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CATCULATION OF THE AFRODYNAMIC LOADING OF FLEXIBLE WINGS
OF ARBTTRARY PLAN FORM AND STIFFNESS

By Franklin W. Dlederich
SUMMARY

A method is presented for calculating the serodynamic loading, the
divergence speed, and certain stability derlvatives of wings and tall
surfaces of arbitrary plen form and stiffness. Provlision 1s msde for
using elther stiffness curves and rooct—rotation constents or influence
coefficlients in the anslysis. Compubting forms, tables of numerical
congtants req_uired. In the analyeis, and an 1llustrative example are
included to facilitate calculstions by means of the method.

INTRODUCTITOR

The distribution of the aerocdynamic loading on wings and tall
surfeces is Important both for the structural analysis of these com—
ponents, since it determines the applied bending moment and torgue
acting at any stetion, end for thelr eserodynsmic snalysis, since it
affects the stabllity derivatives to a large extent. At high speeds the
aerodynamic loading, partlcularly Iin the cese of swept wings, 1s
greatly affected by the structural deformations caused by the loading.
The present paper 1s concerned wilth the determination of the effects of
gtructural £flex1bility on the serodynamic loading of wings of arbltrary
plan form and stilffness.

The problem of load dilstribution was analyzed for unswept flexlble
wings as early as 1926 (reference 1) but has received relatively little
aettention since. The only new effect considered in subsequent work 1is
asrodynamic induction (reference 2). No work appears to have been dcne
on the loading of flexible swept wings. The related problem of asro—
elestic divergence of swept wings wlth certain prescribed stiffness
variatlons has been trested In reference 3.

The present paper treate the problem of aerodynamic loading by
metrix methods. Aerodynemic induction 1s teken into account approxi—
mately, since sulteble aserodynemic Influence coefficlients are not avail—
able for wings of arbitrary plen form. When they become avallable they
can readily be Incorporated in thls method. Structural flexlbility is
taken into account in the form of elther calculated stiffness varilations
or measured influence coefficlents. The required Integrating matrices
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ere presented for both a slx—point and a ten—point solution. For the
glx—point solution convenlent computing forms are Included as well. The
method is illustrated by means of an example., In addition to the analysis
of the asrodynamic loading, the determination of the related divergence
speed and of certaln stabllity derlvatives 1s dlscussed.

For the convenience of the reasder unfamiliar with matrix terminclogy
e summary of mstrix methods has been lncluded in the appendix. The
sections on "APPLICATION OF THE METHOD" end, in particular, "Instructions
for Solution" may be read wlthout reference to the sgection "DERTIVATION OF
THE METHOD."

SYMBOIS
b2
A aspect ratlo 5
[A] aeroelastic matrlix
Ly 2 2
q cos ABp~eq Cn
a dimensionless parameter <me A Ty )
(ar)
r
at parsmeter (meq_ cos Aswcr>
ac section serodynemic center, measursd from leadling edge,
fraction of chord
b wing spen, Inches
c chord measured persllel to the alr stream, inches
c average wing chord, inches (%)
b ]
c section 11ft coefficient L
1 qc
Ly
CI.W wing 11ft coefficient E-S_
Cy rate of chenge of damping-moment coefflcient in roll with tip
P helix angle
Mt
CBMW wing root bending-moment coefficient | ~&
aSb.

Cq, wing rolling-moment coefficient (2Cmy )
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ea

o1

[

EY,
EN

q cosAs,3ec,, tan A
dimengionless paramster <me A r

(=),

bending stiffness in planses perpend’cular to the elastic
exis, pound—inches?

locatlion of elastic axls measured from leeding edge, fraction
of chord

distance from reference axls to section serodynamic center
(positive forward) (see f£ig. 1), fraction of chord

torsional stiffness in planes perpendiculer to the elastic
axis, pound—inches

unit matrix

matrixr defined by equation (12)

integrating metrix for single integration from tlp to root
first row of K; matrix

ir_rbegra.ting metrix for double Integretlion from tip to root
first row of K, matrix

integrating metrix for single Integretlicn from root to tip

matrix relating concentreted and accumulsted torque

.matrix relating concentrated loads and accumlated bending

momsnts

matrix converting torques due to dlstributed loads to torgues
due to concentrated torques

matrix converting bending moments due to distributed loads to
bending moments due to concentrated loads i

1lift, pounds

1ift on both wings but excluding 1ift on part of wing covered
by fuselage, pounds

running alr loed along the reference axls, pounds per inch

accurmlated bending moment (in planes perpendicular to the
reference axis unless specified otherwise), inch—pounds
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effective section lift—curve slope for angles of attack due to
deformation, per radian

effective sectlon lift—curve slope for additiomal-type angle-—
of-ettack distributions, per radlan

sectlion lift-curve slope, per radian
concentrated load, pounds

root—twist constents (see equation (9))
root~bending constant (see equation (9))
dynamic pressure, pounds per sgquare Inch
concentrated torgque, inch—pounds

total wing srea including part of wing covered by fuselage,
squere Inches

distance from wing root to wing tip perpendiculer to the air
stream (see fig. 1), inches

length of wing along reference axls (see fig. 1), inches

accumilated torque (in planes perpendicular to the reference
axis unless specified otherwise), inch-pounds

distance between the effective root snd the Immermost complete
section of the torslon box perpendiculsr to the elastic
exls, inches

lateral ordlnate measured from wing root, inches

angle of attack, radians
Tey
equivalent angle of attack, radians g + m_: 3
local dihedral sngle due to deformastlion or slope of wing
deflection curve at reference axis, radlans
gtructursl deflection, inches
distance salong reference axls, inches

angle of sweepback (mea.eru.t"ed to the reference axls unless
specified otherwlise), degrees
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[QP] influence coefficlent matrix for wing twist in plames parsllel
to the air stream due to concentrated unit losds applled at
the reference axls, radians per pound

[@R] influence coefficient matrix for wing twist in planes parallel
to the alr stream due to concentrated unit torques applied

in planes parallel to the alr stream, radlans per inch—
pound.

@ angle of twlst in planes perpendicular to the reference axils,
radians

Subgcripts:

c midchord

D divergence

w flexible wing

£ geametric

leading edge

M due to bending moment

MAC pertaining to the mean serodynamic chord

r at root or effective root

rw rigld wing

8 structural (due to structural deformations)

T due to torque

TE trailing edge

w wing exclusive of fuselage

Prime mark:

t in or pertelning to sectlons parellel to air stream resther

than perpendicular to the reference axis
Matrlx notation:
{ } columm matrix

I__I row matrix
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[ ] square matrix

[°] diagonal matrix

DERTVATION OF THE METHOD

Method Employing Stiffness Curves

Aggumptions.— In the development of the method the following
assumptions are made:

(a) The effects of aerodynsmic induction may be taken into account
by applying sn over—ell correction to strip theory and rounding off the
resulting load distributlion at the tip.

(b) A1l deflections and angles of atbtack are smsll.

(c) The wing is mounted flexibly at an effective root perpendicular
to the elastic axls through the Intersection of the elastlic axls and
the fuselage (see fig. 1), the root rotations being proportional to the
root bending moment and root torque,

(d) An elastic axis exists in the outer portion of the wing, this
exlis belng defined as the elagtic axls the wing would have if it were
mounted rigldly some distance outboard of the root approximately perpen—
dicular to the midchord line. (Near the root the elastic axis 1s defined
as the extension of the outboard elastic axis.)

(e) A1l deformations are glven by the elementary theories of
bending and of torsion about the reference axls, which In thils case ias
the elastic axis.

Alr losds.— In keeping with assumptions (a) and (b) the force on
a wing section of unit width parallel to the dlrection of flight 1s

1t

gc cos A(meas + mElor,S)

meqC cO8 AT (1)

where the equivalent angle of attack & 1is defined by

g
E=G,S+-lc, (12)

n, 8
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The effective section lift—curve slope m, <for angle—of—etback distribu—
tions due to structural deformatlomns hes been glven In reference 3 on
the basis of the reasoning of reference L4 for subsonic speeds as

A
= . 2
o In‘DA+1l—c:.osA (2)

Similerly, the effective lift—curve slope mel for additional—type
engle—of—attack dlstributlions is determined by the saeme reascning as

A
Ine1—m°A+2c:ossA (3)

Both slopes mugh be multipliled by cos A, as 1n equation (1), in order
to apply to loadse and angles of abtack acting on sectlons and measured
in planes parallel to the directlon of fllght.

The torque of the rumning load 1% about the reference axis is 1%e;c

Por uncambered sections (for cambered sectioms the torque at zero 1ift
mist be added and the analysis of the following paragraphs modified
accordingly). This torque may be resclved into a rumning torgue sbout
the elastlc exls and a rumning bending moment about a line perpendicular
to the elastic axis. The rumming losd, torque, and moment mmst then be
mitiplied Dy cos A to yleld their values per unit length along the
elastic axis, so that

1 = mgac cosAT (%)
or, in matrix notation,
- {Z} = mgq cos®A [g] {&'} (ka)

The rumnning torgue end the running bending mament are, respectively,
{Zelc cos A} and {—Zelc sin A}. The running bending moment leads to

accumilated bending moments which have to be added to the accumlated
bending moment due tc the rumming load.

The accumulated torque T 1s obtained from the running torque by
an Integration inboasrd from the tip. This integration may be performed
by a matrix [Kl] which is based on Simpsonts rule with a modification

suggested by V. M. Falkner at the tip. (See appendix.) The effect of
Falkner?s modification is to round off the celculsted load distribution
and cause it to go to zero wlth an iInfinlte slope at the tlp, as the
aerodynamic 11ft distributions actually do. The matrix is given In
table I.
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Similerly, the accurmlated bending moment is obtalned by a double
integration Inboexrd from the tip of the rumning load and a single
Integration of the rumning moment. The double Integration may be
performed by another matrix [Ke] (given in table IT), which is based

on the equivalent of Simpson's rule for moments, Falkner's modification
agelin belng made at the tip. The derivetion of the integrating matrices
ig discussed in somewhat greater deteil in the appendix.

The accumulated torque end bending moment may them be written as

{r} = &[] {7,elc cos A}

mquAe]Tcracos3A[KJ;[ [% (%; 2] {&} (5).

]

f} = o2 {2} - 5[] {zelc sin A}

(o]

o
ey ¢ o1 ' 2
= 2 2 |[ro] |5 - r T [ ] AN
MgQBA“Cp COBA K2] [Cr] ein A ” <Y o o {d.} (6)
Equatlons of equllibrilum.— The equatlions of equillbrium of a
deformed wing referred to the elastic axis are
o1
el g
i (1)
Y, (8)
dy

These equations must be Integrated ocutboard from the root to obtain ¢
end I'. The Integrations may be performed by & matrix [K3] (see

table ITT and eppendix) , &8lso based on Simpsonts rule without the +ip
modlification, however, since the torgues snd maments go to zero with
finite and zero slopes, respectively. To the deformstlons obtalned in
this menner the rotatlons due to the root deflection, @, and T,
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mist be added. The root rotatlons are defined by four dimenslicnless
constants: _

P/ T

= (%a)
S w/(GT)., -

gy = /e _ (b)

w/(GT),,
r T
Qr_ = rT/ = (%c)
T  w/(ED),
r
QI,M = _I'M/i (96.)
w/(EI),,
which mey be combined into two other constants
r
w/(GJ) (%r @@, tan AQFT> cos A (%e)
_ oM (67), ) |
QGM = w/(m)r = |Qgpy (EI)r tan AQI‘M cos A (o)

w being defined as in figure 1. The deformatlons may then be written as

{cp} [[Kﬂ [(GJ) ] s X g%[xo]J [z} + & %M[I {M} (10)
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{r} - (:g) [[13] [(El)r] . X QIM[IO]}{M} + 5= Qrp[Ig] {r} (11)

where the metrix [Io 1s defined by

o000
1000
1000

[Io]=1000 (12)
1000
= _J

The angle of attack due to the structural deformastlons oy 1s
related to ¢ and I by
= (p —TI tan A) cos A (13)

If equations (5), (6), (10), and (11) are substituted in the matrix
equivalent of equa‘bion (13) the following relatlion ls obtalned

{ue} = 2[2]{a} | (1)

where the aeroelastic matrlix [A] is deflned by

[a] = [[Ki-, [(gJJ)r] + E‘:—r (G — ben Ady,) [z]

‘E’%’“]J[Kﬂ = & ]

+ %—;i ta.n%\[K:;J [

~ _F][Ex)r]__ﬁ%[;o] [J] [c_(‘j;] <15)‘
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and the parsmsters

_ Ted cosllAsA2e;|_rcr2

@) (16)

a

r

and

(), s
= (m)r elrcr cos A

® |

tan A (16s)

are substantially the same parameters as those used in reference (3).

Solution of the equations.— If 1t 1s desired to calculate the
serodynamic loading correspanding to & glven geometrical angle—of-attack
distribution and dynamic pressure, equation (14) may be rewritten as
follows:

ﬂ__I] - a.[A]]{:T:I Tp = {or.g} (1)

In this form 1t constitutes a set of linear simuitaneocus equations for
the @ values in terms of «p velues. Fram the calculated & values

the 1ift distribution mey be determined from elther equation (1) or (4).

The divergence dynamic pressure may be obtained .fram equation (17)
by setting the determinent of the square matrix on the left slde of the
equation equel to zero. This procedure 1is equivalent to setting Qg

equal to zero In the term & of eguation (14), so that

fe} = o [2]fee} (18)

The critical value of a 18 then determined by matrix lteration snd
hence the divergence dynamic pressure from equation (16).

Mothod Employing Influence Coefficlents

The assumptions mede in the preceding sectlions concerning the
behavior of the wing structure are unnecessery if influence coefficlents
for the glven structure are avalleble from test dabta or refined methods
of calculetlion. The coefficlents most convenient for thlsg snalysis are
those giving the rotation of the structure in planes parallel to the
direction of £light due to vertical loads appllied along a convenient
reference axls and due to torgues about lines perpendiculer to the
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direction of flight. Since 1t is ueually mors convenlent to apply
concentrated rather than distributed loeds In structural tests, the
Influence coefficients wlll be coneldered In this analysls to have
been obtained in this manmer.

The angle of structural deformatiom oy may be expressed in terms
of the influence coefficients ¢ and o as follows:

{ou} = [og] {8} + [og] {7} (19)

where the R's and P's are arbltrary concentrated torques and loads,
the letter belng spplied et the reference axis. The sccumulated torques
and bending momunte about lines perpendicular and parallel, respectively,
to the dlrection of flight may be related to the concentrated torques
end loade by means of the summation matrices [Kh] and [K5J (ses

appendix) as follows:

{1 - [m){e} - vem A} (20)
fr} - s [s5] {2} (1)

These rolations may be solved for the values of R and P required to
produce given dlstributions of accumilated torque and bending moment

{r}- [Khj—l{{T'} + tan A{M’}} (22)
)= 2] ) (23)

The sccumilated torgues and bending moments produced by the alr
load are then

frr} sw[Kl]{l'elc}— {M'} tan A (2b)

fur} - SWQE?E]{“} . (25)
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TUpon substituting equations (22), (23), (24), (25) and (1) into
equation (19), the following equation is obtained

fas} = *[1*] ) (26)

where

a! = mg cos Ags,C, (27)
o1 ronZ .
[+ = fevee Pl 5| o () |+ Pl ] (28)
where, in turn
. fre] - ][] (250)

e - ] [ (e

are given In tebles IV and V.

The solution of equation (26) 1s obtained in the memner previously
described for equation (1}).

APPLICATION COF THE METHOD

Detarmination of the Structural Paramsters

At the time an asroelastlc anslysils is performed no experimental
stiffness data are ususlly avallable, so that the celculated stiffness
curves mast be used. In order to use these curves it 1s necessary to
assume the existence of & reasonably streight elastic axis. The location
of this axis may be estimated by considering it to be the line connecting
the shear centers of the Individusl sectlons. If the elastic axis
obtained In this menner ls not reasonably strailght within a feow percent
of the chord, the results of the analysis may not be sufficiently relisble.
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The gtiffnesses GJ and EI do not have much physicel significance
Inboard of the last point where there is a complete cross sectlon of the
torsion box. (See fig. 1.) In order to arrive at estimates of the root
stiffnesses (GJ )r end (EJ),., which serve primarily as reference values

in thia anelysls, the stiffness curves have to be extended. It 1s con—
venlent to consider the stlffnesses to be constent Inboard of the last
complete section of the torsion box; this procedure should yleld conserve—
tive values of the root rotations.

The most difficult problem lncurred in anslyzing the deflections an
the basls of stiffness curves appears to be the estimation of the root
rotations. As used in this analysls, they are the torsion and bending
deflections Imposed by the triasngular inner portion of the wilng and the
carry—-through bey on the rest of the wing. As seen in flgure 2, which
is plotted from the data of referemnce 5, these values are essentiaelly
constant along the span, so that they actually constltute rigid—body
rotations. (The bending rotations have been obtained by taking the
difference 1n slope between curves calculated by consldering the wing
to be cantilevered at the effective root — the root used to calculate
torslional deformations In reference 5 — and the averages of the leading-
edge and trailing-edge deflections actuslly measured. The twlsts were
obtained by subtracting the twists calculated on the bhasls of the assumed
effective root from the measured twists.)

The rotations should in any practical cese be calculated by analyzing
the trianguler root and the carry—through bay and made dimensionless by
means of equation (9). If such an analysise is not avaellable, the dimension—
lems rotation paramsters shown In figure 2 mey be used as & gulde; 1t
miet be kept in mind, however, that In the case of a sweptforward wing
the parameters QQ)M and QI&. would have the opposlte sign.

Once the siructure under investlgation 1s bullt, felrly simple
deflection tests, slmilar to those performed in reference 5, may be used
to check the root—rotation paramsters by calculating the differences
between the observed rotatlions and those calculated by simple beam
theory considering the wing cantilevered at the effectlve root; at the
game tlme the existence and estlimated locaticn of the elastic axis may
be verified. If the experimental program is falrly extensive 1t is
desirable to measure influence coefficlents directly. These iInfluence
coefflclents can then be used In conJunctlon wilth the altermate method
descrlbed in the preceding section to obtaln a quick check on the aero—
elastic analysls based on calculated stiffnesses.

The influence coefficlents used in the analysis conslst of the
rotations of sectlions parallel to the directlion of flight duwe to
concentrated unit torques in planes parallel to the plane of symmstry



RACA RM No. I8GRTa . 15

or concentrated unit loads at the reference line. These rotatlons in
redians are entered in tsbles of the form:

[e=] [o2]

TWIST AT STATION y/s, DUE TO TWIST AT STATIOR y/sy; DUE TO
UNIT CONCENTRATED TORGUE AT UNIT CONCENTRATED LOAD AT
v1 /54 ¥1/8
v1/8 : v1/8%
0.1}0.3}0.5|o.7]0.9}1.0 0.10.3[0.5]0.7l0.9]1.0

7/54 v/5

0 | 0

0.1 0.1

0.3 0.3

0.5 0.5

0.7 0.7

0.9 | o.9

Thege particular tables would be used for a six—polint analysis; similar
tables would be used for a ten—polnt analysis. In either cese 1t 1s -
to be noted that the twlsts are meesured at velues of y/sy from O to 0.9,

whereas the loads are applied at yl/sw values from 0.1 to 1.0. The

tables obtalned in this mammer consbitute the desired influence—
coefPicient matrices.

If the wing sections are found to twist nonuniformly, so that they
becoms cambered in effect, the angles of twist ay +to be entered In
the influence—coefficient matrices have to be defined in s 4different
manner according to whether the aercelestic analysla ls performed for
subsonic or supersonic speeds. At subsonic speeds the 11ft depends on
the slope of the mean camber llne &t the three—guarter—chord ;poin'b so
that the effective engle of astbtack is

Gy = 2 (30)
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At supersonic spseds the 1irt depends primasrily on the average slope of
the mean camber line, so that

g — ¢ .
°"B=E'E>_TE (31)

Determination of the Aerodynamlic Paremeters

The selection of the aerodynsmic parameters m, and o for the

calculatlon of the divergence speed has been dlscussed In reference 3.
For calculating the aerodynamic loading at a given flight condition the
aerodynamic parsmeters sre chogen for thaet flight condltlon. The
effective lift—curve slopes mg and Dy, &re applicable only to subsonic

subcritical speeds. At higher speeds no simple span correction is
available; neglect of the span correction tends to be comeervatlve for
calculatlon of the divergence speed and the aerodynamic loading, however.

Inatructions for Solution

Two sets of integrating matrices have been prepared for a slx—point
golution and & ten—point solutlon, respectively. The former should be
adequate for all practlcal purposes; only where the stiffness curves are
very lrregular neer the root does the ten-point solutlon have Lo be
resorted to. The polnts considered by the two sets of tables are at

ETL = 0, 0.2, 0.4, 0.6, 0.8, and 0.9 for the shorter solution and

A

E’-k= o, 0.1, 0.2, 0.3, 0.%, 0.5, 0.6, 0.7, 0.8, and 0.9 for the longer
gsolution. The procedure to be followed for elther solution is ldentlcel;
although computing forms are presented in thls paper only for the slx—
point solution, thelr extension to apply to the ten—point solution is
obvlious.

Calculatlon of the matriceg.— The flret step in the aerocelastic
analysis by means of the stlffness curvea 1s the calculation of the
aeroelastic matrix [A] from the phyeical and geometrical parsmeters
of the wing. These parameters are convenlently tebulated in a form of
the type shown in table VI(a). The computation is then carried out
according to the instructions of table VI(b) s each step in the procedure
being identlfied by the.number In the upper left cormer of each box.
It must be kept in mind that many of the operatlions call for matrix
mltiplicatlions where the order of the multiplicands is of lmportance.
(A brief summery of matrix methods 1s presented in the appendix.) The
aeroelastic matrix is obtained as the last step (step 13) of the
computations in this form.
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A speclsl case arises when elr is zero. IF &, 1s not zero

along the remainder of the gpan, its value at some polnt other than the

e
root may be used as a reference wvalue. The e—l—- ci) matrix, the
1, VT
mltiplying factors of steps 8 and 9 as well as the definition of the
paremeter a are then based on this other reference value rather
than o1, If ey is zero along the entire span, step 1 and steps 3

to 8 may be omitted. Steps 9 to 13 should be modified as follows:

(B, & Qg
Step 3 - (eT)_ sy ta.nA[Io]

st 10 - (] - [@]

Step 11 — As 1s

Step 12 — Omit

Step 13 — [A]el=o = [@] [@]

If influence coefficlents of the proper type are mvailsble, the
calculation of the aeroslastic matrix [A'] 1s carried out directly
by measns of equation (28).

Solution for dlvergenhce dynsmic pressure.— In order to determine
the value of the parameter a or a'! corresponding to dlvergence, the
aercelastic matrix [A] or [A'] is iterated (see appendix). Table VII(a)
may be used for thils purpose. Ths result is the critical value of a.
or at., The divergence dynamic pressure is then calculated from equa—
tion (16) or (27). It is to be noted that this pressure will be in
pounds per square inch. Since the asroelastic matrix is independent of
the Mach number, except insofar as e, veries with Mach number, the

game criticel vaelue of a may be used to calculats the divergence dynamic
pressure for an entire range of Mach numbers. I the value of e

changes, however, as 1t does between the subsonic and supersonic region,
the criticel value of a has to be calculated for both values of e5.

If the value of e 1s zero along the entire span and the [A]

matrix has been calculsasted according to the modified instructions,
lteration of the matrix willl give the value of the parameter 4 at
divergence. From the definition of 4 +the divergence dynamic pressure
may then be calculated.
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Solution for aerodynamic loading.— In order to calculate the aero—
dynamic loading corresponding to a given Fflight condition and geometric
angle—of-attack distribution the aeroelastic matrix [A] or [AY] is
miltiplied by the value of a or at calculated for the given flight
condition and subtracted from the unit mabtrix [I] The result may be
entered in table VII(b). Agein it must be noted that the value of the
asroelastic matrix veries with the flight condition if e; varies, so
that the aeroelastic matrix corresponding to the proper e; value
mist be selected. The resulting matrix constitutes the coefficlents of
a get of simultanecus linear algebrailc eguatlions for the unknown values
of the effective angle—of-ettack dlstribution of the deformed wing

{E.—f— o, 1in terms of the known angle—of—etbtack values of the rigld
1
wing {cx,g}. Table VII(b) is set up for the calculation of the additional

loeding, the damping—in-roll loadlng, and a third arbitrery loading; as
meny loadings as desired may, of course, be calculated by this method,
The solutlion of the equations may be carrled out in any convenlient manner.
The form of table VI_E?'b) has been prepared for use in conjJunction wlth
Crout®s method of solving linear simultaneous equations (reference 6).

In the cese where e i1s zero along the span, the headinge at the
top of teble VII(b) should be modified to read

—  ————— d =

|1 -t o]

where [A]e1=0 has been calculsted according to the modified instructions
and 4 has been obtained by iterating [A]el=o.

The values of {%‘ a} calculated for the additional load
1
distribution (a, = l) constitute values of the ratio csz/c

or (ccz)fw/(ccz - in view of the assumptions made concerning the air
forces. The sectlon loading of the flexible wing is obtained from the

relation
cc 1 = cmelcxe a) (32)
Doy
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or in dimensionless form

CGI _
o 61 crcne ) (322a)

The wing 1ift coefficlent deflned by the relstion

o, = - (33)

and the wing bending-moment coefficlent defined by

Mt

may be obtained by integreting the loed distributlon. These Integrations
may be performed conveniently by multiplying the ccl/cr values by the

first rows of the [Kl] and [KEJ matrices, respectively. Thus

or,, = :‘/’2 K | {°°1} - (35)
o) n .
C c -
= me, ;'.:.“/Le:lffljl[c—r]{m%l a (352)
nd .
Ca, = 5T e { (36)

(o]

me a
= mel s/2 2b E:E_Il[cr] mal (36a)
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The lateral center of pressure of the wing load g; may then bs
W
determined from the relation

(37}

if"|‘<n
L
d-

The fore—end—eft location of the aerodynamic center of the wing load
measured rearward of the leadlng edge of the mean aerodynemic chord as
a fraction of the mean aerodynamic chord may be estimasted from the
relation

(ac) ¥ -v :
Y ac + ————MAC tan Aac (38)
M.A.C. M.A.C.

where Agn ig the sweep of the section aerodynamic center line.

For any other geomstrical angle—of—ettack distributions such as
those due to buillt—in twist or those due to rolling, the same sectlon
lift—urve slope should be used as for the structural deformations, so

Tey
that Mg, s replaced by mg and o is wnity in equations (32) to (36).
For the damping—in—roll distribution with a tip helix angle of 1 radien

0&8-1—_;/—2<—A> (39)

The rolling-moment coesfficlent due to the wing load 1s defined by

M (o)

Clw =
It is seen to be twice the wing bending-moment coefficient.

The contributlion of the wing to cther stablllity derivatives may
be obtalned similarly by integrating the load dlstributions due to the
sngle—of-attack dlstributions caused by the motion under consideratlon,
eg described In reference T; in the case of swept wings, particular care
mist be taken iIn selecting the proper angle—of-attack distribution and
in accounting for the lateral Inclination of the 1lift vector (see
reference 4).

Ir the asrodynamic loading or the stabllity derivatives are to be
obtzined for a wide varlety of flight condltiomns, it is convenlent to
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gystematize the calculatlons 1n the following mannser. The aeroslastic
metrix is compubted for both the subsonlc and supersonic aerodynamic
center wvalues and lterated for both cases to obtein the subsonic and
supersonic values of the divergence parameter ap. From these values

the divergence dynsmic pressure may be compubted by means of equation (15)
and plotted agalnst Msch number, as suggested in reference 3; an the
gams plot values of the actual dynamic pressure may be plotted agalnst
Mach number for verlous altitudes of Interest. Such a plot for a wing,
‘the phyiical characteristics of which are glven In figure 3, is shown In
figure 4.

Since at a given Mach number the ratlo a./a.D 18 equal to the
ratio q/qD, the range of a./a.D values of Interest may be established -
from this plot for both the subsonic and the supersonic region. Several
representative a./aD velues may then be chosen within the given ranges

and the corresponding values of & computed from the previously calculaeted -
values. The aerodynamic loading is calculated for these values of a
usin§ the appropriate [A] matrix and plotted in the form of :

(ceq /(ccz) , vri;slh the ratio a./aD as & parameter. From these
curves or from the m__e_ a velues the 1ift coefficients may be obtained
e1

in the form (GL)fw/(cL)m and plotted ageinst a/ap or afap; the
other coefficients may be cbtalned and plotted in a similar form.

For any specific flight condition the valus of a./a.D may then
be obtalned fram the plot of ¢ eand gy agalnst Mach number. The

loading, 1ift coefficlent, or other ltem of Interest may be obtained
from the plots which glve these items In terms of the rigld~aring values.
Once the rigid-wing values at the glven Mach number sre known, the
flexible—wing values may then be obtained immediately.

I lugtrative Example

In order to illustrete the method described in the preceding
sections, a typlcal swept wing has been amalyzed. The physical and
gecnetrical parsmeters of the wing are shown in figure 3 and the upper
part of table VIIT (which follows the form of table VI(a)). The
chord,, (elce) , and stiffness matrices have been obtasined from the
glven parameters and are shown in the lower part of table VIII.

The calculation of the aercelastic matrix for the subsonic cease
has been carried out by meems of the form of table VI(b). All but
three of the steps of the camputation are shown in table IX numbered
in the saeme order as in teble VI(b). Steps 1, 2, 6, 7, 11, and 12
congtitute matrix miltiplications, which are ca:rried. out :Ln the order
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indicated; steps 5 and 13 constitute matrix additions or eubtractions;
steps 3 mnd b constitute multiplications of metrices by constants.

The asroelastic matrix ls iterated in table X(a) {which follcws
the form of teble VII(a)) to yleld & value of ap = —2.208. From this

value ani & value of ay compufed in the same manner for supereonlice

specds, the divergence dynamic pressure has been calculated by means of
equation (16) on the basis of estimated values of the effective Lift—
curve slope. The variation with Mach number of the dlivergenve dynamic
pressure, the actual dynamic pressure at sea level, and the estimuted
effective lift-curve slope is shown in figure L.

For a wvelue of é%-: ~0.25, such as would be obtained approximately

at & Mach numbsr of 1.0, the aerodynamic loading has besn calculated for
the additional angle—~of—ettack case and the damping—in-—roll case in
table X(b), which follows the form of table VII(b). The velues of «

g
for the latter case have been calculated from equation (39). The
aerodynemic loadings, In addition to those calculated for other
a/&D values, have been plotied Iin figure 5 as ratios of the flexible—
wing loadings to the rigid—wing loadings. The curves have been Integrated
to yield wing 1ift, bending-moment, and rolling-moment coefficlients as
well as the sercdynamlc center of the wing losd, which sre shown in
table X(b) for the case of o = ~0.25 and which are plotted against
D
q/qD in figure 6.

The wing 1ift coefficlent 1s Jeflned in such a manner that 1f
the fuselage 1ift is known and made dlmensionless by dlvlding by q
and 8 +the resulting fuselage 11ft coefficlient may be added directly
to the wing 1ift coefficlient. Thils definltion and the fact that
figure 5(&% is plotted over the fractlon of the wing—elone span s

explains the fact that the area under the curve of figure 5(a) is not 1.
Ths asrodynamic center as plotted in figure 6 constitutes the center

of pressure of only the wing load. To obtaln the ailrplane aerodynamic
center, the magnitude and center of pressure of the fuselage lcad would
have to be known and taken into account.

DISCUSSION

Both the aserodynsmic and the structural sssumptions made in this
enalysis are more realistic than those made in reference 3. The device
employed 1n this analysls of calculating the air forces for wing sections
parallel to the direction of f£light ani then transferring them to
-gections perpendiculer to the elastic axis obviates the necessity of
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replecing the asctusl wing witk one the root and tlip of which are
perpendicular ‘to the elastlc axis for the purpose of analysis. Further—
more, the inclusion of Falkner?®s modification (see appendix) in the
Integrating matrices has the effect of rounding off the load dlstribu—
tion approximstely in the manner observed at subsonlc speeds. At
supersonic speeds the load distributlions do not go to zeroc in the memmer
assumed in Falkner?s modificetion, but even at supersonic speeds there
1s soms reduction of load at the tlp, the total magnitude of which i1s
not far from the reductlion obtained by Felknerts modification.

Only one aerodynamic assumptlon is still made, that induction
effects may be approximated by an over-all reductlion of the strlip theory
loading (rounded off as previously described) at subcriticel speeds and
may be neglected at supersonlc speeds. The effects of asrodynsmic
induction could be teken into account more accurately by using asro—
dynemic influence—coefficlent matrices instead of the effective lift—

o

2
c e
curve—slope concept and the [E_] and S c) matrices used in

r elr Cn
thls analysis. Avallable methods of calculating such influence coeffi-—
clents for wings of arbltrery plan form at subsonlc and supersonic speeds,
perticularly those sultzble for wings with lasrge amounts of sweep, are
elther too lnaccurate or too time—consuming for practical purposes,
however.

While the analysis of this pasper has been performed for wings
conslgting of uncembered sections, 1t 1s directly appllcable as well to
the determination of the additlional loading of wings with cambered
sections. The loading of such wings due to the sectlion pitching moment
at zero 11ft may be determined by modifying the analysils somewhat.

The aessumption of an effectlve root perpendicular to the elastic
axlis made in reference 3 for the purposes of calculating the structural
responge is carrled over In this enalysis. It 1s modified, however,
to the extent that the root is no longer congidered to be rigld as in
reference 3, but flexible, both in torsion and bending. It has been
demongtrated in reference 5 that the deflections of a swept beam may be
egtimated on that assumpbtlon, provided the root—rotatlon paramsters are
Imown. By assuming the effectlve root at the intersection of the elastic
axis with the side of the fuselage, the root bending due to bending
moment and root twist due to torque are minimized. The bending due to
twist and twist due to bendlng are the mame regerdless of the location of
the effective root.

The method of Introducing the root rotations into the analysis by
means of the [Ic;] matrix assures that the structural +wist in planes
parallel to the direction of flight is zerc at the fuselage. From
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figare 2 1t is seen that the local values of the root rotation elther
tend to zerp at the root or tend to cancel each other. If the root—
rotation constants are known, the structural deformationes can therefore
be predicted guite accurately by the assumptions made.

The manner Iin which the equations of equilibrium are solved by
means of the intedrating matrices accounts for the irue cnord and
stiffness varlastions. It does not necessitate replacement of the
actual wing by constanbt—chord segments with all the Tflexibility
concentrated at the ends of the segments, an approach whi.h has been
used extensively in the work on aeroslastic problems of straight wings.

A further refinement which obviates the necessity for making any
structural assumptions other than that of smell deflectlions is the use
of measured Influence coefficilents in the aeroelastic analysis. Wherever
such coefficients are available 1t is, of course, to advantage to uss then.

Wo explicit account has. been taken in the analysis of the effscte
of the inertia loading on the structurel deformations and hence the
aerodynamlic loeding. On swept wings, In particular, their effects
may be considerable. For the purposes of this analysie, however, the
structural deformationg due to Inertia loading may be considered part
of the geometric angle of attack and the rigid-wing geometric angle of
attack may be modified accordingly. The deformations due to the inertla
loading may, Incidentelly, be calculated conveniently by means of the Kj,

Ky, and K3 metrices.

Some of the general cobservatbtlones made in reference 3 concerning the
divergence phenomenon are corroborated by the example. Aes sxpected of
a wing with a comsiderable amount of sweepback, the divergence dynamic
pressgure is negative. Consequently the wing cannot diverge. The
divergence dynemic pressure ls useful as a reference value, however;
the values of the load distributlion and the gtabllity parameters divided
either by the corresponding rigld-wlng valuses or by the section 1ift—
curve slope depend only on the ratio of the actual to the divergence

dynamic pressure.

The type of plot shown in figure 4 1s therefore quite useful in
the analysis of aeroelastic phenomena. As polnted out In reference 3,
this chart may also be used to estimate the actual divergence dynamic
pressure where there is a posslbility that the wing may diverge. It
appears thet the critical values will occur at elther extremity of the
transcnic region. In the transonic region proper the lift—curve slcpe
usually eppears to be lower than at the extremities, sc much so that the
‘decrease 1n lift-curve slope even temds Lo overbalance any forward
shift Iin aerodynemic center. .

As would be expected qualltatively, the effect of wing flexibillty
in the case of the oxample wing 1s to unload the wing tips due to the
fact that they bend up. The 1ift carried by the wing is therefore less
than that carried by a rigid wing, the c¢cnter of pressure being farther
inboard and the aerodynanic center farther forward.
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The difference bebween the supersonic end subsonic values of the
loading, the 1ift and rolling-moment coefficlents, and the asrodynamic
center for a gliven value of - a./aD ig due to the difference in the

e, distributions. If the distributions were the same, the subsonlc
1d supersonic variations of these quantities with a/a.D would coincide

iaepite the difference in the e]T values.

Another item of possible interest 1ls the fact that the varlations
of the parameters dq and & for the example problem are approximately

linear (see fig. T), a8 would be expectsd from the results of the
analysis of reference 3. The deviations from lineerlty are most pronounced
near the points for d =0 (A = 0). They are due to the effects of the
root rotations, in particular, the bending due to torsion end torsion due
to bending; these effects were neglected in the aspproximate analysis of
reference 3. The points of figure T correspond to the example wing and
the wlngs which would be obtained by rotetlng the exemple wing to the
unewept and 37.5° sweptforward positions in such a menner as to keep the

€3 Cp COB A (ET)
parameters L . L

Bp (GJ)I'

moment—erm (el) distributions congtent. Polints are shown for both the
subsonic and supersonic varlations as well as for the case when ey = O
over the entire span (a.D = 0). The difference between the subsonic end

supersonic lines ls due entirely to the difference in the e7 distribu—
tlon; 1Ff the distributions were the sams, as would be the cass 1f the
elastlic axis were at a congtant fraction of the chord, the variations
would be the same, regerdless of the difference in the el values.

, 88 well as the chord, stiffness, and

The prese.ﬁ: analysis 1s concerned only with wing or tail loads;
the total loads arg obtalned by addlng the fuselage loads (which may
be assumed to be umaffected by flexibility) to the wing or tail loads
cbtained from the anglysls. The amount of load carried by a flexlble
wing and the menner of its distribution cen consequently be estimated by
the method presented hereln iFf the contribution of the fuselage is known
at low dynemic pressures, that is, for the "rigld—wing" case.

The fuselage has & considerable effect on some of the stebility
paremeters as well, although in the case of others, such as C; , the

effect is negligible. Other effects that may have to be accounted for
in calculating stabllity derivatives are the boundary—layer behavior
end tip suction. The boundary—layer effect mey be accounted for by
uging a sectlon lift—curve slope corrected for boundary—layer effects
$0 calculate the angle—of—sattack dlstributlion of the flexlible wing at
the flight condltlons of Interest and then obtalning the 1ift and drag
distributions corresponding to that angle—of-attack distribution.
Iateral tip suction may be lmportant on low-aspect-ratlio and highly
swept wings. Since 1t does not affect the 1ift distribution, it may be
taeken into account by calculating the angle—of-attack distribution of
the flexible wing and estimating ‘the tip suctlon corresponding to the
actual angle of attack at the tip.
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In calculating stabllity derlivatives it 1s well to keep in mind
that the method presented in thls paper is based on a modified strip
theory, unless aerodynamic influence—coefflcient matrices are used. The
calculated derivatives may therefore be socmewhat in error, particularly
if in calculaeting them the moment of a load dlstribution has to be
determined.. If there is reasson to suspect that the modifled strip
theory 1s Inadequate for calculating a given derivative, the derivative
may be calculated for the rigid-wing case by a more refined method; tha
results calculated by the method of this paper mey then be used to
correct thé accurate rigld-wing value for the effect of structural
flexibility.

CONCIUDING REMARKS

A method hag been presented for calculating the aerodynamic loading,
the divergence speed, and certaln stebllity derivatives of wings and
tall surfeces of arbltrary plen form end stiffness. Provisions have
been made for using either stiffness curves and root—rotatlion constants
or Influsnce coefficlents In the structural part of the analysis. Strip
theory with over—all reductlion and rounding off at the tip to take
account of aerocdynamic induction have been used for the aeroiynamic part
of ths analysis. Computing forms, tables of numerical constants required
in ths analysis, and en 1llustrative example are Included to facllitate
calculations by meens of the method.

Langlay Aeronautical Isboratory
National Advisory Cammlttee for Aeronautics

Langley Fileld, Va.
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APPENDITX
SUMMARY OF MATRIX ALGEBRA PERTINENT TO THE ANATYSIS

For the convenience of ths reader unfamiliar with maebrix terminology,
& summary of matrlx definitlions and methods is presented in the following
gections. For a more complete discussion of matrix methods ths reader
is referred to any.text on matrices, for instance reference 8.

Definitions

A matrix is & rectangular array of numbers, celled elements, written
down in rows ani colums. A columm matrly consists of a single columm,
a row matrix of a single row. A sgquare matriy has as many rows as 1t
has colums. The dlagonal of a square matrix from the upper left to the
lower right 1s called the principal diagonal. A matrix all the elements
of which are zero except for those on the principal disgonal is called a
diagonal matrix. If all of these elements ere unity, the matrix is
tormed the unit mabrix.

Matrix Algebra

Addition.— Two matrices can be added or subbtracted if both have the
same number of rows and columms.. The addition or subtraction is carried
out by adding to or subtracting from each element of the first matrix
the corresponding element of the secornd matrix.

Multiplication by a constent.— A matrix is multiplied by a constant
by multiplying each element by that constant.

Matrix miltiplication.— Two matrices can be maltiplied by each other
if the second has es many rowe as the first has columms. The elements
of the resulting matrix are obtained by multiplying the elements in the
corresponding row of the first matrix by thoss of the corresponding
columm of the second matrix in the following order: The first element
of ths row is multiplied by the first element of the columm, the second
by the second, and so forth. The sum of the products obtained in this
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msnner ls the value of the element of the product matrlx. Schemaetically
this process may be 1llustrated as follows:
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It must be emphasized that 1n miltiplying matrices by each other their
order l1s of lmportance. As the two matrices under conslderatlion are
written the matrix at the left (the m matrix) is sald to be post—
maltiplied by the other, (the M matrix); or the M matrix may be said
to be premultiplied by the m matrix, in order to distinguish the manner
in which they are multiplied. If the two matrices were written in the
reverse order and then multiplied according to the foregolng instructions,
that 1s, 1f the [M] matrix were postmiitipllied by the [m] matrix, the
element of the second row and fourth colummn of the product matrixz [M][m]
would clearly not have the value Q In general, nor would In general
any other element have the value 1t would have 1f the two matrices were
miltiplied in the order shown. Consequently it i1s important to observe
the order in which the matrices are written down In the computing
ingtructions. '

Matrix iteration.— The purpose of 1terating a square matrix is to
determine the column matrix or matrices which, 1f postmultiplied by the
glven square matrix, yleld the same column matrix except for a consgtant
multiplier. It is the value or valuesg of these multipliers which
constitute the deslred charecterlistic values of the matrix.

The iteration 1s carried out by assuming a "trial" column (the
column shown 1n table VII is convenient for the purpose of this analysis)
end premultiplying it by the glven square matrix to yield a "result"
colum. The elements of the result colum Including the last are
dilvided by the last element of the result column and entered as a
second trlial colum. The sscond trial columm is then premultiplied
by the square matrix to yleld a second result columm. The procedurs is
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repeated until the seme value (wlthin the desired accuracy) is obtained
twice in succession for the last element of the result matrix. The
reciprocal of this value is the desired (lowest) characteristic value
of the matrix, that is, the lowest crltical value of &ap, in the
anslysis of this paper.

Another way of estimating a first trial colwmm is to add the
elements In each row of the A matrix, enter the six sums In the firat
result columm and treat them as 1f they had been obtalined by miltiplying
the A matrix by a first trisl column.

Derivation of the Imtegrating Matrices

Although familiarity with the derivation of the integreting
matrices is not essentlal to the application of the method of thils
paper, an outline of the derivebtlon 1s presented because of 1ts general
Interest.

The integrating matrices used In this paper are based on the same
concept as Simpsont!s rule — replacement of the actual function which is
to be integrated by parsbolic segments. If the function ¥y has the
values ¥y, 5, ¥, @and Vneis respectively, at the equally spaced

points X, 5, Xp and x,.-, the following relations are ssen to be
true for a second—degree pershbola passed through the three known polnts:

y=¥n *t ]2__(yn+l - yJ'J.—l) = - In) + %(yn+l —2yy + yn—l)(x - In)e (A1)

xn—:ly dx = (% Ax)yn_l + G.SL Ax)yn + <% Ax)ym_l (a2)
jﬁnly ax = (— J:_L—E' Al)yn_l + (% Ax)yn + (‘LZE A:)ym_l (a3)

x.n

L/‘J‘ﬂ y dx = (% Ax)yn_l + (% Ax)yn + <— % Ax>yn+1 (Ak)

Xn1
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]Z:n+l(x —x,)y ax = <}-%-Ei%>Yh_i + (O)yy, + <%'Ei%>yn+l (85)
-

.j:cn-i-l(x - Xy )y dx = (—éjt @yn—l + (JE" A_]‘:2>yn—1 * ('2'% K—’C2>yn+l (46)
1

where

5 = %, = Xy q = Tpuy - T (a7)

The different Integratlions over the parabolic segments may thus
bs performed by mulitliplylng the given y +wvalues by the multiplying
factors indicated in equatione (A2) to (A6).

Since load distributions at subsonic speeds go to zero with infinite
glope at the tip and the ordinery second—degree parabola furnishes a
poor approximatlion to such a distribution, V. M. Falkner has suggested
that a curve of thse type

y = Ag + Al(l - x)l/2 + As(1 - 1)3/2 (a8)

be passed through the last three points of the load—dilistribution curve
at the tip (x = 1). On the basis of the approximation, relationa
equivalent to equations (Al) to (A6) may be derived. The multiplying
factors for the last two segments are then based on these equivalent
expressions rather than those of equations (A2) to (A6).

The integrating factors of equations (A2) to (A6) mey be assembled
directly into integrating matrices. The K3 matrix, for Insgtance, 1g

set up to perform the integration ng} dx. If at the upper 1limit x = 0.1
and the ten—point matrix (table ILI(b)) is used, the factors 0.0L167,
0.06667, and —0.00833 may be obtained from equation (Al) since x, 3 = 0,
X, = 0.1, xp3 = 0.2, and Ax = 0.1; similarly, if for the same case

the integration is extended to x = 0.2 as the upper limit, the
integrating factoras 0.03333, 0.13333, and 0.03333 will be obtained from

equation (A2). These factors constitute the second and third rows of
the matrix K3; gince the Integratlons are lndependent of the y values

other than the first three, the other ¥y values are multiplied by zero
in thege two rows. In order to extend ths integration to x = 0.3 an



HACA RM No. 18GRTe 3

integration 1s agsin performed up to x = 0.2 and another integration,
uging another parsbolic segment, is performed from x = 0.2 +to x = 0.3.
For the latter imbegration x, ; = 0.2, x, = 0.3, x4y = 0.4, emd

Ax = 0.1, so that equation (Al) sgain ylelds the factors 0.04167,
0.06667, snd —0.00833. The y wvalue at x = 0.2 1is therefore assigned
a multlplying factor of 0.03333 by the first integretion and a factor

of 0.04167 by the second, or a total factor of 0.07500. The resulting
Pactors are entered in 'bhe.fourbh row of the K3 mabtrix. All other

rows ere obtained 1n a similar mammer.

1
The XK, matrlx is set up to perform the integration f ¥y dx. The
x

values of the last row of the ten—point K; matrix (table I(b)}) are

obtalned from Falkner's equivalent of equation (A3) for the curves
assumed in reference 5, with x . = 0.8, x, = 0.9, X7 = 1.0, end

Ax = 0.1, Omly the mltiplying factors for the y values at x = 0.8
and x = 0.9 are listed, since the y value at x = 1.0 (the wing tip)
is assumed to be zero 1n this snslysis, so thet its mltiplying factor

1s Immateriel. The values of the last row but one are ohtalned similarly
from Falkner's equivalent of equation (A2). The values of the row

for §1_I'A = 0.7 are cbtained by using equation (A3) in the interval

x=0.6 to x=0.8 and Palkner's equivalent of equation (A2) in the
intervel x = 0.8 +to 1.0. Similarly the row for ETI&= 0.6 1is

obtained by combining the results of equation (A2) for the intervel x = 0.6
to 0.8 with Falknerts equlvalent of equation (A2) for the

interval x = 0.8 %o 1.0. All other rows are cobtained in a similar
menner.

1
The K, matrix 1s set up to perform the integration f (x - x;)y éx,

Xo
where  x 1s the varlisble of Integration and x, the value of x at
the lower 1limit. In applying the integrating factors of equatlons (A2)
through (A6) to thls integration 1t must bs realized thetb

f(x—xo)ydx=(xn—xo)j;dx+ (x — x,)y ax (ag)

go that the integrating factors for this integration would be obtained
by edding (¥ ~ x,) times the factors of equation (A2) or (A3) to
the factors of equa.tion (85) or (86), respectively, depending on the
limits of the integration. The factors for the different

seguents Ex = 0.8 to 1.0, 0.6 to 0.8, etc.) are then combined for any
glven row (with 1ts given velue of x,)} in the manner indiceted for
the Kj matrix to yield the X, matrix.
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The Kh- matrix sums up the torques outboard of a glven polnt,

while the K5 ngtrix glves the sum of the moments of forces applied

Neither requires any integrationsg in the
gsense of equations (A2) to (A6). For the six—point method these two
matrices are: '

outboard of a glven point.

Ky 5
y/a,}0.2 0.+ 0.6 0.8 0.9 1.0| |ly/s;] 0.2 0.4 0.6 0.8 0.9 1.0
0 1 1 1 1 1 1 0 0.2 0.4 0.6 0.8 0.9 1.0
0.2} 0 11 1 1 1 0.2] © .2 .k 6 .7 .8
ok o o 1 1 1 1 o.k} 0 0 .2 A 5 .6
0.6| 0 0 0 1 1 1 0.6] © o} 0 2 .3 .k
0.8 0o o o o0 1 1 0.8l 0o o o0 o I Y-
o9l o o o o o 1 o9l o o o o o .1

It will be noted that the moment arms which comprise the
Practlons of

in order to yleld actusl maments as stated in equation (21).

8y, B0 that the matrix mugt be multiplied by

matrix are

he length s,
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Table [~ Values of the Infegrating  Matrix (K]
(a) Six-FPoint Solution

Vsn] © 2 4 | 6.8 |.9
Q | .06667|.26667 | 13333 |.26667 | 09333 | IS085
.2 |-0667 | 13333 | 15000 | 26667 | .09333 | 15085
4 0 0 06667 | 26667 | 09332 15085
6 0 0 [|~0I1667 | 13333 | .11000 | 15085
.8 0 ¢) 0 0 |.02667 | \5085
9 0 0 0 0 |=01886| 09333
(b) Ten-Point Solution
el o N 2 3 4 5 6 | 7 .8 .9
O |.03337 (13333 | 06667 |.13333 | 06667 | 13333 | 06667 | 13333 | 0600015085
1 |00833 | 06667 | 07500 |.13333 | 06667 | 13332 | 06667 | 13333 | 06000 |.15085
2 0 0 [.03333 13333 | 06667 | 13338 | 06667 | 13333 | 06000 | 15085
3 0 O 00833 | 06667 | 07500 | 13333 | 06667 | 13333 | 06000 | 15085
4 0 0 0 O |.03333 | 13333 | 06667 | 13323 | 06000 }.15085
5 0 0 0 O |-00837 |.06667 | 07500 | 13333 | 06000 | 15085
6 0 C 0 0 0 0 |.03333 | 13333 {.06000 |.15085
7 0 0 0 0 0 Q |~00833 | .06667).0683% | 15085
S 0 0 0 0 0 0 Q Q |.02667 |.15085
9 ° 0 Q 0 0 0 0 Q 01886 | 09333

He
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Table - Values of the Integrating Matrix (K]
(a) Six Point Solution

?/-5./\. 0 2 4 6 B .9

O | O |os332 |,05333 16000 | 0731413792

.2 }00167 | 01000 |,02500 | |0667 | 05448 | 0775

4 0 0 0 |,05333 | 03581 | 07758

6 0 0 [00I67 |.01000 | 01548 | 04741

8 0 0 0 0 |-00152 | 01724

91 o 0 0 0 [-00l08 |.00419

(b) Ten Point Selution ~WR

Yl o | 0 |2 | 3| A |5 |6 7] .89
0 0 |013332 | 013333 | 04000 |.026667 | 066667].040000 |,003333 | 046476 (137820
1 Ho00447|.002500 | 006251 | 026667 | 02000 | 053333 |033333 {,080000 |040476|122835
2] o 0 0 |.013333 | 013333 | 04000 (026667 | 066667(034477| 107750
310 0 k000417 |,002500 | 006251 | 026667 | 020000 | 053333 | 028475 | 092665
41 0 0 0 0. 0 |.013333 | 013333 | 040000 | 022476| 077580
5 0 0 0 0 L0047 |.002500 | 006251 | 026667 [0I6477 | 062495
611 O 0 0 0 0 0 0 |013333]010476 | 047410
71 0 ) 0 0 0 0 [0004{7 | 002500 ,004060|.032325
8 0 0 0 0 0 0 0 0 +00I523 | 017240
8 0 0 0 0 0 0 0 0 00KT7{.004190
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Table [ll- Values of the Infegrating Matrix [K5]
(a) Six Point Solution

Yl © 2 4 6 8 .9

0 0 0 0 0 0 0

.2 108333113333 0667 | O 0 0

4 06667 |.26667 06667 | O 0 0

6 |.06667|.26667 | 15000 |.13333 |-01667 | ¢

8 06667 |.26667 13333 |.26667|.06667 | O

.9 | 06667 |.26667 | 13333 | 26667 10833 | 06867

(b) Ten Foint Solution

D O N 2 .3 4 | .5 6 7 8 | .9
o] o o | 0 | o 0 | 0 0]l a | o] o
1 | o467 | 06667 00833 | O 0 0 0 0 0 0
.2 1.03333 (13333 (03333 O 0 0 0 0 0 0
.3 | 03333 | 13333 | .07500 | 0666700833 0O 0 0 0 0
A 103333 13333 | 06667 {13333 .03323| O 0 0 0 0
S 103333 (13333 | 06667 |.13333 |.07500 | 06667 -00833| O 0 0
6 |.03333 | 13333 | 06667 | 13333 | 06667 | 13333 | 03333 © o) 0
7 103333 | 13333 06667 | 13333 |.06667 | 13333 | 07500 06667 00833 O
.8 |.03333 {13333 | 06667 | 13333 | 06667 | 13333 | 06667|,13337 03333 O
.9 | 03337 {13333 | 06667 | 13333 |(.06667 | 3333 | 06667 | 13333 | 07500 | 06667

9t
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Table IV- Values of the Laad Conwersion Matrix LKl
(a) Six Point Solution

Vsl © 2 4 .6 .8 .9
0 |.08333 | .1333% [-0I667 0 o #]
.2 |-0667 |.13333 | 08333 o 0 0
4 0 0 | 08333 | .13333 |-QI667 )
6 0 0 |-0i667 | 13333 | 08333 o)
8l o 0 0 O | 04553 | 05752
9 0 0 0 0 |-01886 |.09338
(b) Ten Foint Solution ~u
el © J 2 3 4 5 6 7 8 9
0 | 04166 | 06867 |-00833 | O 0 0 o 0 0 o)
A Foos3z 06867 | 04167 | O 0 0 0 0 0 0
2 0 0 04166 | 06567 {-00833 0 Q 0 0 o)
3 0 O |~00833 |.06667 | 0467 | O 0 0 0 0
4 0 0 0 0 |.041566 | 06667 |-00833| O 0 0
.5 0 0 0 O |-00833 | 06667 | 04167 | O Q 0
6 a] 0 0 0 0 0 | 0466 | 06667 [~00833 | O
7 Q 0 0 0 0 0 |-00833 | 06667 | 0467 | O
8 o] 0 0 0 0 0 0 O |.od66| O
9 0 ) 0 0 0 o} 0 0 |-00833 | 09333
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Table V- Values o he l.oad Conversion Matrix [K-)
(a) Six Point Solution

BlL2DgT ‘ON WX VOVN

V|l © 2 4 6 8 .9

o |.01867 | J6667 {0667 | O 0 0

2 {-00833 | 05000 |.1i667 | 05000 [~00833 | O

41 0 0 |.0667 |.16667 | 01667 | ©

5 0 O |-00833 |.05000 |.08946 |.02035

81l 0 0 0 o | 005310 | 08860

9 0 Q Q 0 |Row77 | 04190
(b) Ten Point Solution R EE
Vsal © A 2 3 | 4 | .5 6 7 | 8 | 8
O looe3s |08332 o083l | 0 | 0 | © | 0 | © 0 | O
A {=00417 {.0250Q | 05834 |,02500 -004I17 | O 0 0 0 0
24 0 O |.00833|.08333|.,0088]| o 0 0 0 o)
3] ¢ 0 [|-00417 | 02500 | 05834 | .02500 |-00417 | © 0 0
4 0 0 0 0 00833 | .08333 | 0QR33 0 Q 0
S 0 Q Q 0 |-00417 | .025Q0 | 05834 | 02500 [-00417 0
6 0 0 0 0 0 0 00833 | 08337 | DO&3S 0
7 Q 8] 0 0 0 0 |=Co4l7 | 02500 | 06020 | 02085
.8 g 0 0] 0 0 0 0 G |.00631 |.08860
gl o 0 0 0 0 Q o | a [|-o1077 | 04190
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TABLE VI. - CONTINUED

(b) COMPUTING INSTRUCTIONS
-

! [K:1 18" 6 KL ()7 (s,
%4l 0o T2 [ 4 6] 8.9 W 0 [ 2[4 ] 6] 8.9
0 0 0 0 <) 0 [+] 0 11.06667
21,0833 0 o | o 2 Fotes?
4 [.0666T 0 0 0 4 o 0
6 1.06667 0 6 o 0
8 [.0666 0 8l o c | o )
o U.06667 S o o ) )

(4 [Kﬂ[‘%—?EEJ 7 [®1{®]
Wl o T 21T 4161 81 .9 4 O 2 [ 4 6 | .8 )
of 0 ) 0 0 0| 0 ol o o) 0 ) 0 | O
.2 [,08333 0 0| o 2
4 [.0666 0 0 0 4
.6 1.0666 0 6
8 1.0666 0 8
.9 1.06667 .9

3 @l tan®A (@) 8 11@]

af o | .21l 4 | 6 | .8 | .9 U © 2 | 4 61 .8 [.9
ol o 0 0 a c ] o cl o 0 ) 0| o )
2 0 0] o 2 0 0 0
4 0 6 | o 4 0 0 0
6 0 6 )
8 (0] 8 0
3 .8

STk tanth = += G weamtan s
A 2 (Quer - tan A Q) [ 1] 9 ?;gf‘aa?x ¥ Quu )
4l o | .2 | 4 | 6| .8 |.9 e o | 2 [ 4 | 6 | .8 .9
0] o 0 0 ) ) 0 0l o 0] 0 C | O 0|
2 0] 0 0 ) 0 2 o 0 ) 0 0
4 0 ") ) o) 0 4 0 ) 0 0 0
6 [ 0 G ] 0 0 6 0| O 0 0 0
8 ) 0! O 0 [3) 8 0 0 0 %) 0
9 0 o] O 0 0 9 0] O ) () )
¥ (Quy - tan A Quu) ?T%C_;ﬂ%;Qdﬂ"
5 @1+ {@1+l@ 10 (B®)-[®]
ZANE 2 l4a4| 61 .8 .9 0 21 41 .61 81 .9
6] (¢} (] O O 0 o] 0 o] (o] 2] (o] [+]
2 ) 6 | © 2 ) 0| O
4 0 | O 0 4 [7) o | 0
6 0 6 0
8 0 8 0
9 9
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TABLE VL - CONCLUDED
(b} COMPUTING INSTRUCTIONS (CONCLUDED)

SUPERSONIC CASE

6a LKJ[%};({.}):] supers.
' @] 0 | .2 | 4 [ .6 | 8 | .0
SUBSONIC CASE 9 J0ceeT
. 2 [Lo166T
|P| [Kz]['?, 41 o 0
%d o 2 |4 | .6 .8 g 64 O o
ol 0 8 0 0 4] )
.2 [-00167 o] ol 6| o 0
4l o o [ o
L1 0 0 - .
8] 0 [ o6 | oo - Ta [®l[Ea]
Sl 0 1 060 lo el o1 214 .61 8.9
) C 0 0] O o
2
4
6
12 (@11 8
AN .2 4 -] 8 | .8 9
of O 0 c | O 6| O
2 _
4 2o]  LRoesbe (@]
.6 %] 0 | 2 | 4 { 6 | .8 | .9
.8 -"'5“”6_ o) 0 0 ) 0
8 2
4
&
- 8
N — )
13 [A)=[DI-1@] el =
5 = i G = 3 (Ciplsupers.
Q O 0 [o] Q O O
2 '
2 130 [AT=[@3]-[(Z3]
S Yl © 121416 1.8 1.9
s otf o o 0 0 o o
) 2
4
6
8
.9




Table ¥II .- Form for solution of Aeroelastic Equation

(a) Divergence (b) Aerodynamic Loading

<A
[A] a/ﬂu": as
© [t11-alA]] {eg)
®Al O 2] 4] 6] .81 .9 vt O | .2 ] 4] 6] .8].9 Add.| D.inR.
o]l 01 0] 0] 0] 010 oNhodoo]l 0o | 0] 6| 6] O [
2 2 1
4 4 |
b 6 {
.8 8 |
. 9 !
{5}
CREARSORIOREOREQ) Auxiliary matrix Aux. matrix
ol o 0| 0lo | 0olo 0fveooo] 6 | 6] ©6 ] 0] 0 L0000
2 1.3000 2
A 1.5000 A4
.6 |.7000 I3
.81.9000 .8
-9 [1.00001.0000|1.0000] 1.0000| 1. 000010000 9
[A] {2 fma 3}
M| 2| @) | @) || e L& hlcre,] Final matrix
ot o[ 600010 o] [ [ I I |
2 l%ﬁc]
4 | T ] I I
0 3 |LOH e & 1N
.8 4LOI s | 71U RER sur=
3 SONME = [BlION5T -
Qg = Cng Cbmw= Cl: Ysu®
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TAsLE Vili- PARAMETERS oF EXAMPLE WING‘

A= 4 S = 37498 w= 224 Qor = o
A = 3575° | b= 3874 Z=Sh= 396.8| Gouy = 40
tan A= -7673 SA = 2/8-9 QC sugs.. = -25 Qrr = /.60 ’
cos/A\.= ,79 3¢ SwaSacosA=/73.7| OC surers. = . 425 | Grvy = —-. 2%
Q / SA l’l C e_o‘ € sugs. €\ supers, GJ EI
o o /22.5 | 4522 | 0.202 | Q. 0272 6.56x/0 5| 7202 /0%
2 43.8 [ //0.8 | #2393 | /93| 0243|579 £.28
4 87 6 99.3 | 4469 S 37 | .02/9 313 3.65
.6 /3/.3 &77 | 4924 | /94 | .0/94 )49 /. 89
.8 /75.7 76.2 | .4420 192 .0/ 70 \D.68 6. 94
.8 /97.0 | 70.3 |.¢407 L9 ots7 | .42 . 64
[ &] [1,]
el o T2 T a6 [ 819 Q/Q' 0 1.2z |4 16 [ 8 [0
0JLooo]| O Q 0 0 Q ol o 0 0 0 0 o
2] o T.905] o 0 0 0 21 1 Q 0 0 0 o
41 0 0 &/ O 6} 0 41 | 0 Q 0 o} 0
81 0 0 o |.776] o 0 6] 1 0 o) o) 0 o
8l o a 0 o |.622| o 8 | 8] 0 0 0 (o)
S| o Q Q a o |.57¢ S} | 0 0 o) s} o
Hegr| £
sl o 2 | 4 6 | .8 | .9 Yed © 2 4 & .8 .9
o [1.000] O 0 0 0 0 foJ1000] © 0 0 0 &)
2l 0 (l1.{3] © 0 o 0 2l ¢ (/721 O o) 0 [e)
41 0 o lavr/el o o 8] 41 o o (/92| o 0 0
| 6] O 0 o_|(4.40 O 0 Sl © o Q |37/ © 0
81 0 o o o Lo.ce] © 8l o 0 0 o |7-47] ©
a]l © 0 Q o 0 |75.67 gl o ) "0 0 0 [70.96
™t 1
- eu- @ ]su_a_g. ‘ (-C":— ]sumgg
Vsl O 2 & | .81 .9 Y] O 1 .2 4 1.6 1.81.9
O }1.000 | O o ) 0 0 1000 O 0 0 0 0 |
.21 O [.&o&| © 0 0 o 2] o |.722] © 0 0 o)
41 o 0O |.6421 © o 0 4] O o [.530] © 0 0
6] © Qo O _j.4%2, © o) E1 O Q 0 |.Je6; O o
8l o 0 0 0 |.368( © 8| © 0 0 a l.2¢2 o
gl o Q 0 0 | 0 |32 91 O 0 0 o) c [./790
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TABLE IX.~ COMPUTATION OF AEROELASTIC MATRIX OF EXAMPLE WING
Subsonic Case

, aIER] 6 k[ (£,
%l 0 | .21l a4 | 6 8 1.9 W 0]l 2] 416 | .81 .9
ol o c | © o] 0] [o} O .o 2/FOL OB\ L3 201,03475,04707]
.2 |1,08333|./5066]-0350/] Or 0 0 .2 HOIBGT/OZS | .096 3. /5120 | 0343514707
-4 §06667].30/34] .1400/1 O 0 o 41 © O |C£a30./5/20)| 03435104707
.6 106667|.30/34|.3/500| . 58¢665= /6070, O 6] O 0 _ tovozolosseo\odo48\04707]
.8 (06667].3¢/74,.2793911.17335] 44370 O L8l o 0 0 0 |0oSs/ 04707
.9 k06667 .3o/34,z7999/./73351me /. 04072 9]l © 0 0 Q F006

2 [K;][@J 7 L@I[®]

6] 0 [ .2 e T 9 | /al 0 [ 2 |4 ) 6 | .8 [ .9
ol Q Q 0. 0 0 [o] o & 0 0 0 0 0
2 |08333)./4922[=0320/| O Q o] .2 [Fo OI 77701728 |.0/922 | 005 OI0OEES
4 1106667 co867/280/ | O 0 0 4. [10/(7°3)| 03724 04575 ,08088|.021/8 02902
.6 ||06667|.29867| 28500 | 20485 /2452 O 8 [Fonzs| o37a4|.05082 17/ 7|.062 78 ,07/04
8 [L066671.295671 25598 | 959035 |49802] O 8 I:0/172|.057224|.03838 | 22//8), /0693 /s.est?
. O 1.06667.29567].25599 | 98925 | So23). 25020 -0 [Fonz9|0374,03938|22118 | /o254 23 /50
3 BfrtanA[E)] e g/l ka] [ €]

(5 O = 4 K<) 8 1.9 i O 2 4 .6 8 9
o O 0 0 o] 0O o] Ol O |042836]043a5./{456.04549\.079/7
2 |l.o4sss|.as2rsi-o/78/) O o o) 2 |R001671,009057.02028| 07838,.02389|.06485).
4 |lars68|. /6433 |.07047] O 0 0 41 9 @) Q lo3®48|.0c227].0445)
6 L0668 /16433 ./5846|.272/6[:06885/]  Q 61 O Q |-00128.00776|.00963|.0272¢
8 o668 | #5432 | L4085 | S |.27200/) O Sl 9 0 o) Q  0003s}.00996
9 LOF6E8 | /6437 112085 | S£43H) 4 0203 Sl O o) Q QO pooos7|cold/
G RA -

Efy CONA = 5502 J SUBSONIC CASE

4 f‘(@u'r-tonA.QuM)[ Io) 12 {@I1LOD]

%) O A 6]8.9 A 21 47 6 (.8 .9
0] o o 6} 8] 0 ol O Qi 0 o C @]
2 7628 O 0 0 o) 0 2 00199, 04/06|,08444 . 0802, GRIOY . Q6286
4 6291 O 0 0 o Q 4 [r00399|.0/543] 0469|2066/ |.09790|. /8314
65629 | O o 0 o] 0 6 00398 owsa?|.cez5s | 28597|. /05242 .32 785
817629 O 6] 0 0 0 8 L0099}, 015342 |.aR22/ | P02, /9F0B| 4B276
Glvse2e| O 9] Q 0 8] O oo Q1A arl2/ | Fo232|.,865) | 52208
ZE (Qur—tanA Qum)= ~ /629
5 [O]+[@T{ @] 13 [A]=[@1-[2)]

o l.2 146 |.81].9 ol 2]Ta] e 81.9
Q o 0 8] 9 Q gl o 0 0 0 0 0]

2 fozrz|2z2at05262] O 0 0 2 [rood4t| 00671100716 |- 05280k 0299705597
4 |FOSP55| LE567).2/4 Q 0 0 4 [F00774| 0218/ | OOSEE/CSO2EOMB72 /5412
O 05985\ 46567| L7346 . 8588/ 2292/ O ] 6 [h00774] 0218/ |27 /(223 /0269 25682
8 [ros5955| #6567] - Y7/7691.96677/] O | 8 [£00774|.0218/ |.007/7 LOB /7LO8S/ 5 72

9 [:05055|96567 | 420841/, 7/ 759 |1 48954] /44275 .S 00774].02/8/ | 00717 05/74 ~290.




TABLE X .- SOLUTION OF AEROELASTIC EQUATION FOR EXAMPLE WING (SUBSONIC CASE)

(b) Aerodynamic Loading

() Divergence ~
[A] %= 2.0:25 A= 552
ﬁ [[13- arA]] {exg}
%L O 2 | 4 6 8 | .9 wl o0 | .2 4 |6 | 818 Add. [DhR.
of o lolol]olol o oftogeo]l 0 | o { o | 0| o | l./0z7
2 _|L00¢/ | 0067 |=0072 |~0628 [=0700 10550 2 ||.o027) .9967| cot0 | asa7|.0/65 |.a708 | l2aze
4 [roo771.02/8 | aoso /259 (O 7 /54 A || 0047 |~0/20] 9968 | 0685 | 0424|0857 | #8620
6 [roo77|.o2es | iz 122 ro27 2668 8 || .oo#2 |-eve0 booze |lo620| . ase7 | /473 | _|.6248
.| .8 oo77|.ca/8) 0072 .08z [oss2 5204 8 | ooas \=or2o Vooao | pads|ioa7sl 1769 | |.e207
9 0077|0218 | 0072 208/2 [:084.7 72502 9 10043 1-a/20 [:0040] 49| D465, /602 | |98
fes}
M@ ®] 6] 6 _F( Auxiliary matrix Aux. matrix

oj o Jo o] o 0] o o [llea0o | o 0 0l 6l o 1.0000] /033
2 [.3000].5/75 | 20| 2450 2 || oo2z].9969] vo|.on8| 066 | @310 £00/4 | 2834
4 1.5000 .72/ |.7846| 7575 4 |.oos2[:0/20 |.99658| .00 | OXE7 | O8S7 L0I0 | H6G6S
& [1.7000 |/0298| 10525 / 6 | .dogebarco hoozs | Loa29| 05a8| /788 8557|6094
8 [|.9000 | /0778140714 | f0773 8§ 0047 borzo | 0028 | 0488 | /0455)./658 926/ |.7A850
.9 {10000 [L0000 10000 10000 {10030 10000 .9 |.0043}0r20 | coz9| 0458| 044/ 1975 808/ 739
[Alfst e &)

vi@lele[e]e LN Final matrix |

cTo To 135 o160 0C67 [.2473]./08/./909|.058/,.08 66 T
2 |7286 Liser t/576 Lok T -0720]. 2920
4 7078 |[-7557 7557 0 |.os83].0423] . /H44].0858] 0792 B8 5427
8 Feastarmduzro ILOIEER], = s524]6 [LOI RS Rpy = 2796 7596 471/
8 b fS B HEE2 A 10 FE Do 7 L@ Blomee. /687 7857| BEE
9 [1/28 |n4526 14520 | -452 S LOHRES = IR 808/ 1. 7439

Oy = ~2208 C., = T40my Coyyr 06%m C\=.0855mg Y5z 419

Gir

BLEDGI "ON W VOVN




Torsion BOX

REFERENCE AXIS

EFFECTIVE ROOT

S,
S ————
e~
SPAN - AR
Fisure .~ DEFINITION OF GEOMETRICAL PARAMETERS USED IN THE ANALYSIS.

9%

BLI0gT "OM WH VOWN




NACA RM No. LE8G2T7a b7

S, [0%4in.
w= |5 in.

G = 510¢10° lb-in2
(ED,= %47-10° lb-in®

T = 43420 in-lb.
M, = 260,000 in-Ib.

Rotation | Symbol | Ave.Value | & Value
Pt -0.0002. 0.16
Prwy _— 0.06025 .33
e T=—-10.0010 | 1.45
Cev -~-—-- |-0,Q010 |- 0.24
e
=
=
-ls s.~
Srr
-1 o3
Ss St
g o & - e —_—
T v & e ==
[~ Ve
e =1 4 _ _ _ _ _ -
&% <efl-——- -
-l&‘ g T~ - -
@x ‘g re) \\\\ ' : e e ——-— —
O- e - -—— -—— -
[]
0 20 40 60 80 100 i20

Distance along span n, inches

Figure Z- Rotations of a 45° swept box beam clue to root
deflections.
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FIGURE 3. — FRARAMETERS OF 7HE Examrre WING.
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Figure 4 - Effect of Mach number on the divergence
dynamic pressure and lift-curve slope of the example wing.
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Figure 5.- Load distribution of example wing.
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Figure 6.~ Lift coefficient, rolling-moment coefficient

and aerodynamic center of example wing.
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