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SUMMARY '

An Investigation was conducted to determine the pressure
distribution on & conical body of elliptic cross section at a
Mach number of 1.89. ZExperimental data are presented for a range
of angles of yaw from -16° to 16° and angles of attack from -10°
to 10°.

As the angle of flow deflection was increased, the deviation
from experiment of the theoretical pressure distribution slightly
increased, although agreement was satisfactory over the entire
range of calculations. Comparison of the complete equation for
pressure coefficient (that is, the equation including all the per-
turbation velocity components) with the equation usually used in con-
nection with the linearized theory indicated that the terms usually
neglected appreciably alter the predicted values of the pressure
coefficient. Although the complete equation gave better agreement
wlth experiment for the elliptic cone investigated than did the
linearized equation, the opposite result was found when & similar
comparison with the exact results of Taylor and Maccoll was made.
The excellent agreement between experiment and linearized theory
may therefore be fortuitous.

INTRODUCTTION

Aircraft designers are currently in need of a reliable meens
of estimating loads on body contours that might be used as fuse-
lages of supersonic ailrplanes. Several methods have been available
for the theoretical calculation of force distribution over bodies
of revolution, as well as considerable experimental data for check-
ing such calculations (for example, references 1 to 5). Recently,
a theoretical method for calculating the pressure distribution
over conical bodies of noncircular cross section has also become
available (reference 6).
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An experimental investigation was underteken at the NACA Lewis
laboratory to check theoretical calculations for a conical body of
elliptic cross section. The results are compared with calculations
based on the linearized theory glven in reference 6.

SYMBOLS

The following symbols are used in this report:

Cp pressure coefficient

K constant prdiortional to source strength

M Mach number

m slope of line source with respect to x-axis

free-stream velocity

Up radial perturbation-velocity component (cylindricel
coordinate)

Uy axial perturbation-velocity component

Ux' perturbation-velocity component parallel to free-stream
direction

Ug tangential perturbation-velocity component (cylindrical
coordinate)

X,1,0 cylindrical coordinates

o angle of attack, degrees

B cotagent of Mach angle, 1/ M-1

57 ratio of specific heats

) ang;;g? position of line source measured from 6 = /2
plane

¥ angle of yaw, degrees
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APPARATUS AND PROCEDURE

The cone was mounted on a support body in the Iewis 18-by-
18~inch supersonic tunnel, as shown in figure 1. The support body
was a sweptback strut fastened to the tunnel wall by means of a
lock nut. From a previous calibration, the Mach number in the vicin-
ity of the model was 1.89 with a maximm deviation of £0.5 percent.

A sketch of the model showing the dimensions and the location
of the pressure orifices is presented in figure 2. The body was
machined of brass and the nose was finished to a sharp polint. Ori-
fices of 0.010-inch diameter were drilled normal to the body surface.
Pressures were photographically recorded on a multiple-tube mano-
meter board using tetrabromoethane as a fluid.

The model, mounted as shown in figure 1, and the strut were
turned together to obtain data for the body in yaw. In order to
obtain the desired angle of attack, the model was rotated 90°
relative to the strut and the angle was varied by turning the strut.
By use of a vernier, the angle could be read to within 2.5 minutes.
Pressures were recorded every 0.5° up to +16° angle of yaw at an
a.lggle of attack of 0° and +10° angle of attack at an angle of yaw of
0%,

THECRY

A method of calculating the pressure distribution about a cone
of arbitrary cross section by means of a series of line sources is
presented in reference 6. The following perturbation wvelocities
result from such sources:
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In connection with the linearized theory, this relation is
usually approximated as

0P=-29% (6)

Theoretical calculations for several bodles showed that the pres-
sure distributions predicted by the two relations were enough dif-
ferent that the approximate equation omits more terms from the exact
relation than is justified. Therefore, although the use of the
exact relation for the pressure coefficient may be mathematically
inconsistent with the approximations of the linearized theory, it
has been used in the theoretical calculations presented herein,
except where otherwise noted.

For systematic calculations of flows at angles of attack or
yaw, the procedure outlined in reference 6 is too tedious. A simpler
means is to consider the flow slightly inclined with respect to the
x-axis rather than to move the body relative to this axis. This
procedure of turning the flow rather than the body in obtaining the
angle-of -attack solution means that the Mach cones are assumed to
follow the body rather than the flow. Although in the actual case
the Mach cones would follow the flow more closely than the body,
this assumption was made to facilitate numerical calculations. If
the angle of attack or yaw is kept small, such an assumption should
introduce little error. The boundary condition was obtained in the
same manner as in reference 6.

£
X

lér) _I‘U =0
Ur’(;aﬁ Ui -
\/ta.na,+tan2‘1f+l

1 1 Jr
- cos 0 + T 30 sin 6
\/1 + cotallr sec2 a
- 1 (sin o - %%% cos 9) (7)

\!l + cotza secz v



NACA RM No. ESKOS 7

The advantage of using this method is that one source distri-
bution may be used for all angles of attack or yaw and the only
variable with the angle is therefore the strength of each source.
Furthermore, for small angles the strength of each source will be
linearly proportional to the angle of attack or yaw.

Inasmich as the free stream is no longer in the axial direction

relative to the body, the pressure-coefficient relations (equations (5)
and (6)) must be revised. These relations become

o
il ; 5 2 Uf 2 Ug 2 7-1
op = %5 112—1"2[2%('55)(‘6) <’U')]} 40

and
|}
Ui
where
g ; Uk Uf cos 6 - Ue gin © 3 Uf sin 6 + UG cos 6
5d

(10)

The source configurations used to calculate the pressure distri-
bution over the test body are shown in figure 3. For angles of attack
and yaw of 00, sources 1 to 7 were used and the strengths of sources 1
and 7, 2 and 6, and 3 and 5 were respectively equal. These posi-
tions were found with the ald of the rules given in reference 6.
Instead of putting the source nearest to a peak at the center of
curvature of the peak, a better approximation is to place this source
at the focus of the peak. This procedure is similar to that some-
times employed in subsonic-flow problems solved by source distribu-
tions. TFor angle of attack, scurces 1 to 7 were used with different
strengths. For angle of yaw, all the sources were used. In this
case, the strengths of sources 1 and 7, 2 and 6, 3 and 5, 8 and 14,
9 and 13, and 10 and 12 were respectively equal. The positions and
the number of sources added for yaw were arbitrarily chosen, except
that the sources could not be close to the surface. With the excep-
tion of this limitation, the accuracy of the solution is insensitive
to small changes in the position of sources 8 to 1l4.

‘Jtan? a + tanz Y+ 1 4{1 + cotZ'W sec2 a \‘l + cotz (o secz v
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RESULTS AND DISCUSSION

Experimental data for several angles of yaw and attack are
mresented in figures 4 and 5. Theoretical calculations based on
the linearized theory using equations (8) and (9) for the pressure
coefficient are also shown for comparison. The experimental points
represent the average of the pressures at corresponding statlions
on the body. Data were obtained for angles of yaw ranging from
-16° to 16° and angles of attack from -10° to 10°. Schlieren obser-
vation indicated no shock separation on the cone or interference
from the shock caused by the strut over the range of angles of the
investigation.

The linearized theory using equation (8) agrees well with the
experimental results for moderate angles of yaw (fig. 4). As the
angle was increased, the deviation between theory and experiment
slightly increased on the compressive side of the cone. On the
expansive side the agreement remained good, which is to be expected
because an angle of yaw of 6° correspands to zero flow deflection
on the midpoint of this side. The increasing variation between
theory and experiment with increasing flow angle is also illustrated
by the fact that the agreement is best over the slenderest parts
of the body, that is, the parts of the body that least disturb the
flow.

Comparison of the effects of using the complete equation for
the pressure coefficient (equation (8)) with the use of the lin-
earized one (equation (9)) shows that the values predicted by the
use of the linearized relation are consistently high, especially
when the flow deflection is largs.

The linearized theory using equation (8) shows close agreement
with experiment throughout the range of angles of attack over which
the experiments were conducted (fig. 5). The excellent agreement
between theory and experiment at an angle of attack of 10©, especial-
ly at the station 6 = -90° where the flow angle was 28.50, indicates
that the effect of assuming that the Mach cones follow the body
rather than the flow is negligible. The Mach angle corresponding to
the experimental Mach number is about 32°.

The variation of pressure coefficient with angle of attack
at a station is predicted very closely by the linearized theory
using equation (8) (fig. 6). The linearized relation for the pres-
sure coefficient (equation (9)) did not show nearly as good agree-
ment with experiment, nor did it correctly predict the rate of change
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of pressure coefficient with angle of attack over a range of more
than a few degrees. Similar results for angle of yaw are illustrated
in figure 7, where linearized theory using the complete equation

for pressure coefficient (equation (8)) again closely agrees with

the experimental data.

The experimental results presented show excellent agreement
with the linearized theory using the complete equation for the pres-
sure coefficient (equation (8)). If, however, a similar procedure
1s used in comparing the linearized solution for a right circular
cone with the exact values of reference 7, the results predicted by
the linearized theory using the linearized pressure-coefficient rela-
tion (equation (9)) show better agreement with the results of Taylor
and Maccoll (reference 7) than do those predicted by the complete
relation. Because opposite results are obtained for the two cases ’
even though the same linearized theory is used for both, the excel-
lent agreement between the experimental values for the elliptic cone
and the values predicted by the linearized theory may be fortuitous.

SUMMARY OF RESULTS

The followlng results were obtained from an Investigation of
the pressure distribution on a thin conical body of elliptical cross
section at a Mach number of 1.89:

l. At moderate angle of flow deflection, the experimental pres-
sure distribution was in close agreement with the linearized theory
using the complete equation for pressure coefficient. As the angle
of flow deflection increased, the deviation fram experiment of the
theoretical pressure coefficient increased slightly although agree-
ment was satisfactory over the entire range of calculations.

2. Comparison of the complete equation for pressure coefficient
with the equation usually used in connection with the linearized
theory indicated that the terms omitted in obtaining the linearized
equation were too large to be neglected. Tnasmuch as the exact
results of Taylor and Maccoll for a right circular cone show better
agreement with the linearized theory when the linearized pressure-
coefficient relation is used than when the complete relation is
applied, whereas the opposite result was obtained in comparing the
experimental results in this report with the linearized theory, the
excellent agreement between the linearized theory and the experi-
mental results presented may be fortuiltous.

Lewis Flight Propulsion Iaboratory,
National Advisory Committee for Aeronautics,
Cleveland, Chio.
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Figure 1. - Cone mounted on support body.
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Figure 3. - Cross section of test body showing source configuration for

theoretical calculations.
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