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By Arvo A. Luoma, Ralph P. Bielat, and- Richard T. Whitcomb 

A three-dbwnsional  investigation of s t ra ighhided-prof i le  plain 
ailerons on a wing with 30° and 45' of sweepback and eweepforward waa  
made i n  the Langley s f  oot hi-peed tunnel for   a i le ron   def lec t ions  
f'ram -10' t o  10 and at  &ch numbers from 0.60 to 0.96. The w i n g  when 

. unawept had an W A  6-0 section, an aspect r a t i o  of 9.0, and a taper 
r a t i o  of 2.5:l.O.  Sweep WBB obtained  by  rotating the wing semispane 
about an axis perpendicular t o   t h e  chord plane of the wing at the center 
Line of the  wing. Rolling-mmnent, uing normal-force, and w i n g  pitch5ng- 
moment coef f i c i en te  were determined f r a a  p re s su re4 i s t r ibu t ion  masure- 
mente. Aileron hing-merit data were obtainsd by 813 e l e c t r i c a l  etrain 
gage. No corrections have been made t o  the data as a r e s u l t  of bending 
of the swept wing. The resulte  presented in this report,  therefore, 
are specif ical ly   appl icable   to  a wing with f lexura l   charac te r i s t ics  
slmilar t o  those of the model wing tested.  

The severi ty  of the large changes in rolling+mment and a i le ron  
hinge-moment coefficfents  obsemed  for an unawept wing as a result of 
&:ompression shock w a s  reduced, and the  epeedB a t  w h i c h  sucih changee 
occurred were delayed t o  m e r  Mach numbers by 30° of sweepback and 
sweepf orward. The configuration8  with 4 5 O  of sweepback and sweepforward 
had rolling+nomnt and hinge-mmnent character ie t ics  which, f o r  the speeds 
covered, were not materially affected by change i n  Mach number. A t  the  
higher  speeds, the configuratione w i t h  sweepforward generally  developed 
more ro l l i ng  mament than the  configurations with an equal amount of sweep  
back; a t  lar speeds, the reverse w a s  true. The configurat ionwith 30' 
of sweepback generally had mal le r  aileron hinge moment6 than the co- 
f igurat ion with an equal amount of sweepf orward; f o r  4 5 O  of meep, 
however, sweepforward gave smaller hinge maments. The variation8 i n  
wing pitching-ment coefficient  with Mach  number f o r  all the  sweep 
angles tested were large. 
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IFTRODUCTIOIJ 

Investigations  made in Ge- and in this country  have shown that 
the use of sweep  delays  the  onset of the  radical  changes in aerodynamic 
characteristics  aersociated  with  the  presence of shock on the  wing.  More 
recent  investigations  have  added  appreciably  to  existi-  information on 
the  characteristics of wings with  sweep in the  Bubsonic,  transonic,  and 
supersonic  speed ranges. Among these is an investigation of the  effects 
of 30° and 45O of sweepback and sweepforward on the  characteristics  of a 
wing at  Mach  numbers  up  to 0.96 (reference 1). Same low-speed  investi- 
gations,  such ae reference 2, have  studied  the  lateral-control  character- 
istics  of  swept w i n g s .  However,  there  is a lack of lateral-control  data 
f o r  wept  wing^ at  very high speeds. 

The tests  presented  herein  were  made  to  determine  the  aerodynamic 
characteristics  at high subsonic speed8 of plain  ailerons on a wing 
having 30' and 450 of sweepback and sweepforward.  Wind-tunnel  data, 
including  rolling-moment  coefficients,  wing  nomnal"force  coefflcients, 
wing  pitching-mnt  coefficients, and aileron  hinge-mament  coefficients 
were  obtained f o r  aileron  deflectiorm from -loo to loo, f o r  various 
wing angles of attack, and at  Mach numbers From 0.60 to 0.96. 

SYMBOLS 

A i  

The symbols used in this repor t  are  defined  as follows: 

X line  of  intersection of reflection plane and chord plane of wing 

Y line  perpendicular  to  reflection plans and intersecting X 4 s  

( X - a d s ) ;  positive  direction sham in figure 1 

at  origin o (y-axis) ( m e  fig. 1.) 

x, y coordinates of a q  point in chord  plane of wing,  referred  to 
x- and Y"axse 

y' principal  reference line in the wing (Y"ax is ) ,  obtained by 
passing  line  through  quarter-chord  points of section chorda 
of unswept wing 

X' line  perpendicular  to F-ads at  origin 0 and lying  in  chord 
plal'Y.9 Of W i n @ ;  ( X ' d S )  

X*, y' coordinates of angr point in chord plane of  wing,  referred  to 
XI- and  Y"axes 

+c sweep angle, measured  between Y - a x i s  and Y " a x i ~ ;  sweepback is 
considered  positive and sweepforward  negative 

. 

.. 
I 



a 

b 

b' /2 

rst 

3-* 0 

C 
I 

C* 

f 

angle of  attack. of wing, measured by angle between X f l x i s  and 
direction of undisturbed  stream 

aileron  deflection, measured In plane perpendicular to aileron 
hinge axis; positive f o r  down deflection 

absolute value of total  aileron  deflection with ailerons  at 
equa l  posttive and negative  'deflections 

velocity in undisturbed  stream 

static pressure in undisturbed stream 

local  static peesure at point on airfoil section 

mass density i n  undisturbed stream 

coefficient of viscosity in undisturbed stream 

speed of Eound in  undisturbed  etream 

dynamic preseure in undisturbed stream ($$I 

span of model, measured paral le l  to Y 4 s  

swept semispan, distance along F-axis f'rom origin 0 to  tip 

chord (A) COB A 

radius of straigh-ided part of fuelage at  wing-fuselage 
juncture; model value, 1.88 inches 

distance along Y ' e x i s  fram  origln 0 to aileron inboard end 

distance along F"axis from origin 0 to afleron  outboard end 

span  of  aileron,  naeasured parallel to f -axis (3'0 - Y ' i )  

section  chord of wing,  measured parallel to X - a x i s  

section chord of wing,  measured parallel to F-axis; in this 

- 

report this chord  is  considered to be  limited by fuselage for 
those  sections  partially  covered by the fuselage 
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cK t i p  chord of w i n g ,  meaeured parallel t o  X-axis 

or root chord of wing, measured parallel t o  X 4 s  (See fig. 1.) 

*" maximum thickneae of section wlth chord cr 

SK area of wing outboard of fuselage ($:c.> 

S, , t o t a l  area of w i n g  extended  through Rzeelage 

A aspect r a t i o  b2 
G 

- b/2 
cw mean aerodynamic chord of wing outboard of fuselage (51 c2 Q) 

r a t  

cat   section chord of aileron, measured parallel t o  Xt-aris, f r o m  
hinge axis t o  trailing edge of a i r f o i l  (0.20~') 

- xw distance f i a n  the or ig in  0 t o  the lateral axis  which is parallel 
t o  Y 4 s  and passes through the quarte~hord point of 

mean aerodynamic chord & (g Sbl2 cx Q) where x 

i s  abscissa of quarter-chord  point of any chord c 
'8% 

H, aileron hinge moment 

C h  aileron hinge-moment coefficient 

ACb absolute value of t o t a l  hinge-mmmnt coefficient of ailerons 
a t  equal posit ive and negative deflection8 

L.E. leading edge of eection  chord  ct 

T.E. trailhg edge of sect ion chord c1 

n 



c t  * section twistfng+noment coefficient of w h g  about F ~ s  

5 

C% normal"f mce coefficient of semispan wing (bmed on air loads 
outboard of fuselage) (me figs. 1 t o  4 for ~ ~ t t ~ t s  of 

integration,) (SJ; c,* c* Q9 
pitchinginamen% coefficient of semispan dng (based on air loads  

outboard of fuselage) about lateral &a w H c h  is parallel 
t o  Y 4 s  and paases through q u a r t e x h o r d  point of  mean 
a e r o v c  chord (See fige. I to 4 for limits of 

% 

Actt change in  t w i s t i n g a n t  coefficient c t r  due to aileron 
deflection 

f% absolute value of to ta l  rolling-mament coefficient of  w i n g  wfth 
ailerona at equal positive and negative deflections 

Subscripts: 

U upper aurface 

L lower surface 

&rparatw.- The teets were made in the Largley &foot higbspeed 
tunnel, which is of the single-return, cloaed-throat type. 
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The wing-aileron model ueed i n  the wind-tunnel investigation of the 
e f fec ts  of sweep on the   character is t ics  of plain  ailerons was the same 
m d e l  used in   t he   l a t e ra l - con t ro l  tests of a w i n g  with no sweep reported 
i n  reference 3. The unswept wing had an mAcA 6 5 u o  a i r fo i l   sec t ton ,  an 
aspect   ra t io  of 9.0, a t a p e r   r a t i o  of 2.5:l.O, and no t w i s t  or dihedral. 
The ordinates of t h e   t i p  of the w e p t  w i n g  and the  W A  6 5 u o  sect ion 
are  given in  reference 3. The ai leron waa of the  plain  type  with no 
aerodynamic nose‘balance. The chord of the ai leron w a ~  x) percent of 
the  local  wing chord, and the  prof i le  of the  a i leron w a s  defined by 
s t ra ight  lines tangent t o  the nose radim and passing t o   t h e   t r a i l i n g  
edge, resul t ing in a trailing-edge angle of ll.l0. (See f i g .  5.1 The 
ai leron epan of the unawept wlng waa 37.5 percent of the wing semispan 
with the inboard end of the ai leron a t  the 6&percent”eemispan s ta t ion.  
Two hinges located  approxhately 25 percent of the  a i leron span  from 
e i ther  end of the  aileron  supported  the  aileron. 

Twenty static-pressure  orifices i n  1 i - B  perpendicular t o   t h e  
q u a r t e x h o r d   l i n e  of the unewept w i n g  were placed a t  each of eight 
stations  along  the wing span. The  four  inboard  statione were placed 
on the l e f t  half of the w i n g ,  and .the four  outboard  statione on the 
r igh t  half. The locations of the pressure  stations are given i n  
tab le  I;. stat ione A t o  E were inboard of the  aileron, and s ta t ione F, 
G, and H were included w i t h i n  the ai leron span. 

The wing w a ~  supported In the w i n d  tunnel by a v e r t i c a l   s t e e l  
plate  which had a modified-llipse  section of 50-inch chord and 
O.75inch nwchmm thickness. The aurfaces of this plate  formed 
re f lec t ion  plan08 fo r   t he  two wing semispans. Additional  information 
about  the  support  plate and the tunnel setup is t o  be found in refer- 
ence 4. The varioue s w e p t  configurations were obtained by rotating  the 
wlng with  respect  to  the  support  plate  about the main faetening Bcrew, 
which w a s  perpendicular t o   t h e  chord plane and intersected  the chord a t  
the center line of the wing a t  the  0.bchord  etation. The axis of 
ro ta t ion  is  shown i n  figures 1 t o  4. Wall-pressure measurements indi- 
cated that the flow over  the model on one s ide of the  plate  had very 
l i t t l e  effect ,  even at the highest t e s t  Mach ~xmibers, on the flow on 
the  other side of the  plate.  A given test configuration  with  the w i n g  
rotated  represented,  therefore,  not a yawed model but half of a swept- 
back model and half of a sweptforward model. 

The w i n g  t ips ,  which were revised  for  each swept configuration, 
were e l l i p t i c a l  with ordinates  determined in a similar manner aa 
those of the =wep t  wing. For the sweep t e s t s  a fumlage wa8 
simulated by the addition of  two half bodies of revolution  to  the 
wing a t  the surfaces of the  support  plate (fig. 1). The center   l ines  
of the half bodies of revolution lay i n   t he  chord plane of the wing. 
Dimensions of the swept configwations are given in  tab le  11. 

c 
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Boced3a;ra .- Normal-force, pitchbg-nt,  and  rolling-mament 
character is t ics  were determined from pres8ure-dietribution measurements 
taken at the eight spanwise Etatione on the  wing and are fo r  sealed-gap 
aileron conditions. Hinge+mmnt data were obtained by e1ectrical”strain- 
gage measurements. The hinge moments were measured on t he   l e f t   a i l e ron ,  
which had no pressure s ta t ions  within its span. Because of the mall size 
of the model and the high loads  encountered  during these t e ~ t s ,  it was 
not  feasible  to  include a s e a l  o n  this a i le ron  which did not in ter fe re  
with hinge+noment measurements. The hinge-mment data axe therefore 
f o r  an unsealed aileron, w i t h  a gap  approirSSmately 0.003 of the w 3 m g  
chord c1 . 

The angles of a t tack  and Mach numbers a t  which pressure  measurements 
were made are given in table  III. The data were obtained at Mach numbere 
up to a maxinwn of e i the r  0.925 or 0.96, depending on model configuration. 
Aileron  deflections  of -loo, -5O, 5O, and loo were t e s t ed  with the con- 
figurations  having 30’ of meepback and sueepf ormrd, and aileron  deflec- 
t ions  of -loo and loo were tes ted  with the configurations  having 45’ of 
sweepback and sweepforward. Data f o r  the swept configurations  with 
undeflected  aileron were obtained from 6hs tests of reference 1. The 
angle of at tack w a s  estimated t o  be set  t o  withizl %.lo and the  a i leron 
&flect ion t o  within +D.l5O. 

Reynolds numbera.- T h e  var ia t ion  of t e a t  R e y n o l d s  number, based on 
the  mean aerodynamic chord of the model wing,  with t e s t  Mach number f o r  
the  various swept configuratione is given i n  figure 6 together  with 
similar data f o r   t h e  unewept wing. The var ia t ion  of  dymmic pressure 
with Mach number i n  the wind t w l  is also shown in  f igure 6. 

Correction3.- No t u n n e l - w a l l  interference  corrections have been 
applied to the data, since  the methods now available for e s t h a t i n g  
correctione at high EUbflOniC  Mach numbers m e  especially  l imited in  
appl ica t ion   to  swept wings. The corrections, however, would be 8maJ-l. - 
the  corrections t o  the dynamic pressure and Mach Iumiber are indicated 
t o  be 1088 than 1 percent  for the swept configurations at a Mach  number 
of 0.925. The tunnel choked in the present t e s t s  at a Mach number of 
approximately 0.98. As brought out in reference 1, some tendency  toward 
choke can be expected a t  a Mach number of 0.96 f o r  the swept configuratione. 
Under such  conditions, the r e l i a b i l i t y  of the data at a Mach Ilumber of 0.96 
is probably impaired; the general  trends shown by the data, nevertheless, 
are believed t o  be correct.  

The model Wing was made of brass and wa8 r e l a t ive ly  stiff. Since 
’ the  wing contained  cut-outs f o r  instrumentation, s t a t i c  bending t e s t e  

were made t o  determine the ef fec t ive   f lexura l   r ig id i ty  E1  (where E 
is the modulus of e l a s t i c i t y  and I is the  sect ion moment of i n e r t i a  
about the neutral axis)  of the model wtng. Taking a value f o r  the 
modulus of 8bEt iC i ty  of brass of 13  X 10 pounds per square inch, 
the sect ion moment of i n e r t i a  of the model wing w a s  found t o  

6 
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equal c*  tvmax3/26. The wing twisting produced by the a i r  l o a b  was 
esttmated t o  be amall  f o r  all the test  conditione. The bending of a 
swept wing,  however, introduces an effect ive change in  angle of attack, 
which tends   to  augment the  bending  loads in the sweptforward  case and 
a l lev ia te  the bending loads i n  the sweptback case. Some calculations 
were made to   es t imate   the maepltude of the effec ts  of bending on the 
aerodynamic coefficients.  Using the experimental spanwise loading and 
the meamred .flexural  r igidity,  the spanwise change i n  angle of a t tack 
due t o  bending of the model w i n g  was  determined. Then, the spamise 
loading  resulting from the  spamlse change in  angle of a t tack w a s  obtained 
approxhately by a cmputation procedure  based on Schrenkls method 
(reference 5 ) .  The r e su l t s  of these  canputations  indicate that the 
bending ef fec ts  a r e  appreciable. For example, f o r  the configuration 
with 45' of sweepforward the  calculated be- e f fec ts  at the maximum 
Mach number of 0.96 are of the  order of magnitude of 10 percent of the 
measured values of w i n g  normal-force coefficient and 15 percent of the 
measured values of  rolling+noment coefficient.  Since no corrections 
ae a result of w i n g  bending have been made t o  the coefficients  presented 
in  this report, the data shown, therefore,  are  specifically  applicable 
t o  a wing w i t h  f lexural   character is t ics  8- to   those of the model 
wing tested.   For  actual  aircraft ,  which would have wing flexural 
r i g i d i t i e s  probably l e s s  than the flexural r ig id i ty  of the model wing 
tested, the bending effects  can be  expected t o  be greater than  those 
indicated  for   the model wing .  Plots of the spanwiee var ia t ion in 
section loading of the wing included in  this report  w i l l  be an a i d   i n  
the  modification of the data of this report  f o r  appl ica t ion   to  w i n g s  
of different   s t i f fnesses .  

KEDUCTIOII OF DA!I!A AND RESUIZS 

In  the reduction of the data, the section  pressure  distributions 
a t  the wing pressure  stations parallel to the X'-axis were plotted, 
and then the plots  were mechanically  integrated t o  give  section normal- 
force  coefficient Cn' and section twisting-mament coeff ic ient   c t ' .  

' b' t 2  

Se se 
Uaing the  section  coefficients,  plots of  cn*cv- and ct*cr2 

along  the F-axis were made and then  mechaically  integrated. The wing 
normal-force coefficient C and the wing pitching-moment coeffi- 

c ient  Cntr were determined, as in reference 1, f r a m  these  integrations.  
The rolling-mament coefficient C2, the change in wing normal- 
force  coefficient resulting *om aileron deflection, and the change AC+ 

in. w i n g  pitcbing-mment  coefficient  resulting from aileron  deflection were 
also determined f r o m  these  integrations  together with similar integrations 
f o r  the swept configurations w i t h  undeflected  aileron. 

% 



i The rollinginoment  coefficient  for  the w i n g  w i t h  the  sealed a i le ron  
is shown plotted  against Mach number i n  figure 7. The variat ion w i t h  
Mach number of the t o t a l  rolling-mament coeff ic ient  of the  wing w i t h  
a i l e rom at equal posit ive and negative  deflectiom is shown i n  figure 8. 
Data fo r   t o t a l   de f l ec t ions  of loo (k5O) and 20' &LOo) are sham, together 
with values f'rm reference 3 f o r  the w e p t  uing. The hinge-nt data 
of these tests are f o r  an uneealed aileron with a gag apgroximately equal 
to 0 . 0 0 3 ~ ~ .  The general  effect8 of compressibility on a i le ron  hinge- 
moment coefficient are brought out i n  figure 9. The varfat ion with Mach 
number of t h e   t o t a l  hinge-mament coefficient of the  ailerons a t  equal 
posit ive and negative  deflections is shown in f igure 10. Included in 
figures 9 and 10 a lso  are data f o r  the w e p t  wing f r a m  reference 3. 

The var ia t ion  w i t h  Mach number of the wing mrmd-f'orce  coeffi- 
c ient  C h ,  the  mmal-forcB--Curve slope ACq.Aas and the incremental 

deflection are shown in figures ll, 12, and 13, respectively. The 
normal-force-curve slopes ehown are the  average  values f o r  an angle- 
of-attack range from Oo t o  4'. The spanwise var ia t ions along the Y " a x i s  

of the   s ec t ion   l oad ing   ~ fc* - -  " based on the air  loads outboard of the 

f u s e m e  are  given in figures 14 t o  17 f o r  the various sweep angles and 
aileron  deflections.  In these tests the   l ines  of pressure  orifices were 
perpendicular t o  the P"-gxIs, and the loading curves were plot ted d o n g  
the Y " a X i 6  in terms of '* The chord  ct used i n  the loading  plots 

was  limited by the fuselage surface f o r   t b s e  w i n g  sections partially 
covered by the fuselage. T h i 8  chord was zero at the epamdse loca- 

value % of wing normal-force coeff ic ient   resul t ing f r o m  ai leron 

Se 

i- 

t i o n  - " corresponding to   the   in te rsec t ion  of the trailing edge of 
b' f2 

the wing and the fuselage surface for the sweptforward  configurations 
and to   t he   i n t e r sec t ion  of the  leading edge of the wing and the fuselage 
sur face   for   the  sweptback configuration. (See figs. 1 t o  4.) It is t o  
be noted that the value  of 'G f o r  a value of c t  of zero 18 on the Yt 

-1 

negative  side of = 0 f o r   t h e  sweptforward  configuration8 and on 

the   posi t ive side of -6 = 0 for the sweptback configurations  (figs. 1 

t o  4). The loading c m e s  shown in  t h i s  report  differ, therefore,  from 
usual load  distributions in  that the  loading becomes zero a t  the  inboard 

,spanwise locat ion " w h e r e  c t  is zero. The loading  data  for an 

ai leron  def lect ion of 0' are from the  tests of reference 1. ~n the 
present tests it was found that the loading curves a t  inboard  stations 
could be sa t i s f ac to r i ly   f a i r ed  from the Corresponding p l o t s   f o r  an aileron 
deflection of Oo, so i n  order t o  reduce  the large amount of computing 
involved, same of the inboard  pressure data were not worked up. 

b"J2 
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The ef fec ts  of compressibility on the wing pitching+.uoment coeffi- 
cient Cnk and the change AC% i n  wing pitching-moment coefficient 
resul t ing from aileron  deflection8 are  shown in  f igures  18 and 19, 
respectively. 

DISCUSSION 

Variables 

S ince   the   apec t   ra t io ,  Mng section,  taper  ratio,  and Reynolds 
nuniber range changed .in the present tests when the sweep angle w a s  
changed, the results shown do not  indicate the effec ts  of aweep alone. 
The ef fec ts  of the changes i n  these  other  variables on nost of the 
variations of character ie t ics  with Mach  nmnber,  however, are probably 
amdl w i t h  respec t   to   the   e f fec ts  of the  corresponding sweep. As 
mentioned previously, the data have not been corrected for wing bending 
so the results presented in  this report   apply  epecifically  to a Xing 
w i t h  flexural character is t ics  similar to   those  of the model w i n g  tested.  

Rolling-Mament Coefficient 

The rolling-moment-coefficient curves for  the  configuration with 30° 
of sweepback generally shov losses i n  effectiveness at high Mach numbera 
(fig. 7(  c)  ) . The rolling-mament data f o r  the wfng with 30° of sxeepforward, 
however, show appreciably smaller losseer in  effectiveness at the same 
high 8peed.s ( f i g  . 7(  b) ) . For sweep augl.0~ of S 5 O  there are smaller 
changes i n  rolling-moment coefficient with Mach  number (fige.  7(a) 
and 7( a) ) than f o r  k30°. 

The ef fec t  of sweep on t h e   t o t a l  rolling+uoment coeff ic ient ,  

i s  i l l u s t r a t e d   i n   f i g u r e  8. The data fo r   t he  w e p t  w i n g  f o r  angles of 
a t t a c k   t o  bo are  characterized by .marked losses in   a i leron  effect iveness  
associated with the formation of a strong compression  shock on the wing 
at high  supercr i t ical  Mach numbers. Sweeping the w i n g  back t o  30' 
reduces the severity of the losses and delays the occurrence of the 
losses t o  higher Mach numbers. Sweep angles of -30° and ~ 5 '  show 

' further improvement i n  aileron effectiveness  characterist ics at Ugh 
Mach numbers. A t  l o w  Mach numbers the ailerons on the wing with Oo 
of sweepback produce more rol l ing moment than on the wing with 30 a of 
aweepforward. A t  hlgh Mach numbers,  however, the  a i lerom on the w i n g  
with 30° of sweepforward are more effect ive than on the w i n g  w i t h  30° 
of sweepback. The ailerons on the wing with 45' of sweepb.ack generally 
produce more rolling moment than on the w i n g  with 45' of meepfomard 
f o r  most of the  speed range covered by these t e s t s .  A t  the  highset 
speeds the ailerons on the wing w i t h  45' of sweepforward a r e  nore 
effective  than on the wing with h y o f  sweepback. 



NACA RM No. L 7 I l 5  

Hinge44omm.t Characteristics 

The configuration  with 30' of  sweepback  experienced  marked  changes 
'in aileron  hinge-mament  characterietics at Ugh Mach numbers, but  these 
changes  were  much amaller than  the large, irregular  changes in hinge- 
moment characteristics  experienced  by the mswept configuration (fig. 9 ) .  
The changes in hinge-nt  characteristics with  variation in Mach  number 
were  appreciably less for  the  configuration with 30° of meepforward than . 
for  the  configuration  with 30° of  sweepback.  The  compressibilit  effects 
on the  hinge-mament  coefficients for the  configurations with 245 of sweep 
were small. 

g 

Sweeping the wings, as would  be  expected, ale0 reduces  the  variation 
with Mach number of the t o t&  aileron hinge-manrent coefficient  as  experienced 
b3  the  unswept  configuration (fig. 10) . In theee  tests 30' of sweepforward 
generally  resulted in higher.  total  hinge+mment  coefficients  than 30' of 
sweepback,  whereas 45O of sweepforward  gave lower values than 45' of 
sweepback. 

Rormaldorce Characteristics 

The effects  of  cmpressibility on the wing normal-force  coefficient 
of  the  swept  configurations with aileron-deflected  are, in general, 
approximatelg  the same as the  effects obsemed for the  swept  conf'igura- 
tions with undeflected  aileron  (figs.  U(a)  to ll(d)). Compressibil&ty 
effects on normal-forc6-cme elope &&/Act, f m  the  wings with -45 , 
30°, and 45' of weep, and with the afleron deflected, are essentially 
the same E ~ B  noted  for  the  corresponding  swept  ccnfigurations  with 
undeflected  aileron  (fig. 12). The slopes f o r  the configuration 
with 30° of sweepforward  become less wfth increase in aileron deflec- 
tion  at high Mach numbers. This trend is also generally true but  to a 
lesser extent  for t h e  configuration with 30° of  sweepback.  The  vari- 
ations w i t h  Mach number of the incremental  wing normal-force coeffi- 
cient AC resulting from aileron deflection are  quite small, for the 
most part, for all the swept configurations  (fig. 13) and are seen to 
be very similar to the variations  with  Mach number of the  rolling+nornent 
coefficient  (fig. 7). The  greatest  changes in LC with Mach number 

are to  be  noted f o r  the configuration  with 30' of sweepback and these 
changes are small in magnitude. 

m, 

% 

The irregular load  distributions and large changes in angle of 
zero normal force  observed  for  the unswept wing  at  Mach  numbers 
above 0.83 (reference 3 )  were  notably  improved by 30° and 45O of 
sweepforward and sweepback  (figs. 14 to 17). The load distributions 
for  the  swept wings are qu i te  eimilar throughout  the  Mach  number range 
of the tests.  Of the sweep angles investigated,  the  loading curves 
for 30° of' sweepback  were  affected  most  by  Mach  number  variation. 
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Pitching-Mament  Characteristics 

WLCA RM No. L7I1.5 

The  wing  pitching-moment  coeffici-nt  about  the quartemhord point 
of  the mean aeroaynamic  chord shows considerable  variation  with  Mach 
number  for all the  sweep angles tested (fig. 18). The  effects  of cam- 
pressibility on the  Incremental  wing  pitching-moment  coefficient &% 

resulting f r o m  aileron  deflection  are also large and quite  irregular 
(fig. 19) 

A three-dimensional  wind-tunnel  Investigation was made  of  plain 
ailerons on a wing with 30° and 45' of sweepback and sweepforward  at- 
Mach  numbers from 0.60 to 0.96. The  results  preeented in this report, 
specifically  applying  to a wing  with  flexural  characteristics  similar 
to  those of the model wing tested,  indicated t@ following: 

1. Wing configurations  with 30° of  sweepback and sweepforward 
generally  reduced  the  severity of the  large  changes in rolling-nt and 
aileron  hin$e+mment  coefficients  experienced by the  unewept  wing  con- 
figuration  as a result  of  compression  shock and extended  to  higher  Mach 
numbers  the  speeds  at  which  such  changes  occurred.  The w e  of 45O of 
sweepback  and  sweepforward  resulted in rolling-mament and h i n g e a n t  
coefficients  which,  for  the  Mach  nunibere  covered by these  tests,  did 
not  materially  change  with  speed. 

2. At low Mach numbers the  configuration  with 30° of  sweepback 
developed  more rolling moment than the  configuration  with 30° of 
sweepforward;  at high Mach  numbers,  however, 30° of  sweepforward 
was  more  effective.  The  configuration  with 45O of  sweepback  generally 
developed  more  rolling  moment  than  the  configuration  with 45O of 
sweepforward  for  most of the  speed  range  covered by these  tests;  at 
the  highest  speeds 45O of  sweepforward  was more effective. 

3. The  configuration  with 30° of sweepback generally had smaller 
aileron hinge moments t- the  configuration  with 30° of  sweepforward. 
The configuration  with 45 of  sweepforward,  however,  gave smaller hinge 
moments  than  the  configuration  with 45O of sweepback. 

4. The  changes  with  Mach  number il; the  wing  pitching+mment  coeffi- 
cient of the  swept  configurations  were large. 

Langley  Memorial  Aeronautical  Laboratory 
National  Advisory  Committee  for  Aeronautics 

Langley Field, Va. 
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f+re 2 . - Plan form and general d/inensions of model wing - 
fuselage confiyurofion with 30° sweepfornard. 
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