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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESFEARCH MEMORANDUM

AERODYNAMIC CHARACTERISTICS OF A WING WITH
QUARTER-CHORD LINE SWEPT BACK 35°, ASPECT RATIO 6, TAPER

RATIO 0.6, AND NACA 65A006 AIRFOIL SECTION

TRANSONIC-BUMP METHOD

By Willlam C. Sleeman, Jr.,and William D. Morrison, Jr.
SUMMARY

As part of an NACA transonic research program a series of wing-body
combinations are belng investigated in the Langley high—speed 7— by
10—foot tunnel over a Mach number range from 0.60 to 1.18 by utilizing
the transonic—bump test technique. ’

‘This paper presents the results of the investigation of a wing
alone and wing-fuselage combination employing a 35° sweptback wing with
aspect ratio 6, taper ratio 0.6, and an NACA 65A006 airfoil section.
Lift, drag, pitching moment, and root bending moment were obtained for
these configurations. 1In addition, effective downwash angles and
dynamic—pressure characteristics in the region of a probable tail
location were obtained for these configurations and are presented for a
range of tail helghts at one tail length. In order to expedite
publishing of these data, only a brief analysis is included.

INTRODUCTION

A serles of wing-body configurations are being investigated in the
Langley high—speed 7— by 10—foot tunnel to study the effects of wing
geometry on the longitudinal stablility characteristics at transonic
speeds. A Mach number range between 0.60 and 1.18 is obtained .by
utilizing the transonic—bump test technique.

This paper presents the results of the investigation of the wing—
alone and wing—fuselage configurations employing a 35° sweptback wing
with aspect ratio 6, taper ratio 0.6, and an NACA 65A006 airfoil
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section, Some of the aerodynamic characteristics of a wing of aspect
ratio h,_presented in reference 1, are compared with the results of

the subject paper.
| , MODEL AND APPARATUS

The wing of the semispan model had - 35 of sweepback of the quarter—
chord line, taper ratio of 0.6, aspect ratio 6, and an NACA 65A006
airfoil section parallel to the free stream. Th° wing was made of steel
and the fuselage of brass. A two—view drawing of the model is presented
as figure 1, and ordinates of the fuselage of fineness ratio 10 are
given in table I. .

The model was mounted on an electrical strain—gage balance, which
was enclosed in the bump, and the 1ift, drag, pitching moment, and
bending moment about the model plane. of symmetry were measured with
calibrated galvanometers. .

Effective downwash angles were determined for a range of tail
heights by measuring the floating angles of five free—floating tails
with the aid of calibrated slide—wire potentiometers. Details of the
floating talls are shown in figures 2 and 3, and a photograph of the
tegt setup on the bump showing three of the floating tails is given as
figure 4. The taills used in this investigation were the same as those
used 1n the invesgtigation reported in reference 1.

A total-pressure rake was used to determine dynamic—pressure ratios
for a range of tail helghts along a line containing the 25-percent-mean—
aerodynamic—chord points of the free—floating tails. The total—pressure,
tubes were spaced 0.125 inch apart for a distance of 1 inch below and
0.5 inch above the wing chord plane. extended (a = 0°) and were 0.25 inch
apart for the remainder of the rake.

SYMBOLS
Cy, 1ift coefficient (Twice panel 1lift/qS)
Cp drag coefficlent (Twice panel drag/qS)
C pitching-moment coefficient referred to 0.25c (Twice panel

pitching moment/qSC)
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CB bending-moment coefficlent about root chord line (at plane of

gymmetry) { Root bending moment/@_% g

q offective dynamic pressure over gpan of model, pounds per
square foot <%-pvé) _ '

S twice wing area of semispan model, 0.1250 square foot

mean serodynamic chord of wing, 0.147 foot; based on

ol

b/2 : :
relationship & / " c2dy (using theoretical tip)
0

S
c local wing chord
b i twice span of semlspan model
y spranwise distance from plane of symmetry

~air density, slugs per cubic foot

v free—stream veloclty, feet per second

M | effective Mach number over span of model.
MZ . local Mach number -

M, average chordwise local Mach number

R Reynolds number of wing based on T

a . éngle of attack, degreés

€ effective downwash angle, degrees

qwake/q ratio of point dynamic pressure, taken along a line containing
' the quarter-chord points of the mean aerodynamic chords of
the free—floating talls, to local free—stream dynamic

pressure
Yep lateral center of pressure, percent semispan (lOOCB/CL)
hy - tall height relative to wing chord plane:éitehdeq,“percent
' semispan, positive for tail positions above .chord plane
extended ' '
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TESTS

The tests were conducted in the Langley high—speed 7— by 10—foot
tunnel by utilizing an adaptation of the NACA wing—flow technique for
obtalning transonic speeds. The technique used involves the mounting

" of a model in the high—velocity flow field generated over the curved
surface of a bump located on the tunnel floor (see reference 2).

Typical contours of local Mach number in the vicinity of the model
location on the bump, obtained from surveys with no model in position,
are shown in figure 5. It is seen that there is a Mach number variation
of about 0.06 over the model semispan at low Mach numbers and from O.08
to 0.09 at the highest Mach numbers. The chordwise Mach number generally
varies less than 0.01. No attempt has been made to evaluate the effects
of this chordwlse and spanwise Mach number variation. Note that the
long—dashed lines shown near the root of the wing (fig. 5) represent a
local Mach number 5 percent below the maximum value and indicate a
nominal extent of the bump boundary layer. The effective test Mach
number wes obtalned from contour charts similar to those presented in
figure 5 by using the relationship

5 [®/2
M= 3 A cM; dy

The variation of mean test Reynolds number with Mach number is
shown in figure 6. The boundaries in the flgure indicate the range in
Reynolds number caused by variations in test conditions in the course
of the investigation.

Force and moment data, effective downwash angles, and the ratio of
dynamic pressure at 25 percent of the tall mean aerodynamic chord to
free—stream dynamic pressure were obtained for the model configurations
through a Mach number range of 0.60 to 1.18 and an angle—of-attack .
range of —4° to 10°, Pitching-moment data were obtained about an axis
passing through the 25—percent-mean—eerodynamic—chord point.

The end—plate tares on.drag were obtained through the Mach number
range at 0° angle of attack by testing the model configurations without
end plates as shown in figure 7 for the wing—alone configuration. A
gap of about 1/16 inch was maintained between the wing surface at the
root chord and the bump surface and a sponge-wiper seal was fastened to
the wing butt beneath the surface of the bump to minimize leakage. The

- drag end—plate tares were assumed to be constant with angle of attack

and the tares obtained at zero angle of attack were applied to all drag
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data. A similar end-plate correction has been applied to the downwash
data. No base-pressure correction has been applied to the wing-fuselage
drag data. Jet-boundary corrections have not been evaluated because the
boundary conditions to be satisfied are not rigorously defined. However,
inasmich as the effective flow field is large’ compared to ‘the sPan and
chord of the model, the corrections are believed to be small.

By measuring tail floating angles without & model installed it was
determined that a tall spacing of 2 inches would produce negligible
interference effects of reflected shock waves on the tail floating
angles. Downwash angles for the wing—alone configuration were therefore
obtained simultaneously for the middle, highest, and lowest tail . °
positions in one serles of tests and similarly for the two intermediate
positions in succeeding runs. (See fig. 3.) For the wing—fuselage
tests the effective downwash angles at the chord plane extended were
determined by mounting a free—floating tail on the center line of the
fuselage. The downwash angles presented are increments from the tail
floating angles without a model in position. It should be noted that
the floating angles measured are in reality a measure of the angle of
zero pitching moment about the tail pivot axis rather than the angle
of zero 1ift. It has been estimated, however, that for the tail
arrangement used a downwash gradient of 2° across the span of the tail
will result in an error of less than 0.2° in the measured downwash

angle.

Total-pressure readings were obtained at constant angles of attack
through the Mach number range without an end plate on the model and with
the gap between the bump cutout and wing butt sealed with a sponge seal
to eliminate end-plate wake and minimize leakage effects. The static—
pressure values used in computing the dynamic—pressure ratios were
obtained by use of a static probe with no model in position.

RESULTS AND DISCUSSION

" The figures presenting the results are as follows:

4 - Figure
Wing-alone force data . « . « « v ¢« v ¢ ¢« 4 4 e e 0 o . . ... 8
Wing—-fuselage force data "~ . . . e e e e s e e e o e .. 9
Effective downwash angles (wing alone) O X0
" Effective downwash angles. (wing fuselage) B B |
Downwash gradients . . . . . . . D 2
* Dynamic-—pressure surveys . . . e I |
Summary of aerodynamic characteristics .. N ¢ 1
Effect of aspect ratio on the minimum drag characteristics . . .15
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The discussion is based on the summarized values given in
figure 1h unless otherwise noted. The slopes summarized in figure 1k
have been averaged over a range of +0.10 of the stated 1ift coefficient.

Lift and Drag Characteristics

The lift—curve slope measured near zero 1lift for the wing alone was
approximately 0.076 at a Mach number of 0.60. This value compares with
a value of 0.073 estimated for this Mach number by use of the charts in
reference 3. The wing-alone lift—curve slope was an average of about
12 percent higher throughout the test Mach number range than for the
wing of aspect ratio 4 (reference 1) which, except for aspect ratio, had
geometry similar to the present wing. The addition of the fuselsage
increased the lift—curve slope from 3 to 6 percent throughout the Mach
- number range investigated. This increase was about half the fuselage
effect shown for the wing of aspect ratio 4 of reference 1. :

The drag rise at zero 1ift began at a Mach number slightly
above 0.90 for the wing alone. For the wing-fuselage configuration the
drag rise was slightly earlier and steeper than for the wing alone. The
drag data for the 350 sweptback wing of aspect ratio 4 issued in
reference 1 are not directly comparable with the present results because
the drag data of reference 1 were not corrected for end-plate tares.
Subsequent to the issuance of reference 1, drag data were obtained for
the wing of reference 1 by using the sponge-wiper-seal technique
described in this paper. These data are presented in figure 15 together
with the results from the wing of aspect ratio 6 of this paper for
comparison. For both the wing—alone and wing-fuselage configuraticns,
increasing the aspect ratio from 4 to 6 decreased the drag slightly at
Mach numbers below approximately M = 1.0 and appeared to delay the
drag rise Mach number slightly. At Mach numbers above unity the drag
was higher for the wing of aspect ratlo 6, especially for the wing—
fuselage configuration.

The lateral center of pressure for the wing alone (at 1ift coef-—
ficients below 0.4). was located at 45 percent of the semispan at a Mach
number of 0.60. This value compares with an estimated low—speed value
of 45.7 percent (reference 3). As the Mach number increased yép moved

outboard gradually to 48 percent of the semlspan at M = 0.95 and
remained constant up to the highest test Mach number.. The addition of
the fuselage moved ycp inboard approximately 3 percent of the semispan

throughout the test Mach number range.
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Pitching-Moment Characteristics

At a Mach number of 0.60 the aerodynamic—center location near zero
1ift for the wing alone was 34 percent of the mean aerodynamic chord
((:%1)\4 = —0.09]. The estimated low—speed aerodynamlc—center location

L
" (reference 3) was 25.2 percent of the mean aerodynamic chord. In
general the wing—alone aerodynamic—center locations obtained at a Mach
number of 0.60 in this series of bump investigations have indicated a
somewhat more rearward position of the aerodynamic center than predicted
from the charts of reference 3. A forward movement of the aerodynamic
center to 29 percent of the mean aerodynamic chord occurred between
M=0.60 and M = 0.85. The aerodynamic center moved rearward gradually’
as the Mach number increased above 0.85 and was located at 40 percent of
the mean aerodynamic chord at Mach numbers above M = 1,05. The addition
. of the fuselage was destabilizing throughout the test Mach number range
with a minimum forward aerodynamic—center movement at M = 0.85. :

The wing—alone and wing-fuselage pitching-moment curves (figs. 8
and 9) indicate instability at higher 1ift coefflcients for Mach
numbers below approximately M = 0.98. However, above M = 1.00 there
is no indication of this instability even at the highest 1ift coef-
ficients attained. Similar trends in pitching-moment characteristics
were found in the results presented in reference ‘1.

Downwash and Dynamic Pressure

The variation of effective downwash angle with tail height and
“angle of attack for the wing-alone and wing-fuselage configurations at
various Mach numbers is presented in figures 10 and 11. The downwash

gradient (BG/BG)M near zero 1lift for the wing alone (fig. 12) was

practically invariant with tail height throughout the Mach number range
investigated. The addition of the fuselage caused an appreciable
increase in (ae/ba)M for tail positions near the chord plane extended.

The variation of (d¢/da)y with Mach number (fig. 14) for hy =0

and +30 indicated a decrease in downwash gradient of approximately
50 percent between M = 0.90 and M = 1.15 for both the wing-alone and
wing—fuselage configurations.

- The test angle-of-dttack range with the free-floating tail sligﬁtly
below the chord plane extended was restricted by the presence of the
fuselage.

The results of the point dynamic-pressure surveys made along &
line containing the 25-percent-mean—aerodynamic—chord points of the
free—floating tails used in the downwash surveys are presented in
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figure 13. The maximum loss in dynamic pressure at the wake center line
for high angles of attack was about 17 percent for the wing alone. At

a constant angle of attack the Mach number effects on the wake charac—
teristics are small, especially at low angles of attack. The addition
of the fuselage showed only a small effect on the wake profiles’ although
the peak losses at the highest test angle of attack Were slightly
reduced at subsonic Mach numbers.

Langley Aeronautical Laboratory ,
' National Advisory Committee for Aeronautics
Langley Air Force Base, Va.
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TABLE I.- FUSELAGE ORDINATES

Basic fineness ratio 12; actual fineness ratio 10

achieved by cutting off the rear one-sixth of
the body; &/4 located at 1/2]

A=l414

Ordinates

x/1 /v || x/t | )

0 0 0 0
.005 .00231|] .4500] .04143
.0075 | .00298|| .5000{ .04167

. .0125 | .00428[| .5500| .04130

0250 | .00722 .6000| .0LO24

.0500 .01205 .6500{ .03842

.0750 .01613 .7000} .03562

.1000 | .01971{l .7500{ .03128

.1500 02593 .8000] .02526

.2000 .03090 .8338}] .02000

.2500 | .03465 .8500| .01852

.3000 | .03741{| .9000| .01125

.3500 | .03933|| .9500{ .00439

.4000 | .04063{[1.0000{0

~_NACA_~

L. E. radius = 0.00051
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Figure 7.- A view of the model mounted on the balance showing the sponge-
seal arrangement used in determining end-plate tares.
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Figure 15.- Effect of aspect ratio on the minimum-drag characteristics
obtained from tests using a sponge-wiper seal for wings with 35° sweep-
back, taper ratio 0.6, end NACA 65A006 airfoil section.

NACA-Langley - 12-12-49 - 250



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32



