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NATIONAL ADVISORY C m  FOR AERONAUTICS 

SUMMARY 

An investigation has been made in the Langley fldl-ecale tunnel at 
a Reynolds number of 4.3 x 10 and a Mach number of 0.07 of the preesure 
dist r ibut ion on the " s p a n  droopllose f l a p  of a w i n g  with the  leading 
edge swept back 47.5' and having symmetrical c i rcu3 .a-m~  a l r fo i l   sec t ians .  
Flap pressure d i s t r i b u t i m  were obtained f o r  the basic  canfiguration,  the 
f'tiLl-span droopllose  flap  deflected loo, 20°, 30°, and 40°, the semispan 
plain flap  deflected 40°, and the full+pn droopnose flap  deflected 40° 
in combination with the semlspn  plain  f lap  def lected 40°. 
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The loading on the  undeflected droopnose flap  generally  shifted 
inboard  with  increasing  angle of attack.  Deflecting  the droop-llose f l ap  
reduced  the  loading on the  inboard  sections and increased  the  loading 
on the  outboard  sections so that ,  at a given angle of attack,  the  center 
of pressure was shif ted outboard  and  rearward.  Deflecting  the  plain 
f l a p  400 in-combination  with  the droopnose flap  either  undeflected  or 
deflected had no appreciable  effect on either the  character of t h e  
loading produced"by the d r o o F o s e  f lap   o r   the  center"of-preesure 
locat  ion. 

The maxim flap  norml-force and  hinge+mment cmff ic ien ts  
of 1.98 and 0.85, respectively, were attained  for  the  configuration 
with the droopnose f lap  def lected 40°. Calculations  indicate that the 
hinge moment  of this droopllose f l a p  would not be excessive in   t he  
norm1  1m.dinWpprmch  condition for . th is   mptback Kfng. 
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Wings being designed for high-speed f l i g h t  are incorporating  thin 
a i r f o i l  sections and large angles of weep, which usually r e su l t   i n  low 
maximum lift"-coefficients and poor stalling characterist ics.  The 
application of leadin" high-lift  devices ha8 been aham t o  be 
effect ive i n  providing an improvementin the 1ar"speed characterist ics.  
Accordingly, in te res t  has been expressed regarding the aerodynamic 

. loads on leading-edge f l a p s   i n  the l and inpf l igh t  regime. Sane tw- 
dimensional  data on a droop-nose f lap are presented i n '  reference 1. 
some three-dimnsional  results f o r  a partia1"span  extensible l e a d i n p  r - 

edge flap  (reference 2) and a partial-epan droopnose f lap (reference 3) 
are  currently  available but, in general, f a w  experimental data are 
avai lable  concerning  the  loading on the lesd-lng-edge f l a p s  of sweptback 
wings. 

.. 

. .  . . .  

Althougb the difference between the l e a d i n v d g e  sweep of the w a y s  
of references 3 and 4 waa not large, It was believed  that the greater 
intensity of the l ead lnedge  separation on the wing of reference 4 
would influence t M  ikoop-nose-flap  loading.  Therefore,  the  pressure 
dlstributions on the rull-span droop-llose f l a p  or  the wing of reference 4 
were determined and are  reported i n  t h i s  paper. The t e s t s  were conducted 
i n  the Langley full+nzale tunnel  with and without a plain  f lap 
deflected 400 a t  a Reynolds number of 4.3 x lo6 and a Mach  number 
of 0.07. 

SYMBOLS 

P 

pR 

c?r 

wing l i f t  Coefficlent - 
(L:'s"> 

droopnose-flap section normal-force coefficient, 
n 1  
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droopllose-flap section hinge-mament coefficient, 

deflect  upward 

droop-nose-flap normal4orce  coefficient, 

d roopnose4 lap  hinge-mament coefficient, 

c k ( $ s  de), positive when flap tende t o  

deflect  ugward 

P 

PO 

8 

w/s 
=f 

C f  

C f  ' 

chordwise location of the f l a p  center of pressure, 
percent  f lap chord  from the leading edge 

spanwise location of the flap center of p e a ~ u r e ,  
percent f l a p  span from the Fnboard end 

local s t a t i c  pressure 

free"stream  static pressure 

free-stream dynamic pressure 

w i n g  area 

w i n g  loading 

chordwise coordinate meamred from and normal t o  the 
hinge l i ne  

loca l  chord of droopnose flap, normal t o   t h e  hinge 
line 

man chord of &oopsose f lap,  nOrmal t o  the Binge 
l i n e  

root-aP-square chord of droop-nose f lap,  narmal t o  
the h i w e   l i n e  
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C '  

Yf  

U 

6n 

sf 
V 

chord perpendicular t o  the line of maximum thickness 

s-ise coordinate, lneaerured from the inboard end of 
the   f lap  and along the  hinge line 

span of the droopnoee f h p ,  mastared along  the  hinge 
line 

angle of attack,  degrees 

full-span droopnose4lap  deflection,  degrees 

eemispan"plain4lap  deflection,. degrees 

forward  velocity, miles per hour 

L 

M o d e l . -  The wing model used for this investigation had the l e a d i e  
edge swept back 47.50, 1Sprcent"thFck symmetrical circul-c a i r f o i l  
sections  perpendicular t o   t h e  line of plaximum thickness, an aspect 'ratio 
of 3.5, and a taper   ra t io  of 0.5. The "pan droopnose f l a p  and 
semispan pla in   f lap  had chords which were 20 percent of the w i n g  chord - 
measured perpendicular t o  the l i ne  of maximum thickness. The detailed 
geozetric  characteristics of the wing equippsd  with these f laps   are  
shown i n   f i gu re  1. 

The f l aps  were hinged at the lower surf ace, and when deflected, 
the gap in   the  upper surface wae eealed and f a i r e d   t o  the wing contour. 
The upper and lower surfaces of the full-span droopaose f l a p  were 
f i t t e d  with pressure  orifices which were arranged in chordwiee rows 
perpendicular t o  the hinge line of the  f lap.  These  chordwise and span- 
wise  locations of pressure  orifices are e h m  in figure 2. Orifices 
were not installed on the fairing. 

Tests.- The tests were made over a large angleMf-attack  range at 
a Reynolds nmiber of 4.3 X lo6 and a Mach number of 0.07. The cowigura- 
tions  tested  included the basic w i n g ,  the wing with (a) the semispan 
plain  f lap  deflected 40°, (b) the full-span droopllose flap  deflected 
loo, 200, 30°, and 400, and with (c)  the semlspan plain  f lap  deflected 
400 i n  cambination with the full-span drooplloee f lap deflected 400. 
The pressures on the upper and lower surfaces  of-the full-span d r o o p  
nose f l a p  were meaeured on a multiple-tube mancvnster and photographically 
recorded. 
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PRESENTMION OF DATA 

The selection of a f ull-pan droopllose f l a p  w a s  based on the 
results of reference 5. Thee0 results showed that although a full"span 
droopnose f l a p  produced a tendency for   s ta t ic   longi tudinal   instabi l i ty  
at maximum lift, it produced a more l inear  pitching-mornsnt c m e  up t o  
maximum lift, a higher maximum lift coefficient, and more favorable 
lift-drag rat io   charac te r i s t ics  near maximum lift than did a partial- 
span droopllose . flap.  

The configurations  tested were the droopllose flap  deflected Oo, 
loo, 20°, 30°, and. 40°, the p l a n  f l a p  deflected 40°, and the droop 
nose flap  deflected 400 in  collibination w i t h  the plain f lap deflected 40°. 
I n  order t o   f a c i l i t a t e   t h e  analysis of the data f o r  the configurations 
showing the greatest effecte  on the  flap  loadlng  characterietics, only 
the data f o r  the droopnose f l a p  deflected Qo and 400, the p l a in   f l ap  
deflected 400, and the droop-nose flap  deflected 40° in  canbination 
with the  plain  f lap  def lected 40° are presented i n  the ffgures. The 
basic  data  for  droopllose-flap  deflections of 100, 20°, and 30° are 
given  in tables I, II, and III. The variations of lift coefficient w i t 4  
angle of a t tack for t he  various  configurations are presented i n  figure 3. 
The pressure  distributions on the droopnose f l a p  are given i n  figures 4 
t o  7 and the variations of the section  nomnaldorce and hinge-nt 
coefficients w i t h  angle of attack are shown in figure 8. The spanwise 
variations of the loading parametere are presented i n  figure8 9 t o  12. 
The ef fec t  of various angles of d r o o ~ o s e ~ l a p . d e f l e c t i o n  on the span- 
wise loading  parameters at two angles of attack is given i n  figure 13. 
The vm-iaticm of the f l a p  narmal"f orce and hinge+noment coefficients 
with  angle of attack is given i n  figure 14, and the spanwise and chord- 
wise variations of the canter-of"_preseure  locations with angle of 
at tack are presented i n  figure 15. The variation of the calculated f l a p  
hinge moment with airspeed  for three landing  configurations i s  ehown 
in figure 16. . 

The data have been corrected  for the support tares, the  blocking 
effect ,  stream alinement, and the  jet-boundary  effect  calculated an the 
basis  of an mawept wing. Since  representative  calculations showed 
the  chordwise4orce  coeffic-ient t o  be of the  order of 1 percent of the 
normal-force coefficient, the chordwise4orce coefficient was neglected 
i n  determining the hinge-moment coefficients. 
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RESULTS AND DISCUSSION 

Flow and Section  Characteristics 

NACA RM LgKo4 

The f l a p  chordwise pressure distributions far the  undeflected  flap 
(fig. 4)- show the c h ~ a c t e r i s t i c  peah.-negatfve--pressure cancentration 
a t  the lead% edge f cr the mos%"inbOard station. As iniiicated by the 
movement  of the nsgatfve--pressure "bump" with increasing  angle of attack, 
the separation  vortex is ahom t o  move rapidly spanwie-e and rearward 
from tha flap  leading edge. This phenomnan is discussed in detail i n  
refaraaca 4. Since  the  deflection af the   plain  f lap  ( f ig .  5 )  has mainly 
tha ef fec t  of increasing the sectfan lift at a given angle of attack,  the 
chordwise distribution of pressures is  eseentially  the e m  as  for the 
neutral  flap  configuration.  %flection of the droopnose flap (fig.  6) 
effectlvely  intraduces a . large  local camber increase a t  the leading edge 
which reduces the tendency for e a r l y  flaw separation and d e v e l o p n t  of 
the leading+dge separation vormx. Ln general, wherever  comparison 
can be made, the pres,sure distributions  presented In this paper 
(figs.  4 t o  7) are similar t o  those for the deflected  f lap of the 420 
sweptback wing of reference 3> and f o r  -this reason it is believed that 
with the flap deflected a simLlar typa of flow occur6 f cr both  plan 
formB. 

In order t o  ahow mare clearly  the o v e d  droop-noae-flap section 
characteristics,  the flap section  norm8l..orce and hfnge-nt meffi- 
cients  are presented as func-biags of angle of attack  (fig.  8). Deflecting 
t b  plain  f b p  4 0 ~  causes t i p  s t a ~   t o  move progressive~y inboard at a 
lower angle of attack and deflecting  the droopnose f l a p  400 delays  the 
inboard progresaian of t i p  stall, a6 co=pared to   the   bae ic  unflapped 
conffguration, Inasniuch a6 the s t a l l i ng  of this thin swept wing i s  
characterized by led" separation, the leading-edge f l a p  has a 
pronounced influence 011 the control af t i p  stall when deflected  in 
cmbination  with the plain  flap. Except f.m the most outboard  sections, 
none of the   f lap  sections has attained i ts  maximum loading condition 
a t  the highest angle of a t tack  tes ted (a = 21.5O). 

Spanwise Loading Parameters and Cente~"of-Pmssure  Variation 

The basic  configuration  (fig. 9 )  shows an almost uniform spanwise 
loading  distribution for angles of at tack up t o  6.60, beyond which the 
most outboard e e c t i s .  (0.882bf) s t a l l s .  With increasing angle of attack, 
there is no further  increase i n  load on the outboard sections,  but there , 

is  an increase  in load on the inboard eec t i cm  un t i l ,   a t  an angle of 
attack of 18.0°, the 0.064bf section is carrying its maximum load. The 
f l a p  spanwise and. chordwi-se center-of-pressure  locations vary between 
33 and percent of the f l a p  span and 50 and 55 percent of the f b p  . 
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chord,  respectively (fig. 15). Deflecting  the  plain  f lap 40° increases 
the loading for a given angle of attack,  but has no appreciable  effect 
on ei ther   the  chamcter is t ic  l o a d i q  (f ig .  10) o r  t h e   e p m i s e  and 
chardwise center-"pressure locations  (fig. 15) in the  high angle-of- 
a t tack range. 

Deflecting  the droopnose f lap  400 (fig.  1l) produces a change in 
the  Characteristic  loading over the droopnose f lap.  The delay of 
leadi-dge separation and the delay of t i p  stall (fig. 6 )  reduce  the 
loading on the  inboard  sections qnd enable  the  outboard  sections t o  
carry  more load  than  the  comespanding  undeflected  flap  sections 
(figs. 9 and ll), so that, at  a given angle of attack,  the c e n t e e -  
pressure location  shifts   outboard and rearward (fig. 15). Wfth the 
droop-nose f lap deflected kOo, the  spanwise center"-preesure  location 
varies fram 50 t o  43 percent of the   f lap  span (fig.  15) and the chordwise 
centemf-eseure  locatf on varies f ra  77 t o  57 percent of the f l a p  chord 
between angles of at tack of 14.4O and 25.8O, respectively (fig. 15). 

The effect  of droopnose-flap deflection on the s p m i e e  f l a p  
loading far angles & at tack of appraxFmately 14.2O and 23.80 is presented 
i n  figure 13. In general,  increasing  the droopnose-Slap deflection 
progressively decreases the loading  over  the  inboard  flap  sections and 
increases  the loading over the outboard flap sections. F m  the angle of 
at tack of 23.80 (f ig .  l3), the data for a droowose-flap  deflection 
of loo show that 'all Bectians are stalled a t  this angle of attack. For 
a given angle of attack, proep.eesive increases i n  droopllose-9lap deflec- 
t ion  cause the spanwise and chordwise  center-&-greseure  locations t o  
shift outboard  and rearward, respectively (fig.  15). 

The addition of the plain  f lap  deflected 40° in combination  with 
the droop-nose flap  deflected 40' (fig. 12) increases the magnitude of 
the  loading f ar a given angle of attack,  but has no ef fec t  on the  character 
of the loading developed by the droop-hose f lap   ( f ig .  ll) . Neither the 
spanwise nor chordwise centeM-pressure  locat ions (fig. 15) are 
appreciably  affected by the  addition of the plain flisp. 

The character is t ic  loadings on the partial+pan droop-nose f l a p  of 
reference 3 are similar t o  those  presented in this pager, which indfcates 
that these  data represent generally the  droopllose4lap  loadings for wings 
in   the  sweep range of 450 and having thin aharpedge sections. 

Flap Normal-Force and IUnge-Moment Coefficients 

The f l a p  maxFmum normal4orce and hinge+nomnt coefficients for the 
basic  configuration are 1.72 and 0.80, respect iveu,  at an angle of 
a t tack  of 16.0~ ( f ig .  14) . Deflecting  the  plain flap 400 increased the 
f lap  normalqorce and hinge-mcanent coefficients for 8 given angle at' 
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attack  but reduced t he i r  maximum values t o  1.62 and 0.78, respectively, 
a t  an angle ,of at tack of about 14 .Oo. With the droopaose f l a p  . 
deflected  40°,.the flap normL-f&ce and hinge+naient.coefficients are 
reduced by about. 1.00 and 0.62, respectively, as compared t o  the 
undeflected  flap for a given angle of attack,  but  their maximum values 
are increased t o  leg and 0.85, Fespectively, at an angle of attack of 
about 260. The combination  of the two flaps  deflected 400 reduced  the 
f l a p  normal-force and hinge+mment coefficients by about 0.72 and 0.48, 
respectively, far a given angle .of attack. Maximum flap .normaldorce 
and hinge+uomnt coefficients were not--attained,  but it appears that 
larger maximum values than for any other  configbatlon tested would be 
a t t a u e d   a t  angles d attack ,greater than 21.5~. 

In arder t o  obtain an estimate of the hinge moments which an 
actuating mchaniam would be required t o  overcam, when deflecting and 
raising the droopnoee f lap  for varipus landing .configurations,  the 
f lap  hinge moments about the hinge axis are  presented. fo r  a w i n g  loading 
of 40 pounds per square foot f o r  three  landing  configurations  (fig. 16). 
From this information it is clearer than from the basic hlnge-momsnt 
coefficient  plots tha t  there is a relatively  rapid load reduction ai the 
droomose  f lap is .   def lec ted  in the landing approach  and  then a load 
increase  as the flight speed is reduced. The magnttude of the maximum 
hinge moment- should not be excessive f o r  the ueual mechanical flap- 
actuating  systems. 

The results of an investigation t o  det-ermine the pressure dlstri- 
bxtion an..khe d r o o m o e e  f lap o f a  w t n g  with the leading edge swept 
back 47.5O aSa h a v ~ g  symmstrical circ-c a i r f o i l  s e c t i m s  wdicate 
the following: ' - 

1. The loading on the undef lected droopllose flap  generally  shifted 
inboard with increasing angle of attack. Deflecting  the droomose f l a p  
reduced the loading on the  inboard  sections  increased  the  loading on 
the outboard  sections, so that, at a given angle of attack,  the  center 
of pressure was shif tsd.outboqd and rearward. 

2. Deflecting  the  plain  flap 40° i n  combination with the droopnose 
f l a p  e i ther  undef lec ted  or  deflected had no appreciable  effect on 
e i ther  the character of the l&dlng produced by the droop-nose f l a p  or 
the center-aP-pressure  location. 

3. The r&irnum f l a p  normal-f orce and hinge+nomnt- coefficients 
of 1.98 and 0.85, respectively, were at t -abed for the  configuration  with 
the droop-nose f l q  deflected 40°. 
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4. Calculations show that  the maximm droop-nose4lap hhge 
moments developed in   the  landing4l ight  range should not be d i f f i cu l t  
t o  control by the usual f lapopera t ing  systems. 
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. National Advisory Committee for Aeronautics 

Langley Air Force Base, Va. 

1. Underwood, William J., and Nuler, Robert 3. : Aerodynamic Load Measure- 
Dn tS  over Leadinedge  and Trailin@dge Plain Flaps on a 6-hrcent." 
Thick Symmtrical  Circular"Arc Airfoil Section. IXACA RM L7HD4, 1947. 

2. Salmi, Reino J.: Pressure"D1stribution Measurements over an Extensible 
Leadinedge  Flap on Two Wfngs Haqing Ikading-Edge Sweep af 42O 
and 520. NACA RM L9Al8, 1949. - 

3. SBoonar, Stanley E., and WO&, Robert L.: LarSpeed Pressure D i s t r i -  
butions  over  the Drooped-Nose Flap of a 420 Sweptback Wing with 
Circular-Arc Airfoi l  Sections a t  a Reynolds Nuniber of 5.3 x 106. 
NACA RM ~8~16, 1948. 

- 

4. Lange, Roy H., Wbittle, Edward F., Jr., and Fink, Marvin P. : Investi- 
gation a t  Large Scale of the Pressure Distribution and Flow Phenmna 
over a Wing with the Leading Edge Swept  Back 4'7.5* Having C l r c ~ a r "  
Arc Airfoil  Sections and Equipped with Drooped-Nose and Plain Flaps. 
NACA RM L9Gl5, 1949. I 

5. Guryansky, Eugene R., and Lipson, Stanley: Effect of High4Af't 
Devices on the  Longitudinal and Lateral  Characteristics of a 45" 
Sweptback Wing with Syrrmetrical  Circular"Arc  Sections. 
NACA RM L8Do6,' 1948. 



10 MACA RM L9K& 

a = 4.9O a = 8.6O 

0.882 0.264 0.064 0.264  0.467 0.675 0.m 

-0.74 -. 70 
-0 96 
-* 05 
-.20 -. 28 
.25 

0.467 

-0.79 -. 84 -. 89 
-0 94 
-. 56 
-.49 

-. 81 

1.9 
5.0 
10.0 
20.0 

50.0 

90.0 

30.0 

70.0 

-0.38 
-.47 
-.lo 
-0 og -. 09 

-0 38 
-.23 

4.95 
-1.05 

-1.l.6 
-1 4 05 

-. 89 
-. 40 
-.go 

-0.24 -. 12 
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-* w 
-.16 -. 24 -. 38 

-0.32 -. 15 
-. 14 -. 19 -. 25 -. 39 

-0.39 
-.lo -. 15 
-.19 -. 27 

0.01 
.20 
.10 .06 -. 15 

-.lo 
.20 -. 51 [ W.0 .28  .22 .20 .lo 

.44 

.34 

.36 
.45 - 30 
30 

.20 .I2 .I2 

a = 14.2O 

0.092 0.064 

-1.64 
-1.69 
-2.51 
-1.9 -. 41 -. 46 
.35 
.62 
.53 
55 

-0.69 
-. 70 -. 70 
-.70 -. P 

-0.89 -. 89 
-. 90 -. 90 -. 90 -. 97 

-1.34 
-1.34 
-1.43 
-1.g 
-1.63 

-1.63 -. 97 

-1 .L4 
-1.21 
-1.28 
-1.30 
-1.36 
-1.44 
-1.46 

a - 19.90 
0.064 0.88s 0.675 0.467 0.264 
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4.57 
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-3.24 
-4.78 -. 59 -. 70 
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-1.30 
4.41 
-1.39 
-1.44 
-1.48 -. 82 
-1.59 
-1.63 

4.d 
-1.06 
-1.6 
-1.08 
-1.08 
-1.08 
-1.10 

-0.72 -. 72 

-. 74 -. 74 -. 74 
-1.18 

4.40 

"-41 -.44 -. 44 -.a 
t 40.0 

10.0 .a 
33 *P 90.0  *65 
.40 .44 .$ .55 50.0 .66 .45 .46 .57 .53 
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a = 4.9O I a 10.9 
I 

0.882 0.064 0.2& 0.675 0.467 0 675 0.467 

0.26 .20 
.10 

-. 08 
.05 
-. 21 
-.45 

.x! 
-19 

I 

, 0.24 

.n 

.05 -. 06 -. 21 

4.82 -.a2 
- - 0 7 6  

-0 52 
-0 50 -. 69 
.34 
-23 

0.19 
.I5 

.a 
-.21 
-. 09 

-.44 
0 .06 

4.75 -. 85 -. 89 -. 76 -. 37 
-.47 -. 75 
.44 
.35 

-. 41 
-. 14 .os 
-13 

"tp 0.882 0.m 0.- =FFl 0.467 0.675 0.882 

a = 14.20 

0.064 0.- 0.467 0.675 
I 
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-1.44 
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--I 53 
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-.47 -.a 

1 

I a = 23.80 
0.675 I 0.882 I 0.064 I 0.264 1 0.467 I 0.675 I 0.882 0.064 

-1.83 
-1.86 -2.50 
-2.43 -. 48 -. 63 -.80 

0 65 
59 
.64 

~~ 

-1.06 
-1.06 

-0.57 

-. 58 
-1.06 -.a 
-1.05 -.a 
-1.06 
-1.03 

-.60 

-2.4.4 
4.47 
-2.85 
4.25 -. 50 -. 70 -. 90 

-0.47 

-. 50 -. 50 -. 52 -. 52 
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TABIE I.- Concluded 
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Figure 2.- S p d s e  and chorcMse location of pressure orifices. 
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Figure 3.- Variation of lift coefflcient vdth angle of attack f o r  
several flaD configurations, 
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Figure 4.- Continued. 
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Figure 5. - Chcrdwise. presswe distribution for five spanwise stations. 
Semispan plain flap deflected bo. 
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Figure 5 .  - Concluded. 
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Figure 6.- Chordwise pressure distribution for f ive spanwise stations. 
Droop-nose flap deflected bo. 
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Figure 6 .  - Concluded. 



NACA RM LgKO4 25 

Yf/bf 10.064 0.264 0467 0.675 0882 

-2 

0 

2 

n Lower surface 

50 l o o  0 50 m o  
Percant nose chord 

~~121.5" 

Figure 7.- C h o r d w i s e  pressure dist r ibut ion f o r  f ive spanwlse stations.  
N l - s p a n  droop-nose flap and semispan plain f lap deflecked bo. 



(b) Semiepan plain flap (c)  Full-span aroop- 
deflected bo. mae f l ap  

bf lec ted  40'. 

Figure 8.- Variation o f  section normal-force and hinge-llaoment coefficients'  with  angle of attack 
for  four COnflgUratiOnS. 

. .  . 
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Figure 9.- Spanwise distribution of normal-force and hinge-moment 
parameter for several angles of attack. Basic wing. 
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Figure 10.- Spanwiee diatribution of normal-force and hinge-moment 
parameter for  several anglee of  attack. Semiepan p la in  flap 
deflected 40°. 

c 



Figure 11.- Spanwise distribution of normaJ"force and hinge-moment 
pmameter fo r  several angle8 of attack. N l - s p a n  droopnose 
flap deflected kOo. 
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Y f /  bf 

Figure 12.- Spanwtse dis t r ibut ion of  norgal-force and hinge-moment 
parlameter fo r  several angles of  attack. N l - s p a n  droop-nose 
and semispan plain  f laps  deflected.  b6. 
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Figure 14.- Variation of normal-force and hinge-moment coefficients 
with angle of attack for seven flap  configuration^. 
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.2 

Figure 15.- Spanwise and chordwise veriation  of center o f  pressure with 
angle of attack for seven flap configurations. 
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Figure 16.- Variation of droop-nose flap hinge moment with velocity f o r  
several l ike ly  landing .approach configurations. 
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