
FILE COpy 
No3 

c 
CO~ 

-CA 

Copy No I") , .... A 

L- .: i') 

RM No. A7I16 

RESEARCH MEMORANDUM 

HIGH-SPEED ~ND-TUm~EL TESTS OF A MODEL 

PURSUIT AIRPLA~E AND COR~ELATION 

~~TH FLIGFT-TEST RESULTS 

By Joseph W. Cleary and Lyle J. Gray 

THIS DO UMENT ON lOAN fROM THE fILES Of 

• 

Ames Aeronautical Laboratory 
Moffett Field, Calif. 
C AS~ FIC TI ~D TO 

COlFIDE TIAL 
AUl O&It! CkJ ~ r C . 3~ 
D TE 12-1 l 

215~ f NATI NAL ADVISORY COMMITl'£E fOR AERONAUTICS 
UN LEY Af RnNPU1'('AI lAr '" IITORY 

l LAN LEY FIELD, HAMPTON, VIRGINIA 
CLASSIFICATION CHANGED TO UNCLASSIFIED 

REQUEST FO, PUtiL' AI UN::; .:>HOULD BE ADDRESSED 
AS FOll V5: 

NATI NAl ADVISC'RY COMMHT.(;..\i: ~ AEROMUl'lQI 
1512 ::, rH T. N, W. 

WAS, , uTO'" 25, tJ. c. 

AurHORITY J oW. CRCiW'LEY 

~~<>:'::~~Def&Al!CHAPGE) NO . 2797 
rtatea w1th1D tbcI mean1ng IJf tb; • '1 ..... 
ur 1', : 31 1Jld". n. traumiaa! ~ T 
rne1atioD l! ita eonle:nl3 in aD;J ma::ner to a 
lCAutbOri:r;oo parsen is probib l ted by law. 
laformaHon 80 .:1uatnt!d may be Imparted 

'mly to per.~Il. 1Il the mllltary am nav&1 
8I!rvic". of the United ~.. approprtato 
etvU1an otneera &n1 ec.ployeea Jf tM F4!dc'tl 
Government .. ba'lt' • legttimate tmeres. 
tMre1c. am to Onlted Stales c:ltiuos of known 
;ralty au;f dt-=retlon wbo or oecesalt, muat be 

1Dfc rmed tberecf. 

DATE: 10-12- U 

WEL 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTO 

, 

https://ntrs.nasa.gov/search.jsp?R=19930085766 2020-06-17T16:43:09+00:00Z



,. 
NACA RM No. A 7116 RESTRICTED 

NATIONAL ADVISORY COMMITTKE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

HIGH-SPEED WI1ID-TUNNEL TESTS OF A MODEL 

PURSUIT ArnPLANE AND CORRELATION 

WITH FLIGHT-TEST RESULTS 

By Joseph W. Cleary and Lyle J. Gray 

SUMMARY 

This report contains the results of tests of a l/3-scale model 
of a jet-propelled airplane and a comparison of drag, maximum 11ft 
coefficient, and elevator angle required for level flight as measure 
in the wind tunnel and in flight. Included in the report are the 
general aerodynamic characteristics of the model and of two types 
of dive-recovery flaps, one at several positions along the chard on 
the lower surface of the wing and the other on the lower surface of 
the fuselage. 

The results show good agreement between the flight and wind­
tunnel measurements at all loBch numbers. The results indicate that 
the airplane is controllable in pitch by the eleva tors to a Mach 
number of at least 0.85. The fuselage dive-recovery flaps are 
effective for producing a climbing moment and increasing the drag 
at Mach numbers up to at least 0.8. The wing dive-recovery flaps 
are most effective for producing a climbing moment at 0.75 lvhch 
number. At 0.85 lvhch number, their effectiveness is approximately 
50 percent of the maximum. The optimum position for the wing dive­
recovery flaps to produce a climbing moment is at apprOximately 
35 percent of the chord. 

IN'JlWDUCTION 

High-speed wind-tunnel tests have been conducted of a l/3-scale 
model of a jet-propelled pursuit airplane. The purpose of these 
tests was to furnish longitudinal-control data at high subsonic Mach 
numbers for correlation with flight-test results. 

The airplane, as illustrated in figure 1, is a slightly modified 
version of the original design; the modifications include changes in 

RES'rnICTED 
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the duct inlets, enlarging the center fuselage section, rounding the 
tips of the wing and the tail surfaces, extending the leading~dge 
fillets, dynamically mass-balancing the elevator, and increasing the 
elevator area. 

This investigation has been conducted over a Mach number range 
between 0.3 and 0.85 and a Reynolds number range between 4,180,000 
and 7,610,000. The Reynolds number range, as illustrated by figure 2, 
is approximately equivalent to that of the airplane in flight at 
40,000 feet altitude. 

The tests were conducted in the Ames 16-foot high-speed wind 
tunnel, Moffett Field, Calif. 

SYMBOLS 

The symbols used in this report are defined as follows: 

V free-stream velocity, feet per second 

p free-etream mass denSity, slugs per cubic foot 

q free-etream dynamic pressure (~p r) , pounds:per square 
foot 

M Mach number 

critical Mach number (the free-etream Mach number at which 
the flow over the model first reaches the local speed of 
sound) 

R Reynolds number 

S wing area, square feet 

M.A.C. mean aerodynamic chord, feet 

be elevator span, feet 

ce
2 elevator mean-aquare chord aft of hinge line, square feet 

drag coefficient 

lift coefficient 

~~) 
0~~t) 

pi tching-moment coefficient (Pitching moment) 
qS M.A.C. 

... 
I 
I 

.. I 
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elevator hinge-moment coefficient ~levator hinge moment) 
q be ce 

2 

~ increase in drag coefficient 

~ increase in pitching-moment coefficient 

l:lChe increase in eleva tor hlnge-moment coefficient 

~ angle of attack of the fuselage reference line, degrees 

no angle of attack of the fuselage reference line for zero 
11ft, degrees 

uncorrected angle of attack of the fuselage reference line, 
degrees 

~ increase in angle of attack, degrees 

5e elevator angle with respect to the stabilizer chord, 

5t 

it 

6ft 

g 

Pl 

Ps 

p 

Pcr 

degrees 

dive-recovery flap angle with respect to the surface (wing 
or fuselage) at point of flap attachment, degrees 

elevator tab angle with respect to the elevator chord, 
degrees 

stabilizer angle with respect to the fuselage reference 
line, degrees 

increase in stabilizer angle, degrees 

indicated acceleration of gravity, 32.2 feet per second 
per second 

local static pressure on the model, pounds per square 
foot 

free-etream static pressure, pounds per square foot 

pressure coefficient ~l~PS) 

critical pressure coefficient (the pressure coefficient 
which corresponds to the local ve~ocity of sound) 
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MODEL AND APPARATUS 

The fuselage of the model was constructed of wood and sheet 
steel with a steel spar and framework. The wing had a mple leading 
edge and an aluminum trailing edge and contained a steel box spar 
covered with mahogany. The horizontal and vertical stabilizers and 
the control surfaces were machined from aluminum alloy. 

The model was mounted on four ~percent-thick front struts and 
a 7-percent-thick rear strut as illustrated by figure 3. The angle 
of attack of the model was varied remotel y by vertical motion of the 
rear strut. In order to minimize variati ons in the tare drag, 
transition was fixed on the support struts at 15 percent of their 
chord. 

The choking Mach number of the wind tunnel with the model 
mounted on the struts was estimated to be 0.87. 

Forces and moments acting on the model were recorded by mechani­
cal balances. Elevator hinge moments were computed from measurements 
of the strain of a steel cantilever with an electric strain gage. 
Elevator angles were remotely varied and the elevator positions were 
measured with an autosyn indicator. 

Air was brought into the fuselage through inlets on each side 
of the fuselage forward of the wing-fuselage juncture ' and discharged 
at the tail of the model. The rate of air flow into the ducts was 
regulated to simulate high-speed level-flight conditions by varying 
the area of openings in grids wi thin the fuselage. Measurements of 
total and static pressures at the duct entrance and exit wer e used 
to evaluate the rate of air flow. 

Dive-recovery flaps were tested on the lower surface of the 
wing and fuselage as illustrated in figure 4. The wing dive­
recovery flaps had a chord of 1.80 inches (model dimension) and 
extended along the span from 21.00 inches to 33.00 inches from 
the model center line. 

TWo fuselage flaps, each having a ~hord of 8.75 inches and a 
span of 5.44 inches (mOdel dimensions), were located symmetrically 
wi th respect to the fuselage reference line. The flaps conformed 
wi th the fuselage contour when fully retracted. As the flaps were 
lowered 800 , the hinge line moved from 5.45 percent of the wing­
root chord ahead of the leading edge to 6.26 percent aft of the 
leading edge. 

The complete model consisted of a wing and fuselage with 
fillets and ducts, pilot enclosure, and a horizontal and vertical 
tail with a dorsal fin. Accessories were added, for drag 

---- - ... .. -
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comparison purposes, to make the model identical with the airplane 
used in the flight tests. These accessories included an airspeed 
boom.) a pitch, yaw, and temperature boom, a droppable fuel-tank 
mooring, a standard pitot, and a radio antenna. 

The elevator had a constant.-radius leading edge about the 
hinge line with flat surfaces extending from the hinge line to the 
trailing edge. The eleva tor hinge line was perpendicular to the 
fuselage reference line and at 75 percent of the chord of the 
horizontal tail. The gap between the elevator and stabilizer was 
unsealed. 

The principal dimensions of the model were as follows: 

Wing 

5 

Span 

Area 

M.A.C. 

. . . . . . . · . . . · . . . · . 

. . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . 

13.00 ft 

26.33 eq ft 

2.24 ft 

Dihedral . • · • · . · • 
Root section · · • 
Tip section • • • · 
Root incidence . · · 
Tip incidence • · . . · . 
Taper ratio ( tip chord ) 

root chord 

Horizontal Tail 

· • • 

· . • 

• • . . . 

· · · • • • • • . 30 40' 

· · • · NACA 65r-213, a=0.5 

· • · · NACA 651 ~13, a=O.5 

• · • · · 10 

1. 0 · . · . · . . . . . . . -
2 

Span . . . . . . . · . . . . . . . . . · . . 5.19 ft 

4.84 sq ft Area (total) · . 
Dihedral . . . . . . . . . . 
Section •• · . . . 
Incidence • · . 

(
tip chord) Taper ratio 
root chord 

· . . . . . . . . 
· . . . . . . . . . . . 

. . . mACA 65-010 

· . . . . • • 

· . . . . . . . . . . 
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Tall length (25 percent of the M.A.C. to the elevator 
hinge line) • ••••• ••• ••••••••••• 5.49 ft 

Elevator mean-equare chord aft of hinge line ••• 0.0577 sq ft 

Elevator area aft of hi nge line • • • • • • • •• 0.970 sq ft 

Vertical Tail 

Span . . . . . . · . . . . . . . . . . . 2.14 ft 

Area (total). • • . . . 
Section . . . . . . . . . 

. . . . . . . 
· . . . . . . . . . 

2.49 sq ft 

NACA 65-<>10 

Incidence • . . . . . . . . . . • • • • • • • • • • • • • 

Taper ratio (tiP chord ) 
root chord 

. . . . . . . . . . . . 0.400 

Rudder mean-equare chord aft of hinge line . . . . 
Rudder area aft of hinge line · . . . . . . . . . 

Ducts 

Entrance area (both ducts ) . . . . . . . . 
Exit area . . . . . . . . . . . . . . . 

REDUCTION OF DATA 

0.106 sq ft 

0.583 sq ft 

0.319 sq ft 

0.217 sq ft 

The following corrections have been applied to the data to 
.compensate f or tunnel-wall .eff ects according to the method of 
refer ence 1 : 

= 1.040 CL degrees 

teD 

A eorrecti on for flow inclination calculated f rom t he shift i n 
the angle of zero lift obtained from data wi th t he model er ect and 
inverted has been applied to the angl e-of-at tack and drag-coeff1c1ent 
d.a ta as follows: 
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leD - 0.0035 Or. 

In order to calibrate the Yind tunnel, the dynamic pressure and 
!-Bch number yere evaluated by measurements in the test section with 
the struts in place. The measurements were made by the method. 
described in reference 2 through the use of long booms incorporating 
static-pressure orifices and extending well forward of a transverse 
air:foil which supported them. Local !>Bch numbers were computed from 
the static-pressure readings. The Wind-tunnel calibration was taken 
as the average Of the local Mach numbers corrected for constriction 
due to the model according to the method of reference 2. 

Correctione far tare forces and moments of the struts bave been 
applied to the force and moment data. These tares yere evaluated by 
combining the separate effects from tests made with and without the 
upper and lower front struts and the rear strut. Because of strength 
11m1 tations of the frOnt atruts when in compression, complete tare 
data were not obtained at high !-Bch numbers. Extrapolations of the 
tare data were made when necessary. Consequently, the precision of 
the higlr-apeed data is not known with certainty for the entire lift 
range. Complete tare data were obtained in the region of zero lift 
at all !-Bch numbers. 

Unless otherwise noted, all pi tch1ng-moment data have been 
computed about a point on the fuselage reference line above a point 
at 25 percent of the mean aerod.yna.m1c chord. 

DISCUSSION OF RESULTS 

Aerodynamic Characteristics 

The lift, drag, and pitching~ament relationships for the model 
are illustrated in figures 5 to 12. The mininrum drag coefficient as 
shown by figure 5, which excludes the internal duct drag, ia 0.0115 
at 0.30 Ma.ch number. At low lift coefficients between ~ch numbers 
of 0.30 and 0.76, the drag characteristics remain essentially 
unchanged. As the !>Bch number increases above 0.76 there is a 
rapid rise in drag coefficient as shown in figure 8. A comparison 
of the drag coefficient for the airplane as measured in flight and 
for the complete model vi th accessories as measured in the wind 
tunnel 1s presented 1n f1gure 9 for the flight-test 11ft coefficients. 
The agreement of the flight and the wind-tunnel data is excellent at 
all Mach numbers of the test. The close agreement between the low­
speed data may be partly fortuitous considering that the flight-test 
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drag was computed from the thrust (the predominate force at low speed) 
taken from an engine calibration chart. The drag data at high M1.ch 
numbers are on a better basis for comparison because the flight-test 
drag was computed principally from gravitational components, Jet 
thrust being of secondary importance. The flight results are taken 
from data previously issued in preliminary form. Refinements in 
calibration of the flight-test instruments have been made since the 
data were first issued. 

The effect of Mach number on lift coefficient, as presented in 
figure 10, shows an increase in lift coefficient for a given angle 
of attack with increasing Mach number until the Mach number of lift 
divergence is reached, followed by a rapid decrease in 11ft coeffi­
cient. Also shown is a curve of maximum 11ft coefficient for the 
model trimmed for zero pitching moment and for the airplane as 
measured in flight. (See reference 3.) Because of the large 11ft 
loads acting on the model at high Mach numbers at the maximum lift 
coefficient (approximately 14,000 Ib), the model was mounted on two 
vertical 5 -percent-thick struts having greater strength than the 
four struts used during the remainder of the test. The agreelllent 
between the flight and wind-tunnel data is good for Mach numbers 
above 0.50 where the effect of Reynolds number is small. At low 
speed where scale effects predominate, larger maximum lif't coeffi­
cients are expected for the full-scale airplane than for the model. 

The 11ft curves for the model increase in slope with increasing 

Mach number at a lower rate than the ~ increase predicted by 
l-M2 

Glauert's theory, as shown in figure 11. The Mach number of 11ft 
divergence is approximately 0.77, at zero lift coefficient and it 
is followed by a sudden decrease in lift-curve slope. The angle ·of 
attack for zero lift for the model remains unchanged at -1.50 until 
the Mach number of lift divergence is reached, above which it 
rapidly increases to a positive value. 

These changes in the 11ft characteristics at high Mach numbers 
produce changes in the static longi tudinal-stabili ty and -control 
characteristics. Figure 12 presents the pi tching-moment character­
istics for the model with and without the tail for several lift 
coefficients. When no change in elevator angle was assumed, a 
diving tendency would be reached at apprOximately 0.77 Mach number, 
and this tendency would become more severe as the Mach number is 
increased. Associated with this diving tendency is an increase in 
static longitudinal etability. At 0.85 Mach number and 0.1 11ft 
coefficient the static longitudinal stability is apprOximately 
50 percent greater than the low-speed value. A region of static 
instability occurring at lift coefficients greater than 0.60 

----- - ---------- J 
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between Mach numbers of 0.70 and 0.775 may cause control difficulties 
which would be disconcerting to a pilot 'when maneuvering at high 
speeds. With the tail removed, there is a gradual decrease in the 
static longitudinal instability until a Mach number of 0.825 is 
reached. At 0.85 Mach number a reversal in the static longitudinal 
instability occurs between lift coefficients of -0.2 and 0.1. In 
general, the aerodynamic characteristics of the model at high speeds 
present longitud1nal-<:ontrol problema similar to those discussed in 
reference 4. 

LongItudinal Control 

The effectiveness of the elevators - (dtCm) to produce changes 
d5e 

in trim at low speed is 0.0133 as shown in figure 13 and this value 
decreases only slightly at the higher Mach numbers. The elevator 

effectiveness -c~) is not appreciably affected by deflecting 
- e 

the wing or fuselage dive-recovery flaps. The stabilizer effective-

ness -C::) which is approxinlately 0.027 at 0.30 ~h number, as 

shown by figure 14, is still increasing at 0.85 Mach number. Figure 
15 presents the elevator hinge-mornent coefficients. No large 
changes in dChe/d.5e occur with increasing Mach number. The rate 
of change of hinge-moment coefficient with increasing lift coeffi­
cient or angle of attack is small in absolute magnitude and changes 
from a negative to a positive value at Mach numbers above 0.75. 
Figure 16 shows that Mach number has only a slight effect in 
decreasing the elevator tab effectiveness - (d6Che/d5t). 

Calculated stick forces required during the pull-ups are 
shown in figure 17 for three altitudes. The stick-force calcula­
tions were made on the assumption that no tabs, springs, or boost 
are connected in the control linkage and that the control system is 
mass-balanced. The effect of the tail damping moment due to curvi­
linear flight is considered. Unless otherwise noted, a wing loading 
of 50 pounds per square foot is assumed for all calculations, and 
the center of gravity is assumed to be on the fuselage reference 
line above the 2~percent point of the mean aerodynamic chord. The 
airplane is assumed to be trinnned at 450 miles per hour at 20,000 
feet al ti tude. Figure 18 indicates that the airplane will be stable 
with the stick free at sea level for Mach numbers below 0.71 and at 
40,000 feet for ~ach numbers below 0.68. The airplane appears to 
have stick-fixed stability at sea level for Mach numbers below 0.53 
and at 40,000 feet for Mach numbers below 0.72. The rapid increase 
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in stick force at 0.8 Mach number is primarily caused by the 
increase in static longitudinal stability and the decrease in the 
pi tching moment as shown by the curves of figure 6. A comparison 
of the elevator angle required for level flight is made in figure 19 
between flight-test measurements (preliminary flIght-test data with 
subsequent refinements in analysis) and Wind-tunnel calculations. 
The flight-test measurements and the wind-tunnel calculations are 
made for a wing loading of 45 pounds per square foot with the center 
of gravity at 28 percent of the mean aerodynamic chord at an 
altitude of approximately 20,000 feet. The variation with Mach 
number is si.milar for the two cases. A smaller uJ>-elevator angle 
is indica ted by the wind-tunnel data at all lwBch numbers. A break 
in the flight-test curve at 0.74 lwBch number also is indicated in 
the wind-tunnel curve at approximately the same Mach number. This 
iITegularity is caused by a small increase in static longitudinal 
stability at this Mach number, as shown by the pitching-mament 
curves of figure 6. The agreement between the flight and wind­
tunnel data is reasonable inasmuch as the elevator angles required 
are sensitive to irregularities in the manufacture and alinement 
of either the model or airplane. 

The effect of changes in center-of-gravity location on the stick 
forces required during pull-ups at 20,000 feet is shown in figure 20 
and the effect of these changes on the stick-force gradient is shown 
in figure 21. Changing the center of gravity from 25 to 30 percent 
of the mean aerodynamic chord reduces the stick-force gradient from 
9 to 4 pounds per g at 0.75 Mach number and 20,000 feet altitude. 
An increase in stick-force gradient occurs at 0.75 Mach number for 
all center-of-gravity positions presented. The center-of-gravity 
position at which the static longitudinal stability is predicted to 

oem be neutral - ~ = 0, the neutral pOint with the stick fixed, 
oCL 

is also presented in figure 21. Increasing the Mach number changes 
the neutral point with the stick fixed from approximately 
31 percent of the mean aerodynamic chord at Mach numbers below 0.65 
to 36 percent of the mean aerodynamic chord. a t a Mach number of 0.85 . 

From the longitudinal-control data presented, it appears that 
the airplane should have no difficulty with longitudinal control 
when recovering from a high-speed dive up to at least 0.85 Mach 
number, the limit of the test. 

Wing Pressure Distribution 

Measurements of pressure distribution as presented in 
figure 22, were obtained at a wing station 26.00 inches from the 
center line of the model along the wing span. The effect of changing 

--- - --
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the attitude of the model for several Mach numbers is shown in 
figure 22, while the effect of changing the Mach number for two lift 
coefficients is shown in figure 23. For a constant 11ft coefficient, 
there is only a slight shift in the location of the peak pressure on 
the upper surface with increasing Mach number, but the peak pressure 
moves aft on the lower surface. Separation of the flow becomes more 
severe on both surfaces as the Mach number increases above 0.8. 

Figure 24 shows the variation of maximum pressure coefficient for 
both the upper and lower wing surfaces for three lift coefficients. 
At zero lift, the critical Mach number l-1cr is approximately 0.70, 
which is approximately 0.06 less than the ?-Rch number of drag 
divergence as indicated by force-test data. 

Dive-Recovery Flaps 

The wing dive-recovery flaps are effective for producing a 
climbing moment, as indicated by figure 25. Their effectiveness 
is maximum at a Mach number of approximately 0.75 and rapidly 
decreases at Mach numbers above 0.80. The data indicate that the 
effectiveness may become negligible at a Mach number slightly 
greater than 0.85. Figure 26 shows that with the tail removed the 
increment of pitching moment becomes negative at approximately 0.74 
Mach number with a 4~0 flap deflection. With the airplane in flight 
at high Mach numbers, this negative pi tching~oment increment ia 
balanced by a large download on the tail. Figure 27 presents data 
showing the effect of flap location along the chord on the 
effectiveness of dive-recovery flaps for producing a climbing 
moment. It appears that for this airplane the optimum location for 
producing a climbing moment is at approxirnatelY. 35 percent of the 
chord. However, this position also produces large diving moments 
at high Mach numbers with the tail removed, as shown in figure 28. 

The drag increment from deflecting the wing dive-recovery flaps 
is presented in figure 29. At the higher Mach numbers, this increment 
increases at a faster rate with increasing ?-Rch number than at lower 
speeds because of the increased separation on the upper surface of 
the Wing, as indicated by figure 30. 

The effect of wing dive-recovery flaps on the wing pressure 
distribution is shown in figure 30. At low Mach numbers there is 
little change in the upper-surface pressure distribution, but the 
flaps alter the lower-surface pressure distribution to produce the 
climbing moment shown in figure 26. At a Mach number of .approxi­
mately 0.75 a combination of rearward shock movement and increasing 
separation on the upper surface produces a diving moment which 
overbalances the climbing moment resulting from the lower-surfe.ce 
pressure distribution. 
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The fuselage dive-recovery flaps produce climbing moments if 
large flap deflections are used, as shown in figure 31. With flap 
deflections of 400 or less there is relatively little effect. Their 
effectiveness is maintained at a Mach number of 0.80 with no indica­
tion of decreasing effectiveness. Figure 32 shows that, with the 
tail removed, the flaps maintain their effectiveness for producing 
climbing moments to a Mach number of 0.80. The flaps are also a 
powerful device for increasing the drag, as shown by figure 33. .An 
800 flap deflection at zero lift produces 100 percent or more 
increase in drag coefficient at all Mach numbers. 

Figure 34 shows 11ft coefficients for trim, stick free, when 
the wing or fuselage dive-recovery flaps are deflected, and the 11ft 
coefficient required for level flight at several altitudes. With a 
300 deflection of the wing dive-recovery flaps and the trim tabs 
set at 00 , an indicated acceleration of 4g would be obtained at 0.80 
Mach number and 10,000 feet altitude. For the same Mach number and 
altitude, an 800 deflection of the fuselage dive-recovery flaps 
would produce an indicated acceleration of 5g. 

CONCLUSIONS 

The test results indicate the following: 

1. The drag and maximum lift coefficient for the l/3-scale 
model as measured at high speed in the Ames It>-foot hig...'I1-apeed 
wind tunnel are in good agreement with flight-test data for the 
airplane. 

2. Although a diving tendency will be reached at approximately 
0.77 Mach number, the airplane is controllable in pitch by the 
elevators to a Mach number of at least 0.85. 

3. The airplane will have a stable variation of stick force 
with speed below a Mach number of 0.71 at sea level and below 0.68 
Mach number at 40,000 feet altitude when trimmed at 450 miles per 
hour and 20,000 feet altitude. The variation of elevator angle 
for trim with speed indicates stability below a Mach number of 0.53 
at sea level and below a Mach number of 0.72 at 40,000 feet. 

4. The fuselage dive-recovery flaps are effective for recovery 
from dives to a Mach number of at least 0.8. The speed of a dive 
will be noticeably reduced by the large increment of drag from the 
flaps. 

5. The wing dive-recovery flaps are most effective for dive 
recovery at a Mach number of 0.75, but the effectiveness decreases 
at higher Mach numbers. The optimum location of these flaps for 
producing climbing moments is at 35 percent of the chord. 
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6. It appears from an extrallolation of the data that the wing 
dive-recovery flaps may lose their effectiveness at a Mach number at 
which the elevators are still effective for controlling the airplane. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 
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(a) Front view. (b) Rear view. 

Figure 3.- The 1/3-scale model of the airplane mounted on the four-strut 
support system. 
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NACA RM No. A7Il6 Fig. 4 a, b 

(a) Wing Flaps • 

(b) Fuselage Flaps. 

Figure 4.- The wing and fuselage dive-recovery flaps mounted on the 
1/3-scale model. 
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