https://ntrs.nasa.gov/search.jsp?R=19930085440 2020-06-17T14:55:04+00:00Z

RESTRICTED N 62 59751 COPY NO. RM No. E8F17

RESEARCH MEMORANDUM

NACA

PERFORMANCE INVESTIGATION OF CAN-TYPE COMBUSTOR

I - INSTRUMENTATION, ALTITUDE OPERATIONAL LIMITS

AND COMBUSTION EFFICIENCY

By Eugene V. Zettle and William P. Cook

DATE 12-14-53

CLASSIFICATION CHANGED TO

UNCLASSIFIED

AUTHORITY CROWLEY CHANGE #1955

Flight Propulsion Research Laboratory THIS DOCUMENT ON LOAN FROM THE FILES OF Cleveland, Ohio

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS LANGLEY AERONAL AT LAN ATORY LANGLEY FIELD, HAM, TON, VIRGINIA

FILE COPY

RETURN TO THE ABO IN

1512 H STREET, N. W. WASHINGTON 25, D. C.

REQUESTS FOR PUBLICATIONS SHOULD BE ADDRESSED AS FOLLOWS:

NATIONAL ADVISORY COMMITTEE FOR AEROMALITICS

T.C.F.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

> WASHINGTON September 16, 1948

> > RESTRICTED

RESTRICTED

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PERFORMANCE INVESTIGATION OF CAN-TYPE COMBUSTOR

I - INSTRUMENTATION, ALTITUDE OPERATIONAL LIMITS

AND COMBUSTION EFFICIENCY

By Eugene V. Zettle and William P. Cook

SUMMARY

A brief investigation of the performance of a single can-type combustor designed for a turbojet engine having a military rating of 4000 pounds thrust at a rotor speed of 7700 rpm and equipped with an ll-stage axial-flow compressor and a single-stage turbine has been made. The investigation was conducted to determine: (a) the altitude operational limits of the engine for two fuels (AN-F-32 and AN-F-28), (b) combustion efficiencies at various simulated conditions of altitude and engine speed, (c) combustor-outlet temperature distribution for several altitudes at constant engine speed, and (d) the combustor total-pressure drop.

The limits with AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm. The results indicated that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel. A combustion efficiency of 95 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet with AN-F-32 fuel. A change in altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

INTRODUCTION

The combustion processes in jet-propulsion engines are adversely affected by increased altitudes. For any given engine speed, there will be a certain altitude above which the engine will become limited because of combustion difficulties, that is, the engine will not

RESTRICTED

operate under those conditions of engine speed and altitude that impose combustion difficulties. The combustor-design characteristics largely determine these limitations for any given engine. It is therefore of interest to know, for any given engine, the altitudes at which the engine will be limited because of combustion difficulties over its entire speed range.

The altitude operational limits of a single can-type combustor designed for a turbojet engine having a military rating of 4000 pounds thrust at a rotor speed of 7700 rpm and equipped with an ll-stage axial-flow compressor and a single-stage turbine were obtained at the NACA Cleveland laboratory. The altitude operational limits of this combustor were obtained for two fuels, AN-F-32 and AN-F-28. The combustion efficiencies at various simulated conditions of altitude and engine speed, the combustor-outlet temperature-distribution plots for several altitudes, and a combustor pressure-drop correlation are also presented.

APPARATUS AND INSTRUMENTATION

The combustor was connected to the laboratory-air supply, as diagrammatically shown in figure 1. Air quantity and pressure were regulated by remote-control valves upstream and downstream of the combustor. The desired inlet-air temperature was obtained by the use of an electric air preheater, which was automatically regulated to maintain a constant inlet-air temperature.

The combustor-inlet section and the combustor itself were furnished by the manufacturer. The combustor-outlet section, which was fabricated at the Cleveland laboratory, duplicates that of a standard contemporary engine using a can-type combustor. Two observation windows axially located along the combustor made possible the visual observation of combustion characteristics.

The number and location of instruments at the instrumentation planes shown in figure 1 are tabulated as follows:

Construction of the second s	and the second sec				
	Number	r of i	Instru	nents	
Type of instrument	Number of instru Instrumentation A B C 2 3 7 7 1 1 1	plane			
	A	B	C	D	
One-thermocouple rake	2			3	
Three-tube total-pressure rake	3				
Five-tube total-pressure rake			7		
Five-thermocouple rake		7			
Static-pressure orifice	1	1	l	1	
connection			199		
					-

NACA RM No. E8F17

679

All measurements were taken at the center of equal areas. Locations of the points of measurement at the respective instrumentation planes are shown in figure 2 and the instrumentation details are shown in figure 3. Temperatures were indicated by self-balancing potentiometers; air flow was measured by A.S.M.E. square-edge orifices and fuel flow by a rotameter. All instruments were calibrated. No attempt was made to correct the thermocouple readings for stagnation effects. A photograph of the combustor and instrumentation is shown in figure 4.

METHODS

Experiments were conducted on the combustor covering a range of simulated altitudes from 10,000 to 60,000 feet and simulated engine speeds from 3500 to 7600 rpm. Combustor inlet-air conditions were maintained for each altitude and engine-speed point selected at values determined from an engine-performance investigation made in the NACA Cleveland altitude wind tunnel (reference 1) at zero ram conditions (fig. 5). The required operating conditions from reference 1, the actual test conditions, and the results obtained are listed in table I. At each altitude and engine-speed point investigated, an attempt was made to obtain an average combustor-outlet temperature equal to or greater than that required for normal engine operation at that point. For each simulated engine-speed point, there was an altitude above which the required combustor-outlet-gas temperature could not be obtained. The altitude operational limits were determined for both AN-F-28 and AN-F-32 fuels. The combustion efficiencies over the range of engine operational speeds and altitudes were determined with AN-F-32 fuel.

RESULTS

The altitude operational limits obtained using AN-F-28 and AN-F-32 fuels are shown in figures 6 and 7, respectively, where altitude is plotted against engine speed. The solid curves separate the region where the combustor-outlet temperatures obtainable were sufficient for normal operation of the can-type combustor from the region where either the combustor-outlet temperatures obtainable were insufficient for operation of the engine or where burner blow-out occurred. Figure 7(b) includes lines of constant combustion efficiency. The constant temperature-rise efficiency lines were obtained by interpolating between the data points. The altitude operational limits using AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm (fig. 7). The results indicate that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel. The maximum difference reaches 10,000 feet; however, as the rated engine speed (7600 rpm) is approached, the difference in limits between the two fuels is nearly eliminated.

The variation of the combustion efficiency with altitude for engine speeds of 4000 and 7600 rpm using AN-F-32 fuel is shown in figure 8. Combustion efficiency is defined as the ratio of the measured total-temperature rise across the combustor to the theoretical total-

temperature rise across the combustor $\frac{\Delta T_m(A - B)}{\Delta T_+}$ (reference 2). A

combustion efficiency of 95 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet. A change of altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at a speed of 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

The effect of the variation of fuel-air ratio on combustor performance at an operating point chosen near the dead-band for AN-F-28 fuel is shown in figure 9.

The temperature distribution at instrumentation plane B-B (fig. 1) for a simulated engine speed of 7600 rpm and representing two simulated altitudes (50,000 and 55,000 ft) using AN-F-32 fuel is shown in figure 10. Three temperature-distribution patterns taken at simulated altitudes of 20,000, 50,000, and 55,000 feet and at a simulated speed of 7600 rpm using AN-F-28 fuel are presented in figure 11.

It can be shown from the momentum equation for a constant crosssectional-area combustor that the total-pressure drop across the combustor expressed as a fraction of impact pressure is a linear function of the ratio of inlet-to-outlet gas densities. The impact pressure was calculated at the inlet to the combustor assuming that the inlet area was equal to the maximum cross-sectional area of the combustor. When the pressure drop is related to the maximum cross-sectional area of the combustor, useful comparisons can be made with the pressure drop in other combustors of different geometry. Figure 12 shows totalpressure drop expressed as a fraction of impact pressure $\Delta P/q$ plotted against inlet-to-outlet density ratio ρ_A/ρ_B .

679

SUMMARY OF RESULTS

From an investigation of the performance characteristics of a can-type combustor, the following results were obtained:

1. The altitude operational limits with AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm. The results indicated that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel.

2. A combustion efficiency of 95 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet with AN-F-32 fuel. A change of altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

Flight Propulsion Research Laboratory, National Advisory Committee for Aeronautics, Cleveland, Ohio.

REFERENCES

- 1. Fleming, William A.: Altitude-Wind-Tunnel Investigation of a 4000-Pound-Thrust Axial-Flow Turbojet Engine. I - Performance and Windmilling Drag Characteristics. NACA RM No. E8F09, 1948.
- 2. Turner, L. Richard, and Lord, Albert M.: Thermodynamic Charts for the Computation of Combustion and Mixture Temperatures at Constant Pressure. NACA TN No. 1086, 1946.

	Simul	Simulated Required operating conditions ² Actual test conditions and results											
Run	Engine speed (rpm)	Altitude (ft)	Mass flow (1b/ sec)	Inlet static pres- sure (in.Hg abso- lute)	Combus- tor- outlet average temper- ature (°F)	Combus- tor- inlet average temper- ature (°F)	Mass flow (lb/ sec)	Inlet static pres- sure (in. Hg abso- lute)	Combus- tor- outlet average temper- ature (°F)	Fuel- air ratio	Combus- tor- inlet average temper- ature (°F)	Average temper- ature rise (°F)	Temper- ature- rise effi- ciency (per- cent)
12345	4500 5000 5500 5500 5000	40,000 40,000 45,000 45,000 50,000	1.12 1.29 1.04 1.20 .82	10.5 12.4 10.0 11.8 7.7	620 670 670 750 670	39 68 67 97 68	1.11 1.30 1.00 1.24 .82	10.4 12.4 9.7 11.7 7.5	420 627 616 897 579	0.0152 .0107 .0117 .0194 .0112	35 66 67 90 67	385 561 549 807 512	0.35 .72 .65 .63 .63
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	5500 6000 6500 7600 6000 6500 7000 6500 7000 6500 7000 4000 4500 7600	50,000 50,000 50,000 55,000 55,000 55,000 55,000 60,000 60,000 60,000 30,000 35,000 30,0000 30,0000 30,0000 30,0000 30,00000 30,00000 30,00000 30,0000000000000000000000000000000	.95 1.05 1.13 1.26 .67 .86 .93 .97 1.01 .66 .71 .75 1.45 1.37 3.17	8.9 10.9 11.4 16.9 6.4 8.5 9.7 11.0 12.5 6.8 7.9 9.1 14.1 13.2 42.1	750 860 1010 1465 670 860 1010 1180 1465 860 1010 1182 650 625 1440	97 130 162 240 67 129 162 196 239 130 162 198 34 40 262	.96 1.05 1.14 1.27 .68 .86 .93 .98 1.04 .68 .71 .76 1.43 1.38 3.12	8.8 10.7 11.4 16.9 6.3 8.3 9.9 10.6 12.2 6.8 7.7 9.1 13.9 13.1 40.0	965 1137 1464 558 780 1145 1111 1317 586 982 1068 767 755 1636	.0158 .0219 .0212 .0237 .0107 .0170 .0223 .0210 .0246 .0126 .0187 .0232 .0166 .0167 .0225	120 160 238 67 132 162 196 240 136 164 198 35 39 251	845 977 1226 491 648 983 915 1077 450 818 870 732 716 1385	.57 .68 .78 .63 .54 .65 .64 .66 .50 .63 .56 .62 .60 .93
21 22 23 24 25 26 27 28 29 30 31 32	7000 6000 5000 4000 7600 7600 7000 6000 5000 4500 4000 5000	30,000 30,000 30,000 35,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000 40,000	2.98 2.56 1.96 1.45 1.20 2.04 1.94 1.69 1.29 1.12 .95 1.04	36.0 26.9 19.1 14.1 11.5 27.3 23.6 17.6 12.4 10.5 9.0 10.0	1200 900 710 650 600 1465 1180 860 670 625 600 670	218 150 87 34 14 240 198 130 68 39 14 67	3.04 2.56 1.98 1.45 1.20 1.98 1.96 1.66 1.30 1.12 .95 1.06	35.8 27.0 19.3 14.2 11.5 26.9 23.6 17.4 12.4 10.4	1741 1620 1306 703 669 1540 1581 1303 1115 611 	.0249 .0250 .0222 .0140 .0139 .0223 .0234 .0214 .0219 .0124 .0208 .0131	223 148 87 34 14 242 194 129 64 28 14 64	1518 1472 1219 669 655 1298 1387 1174 1051 583	.93 .89 .81 .67 .66 .87 .88 .81 .70 .65 .64

TABLE I - SUMMARY OF STATIC PERFORMANCE DATA FOR CAN-TYPE COMBUSTOR

NACA RM No. E8F17

6

619

NACA

-		and the second sec				San and a second second							
3345 335 337 339 41234 456 478 490 51	4500 7600 5000 4500 5000 7600 7000 6000 5000 4000 3000 5500 5500 7000 7600 4000 4000	45,000 50,000 50,000 50,000 50,000 50,000 60,000 60,000 60,000 20,000 20,000 55,000 55,000 55,000 25,000 15,000	0.90 1.26 1.20 1.05 .82 .69 .75 .66 .50 2.02 1.46 .59 .80 .97 1.04 1.76 2.38	$ \begin{array}{c} 8.5\\ 16.9\\ 14.6\\ 10.9\\ 7.7\\ 6.6\\ 6.4\\ 10.5\\ 9.1\\ 6.8\\ 4.8\\ 21.0\\ 17.1\\ 5.7\\ 7.3\\ 11.0\\ 12.6\\ 17.4\\ 24.9\\ \end{array} $	625 1465 1180 860 670 625 670 1465 1180 860 670 750 750 750 750 750 1180 1465 700 780	39 240 198 130 68 39 67 240 198 130 68 67 28 97 97 197 239 50 83	0.91 1.26 1.18 1.00 .83 .69 .67 .75 .66 .51 2.02 1.46 .60 .80 .98 1.05 1.77 2.39	$\begin{array}{c} 8.6\\ 16.9\\ 14.4\\ 9.9\\ 7.6\\ 6.6\\ 6.2\\ 10.5\\ 9.2\\ 6.9\\ 4.8\\ 20.7\\ 16.9\\ 5.7\\ 7.3\\ 10.9\\ 12.6\\ 17.3\\ 24.8 \end{array}$	753 1559 1172 1177 794 627 1333 1139 1005 612 779 777 692 1133 1375 690 752	0.0181 .0268 .0203 .0236 .0208 .0208 .0193 .0260 .0248 .0239 .0218 .0132 .0146 .0119 .0174 .0220 .0259 .0129 .0113	44 240 203 125 68 39 68 240 195 130 76 76 22 102 100 198 243 49 82	709 1319 969 1052 726 553 1093 944 875 536 703 755 592 1035 1132 641 670	0.56 .76 .71 .67 .52 .42 .65 .58 .55 .36 .76 .72 .49 .71 .67 .70 .83
52	4000	10,000	2.78	29.1	840	99	2.79	29.1	837	.0119	94	743	.88
54	4000	35,000	1.18	11.6	600	14	1.18	11.5	614	.0162	13	601	.52
55	4000	30,000	1.45	14.1	650	34	1.44	13.9	679	.0154	34	645	.59
56	4000	20,000	2.02	21.0	740	67	2.03	20.9	778	.0121	68	710	.82
57	7600	60,000	.76	10.5	1465	240	.77	10.4	1412	.0234	242	1170	•76
50	7600	50,000	1.00	16.9	1465	240	1.00	16.8	1490	0242	238	1252	.70
60	7600	45,000	1.63	20.7	1465	240	1.64	20.8	1506	.0235	238	1268	.82
61	7600	40.000	2.04	27.3	1465	240	2.05	27.1	1476	.0209	239	1237	.88
62	7600	35,000	2.59	34.6	1465	240	2.60	34.7	1489	.0207	242	1247	.90
63	7600	30,000	3.17	42.1	1440	262	3.15	42.0	1383	.0191	260	1123	.87
64	7600	25,000	3.86	51.2	1460	278	3.89	50.5	1433	.0195	279	1154	.88
65	7600	20,000	4.57	60.6	1475	299	4.57	10.4	1454	.0180	299	789	.25
67	6000	50,000	1.05	10.9	860	130	1.00	11.0	997	.0191	131	866	.65
68	6000	50,000	1.05	10.9	860	130	1.05	10.9	1097	.0232	132	965	.61
69	6000	50,000	1.05	10.9	860	130	1.06	10.7	1176	.0252	130	1046	.62
70	6000	50,000	1.05	10.9	860	130	1.05	10.9		.0263	130	1105	
71	3500	30,000	1.11	8.0	650	11	1.11	8.0	437	.0189	163	933	.52
73	6000	50,000	1.06	10.9	860	131	1.06	11.0	586	.0095	131	455	. 66
74	6000	50,000	1.06	10.9	860	132	1.06	11.0	796	.0122	132	664	.75
							1						

.

.

NACA RM No. E8F17

.

Runs 1-19, 66-70, 73, and 74 with AN-F-28 fuel; other runs with AN-F-32 fuel. From Cleveland altitude-wind-tunnel investigation, reference 1.

.

.

7

NACA

Figure 1. - Schematic diagram showing test rig and instrumentation positions used in investigation of can-type combustor.

NACA RM No. E8F17

.

Plane A-A

· Plane B-B

Plane D-D

NACA

- O Total-pressure tube
- ⊗ Thermocouple

.

.

.

Static-pressure orifice

.

.

Five-thermocouple rake

NACA

One-thermocouple rake

Three-tube total-pressure rake

Static-pressure connection

Figure 3. - Instrumentation details.

Figure 4. - Photograph of test rig, showing instrumentation positions.

Figure 5. - Combustor inlet-air conditions and required temperature rise. Nozzle diameter, $16\frac{3}{4}$ inches; zero ram. (Data from Cleveland altitude-wind-tunnel investigation, reference 1.)

NACA RM NO. EBF17

15

Figure 7. - Altitude operational limits for can-type combustor using AN-F-32 fuel. Zero ram.

NACA RM No. E8F17

Figure 7. - Concluded. Altitude operational limits for can-type combustor using AN-F-32 fuel. Zero rem.

16

Figure 8. - Effect of variation of altitude on combustion efficiency in can-type combustor using AN-F-32 fuel. Zero ram.

Figure 9. - Effect of variation of fuel-air ratio on temperature rise at operating conditions near dead-band in can-type combustor. Fuel, AN-F-28; engine speed, 6000 rpm; simulated altitude, 50,000 feet.

(a) Simulated altitude, 55,000 feet.

(b) Simulated altitude, 50,000 feet.

Figure 10. - Temperature-distribution pattern at instrumentation plane B-B in can-type combustor using AN-F-32 fuel. Engine speed, 7600 rpm.

0.0

0-000

(a) Simulated altitude, 55,000 feet.

(b) Simulated altitude, 50,000 feet.

(c) Simulated altitude, 20,000 feet.

Figure 11. - Temperature-distribution pattern at instrumentation plane B-B in can-type combustor using AN-F-28 fuel. Engine speed, 7600 rpm.

AP impact pressure, 25 ∇ Isothermal O Thermal fraction of 0 20 Ø 008 Total-pressure drop expressed as 000 O R 00-06 08 Φ 0800 00 15 0 0 0 50 0 ∇^{∇} 10 4 NACA 5 1 1.5 2.0 2.5 3.0 Inlet-to-outlet density ratio, ρ_A/ρ_B .

4 . 9

. .

Figure 12. - Total-pressure drop across can-type combustor expressed as fraction of impact pressure plotted against inlet-to-outlet density ratio.

NACA RM No. E8F17

¥ 9

679

N

