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NATIONAL ADVISORY COMMITtEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

ALTITUDE-WIND-TUNNEL INVESTIGATION OF OPERATIONAL 

CHARACTERISTICS OF J 47 TURBOJET ENGINE 

By Harry E. Bloomer 

SUMMARY 

An investigation has been conducted in the NACA Lewis alti­
tude wind tunnel to determine the operational characteristics of 
a J47 turbOjet engine over a wide range of simulated f11ght con­
ditions at altitudes from. 5000 to 50,000 feet. Operational 
characteristics investigated include operating range,~starting, 
altitude and airspeed compensation of the fuel regulator, and 
acceleration. . 

At a flight Mach number of 0.21 and at approximately NACA standard 
temperatures corresponding to the simulated flight conditions, the 
engine could be operated at all engine speeds from idling (2000 rpn) 
to rated (7900 rpn) at all altitudes up to 15,000 feet. Above 15,000 
feet, the maximum engine speed was limited by the lllaximum allowable 
turbine-outlet temperature. The minimum speed was limited by com­
bustion blow-out at altitudes above 40,000 feet. At an altitude of 
50,000 feet, the engine could be operated only between engine speeds 
of 4750 and 7400 rpm. At higher flight Mach numbers, limiting turbine­
outlet temperature would cause less reduction in maximum engine speed. 
Engine windmilling starting characteristics with AN-F-32 fuel were 
poor with either of' the two types of' spark plug used. With AN-F-48 
fuel and long electrode spark plugs, however, the engine could be 
started at altitudes up to 35,000 feet at the maximum windmilling 
speeds obtainable. The minimum speed from which throttle burst 
accelerations could be made to rated speed increased from 5000 rpm 
at an altitude of 5000 feet to 6700 rpm at 30,000 feet. A throttle 
burst acceleration from an engine speed of 7400 rpm to rated speed 
at an altitude of 35,000 feet resulted in combustion blow-out. The 
time required to accelerate from an engine speed of 6000 rpm to rated 
speed increased from 5.5 seconds at an altitude of 5000 feet to 8 
seconds at 25,000 feet. 

JNTRODUCTION 

The performance and operational characteristics of a J47 
turbojet engine have been investigated over a range of' simulated­
flight conditions at altitudes from 5000 to 50,000 feet in the 
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NACA Lewis altitude wind tunnel. The engine-performance character­
istics are presented in reference 1. 

Operational characteristics presented and discussed herein 
include engine operating range, startingt altitude and airspeed 
compensation of the fuel regulator, and acceleration. The effect 
of changes in the ignition system on starting characteristics 
are shown for two types of fuel. Engine-windmill1ng data relevant 
to the starting characteristics are also presented. 

DESCRIPTION OF ENGINE 

The J47 turbojet engine used in the altitude-wind-tunnel 
investigation has a sea-level thrust rating of 5000 pounds at an 
engine speed of 7900 rpm and a turbine-outlet temperature of 
12750 F. The test limit for turbine-outlet temperature during 
accelerations was 16000 F. The engine (fig. 1) has a 12-stage 
axial-flow compressor, eight cylindrical direct-flow-type com­
bustion chambers, and a single-stage impulse turbine. A fixed­
area exhaust nozzle with an outlet area of 280 square inches was 
used during most of the investigation. A variable-area exhaust 
nozzle with a maximum outlet area of 452 square inches and a 
minimum outlet area of 288 square inches was used in part of the 
engine-acceleration investigation. A more detailed description 
of the engine is given in reference 1. 

Fuel System 

The main components of the engine fuel system (fig. 2) 
include a fuel 'regulator, a multipiston variable-displacement 
fuel pump, a flow divider, fuel manifolds, and duplex fuel 
nozzles. Fuel is supplied to the main fuel pump by means of 
a booster pump. The control system regulates the engine by 
modulating the fuel flow in response to changes in throttle 
setting, engine speed, and compressor-outlet pressure. These 
three variables are used by the regulator to produce the vari-
able oil pressure from the constant-control oil pressure, which 
is generated by a small gear-type pump in the regulator. The 
variable-control oil pressure in turn governs the displacement 
of the main fuel pump and thereby determines the engine fuel 
flow. A wide -range s peed governor wi thin the regulator, which 
operates effectively at engine speeds above 3000 rpm, maintains 
constant engine speed for a given throttle position at all 
stabilized flight conditions and also provides overspeed protection. 
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At engine speeds below 3000 rpm (starting speed ran~), the fuel 
flow is controlled by manual operation of the stopcock . 

• 
The engine throttle schedule is presented in figure 3. The 

curve obtained at an altitude of 5000 feet in the tunnel investi­
gation is approximately the same as the manufacturer's estimated 
throttle schedule, except for the limits of stopcock operation. 

3 

The range of stopcock operation was 00 to 230 throttle-traverse 
angle in the tunnel investigation, whereas the manufacturer's esti­
mate was 00 to 190 • At an altitude of 45,000 feet, an engine speed 
of 7000 rpm was found to be slightly below the range of regulator 
operation at a throttle-traverse angle of 230 • 

The fuel discharged from the main pump passes through an 
oil cooler into the flow divider, which controls the relation 
between the fuel flow to the large- and small-slot manifold of 
the duplex nozzle system in accordance with a predetermined 
pressure-flow schedule. Each combustion chamber contains a 
duplex fuel nozzle that has a small-slot and a large-slot element. 
At the low fuel flows that accompany the starting process and. 
operation at high altitudes, all the fuel flows through the small 
slots, which are designed to provide a good spray pattern at the 
low fuel pressures. As the fuel-flow requirements of the engine 
increase, fuel proportioned by the flow divider is injected 
through the large-slot element of the nozzle. Upon engine shut­
down, the fuel is drained from the fuel-nozzle manifolds through 
a solenoid-operated valve. The engine is also equipped with an 
emergency fuel system. 

Ignition System 

The engine ignition system consists of two 20,000-volt 
vibrator coils and two spark plugs. The vibrator coils are 
mounted on the upper half of the compressor casing and the spark 
plugs are installed in diametrically-opposite combustion chambers 
(2 and 7). The spark-plug electrodes are located within the 
design spray cone of the fuel nozzles. Ignition in other com­
bustion chambers is accomplished through interconnecting cross­
fire tubes. During the investigation of starting characteristics, 
the standard spark plugs were replaced by spark plugs with longer 
electrodes but the same gap setting (fig. 4). 

Lubrication System 

In this investigation oil was supplied to the engine from 
a 200-gallon tank located outside the wind tunnel. Part of the 
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inlet oil supply is pumped through the fuel regulator by an 011-
pump element of the main fuel pump. The remainder of the oil 
passes through the main oil pump and is used to lubricate the bear­
ings, the gears, and the accessory case. The ma1n sump 011 1s 
scavenged by a separate pump and the accessory case oil is scavenged 
by an element of the main lubricating oil pump. On the return flow 
to the supply tank, 011 scavenged from the main pump passes through 
or around the oil cooler, depending on the position of the thermo­
static overpressure by-pass valve located at the oil-cooler inlet. 
Oil conforming to speCification AAF 3606 was used during the entire 
altitude-wind-tunnel investigation. 

INSTALLATION AND PROCEDURE 

The engine was installed on a wing spanning the test section 
of the altitude wind tunnel (fig. 5). During most of the investi­
gation, dry refrigerated air was supplied to the engine from the 
tunnel make-up air system through a duct connected to the engine 
inlet by means of a frictionless slip joint. The air flow through 
the duct was throttled from approximately sea-level pressure to a 
total pressure at the engine inlet corresponding to the desired 
flight speed at a given altitude. When engine-acceleration character­
istics were investigated, a 5-foot section of the inlet-air duct 
forward of the engine inlet was removed and air was supplied to the 
engine directly from the wind-tunnel test section. 

The engine-inlet temperature was approximately 400 F for the 
investigation of engine windmilling, altitude and airspeed compen­
sation, and starting characteristics. For the acceleration data 
presented herein, the engine-inlet temperature varied from _130 
to ~lo F. Only the data for the engine operating range and one 
altitude compensation run were taken at approximately NACA 
standard temperature corresponding to the simulated-flight con­
ditions, except that no temperatures lower than _230 F were 
obtained. 

Engine operational characteristics were investigated over a 
range of altitudes from 5000 to 50,000 feet and ram pressures 
corresponding to flight Mach numbers from 0.10 to 1.10. Instrumen­
tation f or measuring pressures and temperatures was installed at 
several stations in the engine (fig. 1). Pressures were measured 
by alkazene and mercury manometers and were photographically 
recorded. Temperatures were mea sured and recorded by two self­
balancing pot entiometers. Fue l and oil pressures were measured by 
aircraft selsyn pressure gages. Engine speed was measured by means 
of an air craft tachomet er and a str oboscopic tachometer. The engine 
cont r ol pane l was photographed with an aerial reconnaissance camera 
a t intervals from 1 to 3 seconds t o provide tilne histories of engine 
data during accelerations and starts. 
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RESULTS AND DISCUSSION 

I"-
~ Operating range. - The variation of the operable range of 
rl engine speeds with altitude at a flight Mach number of 0.21 is 

shown in figure 6. The engine could be operated at all speeds 
from idling (2000 rpm) to rated speed (7900 rpm) at altitudes 
up to 15,000 feet. An increase in altitude above 15,000 feet 
resulted in an increase in the exhaust-gas temperature and 
thereby forced a reduction in the maximum engine speed dictated 
by the maximum allowable exhaust-gas temperature (12750 F). At 
an altitude of 50,000 feet the maximum temperature-limited engine 
speed was approximately 7400 rpm. Stable steady-state operation 
at an engine speed of 2000 rpm was obtained at altitudes up to 
40,000 feet. An increase in altitude above 40,000 feet resulted 
in an increase in the minimum operable engine speed, which was 
limited by combustion blow-out. As a result of these limitations, 
the operable range of engine speeds at 50,000 feet was fram 4750 
to 7400 rpm at a flight Mach number of 0.21. The maximum engine 
speed at altitudes above 15,000 feet would be increased by an 
increase in flight Mach number above 0.21 because of the reduction 
in exhaust-gas temperature, as shown in reference 1. 

Starting characteristics. - Altitude starting characteristics 
of the engIne were investigated using the standard short electrode 
spark plugs with a gap of 0.165 inch and special spark plugs with 
longer electrodes than the standard spark plug but the same gap 
setting (fig. 4). Fuels conforming to specifications AN-F-32 and 
AN-F-4S were used in conjunction with both types of spark plug. 
Desired windmilling speeds were obtained by varying the ram pres­
sure ratio at the engine inlet. The relation between the windmil~ 
ing speed and the equivalent airspeed (defined in appendix) is 
presented in figure 7. After ignition was obtained in the combustion 
chambers, acceleration was usually helped by the starter and by 
increasing the ram pressure ratio to the engine inlet. 

Windmilling starting data obtained over a range of altitudes 
and engine windm.1lling speeds with AN-F-32 and AN-F-4S fuels are 
shown in figure S. With AN-F-32 fuel (fig. Sea)) the engine could 
be started at all windmilling speeds up to the maximum obtainable 
at an altitude of 5000 feet. At 15,000 feet the maximum windmilling 
starting speed was approximately 2000 rpm for both types of spark 
plug. An increase in altitude above 15,000 feet resulted in a 
decrease in maximum windmilling starting speed; so that at an 
altitude of 25,000 feet, starting was marginal at a windmilllng 
speed of approximately 1000 rpm with the standard plugs and at 
1500 rpm with the longer electrode plugs. At an altitude. of 
35,000 feet, ignitIon was obtained in three combustion chambers, 
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but the engine could not be accelerated from the starting speed 
even with an increase in airspeed simulating a dive. In general, 
the starting characteristics of the engine using AN-F-32 fuel 
were poor with either type of spark plug. 

The starting characteristics of the engine using AN-F-48 fuel 
and standard spark plugs (fig. 8 (b )) were approximately the same as 
those obtained with AN-F-32 fuel. Starting characteristics with 
AN -F-48 fuel and the longer electrode pl't.l.gs, however, were cons ider­
ably better than with AN-F-32 fuel. Successful starts were obtained 
at the maximum obtainable windmilling speeds at altitudes up to 
35,000 feet . One successful start was made at an altitude of 
45,000 feet and an engine speed of 4650 rpm, but all other attempts 
to start the engine at this a ltitude failed. The altitude was then 
decreased to 25,000 feet and the engine was successfully started 
at a windmilling speed of 4850 rpm. 

Starting characteristics of a turbojet engine are affected 
by the temperature, the pressure, and the velocity of the air 
entering the combustion chambers. The most favorable conditions 
for igniting and burning a comb~stible mixture in the combustion 
chambers exists when the inlet air velocity is low and the pres­
sure and the temperature are high. The combustion-chamber-inlet 
temperature was essentially constant throughout the investigation 
because the engine-inlet temperature was held at 5000 F. Engine 
windmilling data presented in figure 9 show the decrease in 
compressor-outlet total pressure as the altitude was increased. 
Windmilling data are also presented (fig. 10 ) to show the increase 
of compressor-outlet velocity with engine ,speed independent of 
altit~de. This decrease in pressure with increasing altitude and 
increase in velocity with increasing windmilling speed tends to 
limit the starting range of the engine to low altitudes and low 
windmilling speeds. 

Al titude and airspeed compensatio~. - At a constant engine 
speed, the air flow through a turbo jet engine varies with 
changes in altitude and airspeed. Some mechanism must therefore 
be provided to vary the fuel flow for a given throttle setting 
to maintain constant engine speed. The engine fuel regulator is 
designed to sense changes in compressor-out let pressure and to 
make the required ad j ustment in fuel flow. Thus, if the compressor­
outlet pressure should decrease due to an increase in altitude or 
a decrease in flight speed, the fuel regulator would reduce the fuel 
flow at a constant throttle setting. 
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The altitude compensation characteristics of the fuel regulator 
were investigated by simulating clDnbs and dives between alt i tudes 
of 5000 and 45,000 feet at a constant compressor-inlet indicated 
airspeed of 100 miles per hour, a constant compressor-inlet tempera­
ture of 5000 R, and a constant throttle setting. The effect ivenes s 
of the regulator altitude compensation is shown in figure 11 by t he 
effect of changes in altitude on engine speed, variable-control oil 
pressure, regulator sensing pressure, small-slot fuel pressure , and 
turbine-outlet ~ temperature. 

A simulated cltmb was started at 5000 feet at an engine speed 
of 7000 rpm with the throttle locked in position at 670 and was 
terminated at an altitude of 45,000 feet. During the climb, the 
engine speed increased gradually to a final value of 7200 rpm. The 
variable-control oi l pressure and the small-slot fuel pressure 
decreased in the same manner as the regulator sensing pressure. 
The turbine-outlet temperature gradually increased from 12700 R 
at an altitude of 5000 feet to a final value of 14700 R at an 
altitude of 45,000 feet. When the altitude was decreased from 45, 000 
to 5000 feet, the engine speed returned to 7000 rpm. The other 
engine variables returned to the original values along the curves 
established in the simulated climb. The engine speed was then set 
at 7000 rpm, with the throttle locked in position at 23 0 at an 
altitude of 45,000 feet, and a simulated dive was made to an alti­
tude of 5000 feet . The engine speed decreased as the altitude was 
decreased and reached a final value of 3600 rpm at an altitude of 
5000 feet. The variable-control oil pressure and the small-slot 
fuel pressure remained constant, which indicated that the stopcock 
and not the regulator was controlling the fuel flow (fig. 3). When 
the altitude was increased to 45,000 feet, the engine speed increased 
to the original value of 7000 rpm. 

One simulated dive was made from an altitude of 45,000 feet 
at a compressor-inlet temperature of 4370 R, an indicated a i rspeed 
of 200 miles per hour, and an engine-speed setting of 7900 r pm with 
the throttle locked in position at 900

• As the altitude was 
decreased, the inlet air temperature increased and reached 5180 R 
at an altitude of 5000 feet. The variation of several engine var~ 
abIes with altitude for this simulated dive is presented in figure 12. 
The engine fuel flow was controlled by the fuel regulator and the 
engine speed dropped approximately 100 rpm. 

The airspeed compensation characteristics of the engine fuel 
regulator were investigated at constant throttle setting for a 
range of indicated airspeeds from 50 to approximately 550 miles 
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per hour at an altitude of 25,000 feet. The effect of changes in 
airspeed on the engine variables are shown in figure 13 for engine­
speed settings of 7895, 7500, and 6993 rpn. As the indicated air­
speed was increased from 50 to 535 miles per hour, the engine speed 
remained almost constant for the 7895 and 7500 rJ1ll settings. For 
the 6993 rpn setting, the engine speed dropped approximately 150 rpn 
over the same range of airspeeds. The small-slot fuel pressure and 
the variable-control oil pressure increased in the same manner as 
the regulator sensing pressure at each engine speed. As the 
airspeed was raised, the turbine-outlet temperature decreased at 
each engine-speed setting owing to the reduction in fuel-air ratio 
(reference 1). When the indicated airspeed was again reduced to 
the original value of 50 miles per hour, the engine variables 
returned to the original values with no significant hysteresis . 

Engine acceleration. - All acceleration data presented herein 
were obtained by advancing the throttle as rapidly as possible 
between a specified initial and final position, which is referred to 
as "throttle burst" acceleration. The minimum engine speed from 
which a successful throttle burst acceleration to full speed was 
possible without encountering combustion blow-out or excessive 
exhaust-gas temperatures is shown in figure 14 as a function of 
altitude. The minimum speed increased linearly from a value of 
5000 rpm at an altitude of 5000 feet to 6000 rpm at 25,000 feet. 
A further increase in altitude to 30,000 feet raised the minimum 
speed to 6700 rpm. A throttle burst acceleration from an engine 
speed of 7400 rpm at an altitude of 35,000 feet resulted in com­
bustion blow-out. With a variable-area exhaust nOZZle installed on 
the engine, a successful throttle burst acceleration was made at an 
altitude of 5000 feet from an engine speed of 3000 rpm, as compared 
with a minimum speed of 5000 rpm for the fixed-area exhaust nozzle. 
During the acceleration, the outlet area of the variable-area 
nozzle was automatically governed by an experimental control system 
provided by the engine manufacturer. Time histories of these two 
accelerations are present ed in figure 15. The mean acceleration 
rate was approximately 500 rpm per second with the variable-area 
exhaust nozzle and 375 rpm per second with the fixed-area exhaust 
nozzle . 

The variation of s ever a l engi ne variables with time 1s shown 
in f i gure 16 for a l t itudes of 5000, 15,000, and. 25,000 feet. At 
each a l ti tude t he i ni t i al engine s peed was 6000 rpm and the throttle 
was advanced to full-speed pos i t i on in approximately 1 second. The 
time requi red to reach rated engine speed (7900 rpm) increased with 
altitude from 5 .5 seconds at 5000 feet to 8 seconds at 25,000 feet. 
The accelerat i on time i ncreased as the altitude was raised because 
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the engine air flow was decreased by the reduction in air density 
while the inertia of the rotating parts of the engine remained 
constant. The equivalent true airspeed for the three altitudes 
shown w'as not constant. The effect of' changes in airspeed on 
acceleration characteristics, however, is shown to be negligible 
in figure 17 for the range of airspeeds investigated. The engine 
was accelerated from 6500 rpm to rated speed at an altitude of 
?5,000 feet and true airspeeds of 88, 138, and 244 miles per hour. 
The time required. to accelerate to I'ated speed was not appreciably 
affected by changes in airspeed. A change in airspeed from 88 to 
244 miles per hour increased the time to accelerate to rated speed 
by 1 second. The characteristics of the engine are such that the 
exhaust-gas temperature decreased with an increase in airspeed. 

The variation of engine variables with time for throttle burst 
accelerations to rated engine speed from different initial engine 
speeds is shown in figure 18 for an altitude of 25,000 feet and a 
true airspeed of 240 miles per hour. The time required t ·o 
accelerate the engine to rated speed fram initial engine speeds 
of 5500, 6000, and 6500 rpm was 11, 9.5, and 8 seconds, respec­
tively. At an acceleration time of 3 seconds, the small-slot fuel 
pressure was the same for each acceleration. At an engine speed 
of 7250 rpm, however, for each acceleration the small-slot fuel 
pressure began to increase, reached a peak value at about 7750 rpm, 
and then decreased to a steady-state operating value at rated speed. 
The exhaust-gas temperature followed. a similar pattern. This 
characteristic is associated with the response of the regulator to 
engine speed and compressor-outlet pressure. 

At and above an altitude of 30,000 feet, the range of engine 
speeds from which throttle burst accelerations could be made was 
very limited (fig. 14). An effort was made at various initial 
engine speeds to find the maximum throttle advance angle permitted 
for a throttle burst acceleration without encountering combustion 
blow-out. The data obtained in this part of the investigation are 
presented in figure 19. The maximum allowable throttle advance 
angle was determined in the follOWing manner: Accelerations were 
made to 7900 rpn from successively lower engine speeds until 
combustion blow-out was encountered. A throttle burst acceleration 
to rated speed was then made from an initial engine speed ap~roxi­
mately 200 rpm higher than the blow-out-limited initial engine 
speed and a time history was taken. Thus, at an altitude of 
30,000 feet, a successful throttle burst acceleration to rated 
engine speed could be made from initial engine speeds above 
6700 rpm. With 6800 rpm as the final engine speed, the initial 
engine speed was again reduced until blow-out occurred during 
acceleration. A successful throttle burst acceleration could be 
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made from an initial engine speed. of 6200 rpn to a final speed of 
6800 rpm. An initial speed. of 6000 rpm for acceleration to a final 
speed of 6400 rpn was determined by the same method . The vertical 
distance between a line connecting the maximum allowable throttle 
position and a line through the minimum initial engine speed points 
represents the maximum throttle advance angle for successful throttle 
burst acceleration for a given initial engine speed; the horizontal 
distance between the two lines represents the speed range through 
which the engine could be safely accel erated. For example, at an 
altitude of 30,000 feet and an initial engine speed of 6600 rpm~ 
a successful throttle burst acceleration could be made to a final 
engine speed of 7700 rpm. For the conditions investigated, the 
time required to accelerate from each initial engine speed to the 
maximum allowable engine speed was approximately 9.5 seconds. 

Turbine shroud. - During the investigation of the J47 engine 
in the altitude wind tunnel, interference between the turbine-blade 
tips and the shroud encasing the turbine rotor was experienced on 
several occasions (fig. 20). With the initially recommended blade­
tip clearance of 0.040 inch, interference was noticed after .relatively 
short periods of operation. An increase in the clearance to 0.060, 
as recommended by the manufacturer, permitted interference-free 
operation for longer periods of time. 

Interference between the blade tips and the shroud was not 
always detectable during operation in that no sudden change in 
exhaust-gas temperature, engine speed, or vibration readings 
occurred. In some cases, however, sparks were observed in the 
exhaust jet. After shutdown ·the engine would not winfunill even 
at the highest airspeeds obtainable. Clearances were checked 
and were found to vary greatly around the periphery of the turblne­
blade tips. In all cases the shroud ring was scored, but the 
turbine blades were not appreciably damaged. 

SUMMARY OF RESULTS 

The following results were obtained from an investigation of 
the operational characteristics of a J47 turbojet engine in the 
NACA Lewis altitude wind tunnel: 

1. With the standard. exhaust-nozzle area of 280 square inches, 
the engine could be operated at a flight Mach number of 0.21 at all 
engine speeds from idling (2000 rpn) to rated. speed. (7900 rpn) at 
altitudes up to 15,000 feet. At altitudes above 15,000 feet, the 
maximum engine speed was limited by the maximum allowable exhaust­
gas temperature. The minimum engine speed at altitudes above 
40,000 feet was limited by combustion blow-out. At an altitude of 

J -------~---...... 
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50,000 feet, the engine could be operated only between engine 
speeds of 4750 and 7400 rpm. 

11 

2. Engine-starting characteristics with AN-F-32 fuel and 
either standard or long electrode spark plugs were poor. start­
ing was marginal at an altitude of 25,000 feet at windmilling speeds 
of approximately 1500 rpm. With AN-F-48 fuel and high-altitude 
spark plu~, however, the engine could be started successfully at 
altitudes up to 35,000 feet at the maximum windmilling speeds 
obtainable (4900 rpm). 

3. The altitude compensation of the fuel regulator was satis­
factory for throttle positions greater than 190

, where the fuel 
regulator and not the stopcock regulated the fuel flow. The air­
speed compensation of the fuel regulator was satisfactory for the 
range of flight conditions investigated • 

. 4. The minimum speed from which throttle burst accelerations 
could be made without encountering combustion blow-out or excessive 
turbine-outlet temperatures increased from 5000 rpm at an altitude 
of 5000 feet to 6700 rpm at 30,000 feet. A throttle burst 
acceleration from an engine speed of 7400 rpm at an altitude of 
35,000 feet resulted in combustion blow-out. At an altitude of 
5000 feet, a throttle burst acceleration from 3000 rpm to rated 
speed was possible with a variable-area exhaust nozzle. 

5. The time required to accelerate the engine from 6000 rpm 
to 7900 rpm increased from 5.5 seconds at an altitude of 5000 feet 
to 8 seconds at 25,000 feet. Changes in airspeed had no appreci­
able effect on acceleration time for the range of conditions 
investigated. 

6. At an altitude of 30,000 feet and engine speeds below 
6700 rpm, the maximum permissible throttle advance angle for 
throttle burst accelerations was a function of the initial engine 
speed. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for AeronautiCS, 

Cleveland, Ohio. 

J 
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APPENDIX - CALCULATIONS 

Symbols 

The following symbols are used in this report: 

A cross-sectional area, s~ ft 

g acceleration due to gravity, 32.2 rt/sec2 

N engine speed., rpm 

P total pressure, lb/s~ ft absolute 

p static pressure, lb/s~ ft absolute 

R gas constant, 53.3 ft-lb/(lb)(~) 

T total temperature, ~ 

Ti indicated temperature, ~ 

t static temperature, ~ 

V velocity, ft/sec 

Wa air flow, lb/aec 

y ratio of specific heats 

NACA RM E9I26 

o ratio of total pressure at engine inlet to absolute pressure 
of NACA standard atmosphere at sea level 

e ratio of total temperature at engine inlet to absolute tempera­
ture of NACA standard atmosphere at sea level 

Subscripts: 

o free-air stream 

1 engine inlet 

3 compressor outlet 

e e~uivalent 
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Methods of Calculation 

In the calculation of the desired parameters, arithmetic 
average values of temperature and pressure were used. 
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Temperatures. - Static temperatures were determined fran 
indicated temperatures by the adiabatic relation between tempera­
ture and pressure, using an impact recovery factor that has been 
determined to be 0.85 for the type of thermocouple used. 

Ti t = ______ ~~--~ __ ~ 

It l:! J 
0.85 L(~) 7 -1 1 + 

Airspeed. - Equivalent airspeed was calculatea. from ram­
pressure ratio, assuming complete pressure recovery at the engine 
inlet, by the following equation: 

where 

Compressor-outlet velocity. - Compressor-outlet veloCity was 
determined by the equation 
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Air flow. - Air flow through the engine was calculated from 
pressures and temperatures measured at the engine inlet (station 1) 
by the equation 

Air-flow values obtained from measurements at the engine-inlet 
station agreed within approximately I percent with those obtained 
from the measurements at the exhaust nozzle. 
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Figure 19. - Maximum allowable throttle advance for throttle burst acceleration. at altitude of 
30,000 feet. Engine-inlet t~perature , approximately 200 F . 
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Figure 20. - Sectional view of turbine showing principal dimensions. 
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