https://ntrs.nasa.gov/search.jsp?R=19930086106 2020-06-17T13:02:46+00:00Z

RM L50B14a

RESEARCH MEMORANDUM

NACA

A PRESSURE - DISTRIBUTION INVESTIGATION OF A SUPERSONIC - AIRCRAFT

FUSELAGE AND CALIBRATION OF THE MACH NUMBER 1.40 NOZZLE

OF THE LANGLEY 4- BY 4-FOOT SUPERSONIC TUNNEL

By Lowell E. Hasel and Archibald R. Sinclair

Langley Aeronautical Laboratory Langley Air Force Base, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

April 7, 1950 Declassified May 29, 1959

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A PRESSURE-DISTRIBUTION INVESTIGATION OF A SUPERSONIC-AIRCRAFT

FUSELAGE AND CALIBRATION OF THE MACH NUMBER 1.40 NOZZLE

OF THE LANGLEY 4- BY 4-FOOT SUPERSONIC TUNNEL

By Lowell E. Hasel and Archibald R. Sinclair

SUMMARY

Pressure-distribution tests of a supersonic-aircraft fuselage with and without canopies (body of revolution without canopies) have been conducted in the Langley 4- by 4-foot supersonic tunnel at a Mach number of 1.40 and a Reynolds number of 2.7×10^6 . These data, which were obtained upon completion of a series of calibration tests of the nozzle at a Mach number of 1.40, are compared with linear and nonlinear theoretical results. The results of the calibration tests indicated that the flow in the test section in the vicinity of the model is sufficiently uniform to allow reliable data to be obtained.

For the fuselage without canopies (body of revolution) very good agreement between the experimental results and the rigorous linear theory was obtained through the entire angle-of-attack range (10° maximum) over most of the body. A comparison of the rigorous and incomplete linear theories indicates the importance of the radial-perturbation-velocity term which the latter theory neglects in determining the pressure coefficient. It is also pointed out that nonlinear solutions for the pressures on arbitrary bodies of revolution which have the same form of solution as the incomplete linear theory appear to be inadequate in the same respects as the incomplete linear solutions.

INTRODUCTION

An experimental investigation has been in progress in the Langley 4- by 4-foot supersonic tunnel to determine the aerodynamic characteristics of a large model of a sweptback-wing airplane. The test model was selected to represent a supersonic-aircraft configuration in order that fundamental data having immediate practical interest would be obtained. As a part of this investigation, a relatively detailed study

of the pressure distribution over the fuselage of this airplane has been made. The first series of these tests has been made at a Mach number of 1.59 and the results have been presented in reference 1.

This paper presents the results of a similar investigation at a Mach number of 1.40 and a Reynolds number of 2.7×10^6 , and may be regarded as an extension at another Mach number of the tests presented and discussed in reference 1. The experimental pressure distributions obtained on the fuselage with and without canopies are presented. Tn addition, the results obtained from the fuselage without canopies are compared with linear and nonlinear theoretical results. Calibration data of the test-section flow at Mach number 1.40 have also been included to serve as a reference for future reports.

SYMBOLS

Free-stream conditions:

þ	mass density of air
v	airspeed
a	speed of sound in air
М	Mach number (V/a)
q	dynamic pressure $\left(\frac{1}{2}\rho V^2\right)$
р	static pressure
Local mode	el conditions:
u	axial perturbation velocity
v	radial perturbation velocity
Fuselage	geometry:
a	angle of attack of fuselage center line measured in the plane of symmetry of the airplane
Ø	fuselage polar angle measured in a plane perpendicular to the longitudinal axis, degrees (0° at bottom of fuselage, see fig. 8)

NACA RM L50B14a

Air-stream geometry:

angle between tunnel center line and flow direction measured θ_H in a horizontal plane, positive to right when viewed looking upstream (see fig. 1)

angle between tunnel center line and flow direction measured $\theta_{\rm V}$ in a vertical plane, positive for upflow (see fig. 1)

Pressure data:

local static pressure \mathbf{p}_7

Ρ

pressure coefficient $\left(\frac{p_l - p}{q}\right)$

LANGLEY 4- BY 4-FOOT SUPERSONIC TUNNEL

General Description

The Langley 4- by 4-foot supersonic tunnel is a closed-throat, single-return wind tunnel (see fig. 1, reference 1) driven by an axialflow compressor. The tunnel has been designed for a nominal Mach number range from 1.2 to 2.2 and is temporarily powered by a 6000-horsepower electric-drive system. With the present power, the stagnation pressure is limited to approximately 0.3 atmosphere. The tunnel has a rectangular nozzle and test section consisting of two fixed parallel side walls and two horizontal flexible nozzle walls. The side walls and nozzle walls are 25 feet long and are continuous from a point 66 inches upstream of the throat to the end of the test section (fig. 1). For the Mach number 1.40 nozzle, the test section has a width of 4.5 feet, a height of 4.4 feet, and a length of uniform-flow region along the wall of approximately 7 feet.

The supersonic nozzle and test section are formed by deflecting the horizontal flexible walls against a series of fixed interchangeable templates which have been designed to give a wall shape producing uniform flow in the test section. For this series of tests, temporary mild-steel nozzle plates were used in place of the permanent set of machined and polished stainless-steel plates. These temporary plates contain some small periodic waves.

Aerodynamic Design

The flexible-wall section of the tunnel extends from station 0 to 300 (see fig. 1) and includes the subsonic entrance section, supersonic nozzle, and test section. The subsonic entrance section extends from stations 0 to 66 and was designed to maintain a fair wall contour between the settling chamber and the first minimum section. Since, as is customary in supersonic-nozzle design, it was assumed that the flow was uniform at the first minimum, a region of very slowly changing cross section extending from station 66 to 84 was designed to help produce the desired uniform flow. The ordinates in this section were increased by an amount intentionally insufficient to allow for full growth of the displacement thickness of the boundary layer so that choking should occur at station 84 although the geometric first minimum occurred at station 66.

The M = 1.40 supersonic-nozzle section was designed by the method of characteristics. In this particular application, a smoothly varying velocity distribution was assumed to exist along the center line of the nozzle from the first minimum to the beginning of the test section. The characteristic net corresponding to this velocity distribution was then established so that the wall contour required to produce uniform flow in the test section could be determined. The boundary-layer displacement thickness on the flexible wall was computed by the method given in reference 2. It was assumed that the same thickness existed on the side walls, and the combined effect of both boundary layers was then arbitrarily applied to the theoretical nozzle ordinates to satisfy the one-dimensional continuity relationship.

Test-Section Calibration

Prior to any model testing in the M = 1.40 nozzle, static pressures were measured along the center line of both top and bottom flexible walls, and transverse stream surveys were made at one station (see fig. 1) in the test section to determine variations of the horizontal and vertical flow angles, static pressure, and Mach number. The limits of the operating dew point required to avoid serious condensation effects were also established.

<u>Apparatus.</u> Ten cruciform probes and ten pitot-static tubes similar to those shown in figure 2 and described in references 1 and 3 were used to determine flow angles and stream pressures, respectively, during the transverse survey.

Test procedure. - All test-section surveys were made for the following stagnation conditions:

Pressure, atmos	pher	re	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	0.25
Dew point, ^O F	• •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	-15	to -40
Temperature, ^O F	' •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•	•	110

In an initial series of tests, the static-pressure distribution along the flexible walls was measured by means of surface orifices. The indicated Mach number distributions on the flexible walls were calculated from the ratio of the measured static pressure to the measured stagnation pressure in the settling chamber. At the completion of the wall static-pressure surveys, a transverse survey rake was installed at station 241 (fig. 1) to measure the horizontal and vertical flow angles and free-stream pressures. The survey rake was designed to support ten survey instruments, five in each of two vertical planes. Each vertical plane traversed half the tunnel width. The variation of stream angles with position and dew point was measured with ten cruciform probes installed on the survey rake. An identical series of tests was conducted with the pitot-static tubes mounted on the rake to determine free-stream pressures. This procedure was followed because it was found from previous tests (reference 1) that, although the cruciform probes indicated the correct flow angles, the indicated static pressures were too high. Data were obtained simultaneously at 2-inch transverse increments at 0, $4\frac{7}{8}$, and $9\frac{3}{4}$ inches above and below the tunnel horizonta. center line.

Flow-angle variations were obtained from the cruciform-probe data by means of supersonic shock and expansion theory. The absolute angle of each probe surface in the vicinity of the orifice was measured by an optical method either prior to or after each test. These measurements were then used with the experimental angle variations to determine the absolute horizontal and vertical flow angles. The assumption made here that the probes did not deflect during the surveys is considered justified because of the small aerodynamic loads which were present and of the high rigidity of the support strut. The free-stream static pressure was obtained directly from the pitot-static-tube data and the Mach number was computed from the ratio of the total pressure behind the normal shock to the free-stream static pressure indicated by the pitot-static tubes.

<u>Accuracy of data.-</u> The following probable errors were estimated for the transverse survey data:

Flow-angle variation, θ_V and	θ	, ^H	degrees		•	•	•	•	•	•			÷		±0.02
Absolute flow angle, $\theta_{\rm V}$ and	$\theta_{\rm H}$	•	degrees	•		•	•	•	•	•	•	•	•		±0.07
Mach number variation	•	•	• • • •	•	•	•	•	•	•		•	•	•	•	±0.002
Mach number, absolute value .	•	•	• • • •	•	•	•	•	•		•	•	•			±0.01

<u>Regults and discussion</u>.- Representative data presented in figure 3 show the effects of dew point on the indicated wall Mach number at several stations in the test section. In contrast to the noticeable effects of condensation which were found in the test section of the M = 1.59 nozzle (fig. 4, reference 1), there appears to be no measurable effect of condensation in the test section at M = 1.40 for the range of dew points investigated. It should be noted that these indicated Mach numbers were computed on the assumption of isentropic flow through the nozzle. Subsequent free-stream survey data indicated a nearly constant average loss of 0.2 percent of the stagnation pressure in the test section for this range of dew points. The resultant corrections would decrease the indicated wall Mach numbers by only 0.001. On the basis of these tests, the remainder of stream surveys were conducted at a dew point of -25° F.

The indicated Mach number distributions measured on the center line of the upper and lower nozzle walls at a dew point of -25° F are shown in figure 4. The theoretical Mach number distribution obtained from the two-dimensional characteristics method is also shown for comparison. The agreement is good, although the indicated Mach number in the expanding nozzle section is somewhat lower than predicted by the theory. A small asymmetry in the indicated Mach number exists between the upper and lower walls. This asymmetry is probably caused by local irregularities in the temporary mild-steel flexible walls; however, these differences are small and do not appear to affect the flow significantly. The indicated Mach numbers on the test-section walls appear in general to bracket the design Mach number of 1.40.

The results of the transverse pressure survey are presented in figures 5(a), 5(b), and 5(c), which show the variation of the horizontal flow angle, $\theta_{\rm H}$, vertical flow angle, $\theta_{\rm V}$, and Mach number, respectively, with position in the transverse plane at station 241. The ability to repeat data on two separate runs is indicated by the two sets of symbols. The tailed symbols in figure 5(a) refer to data for which the optically measured angle, a constant in this range, appears to be in error. Consequently, these data have been shifted vertically (-0.21°) to agree with the data obtained from another probe at the common point, (station 0). The variation of θ_V in figure 5(b) is large, but since the region of maximum variation is outside the normal test region for models, the aerodynamic data from model tests in this stream should not be significantly affected. Schlieren photographs of the test-section flow have been made with the schlieren system adjusted for maximum sensitivity and are shown as a composite in figure 6(b). To facilitate identification of window striae, a similar set of photographs made with the tunnel stopped are shown in figure 6(a). A comparison of the original negatives of figures 6(a) and 6(b) indicated that only one set of weak disturbances was detectable. The location of these shocks in figure 6(b) is indicated by the arrows.

The following table summarizes the flow variations in the region extending 4 inches on either side and $9\frac{3}{4}$ inches above and below the tunnel center line.

$ heta_{ m H}$	(pit	ch	pla	ne	of	mod	lel),	de	gre	es	3	•	•	•	•	•	•	•	•	•	•	-0.25 to 0.	05
θ_{V}	(yaw	pl	ane	of	mo	de]	L),	de	gre	ees	3	•	•	•	•	•	•	•	•	•	•	•	-0.23 to 0.	33
м.		•		•	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.385 to 1.4	15

During the calibration of the M = 1.40 temporary nozzle, no surveys were made along the longitudinal center line. The Mach number and flow-angle variations in the region of the model installation (stations 235 to 265) were, therefore, computed from the transverse survey data and are shown in figure 7. The validity of these computations is discussed in reference 1 where the agreement between the computed and measured axial variations is good. The variation of flow angle in the vicinity of the fuselage is in general good except near the rear of the body. The maximum variation of $\theta_{\rm H}$ from stations 235 to 265 is -0.24° to 0.19° and of θ_V from stations 231.4 to 250.6 is 0.27° to -0.11°. The Mach number variation is 1.395 to 1.407. On the basis of these calculations and the transverse survey data, the test Mach number is considered to be 1.40. The flow in the test section is not so uniform as would be ultimately desired. It is believed, however, that the variations present in the vicinity of the model will not unduly affect the proposed tests and that the flow is suitable for aerodynamic testing. The temporary nature of this nozzle did not warrant any extensive attempts to improve the flow characteristics in the test section.

MODEL AND INSTALLATION

The test model was constructed from steel to coordinates presented in table I and is shown in figure 8. This is the same model used for the tests reported in reference 1. The basic model (without canopies) is a body of revolution having an over-all length of 30.267 inches and a fineness ratio of 9.4. The top and bottom canopies are removable so that the fuselage can be tested as a body of revolution. The rear part of the fuselage is integral with the supporting sting which had a 3° cone angle beginning at the rear of the model. The pressure orifices were located at various radial positions at nine basic stations of the model as shown in figure 8. In addition, one comprehensive longitudinal row of orifices was located along the upper surface ($\phi = 180^{\circ}$) of the basic body (no canopies). For the fuselage with canopies installed, the orifices located at approximately 150° were relocated at the canopy juncture. The pressures were photographically recorded from multipletube manometers filled with Alkazene 42 (x-dibromoethylbenzene). This

manometer fluid, having a specific gravity of approximately 1.75, was found particularly suited for these tests because of its extremely low vapor pressure and low viscosity.

The installation of the body of revolution in the tunnel is shown in figure 9. A scale drawing of the installation showing principal dimensions is presented in figure 10. The angle of attack was varied in a horizontal plane through fixed increments by rotating the model about the 59-percent position of the fuselage.

TESTS, CORRECTIONS, AND ACCURACY

Tests

The basic pressure data were obtained for the fuselage as a body of revolution and with canopies for an angle-of-attack range from -5° to 10° at a Mach number of 1.40 and a Reynolds number of $2.7 \times 10^{\circ}$ based on the fuselage length. This Reynolds number and Mach number condition corresponds to full-scale similarity at an altitude of approximately 110,000 feet. The aerodynamic data were obtained at tunnel stagnation conditions of: pressure, 0.25 atmosphere; temperature, 110° F; and dew point, -25° F.

Corrections and Accuracy

Since the magnitude of the flow angle, Mach number, and pressurecoefficient gradients are in general small in the vicinity of the model, no corrections have been applied to the data. The variation of the test conditions and accuracy of the data are estimated to be as follows:

Mach number	±0.01
Angle of attack, degrees:	
Geometric measurement (probable error)	_±0.02
Flow irregularity (A.)	∫ 0 . 24
]-0. 19
Angle of yaw, degrees:	
Flow irregularity $(\theta_{\rm W})$	5 0.27
)-0.11
Absolute pressure coefficient	±0.012
Variation of radial pressure coefficient	±0,00 5

PRESENTATION OF RESULTS

The basic data obtained from the tests of the body of revolution and complete fuselage are presented in figures 11 and 12, respectively. The pressure coefficient, P, is plotted against the radial angle, ϕ , for nine stations along the body. The fact that the radial data at some of the stations are incomplete is due to plugged orifices and tubes. Two sets of data were recorded consecutively for each model position. However, in general, only one set has been plotted. The plotted data are tabulated in tables II and IV and the supplementary data including data for other angles of attack are tabulated in tables III and V. Figure 11 also includes representative theoretical curves for six axial stations and for angles of attack of -5° , 0° , and 10° . The theoretical results have been omitted at stations 46.2 and 73.1 because the orifices at these stations were located in a region where the change in body slope is discontinuous and the exact slope is not known. The theoretical results have been omitted at station 93.5 because of sting interference effects on the experimental results. In calculating the theoretical curves, the linearized theory has been used in rigorous form (see section entitled "Discussion").

The same basic data for the body of revolution are replotted in figure 13 as a function of $\alpha \cos \phi$, a parameter which as been commonly used in both linear and nonlinear theoretical methods. In this figure results for both the rigorous and incomplete linear theory are also presented in order to establish the exact magnitudes of the discrepancies between both theoretical results. In addition, in figure 13, the non-linear theoretical results are presented for station 5.6, which is on the conical nose section of the body, for 0° angle of attack as obtained from reference 4 and for angles of attack as obtained from reference 5.

The axial pressure distribution along the body for $\oint = 180^{\circ}$ and 0° angle of attack is presented in figure 14 for comparison with the results of both the rigorous and incomplete linear solutions. In addition, the nonlinear theoretical solution obtained by the method of characteristics (see, for example, reference 6) is also presented in figure 14. In this application of the method of characteristics the effects of shock curvature have been neglected since, as pointed out in reference 1, it is estimated that these effects are small. Figure 15 presents a comparison of the axial pressure distribution at $\oint = 180^{\circ}$ with the rigorous linear theory for several angles of attack.

In figure 16, the pressures measured over the top canopy ($\phi = 180^{\circ}$) for 0° angle of attack are compared with the results of two approximations (discussed in reference 1) for estimating the pressures. The pressure distribution over the canopy at several angles of attack is plotted in figure 17. The data presented in figures 14 and 15, 16 and 17

are tabulated in tables VI and VIII, respectively. Similar supplementary data, together with data for other angles of attack, are given in tables VII and IX.

DISCUSSION

Considerable effort has been directed towards unifying the results of the linear theory as applied to bodies of revolution and towards establishing these results rigorously consistent with the assumptions of the linearization. Lighthill, in reference 7, presents the linearized form of the pressure coefficient as:

$$P = -\frac{2u}{V} - \left(\frac{v}{V}\right)^2 \tag{1}$$

In investigating the flow about inclined bodies of revolution, H. J. Allen of the Ames Aeronautical Laboratory has recently applied equation (1) to obtain a solution of the form:

$$P_{\alpha} = P_{\alpha=0}^{\prime} + \Delta P^{\prime} \alpha \cos \phi + (1 - 4 \sin^2 \phi) \alpha^2$$
(2)

where $P'_{\alpha=0}$ is the zero-angle-of-attack solution. Hence, in order to compare the experimental results of the present investigation with theory, the linearized pressure coefficient was obtained from equation (2) with the term $P_{\alpha=0}^{i}$ evaluated consistent with equation (1). In determining $P'_{\alpha=0}$ and $\Delta P'$, the step process of Von Kármán and Moore (reference 8) was used for 0° angle of attack, and of Tsien (reference 9) for angle of attack. Since in the past the pressure coefficient has been commonly determined with the omission of the term $(v/v)^2$ in equation (1) and consequently with the omission of $(1 - 4 \sin^2 \phi) \alpha^2$ in equation (2), the magnitude and influence of these two terms will be considered in the results presented in figures 13 and 14. In figure 13, the pressure data have been plotted against the parameter $\alpha \cos \phi$ which has been significant in both the incomplete linear solution and the nonlinear solution for small angles of attack (reference 6). The large discrepancies between the rigorous linear theory and the incomplete linear theory (a single curve applying for all angles of attack) shown in figure 13 clearly indicate the importance of the omitted terms.

In considering the general nonlinear theoretical solution for bodies of revolution at small yaw, the pressure coefficient has the form:

$$P = P_{\alpha=0} + \Delta P \alpha \cos \phi$$
(3)

where $P_{\alpha=0}$ is the theoretical nonlinear pressure coefficient at 0°

angle of attack and ΔP depends upon the body geometry, free-stream Mach number, and shock curvature. If the effects of shock curvature are negligible, then ΔP is independent of the angle of attack and the nonlinear solution, equation (3), has the identical form as the incomplete linear solution. If shock curvature effects are not negligible, then the form remains the same with, however, ΔP becoming a function of the angle of attack. Hence, if equation (3) were applied to the cylindrical portion of a body of revolution at large distances from the nose, then ΔP would tend to vanish and the pressure would be a constant independent of the radial position. However, from a physical consideration, the incompressible distribution about a circular cylinder would be expected for small angles of attack if the rotation in the flow is vanishingly small. Such a result is given by the rigorous linear theory (equation (2)). It, therefore, appears that an angle-of-attack term of the order of α^2 , which is of the same order as the term $\Delta P\alpha$, has been omitted from the general nonlinear solution presented by equation (3). The importance of this term in affecting the pressure-distribution prediction can be seen from the curved nature of the experimental data when plotted against $\alpha \cos \phi$ (fig. 13).

A general comparison of the experimental and rigorous linear theoretical results (fig. 11) indicates, with the possible exception of the first station, very good agreement for all angles of attack as far back as station 84.3 (last station available for comparison). At the first station, 5.6, the primary discrepancy occurs in predicting the zeroangle-of-attack value since the theoretical variations accurately agree with the experimental radial variations. This discrepancy for the cone value is somewhat more evident from the zero-angle-of-attack data of figure 13. By coincidence, the incomplete solution agrees much more closely with the characteristic solution than the rigorous linear solution.

The importance of using the rigorous solution becomes readily apparent from an examination of figure 13. In this comparison, as previously pointed out, the incomplete linear solution is represented by a single curve. It becomes immediately apparent that a straight line will not predict the general nature of the experimental curves and that the rigorous linear theory in general excellently predicts both the magnitude and shape of the experimental curves as far back as the limit of comparison of the present tests. In comparing the nonlinear solution for the yawed cone (references 4 and 5) at station 5.6, it can be seen that the theory gives a very good prediction for small angles of attack but becomes progressively worse as the angle increases. It appears, then, that the cone solution is restricted to angles of yaw which are small compared to the cone angle.

The axial pressure distributions at $\oint = 180^{\circ}$ presented in figures 14 and 15 are typical of the agreement between the experimental and rigorous-linear-theory results at any radial station (see fig. 11). Figure 14 shows the relative importance of the $(v/V)^2$ term in determining the pressure distribution at 0° angle of attack. Since over most of the body the magnitude of this term is small, both the rigorous and incomplete solutions are essentially the same over more than half the body. The maximum discrepancy occurs in the vicinity of the nose, as previously noted, where the perturbations are large. Over the rear 10 percent of the body, the effects of boundary-layer separation caused or aided by sting interference prevent the rapid expansion predicted by theory. As can be seen from figure 15, the agreement between the theory and experimental results is good even at high angles of attack.

It should be pointed out that the use of the rigorous linear theory in predicting the lift or moment characteristics of bodies of revolution will give the same results as the use of the incomplete theory since the integrated effects of the α^2 term are exactly zero.

The effects of the canopies on the fuselage pressure distribution can be seen by comparing figures 11 and 12. It appears that the shock from the top canopy crosses station 10.9 in the region of $\phi = 90^{\circ}$ since the pressures at $\phi = 60^{\circ}$ at this station are the same for the fuselage with and without canopies. (The differences in the distributions at station 5.6 for the two configurations is considered to be an experimental error of an undetermined origin.) At station 22.0 and farther rearward, the canopy effects are noticeable over the entire body. The pressure distributions on the top canopy at $\phi = 180^{\circ}$ are shown in figures 16 and 17, and indicate the expected trends. After the initial compression and expansion on the front of the canopy, the pressures approach zero. The results of the approximations (fig. 16) were obtained by methods described in reference 1 and are reviewed briefly here. The first method makes the assumption that the canopy extends completely around the body of revolution and computes the resultant pressure distribution by means of the rigorous linear theory. Similarly, the second method assumes that the canopy windshield is a cone whose axis is an element of the conical nose section of the fuselage and that the Mach number ahead of the cone is the same as that on the surface of the fuselage nose section. It is realized that these assumptions are crude. However, a combination of the two methods does give a reasonable estimate of the pressures to be expected on the canopy.

CONCLUSIONS

Pressure-distribution tests of a supersonic-aircraft fuselage with and without canopies have been conducted in the Langley 4- by 4-foot supersonic tunnel at a Mach number of 1.40 and a Reynolds number of 2.7×10^6 . These data, which were obtained upon completion of a series of calibration tests of the M = 1.40 nozzle, are compared with linear and nonlinear theoretical results. The following conclusions are indicated from the calibration and pressure-distribution tests:

1. The test-section flow in the vicinity of the model is considered sufficiently uniform to be suitable for aerodynamic testing.

2. A general comparison of the experimental pressure distributions with rigorous linear theory indicates, with the possible exception of the nose cone, very good agreement between the experimental and theoretical pressures for the test angle-of-attack range $(-5^{\circ} \text{ to } 10^{\circ})$ up to the last station (84.3 percent of fuselage length) at which complete experimental data were available. The discrepancy at the nose is limited to the prediction of the pressure coefficient at zero angle of attack.

3. A comparison of the rigorous and the incomplete linear theory with experimental data clearly indicates the importance of the radial perturbation velocity which is neglected in the incomplete theory.

4. Nonlinear solutions for the pressures about arbitrary bodies of revolution which have the same form of solution as the incomplete linear theory appear to be inadequate in the same respects as the incomplete linear solutions.

Langley Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Air Force Base, Va.

REFERENCES

- Cooper, Morton, Smith, Norman F., and Kainer, Julian H.: A Pressure-Distribution Investigation of a Supersonic Aircraft Fuselage and Calibration of the Mach Number 1.59 Nozzle of the Langley 4- by 4-Foot Supersonic Tunnel. NACA RM L9E27a, 1949.
- 2. Tetervin, Neal: Approximate Formulas for the Computation of Turbulent Boundary-Layer Momentum Thicknesses in Compressible Flows. NACA ACR L6A22, 1946.
- 3. Hasel, Lowell E., and Coletti, Donald E.: Investigation of Two Pitot-Static Tubes at Supersonic Speeds. NACA RM L8I02, 1948.
- 4. Staff of the Computing Section, Center of Analysis (Under Direction of Zdenek Kopal): Tables of Supersonic Flow around Cones. Tech. Rep. No. 1, M.I.T., 1947.
- 5. Staff of the Computing Section, Center of Analysis (Under Direction of Zdeněk Kopal): Tables of Supersonic Flow around Yawing Cones. Tech. Rep. No. 3, M.I.T., 1947
- 6. Ferri, Antonio: Application of the Method of Characteristics to Supersonic Rotational Flow. NACA Rep. 841, 1946.
- 7. Lighthill, M. J.: Methods for Predicting Phenomena in the High-Speed Flow of Gases. Jour. Aero. Sci., vol. 16, no. 2, Feb. 1949, pp. 69-83.
- 8. Von Karman, Theodor, and Moore, Norton B.: Resistance of Slender Bodies Moving with Supersonic Velocities, with Special Reference to Projectiles. Trans. A.S.M.E., vol. 54, no. 23, Dec. 15, 1932, pp. 303-310.
- 9. Tsien, Hsue-Shen: Supersonic Flow over an Inclined Body of Revolution. Jour. Aero. Sci., vol. 5, no. 12, Oct. 1938, pp. 480-483.

r	1	<u></u>					T	<u>.</u>				n		+					
	as 13.952 to 22.020	к <u>у</u> 2.032	266 1.964 392 1.864	532 1.664 512 1.80			308 Station 25.782		356	004 320 1.004 1.1.82 344 1.482	101 . 354 1.404		Station 26.640	0 x 1.510	132 1.494 .132 1.494	.308 1.372			•
	Station	0					Station 25.	× O	- 30t 1.6	001 001.	.405 1.4		on 24.310	1.878	1.854	1.584			
	ation 6.560	x 2.030	132 2.016 266 1.968	400 1.882 532 1.722	598 1.596 666 1.376	720 1.066	a 24.976	у 2.002	1.864	1.482	1.414		52 Stat1	* 0	.132	001			
canopy (in.)	128 Sta	y 314 0	194	556) <u>5</u> 6	·•) Station	× 0	325	htt.	Ltit. 1	1 canopy n.)	72 to 22.15	2.080	2.080 2.076	2.068	1.954	1.824 1.684	1.508
Top	Station 5.	ы м о	.132 1. .266 1.	-1400 1.0 -532 1.1			Station 24.31	0 X 2.01(.352 1.861	.500 1.480	.505 1.421	Botton (1	Stations 12.1	H 0	.132	961. 861.	.334	100	.550
	Station 4.262	0 I.432	.132 1.408 .266 1.320	.400 1.180 .574 .856	• •		ation 23.644	x y 2.027	246 1.964	1001 1.664	556 1.436		tation 8.892	x y 1.788	.066 1.784 132 1.768	198 1.736	334 1.614	400 1.472	
	on 2.964	0.872 0.872	222				a 23.374 St	2.032 0	1.964	1.664	1.440		m 5.994 S	1.398 0	1.392 1.372	1.338	1.232		
	Stat1	ж о	172.				Stat10	× 0	378	.503	•570		Static	H 0	.132	.198	• 306		
ne body)	Radius	0 .638	1.030	1.174	1.517	1.532 1.606	1.549	1.510	1.482 1.468	1.448	1.426								
Streamli (in	Station	0 2.480	3.396	5.134	6.328 11.800	12.172 13.952	23.374	24.310	24.976 25.308	25.782	26.308 27.025 27.61.0	28.972 30.267							

TABLE I.- FUSELAGE AND CANOPY MODEL COORDINATES

•

(See fig. 8)

NACA RM L50B14a

15

NACA

- NACA

TABLE II.- PRESSURE-COEFFICIENT DATA PRESENTED IN FIGURE 11 FOR

THE FUSELAGE AS A BODY OF REVOLUTION

Station	Radial			Angle o (de	f attack g)			
(percent)	ø	-5	0	2	4	6	8	10
5.6	0	0.170	0.236	0.272	0.305	0.345	0.386	0.431
	60	.204	.244	.256	.259	.265	.268	.267
	90	.248	.250	.244	.227	.215	.196	.175
	120	.286	.242	.220	.194	.174	.148	.119
	180	.330	.242	.208	.180	.158	.136	.119
10.9	0	.103	.166	.196	.227	.265	.306	.346
	60	.119	.164	.181	.188	.200	.204	.206
	90	.151	.164	.165	.156	.146	.128	.106
	120	.194	.162	.149	.128	.108	.080	.050
	180	.230	.152	.125	.104	.084	.064	.042
22.0	0	110	081	062	044	019	.004	.031
	60	114	077	069	068	063	065	073
	120	065	077	085	094	117	137	165
	147	045	077	091	108	117	127	145
	180	031	079	093	106	113	119	125
34.6	0	029	026	018	013	.004	.024	.043
	60	045	024	022	028	033	044	059
	90	045	024	026	036	049	071	107
	120	033	026	026	036	047	069	103
	153	011	028	030	034	039	040	035
	180	001	022	028	030	027	020	017
46.2	0	061	056	050	044	031	018	007
	90	082	058	062	076	093	119	151
	120	067	050	060	070	075	095	123
	180	027	046	046	050	051	054	047
59.7	0	021	028	026	028	019	012	005
	90	041	020	022	032	049	075	099
	120	035	018	020	032	049	054	075
	158	019	022	020	022	017	018	035
	180	011	022	022	018	011	004	003
73.1	0 60 90 120 158 180	059 061 081 077 049	050 058 058 058	063 058 062 058 054	066 068 076 070 058	059 075 085 069 047	054 087 105 081	047 109 133 105 049
84.3	0	021	048	048	054	053	050	045
	60	045	046	046	058	069	085	105
	90	069	046	048	060	071	089	105
	120	065	046	046	046	045	063	089
93.5	120	156	061	077	131	127	147	165

16

.

.

Station	Radial					Angl	e of at (deg)	tack				
(por como)	ø	-5	-3	-3	-2	-2	0	2	4	6	8	10
5.6	0	0.170	0.195	0.191	0.208	0.210	0.238	0.272	0.305	0.346	0.386	0.430
	60	.204	.219	.219	.228	.230	.244	.256	.262	.266	.268	.268
	90	.247	.250	.249	.254	.256	.250	.244	.230	.217	.196	.176
	120	.285	.266	.267	.260	.262	.242	.224	.194	.175	.148	.120
	180	.331	.292	.290	.278	.277	.242	.208	.182	.159	.138	.116
10.9	0	.104	.123	.124	.139	.140	.166	.198	.230	.266	.306	•347
	60	.120	.139	.140	.149	.150	.164	.181	.190	.199	.204	•207
	90	.152	.159	.159	.162	.166	.164	.167	.155	.147	.128	•107
	120	.192	.181	.179	.178	.178	.162	.149	.127	.109	.080	•051
	180	.231	.197	.195	.186	.182	.150	.125	.103	.085	.066	•047
22.0	0 60 120 147 180	111 107 065 043 029	103 097 071 061 053	102 094 070 062 052	093 089 073 069 061	092 086 070 064 060	081 077 077 079 077	062 069 085 091 093	044 067 101 107 103	018 064 118 118 112	.006 063 137 127 127 117	.032 070 162 142 130
34.6	0	029	030	031	029	025	024	018	012	.004	.024	.044
	60	041	034	035	029	027	024	022	028	034	044	056
	90	043	032	033	027	025	024	026	036	050	071	106
	120	031	028	027	025	021	026	028	036	048	069	100
	153	009	020	019	021	021	028	030	034	040	040	030
	180	.001	012	011	017	015	022	028	030	028	018	022
46.2	0	061	060	059	059	056	056	050	044	032	018	006
	90	081	070	071	065	062	058	062	075	094	119	148
	120	065	062	063	059	056	050	062	069	076	095	118
	180	025	036	037	037	035	046	046	048	052	054	052
59•7	0	019	026	027	025	023	028	026	026	020	012	002
	90	043	030	029	025	021	020	026	032	050	075	094
	120	033	026	027	021	021	020	020	032	048	052	072
	158	017	022	023	021	017	022	020	022	018	018	030
	180	011	018	019	021	017	022	022	016	010	002	006
73.1	0	057	.066	067	061	058	050	063	063	058	054	044
	60	061	.062	063	061	056	058	058	067	076	087	106
	90	079	.070	071	063	062	058	062	075	086	105	130
	120	075	.066	067	061	060	058	058	069	068	081	102
	180	047	.054	055	055	052	058	054	056	048	046	048
84.3	0	019	036	035	041	037	046	046	054	054	050	044
	60	043	054	055	045	044	046	046	056	070	085	106
	90	067	058	057	049	046	046	046	060	072	085	106
	120	065	054	057	049	046	044	046	046	044	063	090
93.5	120	159	143	146	093	088	061	075	131	127	147	164

THE FUSELAGE AS A BODY OF REVOLUTION

FOR THE COMPLETE FUSELAGE

Station	Radial			Ang	gle of att (deg)	ack		
(percent)	ø	-5	0	2	4	6	8	10
5.6	0	0.169	0.244	0.276	0.311	0.352	0.395	0.437
	60	.201	.252	.260	.274	.286	.295	.304
	90	.241	.256	.248	.240	.231	.217	.196
	120	.278	.246	.222	.202	.181	.158	.128
	180	.332	.244	.206	.179	.157	.138	.118
10.9	0	.101	.166	.192	.226	.264	.305	.345
	60	.123	.166	.176	.188	.199	.206	.206
	90	.171	.180	.172	.163	.149	.132	.106
	120	.248	.220	.200	.181	.163	.136	.108
	180	.461	.363	.328	.298	.270	.243	.214
22.0	0	102	064	047	026	0	.024	.054
	60	078	032	025	020	016	013	028
	120	106	092	087	087	090	097	106
	147	139	152	156	161	161	159	162
	180	143	184	190	202	219	226	238
34.6	0	046	020	007	.010	.030	.052	.076
	60	042	032	035	034	036	039	044
	90	046	034	045	062	082	107	132
	120	034	026	037	058	074	097	126
	153	018	040	035	048	054	063	068
	180	030	040	039	038	034	023	014
46.2	0	052	044	039	032	020	007	.012
	90	086	068	073	093	112	141	174
	120	066	060	067	079	094	117	132
	158	0	016	025	034	036	033	034
	180	.014	.020	.001	0	002	001	006
59•7	0	030	032	033	034	028	019	012
	90	038	006	009	020	034	057	084
	120	036	008	009	016	022	031	040
	158	018	020	019	020	016	015	016
	180	010	020	027	020	016	013	012
73.1	0	052	046	043	042	036	027	020
	60	068	050	051	058	066	079	096
	90	082	058	059	069	084	101	126
	120	068	056	057	065	062	079	084
	158	014	014	019	026	018	031	040
	180	002	006	013	012	008	001	004
84.3	0	036	046	051	058	056	065	064
	60	066	050	053	062	070	083	102
	90	082	056	055	063	074	083	106
	120	082	058	063	067	074	079	086
93.5	0	145	120	116	119	114	111	122

NACA

TABLE V.- SUPPLEMENTARY PRESSURE-COEFFICIENT DATA FOR

Angle of attack Radial Station (deg) (percent) angle, ø -5 -3 -3 -2 -2 0 2 4 6 8 10 5.6 0.171 0.196 0.245 0.275 0 0.195 0.213 0.211 0.349 0.311 0.439 0.397 60 .202 .223 .223 .283 .233 .233 .249 .263 .273 .297 .304 .242 •228 90 .249 .251 .253 .253 .257 .249 .217 .198 .240 120 .280 .267 .265 .261 .261 .247 .223 .202 .178 .158 .128 180 .331 .293 .293 .277 .277 .243 .208 .178 .154 .138 .120 10.9 0 .101 .124 .125 .137 .137 .165 .194 .228 .262 .347 .307 60 .125 .144 .141 .153 .153 .167 .178 .188 .196 .206 .206 90 .178 .181 .173 .177 .181 .162 .146 .179 .174 .132 .106 .248 120 .239 .235 .239 .235 .221 .202 .180 .160 .138 .110 180 .462 .423 .421 .405 .403 .365 .329 .297 ·268 .243 .214 22.0 0 -.101 -.089 -.090 -.081 -.080 -.027 -.065 -.045 -.001 .024 .056 -.077 -.055 60 -.056 -.047 -.048 -.023 -.035 -.021 -.017 -.015 -.026 120 -.099 -.105 -.100 -.095 -.097 -.096 -.091 -.087 -.088 -.092 -.106 -.148 -.146 -.149 147 -.137 -.147 -.153 -.155 -.162 -.162 -.159 -.164 180 -.143 -.163 -.162 -.168 -.183 -.187 -.169 -.203 -.221 -.226 -.236 34.6 -.046 -.037 -.038 0 -.031 -.032 .009 -.021 -.005 .029 .052 .078 60 -.040 -.037 -.040 -.035 -.034 -.033 -.033 -.035 -.037 -.039 -.044 90 -.046 -.035 -.034 -.031 -.028 -.035 -.043 -.062 -.084 -.105 -.130 120 -.032 -.031 -.032 -.023 -.024 -.027 --.037 -.058 -.076 -.095 -.124 153 -.016 -.037 -.031 -.034 -.036 -.039 -.033 -.046 -.054 -.063 -.066 180 -.038 -.037 -.038 -.041 -.030 -.035 -.037 -.039 -.035 -.023 -.012 46.2 -.050 -.047 -.050 -.047 -.048 -.043 0 -.037 -.033 -.023 -.007 .014 90 -.083 -.075 -.076 -.071 -.070 -.067 -.071 -.094 .114 -.174 -.141 -.063 -.059 -.060 -.059 -.058 -.059 120 -.065 -.080 -.094 -.117 -.130 158 .002 -.003 -.004 -.007 -.006 -.019 -.023 -.035 -.039 -.033 -.034 180 .016 .019 .002 -.001 .006 .006 .013 .014 -.005 -.001 -.004 59.7 0 -.030 -.031 -.032 -.033 -.034 -.033 -.031 -.035 -.029 -.019 -.010 90 -.036 -.031 -.018 -.011 -.012 -.007 -.007 -.021 -.037 -.055 -.084 $\begin{array}{c} -.034 \\ -.015 \\ -.020 \\ -.015 \\ -.010 \\ -.019 \\ -.022 \\ -.019 \\ -.020 \\ -.019 \\ -.020 \\ -.019 \\ -.019 \\ -.017 \\ -.017 \\ -.019 \\ -.017 \\ -.019 \\ -.017 \\ -.019 \\ -.019 \\ -.019 \\ -.011 \\ -.025 \\ -.021 \\ -.025 \\ -.021 \\ -.019 \\ -.019 \\ -.011 \\ -.019 \\ -.011 \\ -.012 \\ -.025 \\ -.021 \\ -.021 \\ -.025 \\ -.021 \\ -.019 \\ -.011 \\ -.019 \\ -.011 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.021 \\ -.025 \\ -.021 \\ -.011 \\ -.011 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.011 \\ -.012 \\ -.012 \\ -.011 \\ -.012 \\$ 120 -.040 158 -.016 180 -.018 -.021 -.025 -.021 -.019 -.011 -.010 73.1 0 -.050 -.051 -.050 -.049 -.048 -.047 -.041 -.040 -.037 -.027 -.018 60 -.065 -.059 -.058 -.055 -.054 -.051 -.049 -.058 -.066 -.079 -.094 90 -.077 -.067 -.066 -.063 -.062 -.059 -.057 -.070 -.084 -.101 -.124 120 -.065 -.059 -.062 -.059 -.058 -.055 -.057 -.066 -.070 -.077 -.084 158 -.016 -.017 -.018 -.015 -.018 -.017 -.017 -.027 -.027 -.031 -.040 180 0 -.003 -.006 -.007 -.008 -.007 -.011 -.019 -.011 -.001 -.004 84.3 0 -.040 -.034 -.039 -.041 -.040 -.047 -.049 -.058 -.050 -.063 -.064 -.058 -.056 60 -.063 -.059 -.053 -.051 -.051 -.062 -.062 -.083 -.102 -.063 -.059 -.060 90 -.077 -.066 -.057 -.053 -.064 -.066 -.087**|-.**106 120 -.079 -.069 -.070 -.063 -.064 -.059 -.068 -.066 -.061 -.079 -.084 93.5 0 -.145 -.133 -.134 -.127 -.128 -.121 -.115 -.120 -.108 -.115 -.120

THE COMPLETE FUSELAGE

NACA

TABLE VI.- PRESSURE-COEFFICIENT DATA PRESENTED IN FIGURES 14 AND 15 AT POSITION $\phi = 180^{\circ}$ on the body of revolution

Station		Ang	le of at (deg)	tack	
(por como)	-5	0	2	6	10
1.7 5.6 8.5 11.0 15.4 16.8 19.9 22.0 24.4 27.3 34.7 38.7 44.8 46.3 47.5 52.5 59.7 65.0 71.5 73.2 74.5 79.0 84.1 86.0 90.0 93.5 96.0	$\begin{array}{c} 0.338\\ .330\\ .314\\ .230\\ .155\\ .093\\005\\031\\021\\013\\011\\011\\001\\027\\045\\045\\045\\045\\049\\045\\049\\049\\047\\041\\085\\122\\ \end{array}$	0.250 .242 .224 .152 .086 .030 060 079 065 046 022 046 026 026 046 058 048 058 058 058 058 058 059 065 060	0.218 .208 .194 .125 .061 .006 073 073 075 054 028 012 034 046 044 060 044 060 044 022 038 054 058 058 036 032 038 036 032 038 036 038 039 073	0.164 .158 .142 .084 .020 029 101 113 089 065 027 011 033 051 065 037 011 .002 003 047 059 023 031	0.123 .119 .107 .047 015 059 111 125 099 065 017 005 029 047 065 021 021 003 .005 021 003 049 067 039 031 019 059 155 171

NACA_

TABLE VII.- SUPPLEMENTARY PRESSURE-COEFFICIENT DATA AT POSITION

 $\phi = 180^{\circ}$ on the body of revolution

-.048 -.068 0.120 116 102 242 -.018 -.068 -.022 -.010 -.032 -.068 -.026 -.006 .08 -.060 -,102 100.1 -.038 -.030 -.018 -.170 - 064 -.118 -.130 -.154 5 - 044 - 117 - 117 - 1095 - 0087 - 0087 - 0032 - 0032 - 0032 - 0032 - 0032 - 0032 - 0032 - 0024 - 0024 - 0024 - 0024 - 0024 - 0057 - 000 0.140 .138 .138 .124 .066 -.046 -.135 -.141 -.022 -.030 -.052 -.061 - 008 ω -.032 -.004 .010 -.046 -.063 -.052 -.008 -.034 -.054 -.030 0.14C .136 .124 .064 -.008 -.107 -.119 -.067 -.020 -,022 -- Ott -.095 -.135 -.141 ω 0 0.165 .159 .143 .085 -.010 -.034 -.052 -.056 -.038 -.010 -.090 -.064 -.028 -.048 -.030 100.1 -.060 -.030 -.016 -.121 -.129 -004 -.048 9 -.056 -.012 -.087 -.103 -.083 -.083 -.083 -.036 -.048 -.040 -.016 -.016 -.062 -.036 -.016 - °024 -.060 -.006 -.028 -.125 -.125 0.190 .182 .167 .103 -•014 4 -.018 -.062 -.018 -.007 -.058 -.036 -.028 -.014 -.125 ± Angle of attack (deg) 0.218 .208 .194 .125 .061 .061 .073 .006 .073 .073 -.012 -.046 -.060 -.022 1001 -.018 -.058 -.040 -.028 -.034 -.044 -.028 -.062 -.054 -.034 -.089 N 0.25C .242 .226 .226 .086 -.065 -.046 -.022 -. 0<u>18</u> -.022 -.010 -.046 -.058 -.022 -.058 -.065 -.048 -.042 -.065 -.058 -.026 -.036 1.069 0 -.033 -.015 -.035 -.040 -.096 -.078 0.287 277 264 182 1182 .055 -. O48 -.017 -.017 -.009 -.052 -.062 -. of 6 -.040 -.060 100 --.033 -.072 Υ 0.294 .278 .266 .186 .123 .053 .053 -037 -.051 -.033 -.005 -.017 -.037 -.057 -. 043 -.005 -000 -.055 -.065 - 019 -.035 120.1 - 61 268. 1 -.075 Ч 0.300 .2900 .1275 .124 .124 .124 .064 .0053 .005 -.013 -.037 -.055 -. CF3 -.019 -.005 -.013 -.055 -.047 -.039 -.079 -.152 100. -.067 -.051 Υ -.012 -.036 1.042 -.018 -.066 -.012 1.054 011.--.054 1.00 -.050 тъ Г -.038 -.078 -.149 Υ Ƴ Station (percent)

NACA

TABLE VIII.- PRESSURE-COEFFICIENT DATA PRESENTED IN FIGURES 16

AND 17 AT POSITION $\phi = 180^{\circ}$ on the top canopy

Station			Angle	of attac (deg)	k		
(per cont)	-5	0	2	4	6	8	10
1.8 5.1 8.5 10.9 22.0 34.5 46.1 60.0 73.0	0.338 .332 .475 .461 143 030 .014 010 002	0.248 .244 .357 .363 184 040 .020 020 006	0.212 .206 .308 .328 190 039 .001 027 013	0.186 .178 .254 .297 203 039 001 021 019	0.163 .157 .205 .270 219 034 002 016 008	0.142 .138 .184 .243 226 023 001 013 001	0.122 .118 .214 238 014 006 012 004

NAC

-

POSITION $\phi = 180^{\circ}$ on the top canopy

Station					Angl∈	e of at (deg)	ttack				
	5-	-3	-3	9	-5	0	5	† †	6	8	10
642005550 642005550	0.337 143 030 016	0.301 -293 -426 -162 -038 -006	0.301 - 163 - 035 - 035	0.283 277 405 403 -168 -014	0.285 .277 .405 .405 -169 -037 .013	0, 249 .243 .357 .357 .355 .355 .355 .355 .041 .041	0.214 .208 .311 .329 .329 .329 .037 .037	0.186 .179 .254 .298 .298 .038	0.160 .154 .200 .268 .268 .035	0.142 .138 .1384 .243 .243 .2243 .2263	0.122
73.0	0 10 -	900	Сто -	800 ·-	200 Кто 	021	(20	070	011	100 .	010
										NAN NAN	V

NACA RM L50B14a

(a) Schematic drawing of cruciform probe.

(b) Three-quarter-front view of cruciform probe.

(c) Pitot-static probe.

Figure 2. - Calibration probes.

Page intentionally left blank

Page intentionally left blank

Figure 3.- Variation of local Mach number with dew point for representative upper-wall stations along nozzle axis of the Langley 4- by 4-foot supersonic tunnel for a stagnation temperature of 110° F and 0.25-atmosphere stagnation pressure.

Horizontal flow angle, O_H, degrees

gure 5.- Stream conditions in a transverse plane looking up at station 241 in test section of M = 1.40 nozzle of the Langley 4- by 4-foot supersonic tunnel.

NACA RM L50B14a

Figure 5.- Continued.

(b) Vertical flow angle, θ_{V} , degrees.

NACA RM L50B14a

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(c) Mach number.
--	------------------

Figure 5.- Concluded.

Page intentionally left blank

Page intentionally left blank

Page intentionally left blank

Page intentionally left blank

Чθ

Μ

NACA RM L50B14a

<u>3</u>6

Figure 9.- Downstream view of the body of revolution in the Langley 4- by 4- foot supersonic tunnel.

Page intentionally left blank

Page intentionally left blank

NACA RM L50B14a

NACA RM L50B14a

Percent body length

Figure 14.- A comparison of the theoretical and experimental axial pressure distribution at 0° angle of attack along the top surface $(\phi = 180^{\circ})$ of the body of revolution, M = 1.40.

Figure 15.- A comparison of the theoretical and experimental axial pressure distribution at several angles of attack along the top surface ($\phi = 180^{\circ}$) of the body of revolution, M = 1.40.

Figure 16.- A comparison of the experimental and estimated pressure distribution at 0° angle of attack on the top fuselage canopy $(\phi = 180^{\circ})$, M = 1.40.

Figure 17.- The experimental pressure distribution at several angles of attack on the top surface ($\phi = 180^{\circ}$) of the fuselage canopy, M = 1.40.

NACA-Langley