric parameter used 1ln determinling center-of-pressure
location

local angle between any point on surface of airfoll and
free-stream direction

Pree-~-stream density

ratio of specific.heé..t-s (1.%)
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Subscripts:

& aileron . ; . —

h aileron hinge-line position (except when used in cha.)
lower surface of airfoll

I.T upper surface of airfoll

ANATYSTIS

The analysis used in this paper is based on the Busemsnn second-

order spproximation for the pressure coefflcilent % in supersonic

flow. Thls coefficient is expressed in reference 3 in the following
form:

22 _ ¢qi0 + Cpe”
q
where )
2
Cy =

2 - 1

_ "'Moh‘ + (Moe' - 2)2

2(Ms? - 1)2

The procedure used in deriving the equations for the paramsters
consldered is 1llustrated by the following derlivation af the alleron
effectiveness factor of a parabolic alrfoil with a trailing-edge a.ileron-
The other parameters are obtalned by a similar analysis.
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- Ailergn Effectiveness Factor

Perabolic airfoil with trailing-edge alleron.- The equation for the
upper surface of g parabolic airfoll with the leadlng edge at the origin
and the trglling edge 2t x = 1.0 1s

¥y = 25(}: - x2)

U

The slope at any point on the upper surface of the alrfoil is
dy t
<E)U = 2&-(1 - 2x)

The locel angle 6 between any polnt on the surface of the alrfoil
and the free-stream directlon, therefore, 1s

T —a,+<_.3>
o

- 25(1 - 2x)

o
Il

]

)
Q
+
olfer
_—~
-
}

It follows then that

(%)

U

P
C16y + Cofy

01w+ 281 - 2x)] + Cp[-a + 221 - 2x)]2
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-

(%), -eale = et -2l o e - =)

The pressure coéfficient for the airfoil then is
ORC
a q 1 q U
or
L ooy + CQEhEﬂ - ax)]
The 1i1ft coefficient—of the alrfoil 1s

1.0

1.0
mf E§1+h02£—_(l-2:):ldx
0

za.E:lx + mai;-(x - xz)j:--o

2aCq

The rate of change of. lift coefficlent with angle of-attack therefore 1s
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The 1ift coefficlent of the alleron Clg due to some alleron

deflectlon 8g can be found in a similar manner.

Because of the linear nature of the equations for pressurs coef- .
ficlent, the pressure coefficlent at a point on the airfoll can be found
by adding the pressure coefficlent for the wing at angle of attack o

with undeflected allerons to the pressure coefficient for the wing at
zero angle of attack with the alleron at angle of attack 8, . The

contribution of the alleron defines the conbtrol force on the wing and for
that reason may be treated as a separate alleron pressure coefficlent.

The pressure coefficient for the aileron (‘%E) s Ttherefore, 1s the
a

gsame as that found for the airfoil except that the alleron deflection &g
is used 1n place of the angle of attack «- Thus,

(%) = 25&,:01 + bopt(1 - 2xﬂ

=1

Then, the 1lift coefflclient for the ailsron due to some deflection 1s

1.0
c A_P ax
tg a
a

Ih

l'o
2saf l:cl + bop (1 - Qx)] dx
Th

1.0
ZSaElx + )-I-C2§-(I - I2)]
Xy

285(1 - xm) (cl - hcef-:xh)



8 _ NACA RM No. L8G12

end, therefore, the rate of change of 1ift coefficient of alleron with
alleron deflection is

dc 2 %
a8 _ - - 2

The alleron effectiveness factor for a parabolic alrfoil with tralling-
odge alleron thus is

dcza/dsa 2<l - xh) (Cl - h-ngxh)

doy fda, - 2C4

C

o))

Paraebolic airfoil with leading-edge alleron.- The aileron effective-
ness factor for a parabollc alrfoll with a leading-edge alleron is

d.cz dsa c
R - )

e

Wedge alrfoil with trailing-edge aileron.- The alleron effective-~
ness factor for a wedge airfoll with a trailing-edge alleron when

%, 20.50 is

dcy /d.sa c
- (w2 E)

and when X, £ 0.50,

dc as
1 a c )
a/ - 1-xh<1+2—2‘£>

d.c-L?do:.
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Wedge airfoll with leading-edge asileron.- The alleron effectivensss

factor for a wedge alrfoll with a leading-edge alleron when Xy 2 0.50
is

doy_[aBy

W/ r e 21 - x,)

and when xy = 0.50,

ac,_[as, Cp 1
deq/da =xh< %, )

Rate of Changse of Ailseron Hinge-Moment Coeffigient with Alleron

Deflection

Parabolic alrfoll with tralling-edge aileron.- The egquation for the
rate of change of alileron hinge-moment coefficient with ailleron deflec-

tlon of a parabolic airfoll having a tralling-edge alleron 1s given as

dc
?23 = Gy + 13-‘02%(1 + 2xy )

Parebolic airfoll with leading-edge alleron.- The rate of change of
alleron hinge-moment coefficient with alleron deflection of a parabolic
alrfoll with a leading-edge aileron 1s

dc
a];a = Cl.'.L + _02_(3 - zzh)

Wedge alrfoll with tralling-edge aileron.- The rate of change of
alleron hinge-moment coeffliclent with alleron deflectlon of a wedge alr-

foll with a tralling-edge allsron when Xy, z 0.50 1s




10 NACA RM No. 18Gi2

end when x,; =0.50,

2
Sch, § ot (1 - 2x, )
= V1 2c 2

asa c (l - xh)

Wedge alrfoil with leading-edge aileron.- The rate of change of -
alleron hinge-moment coefficlent with alleron deflection of a wedge alir-

foil having a leadlng-edge aileron when x > 0.50 1s

acha G (l - hxy + 2"112)
Soq 1 - O3

2
Xp

and when x = 0.50,

ac:h&—c + 20,2
%, L 2c

Rate of Change of Pitching-Moment Coefficient about Midchord with

Alleron Deflection

Parabolic alrfoil with trailling-edge alleron.- The rate of change
of pitching-moment coefficient about midchord with alleron deflectlon

of a parabolic airfoll having a trailing-edge alleron 1s given as

a‘>mo5

<xh - xh) + —02—< )+xh .+ 6xh - 3xh + l)

Parabolic alrfoill with leading-edge alleron.- The rate of change
of pltching-moment coefficient about midchord with allsron deflectlon
of a parabolic ailrfoll with a lea,ding-edge alleron is

Somg, Ly t 2)
_'aa_: = Xy Cl(l - xh) + :_—502;(3 - 6xh + b,xh
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Wedge airfoil with trailing-edge alleron.- The rate of change of
pitching-moment coefficlent about midchord with aileron deflection for

a trailing-edge alleron when X, =20.50 1s

3 ) .
0 (12 - ) - i)

and when X < 0.50,

acmo 22 Cl<xh. xh) + ce_(zch - oxy + 1)

Wedge alrfoil with leading-edge aileron.- The rate of change of
pitching-moment coefficient about midchord with alleron deflection for

a leading-edge aileron when X Z 0.50 1s

q

and when xh 0.50,

?C—E-Q—'i = <xh_ - Ih2)<cl + 2025)

Soa

Rate of Change of Pitching-Moment Coefficient about Midchord -
with Angle of Attack

Parsbolic airfoil.- The rate of change of piltching-moment coeffl-
clent about mldchord with angle of attack for a parsbollc airfoll is
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Wedge alrfoil.- The equation for the rate of change of pitching~
moment coefficient about midchord with angle of attack for a wedge alr-
foil 1s given as ’

%emp.5

3

= 0ol
_CEG

These equations were obtained from equations found in reference 3 and
are gilven here for the sake of completeness.

Center of Pressure
Parabolic alrfoll with trailing-edge alleron.- The center-of-~

pressure egquation for a parsbolic alrfoll having a tralling-edge aileron
1s as follows:

Parabolic alrfoll with leading-edge aileron.- The following center-
of -pressure equetion for a parabolic airfoll with a leading-edge alleron
is expressed as:

C o) -C '
L 72 % 2 a Y72 5,
Y360t mE’+3—lc3 l*"h)]

. 2+2xh%%'i_+lfgg_(l_xh:|

Wedge alrfoil wlith trailing-edge sileron. - The center of pressure
for a wedge alirfoll with a trailing-edge aileron when Xy 2 0.50 1is
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c ) c
2+t , "a - 2 =t/ 2
l'C—c"'c,l Xy, +20 (Ih l)]
1 1
CP= . S
8, 2 t
2+al-xh><2 J-l-qc)
and when x, < 0.50,
C C
R - ()
Clc Clc

Ba

[« 4

C =

P S

2 + =2
[2 73

Wedge airfoll with leading-edge alleron.- The center of pressure for
a wedge airfoll with a leading-edge alleron when Xy 20.50 1is

]
ot
/m\
+
Q]"‘Q
(S [V)
O |c+
D

and when 3, < 0-50,
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EESULTS

Drawings of the parebolic and wedge alrfoil sections used 1in the
calculations may be seen in figure 1. These two shapes were chosen
because they are frequently considered foxr use in the wings of super-
sonlic aircraft.

In figures 2 to 4O is shown the varistlon of the aerodynamic char-
acteristics of ailerons with airfoil shepe, location of alleron, airfoil
thicknees ratlio, free-stream Mach number, ratlo of alleron chord to wing
chord, and the ratio of-ailsron deflection to the angle of attack.

Table T 1s an index of the figures. .

In figure 2 (fig. 9, reference 5 except Busemsnn curve) a compari-
son is shown of the results obtained by the method of calculation used
herein and the results obtalned by both the Ackeret theoxry and the
method of reference 1. The method presented in this paper gives results
that epproach those of the method of referemce 1 much closer than the
Ackeret theory. Thie closer result ls due to the fact that thickness
retio, Mach nunmber, and airfoll shape are taken into comsideration in
the second-order e.pproxima.tion vhereoas these factors are neglected. in
the Ackeret—theory.

Figure 2 also shows that the alleron effectiveness for tralling-
edge allercns in subsonic flow is much higher than the alleron effec-
tiveness of trailing-edge allerons in superzonic flow. The reason for
this result 1s that the flow ahead of -the alleron is affected by the
alleron Iin subsonic flow, whereas the flow in this region is not
affected by the aileron In supersonic flow.

Unlike the Ackeret theory, the analysis used hereln gives the
following results for an airfoil-aileron combinstion in supersonic
flow:

(1) Leading-edge allerons are more effective than trailing-edge
allerons. (See figs. 3 %o T.)

{2) The magnitude of the values of _acha/asa and cho 5/359. is

greater for leading-edge allerons than for trailing-edge allerons.
(See figs. 13 to 17 and 22 to 26.)

(3) The center of pressure of an airfoll-aileron combination
having maximum thickness at the midchord and zero a.ileron d.eflection
18 shead of the midchord (figs. 31 to 34).

Mach mumber. - An Increase in the free-stream Mach nwiber gives the
following results _ _ .
T = wriztnera b : R S S S
(1) Above a Mach number ‘of approximately 1. "(5 (depending on thick-
ness ratlo), the alleron effectiveness for leading-edge allerons is
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increased and the ailleron effectlveness for trailling-edge ailerons is
decreased. (See figs. 8 to 11.)

(2) The megnitude of the values of 3c /88 and bcmo 5 /388_ ig

decreased for both leading-edge and trailing-edge ailesroms (figs. 18
to 21 and 27 to 30).

(3) Im general, above a Mach number of approximately 1.7 the
center of pressure of an girfoll-aileron combination moves forward as

shown In figures 31 to 34.

Thickness ratlo.- The main differemce between the Tlrst-order and
second-order approximations l1s the thickness-ratic effect. The second-
order approximstlon shows that an Increase in airfoll thickness ratio:

(1) TIncreases the effectiveness of leading-edge allerans and
decreases the effectlveness of trailing-edge allerons. When the thick-
ness ratlo 1s zero, the effectiveness is the sams for both leadlng-edge

end trailing-edge allerons. (See fig. 12.)

(2). Increases the magnitude of the values of Jdcy /888_ end
a,
acmo a8 for leadlng-edge ailerons and decreases the magnitude for
)

tralling-edge ailerons as shown In figures 18 to 21 and 27 to 30.

(3) Moves the center of pressure of the alrfoill-sileron combina-
tion forward (fig. LO)}. .

Alrfoll shape.~ For a given thickness ratio of the alrfoils con-
gidered herein, the surface slope near both the leading and tralling
edges of the parsbolic alrfoill is greater than the slope at corresponding
posltions on the wedge airfolil. In these regions, therefore, the para-
bolic alrfoll acts lilke en airfoil with a larger thic]mess ra:bio. It
then follows that:

(1) TFor a given value of t/c, trailing-edge allerons are more
effective on wedge airfoils than on parabolic alrfollsj wherseas leading-
edge allerons are more effective on parabollic airfolls than on wedge
alrfoils. (See figs. 3 to T.)

(2) The center of pressure is farther forward for the parabolic
airfoll than for the wedge airfoil (figs. 31 to 39).

Ratlio of ailleron chord.'to wing chord.- An Increase in the chord of
the alleron Ilncreases the surface area of the alleron. As a result of
this increase in alleron surface:. N .. t

(1) The aileron effectiveness is increased (figs- 2 to 7).

et el
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(2) The magnitude of—the value of acmo 5 3%, Incresses until the

alleron chord reaches a value of half the wing chord; then 1t decreases
as the alleron chord 1s increased further. (See figs. 22 to 26.)

Since the pressure distribution over the wedge alrfoil is inde-
pendent of the chordwise locatlon as long a8 the surface slope is a
constant, the value of Bcha/aba is independent of the ratlo of the

alleron chord to the wing chord. After the value of cg/c exceeds 0.5,

however, the surface slope changes and the pressure coefificient 1s no
longer Independent of the chordwilse location. Thus, for further increases
in cgfc Dbeyond this value, the value of Bcha/asa then decreases for

loading-edge allerons end Increases negatively for tralling-edge allerocns
(figs. 14,16, and 17).

The theory shows the pressure dlstributlon over a parabolic airfoll
to be a function of the chordwise location. As a result, when the
ratio cy,fc is increased, the value of acha/aaa decreases for leading-

edge allerons and increases negatively for trailing-edge allerons. (See
figs. 13, 15, and 17.) )

Ratio of alleron deflection to angle of attack.- Increasing the
ratio of the alleron deflectlon to the angle of attack results in a
relatively higher pressure on the alleron surfaces than on the rest of
the alrfoll. The center of pressure is thus shifted forward when
leading-edge allerons are uged and backward when trelling-edge allerons
are used. (Ses figs. 31 to 3k.)

CORCLUSIONS

The "Busemann second-order-approximastion theory" for the pressure
distribution over a two-dimensionel airfoll in supersonic flow was used
to determine some of the asrodynamic characterlstics of uncambered
symnetrical parebolic. and double-wedge airfolls with leading-edge and
tralling-edge allerons. Within the limitations of the theory used, the
following conclusions may be drawn about the effectiveness of ailerons
in the Mach number range (1.3 to 4.0) investigated:

1. Nelther lesding-edge nor trailing-edge allerons are as effectlve
in supersonic flow as the trailing-edge alleron in subaonlc flow.

2. For a given alrfoll shape at high Mach numbers, leading-edge
ailerons are much more effective than trailing-edge allerons. However,
the relative effectiveness of leading-edge and tralling-edge allerons 1s
a function of thickness ratic and the difference between the two becomes
smaller with smaller thickness ratios.
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3. For a given thickness ratio the alleron effectiveness ls greater
for leading-edge allerons on parabolic sirfoils than for leading-edge
allerons on symmetrical wedge-shepe alrfoils; however, tralling-edge
ailerons are more effective on symmetrical wedge-shape alrfoils than on
parebollc airfolls. '

L. An increase in airfoll thickness tends to decrease the alleron
effectiveness when tralling-edge allerons are used, whereas 1t Increases
the aileron effectiveness when leading-edge allerons are used.

5. The magnitude of the values of the rate of change of ths hinge-
moment coefficlent with ailleron deflection and the rate of changs of -
pltching-moment coefficient about the midchord with aileron deflection
is greater for leading-edge allerons than for trailing-edge allsrons.

Tangley Memorial Aeronautical Laboratory
National Advisory Committee for Aercnsutics
Langley Fleld, Va.
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Rate of change of aileron hinge-moment coefficlent with aileron defleotion, boh./bb.
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Figure 24.- Rate of change of piltching-moment coefficlent

about midchord with alleron deflection as =&
function of the ratio of alleron chord to wing chord
for an uncambered parabolio airfoil having maximum
thickness at midchord =nd leading-edge aileron.
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Pigure 24.- Oonoluded.
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Figure 25.~ Rate of change of pltohing-moment ococeffliclent

about midchord with aileron deflection as s
function of the ratioc of alleron chord to wing chord
for an uncambered wedge airfoil having maximum thickness

at midchord and leading-edge alleron.
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Rate of change of pitching-moment coefficient about midchord with alleron deflection, acmo b°q
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Figure 26.- Rate of change of pitohing-moment coeffiolent

about midchord with alileron deflectlon &s a

function of the ratio of aileron chord to wing chord
for uncambered airfsils having maximum thicEhness at
midchord. M, = 2.0; g = 0,10,

59



60

Rate of change of pitching-moment coefficient about midchord with aileron deflestion, bcmo 5/aba
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Figure 27.- Rate of change of pitching-moment coefflclent about

midchord with alleron deflection as a function of free-
stream Mach number for an uncambered parabolic airfolil havling
maximum thickness at midchord and tralling-edge alleron.
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Figure 28.- Rate of change of pitohing-moment coefficient
about midchord with aileron deflection as a
function of free-sgtream Mach number for an uncambered
wedge alrfoll having maximum thickness st midchord

and trailing-edge alleron. 25-‘ = 0.2,
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Flgure 29.-~ Rate of change of pitching-moment coefficient .
about midchord with aileron defleotion as & function .

of freé-pfream Mach number for_an uncambered paraholic
elirfoll having maximum thickness af midcherd and leading-
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Rate of change of pitching-moment coefflolent about midchord with alleron deflection, bcmo 5/Bba
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guré 30.- Rate of change of pltching-moment cosfficlent about

midochord with alleron deflection as a function of free-
stream Mach number for an uncambered wedge airfoll having

"g&ilmum'fhiéﬁnéds'at midchord and leadingledge aileron.
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Figure 31.- lLocation of center of pressure as & function of
free-sgtreanm Mach number for an uncambered parabolio air-
foll having maximum thickness at midchord and tralling-

edge alleron, %? = 0.2; g = 0,10,
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Figure 32.- Location of center of pressure as a function of
free-gtream Maoh number for an uncambered wedie airfoil
having maximum thickness at midchord and tralling-edge

aileron. %: 0.2; §= 0.10.
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Figure 33.- Loocatlion of center of pressure as a function of

free—stream Msch number for an uncambered parabolloc air-
rfoil having maximum thickness at midchord and leading-

edge alleron, 9-69-' = 0.2; % = 0,10,
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Figure 34.- Location of center of pressure as a function orf
free—-stream Mach number for an uncambered wedge airfoll
having maximum thickness at midchord and leadlng-edge

alleron. %3' 0.2; % = 0,10,
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