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RESEARCH MEMORANIUM

THE EFFECT OF ACCELERATING A HYPOTHETTCAL ATRCRAFT
THROUGH THE TRANSONIC RANGE WITH CONTROLS FIXED

By Howard F. Matthews

SUMMARY

Mach number histories of the motion experienced by a hypothetical,
small, straight—wing aircraft accelerating at various rates through an
assumed controls—fixed pitch—down balance change in the transonic range
were obtained by a differential analyzer. For this particular case, the
maximum change in normel acceleration is shown to increase with increas—
ing longitudinal acceleration up to a certain magnitude of longitudinal
acceleration, after which the maximum change in normal acceleration
decreases with further increases In longitudinal acceleratlon. It is
found that the Mach number variation of the angle of attack for statie
balance determines to a great extent the degree of the increase in the
maximum change in normal acceleration. The effects of changes in atti-—-
tude, altitude, moment of inertia in pitch, and a factor representative
of the Mach number range of the balance change on the response of the
aircraft are alsgo noted.

Two approximate analytical solutions of the longitudinal equations
of motion are developed which are based on certaln simplifying assump-—
tions indicated by the differentiasl-analyzer results. Examples of each
of these methods are presented ani the results are shown to compare favor—
ably with the differential-analyzer solutions Computation time estimates
for each method are also given.

INTRODIUCTION

It is well known that conventional straight—wing aircraft experilence
unusuel balance changes in the supercritical or transonic flight range.
These balance changes may arise from a loss in 1ift at constant angle of .
attack, altered wing pitching-moment characteristics, a reduction of
longitudinal-control effectiveness, or their combined effects. These are
customarily summarized in reports by a plot of horizontal stabllizer inci-—
dence or elevator angle for steady level flight as a function of Mach
number. The rapid and sometimes rather large changes in longitudinal con—
trol deflection necessary for balance shown on such plots, which are
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usually accompanied by changes In cantrol force for balance, led to the
belief that & pilot may have difficulty maintaining steady level flight

as the aircraft accelerates through the transonic range. In addition, he
possibly may apply adverse control deflection due to his relatively slow
reaction time and inabllity to transmit changes in attitude or normal
acceleration into proper corrective control deflection, especially since
the effectiveness of the control may be rapldly varying. For these rea—
sons, the proposal of accelerdting through this region with fixed longi-—
tudinal control was advanced, with the further supposition that increasing
the longitudinal acceleratlon might reduce considerably the effect of the
attendant balence changes on the motion of the aircraft. It mey be men—
tioned that the foregoing also has 1ts correlative problem in the accel—
erating phase of the flight of supersonic guilded missiles, including those
launched from high subsonic speed aircraft,

A brief study was made, therefore, of the effect of longitudinal
acceleration on the normal acceleration, particularly the maximum normal
acceleration, for a hypothetical straight—wing alrcraft subjected to an
agpumed pitch—down balance change in the transonic range. Due to the
complexity imposed by the assumed nonlinear variation of the aerodynamic
parameters with Mach number, a differential analyzer was used to permit
rapld simultanecus solution of the three longitudinal equations of motiom.

To make possible the solving of these equations of motion without
the use of specialized computational equipment, simplified approximate
analytical procedures were developed hased on the results From the differ—
ential analyzer. These approximate analytical methods also lead to 2n
indication of the effect of longitudinel acceleration on the estimation .
of steady—state stability characteristics obtained by the research tech~
nigue of programmed control motions of rocket—powered models.

ROTATION

Aq . longituiinal acceleration factor, the ratic of the net aerocdy—
namic force in the direction of the relative wind (positive
when directed forward) to the weight of the airplane /aM

g

Ap normal acceleration factor, the ratio of the net aerodynamic
force perpendicular to the relative wind (positive when

directed upward) to the weight of the airplane (...%..)
thrim
ag
Cp drag coefficient

C1, 11ft coefficient (lift>
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C
Lgyim

el

airplane 1ift coefficient for steady level flight <ls>
&

lift—curve slope of complete airplane

lift—curve slope of the horizontal tall

pitchj.ng—moment coefficient about the center of graviiy
<pitching moment)
asSc

pitching-moment coefficlent about the center of gravity for
zero i;, B, amd Cy

oC
static longitudinal stability parameter (Sc—m->
L

' oc
stabilizer effectiveness parameter (a—m>
1

’ oc
elsvator effectiveness parameter <a—8ni>
e

pitching moment of inertia, slug—feet squared

Mach number (g-)

wing area, square feet
horizontal—tail area, square feet
thrust, pounds

velocity, feet per second

weight of aircraft, pounds
velocity of sound, feet per second
wing span, feet

wing section chord, feet

wing mean aerodynamic chord
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g gravitational acceleration, feet per second sguered

h,‘p pressure altitude, feet

iy stabilizer angle

1y tail length, feet

m mass of aircraft (‘i>, slugs

ng tail efficiency factor < )

q free—stream dynamic pressure . <—«pvz) s pounds per square foot

a¢ dynamic pressure at the horizontal tail, pounds per square foot

t " time, seconds

¥y . lateral coordinate of wing section chord, feet

a angle of attack

Qg angle of attack for zero 1lift

¥ flight-path angle (@-a)

56 elevator angle )

€ angle of downwash at the horizontal tail

t ratio of damping of the complete airplane to that of the hori-
zontal tail

a angle of pitch

s} mass density of air, slugs per cubic foot

All angles are in radians unless otherwise noted. A dot () or double
dot (-+) above a symbol represents, respectively, the first and second
derivative with respect to time. The sgubscripts 1 &and s refer to
initial and static-balanced conditions, respectively. The term "static
balanced" is used herein to specify the values of «, Cj, oOr Ap,
which give zero pitching moment in steady (no longitudinal acceleration)
flight.
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DIFFERENTIAI~ANATYZER CALCULATTIONS
FOR HYPOTHETICAL ATRCRAFT

Method of Analysis

Since in the transonic speed range the aerodynsmic parsmeters which
influence the motion of an airplane are generally nonlinear functions of
Mech number, the simultansous solution of the longitudinal equations of
motion appeared too time consuming for a normel step-by—step procedure.
Therefore, the differential analyzer at the University of California at
Los Angeles was used to solve these equations of motion.

A number of solutions were obteined corresponding to different vari—
ations of the important aerodynamic parameters with Mach number; changes
in initial altitude and attitude, and several magnitudes of constant
thrust. This was done with a twofold purpose: first, to show the mechan—
ics of the motion of an airplane subjected to a balance change in the
transonic range, particularly with regard to the maximum change in A,
developed, for different constant thrusts (or, as ezamination of results
later showed, approximately comnstent longitudinal acceleration A; for
thrust velues of practical interest); and,second, to provide information
relative to a possible simplification of the longitudinal equations of
motion or other artifice leading to an analytical solution.

It was realized that in the transonic range the serodynamic parame—
ters are not only nonlinear functions of Mach number, but also of angle of

attack at high 1ift coefficients.
have offered no difficulty in solving the equations of motion on the differ--

ential analyzer, but i1t was neglected partly because it was felt to be of
secondary importance and partly due to the belief that it could not be
taken into account in any practical or simple analytical approach.

For each solution, the airplane was assumed initially to be in
steady flight at a stated altitude, attitude, and a Mach number of 0.90.
A given constant thrust was then applied to accelerate the airplane through

the trans onic range.

Equations of Motion

If damping in pitch and the lag in downwash at the tail are the only
nonstatic aerodynmamic effects considered, the equations of longitudinal

motion in wind-axis notation are:

T cos & —q 8 Cp — W sin y =mV

-Tsina.-qSCL+Wcosy=—mV7"

[ qstl'bz - » de - _ 0
q 8¢ Oy~ = n, Op (ge +Ea)=1,8

This nonlinearity in angle of attack would
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where Cy is assumed equael to CLu(“F“o) and Cyp eguel to Cm, +
Cmi-t it + Cmse 66 + CmCL CL-

The physical limitations of the differential analyzer made necessary
the assumption that the mass, moment of inertia, and thrust remained con~—
stant with time. An additional simplification was to consider the cosine
of the angle of attack equal to unity and the sine equal to the angle in
radiens. ’

Assumed Characteristics of Hypothetical Airplane
The gepmetric and mass characteristics assumed are:

S, square feet . . « . . . ¢ . . 0 v . . . . 150

St, square feet . . . . . . ¢ o ¢ o v o . .. 30

Cy PEOL v 4 v v 4t v 4 e e e e e e e s e e . 5

Zt, feet . & ¢ 4t o i h d Ve e e s s T W W12.5

W, POUNAB &« ¢ &+ ¢ o =& o ¢« o« s o« s « o« o & « s 1,500

IY’ slug-—feet squared . . . . . . . . « . . 10,000
(unless otherwise noted)

The variation of aserodynamic parameters with Mach nwmber is shown in
figure 1.  Three variations with Mach number are given in this figure
for the lift-—curve slope and the angle of attack for zero 1lift. The
applicable variation 1s denoted in subsequent figures by the letters a,
b, or .c¢. Initial level flight at a pressure altitude of 50,000 feet
was used unless otherwise 1ndicated. The ratic of the damping of the
complete airplane to that of the tail { was assumed to be constant and
equal to 1.15, and the tail efficiency factor =ny equal to 1.0.

Results and Discussion

Since the terms "static-balanced angle of attack" and "static—balanced
normal acceleration™ occur frequently in the subsequent discussion, it is
believed desirable to clarify by two examples the definition given in the
section Notation. For instance, if tail damping 1s negligible, the static—
balanced condition can be thought of as a steady turn of a radius of curva—
ture Jjust sufficient to develop the static—balanced normal acceleration
AnS and statlc—balanced angle of attack o  at the particular Mach number

under consideration. - Likewise, the 1lift coefficient and angle of attack
assumed by a free—floating model with the plivot polint at the assumed '
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center of gravity are representative of static—balanced conditions.

Usually the response of an alrplane to a disturbance is illustrated
by & time history of appropriate quantities. For this particular study,
however, it 1s bslieved more meaningful to plot the response as a Mach
number history, since the basic balance change or forcing function, repre—
sented by og or Ang, 1s Independent of longitudinal acceleration when

plotted as a function of Mach number.

As may he seen from the equations of motlon, the instantanecus values
of the asrodynamic loads and associated moments have been assumed to be
completely defined. by the angle of attack of the lifting surface; that is,
the lag in the build-up of circulation due to unsteady motions has been
neglected. It follows that any dymamic effect of longltudinal eccelera—
tion must arise through its influence upon the pitching response of the
aircraft. For the plitch—down balance change defined by characteristics
(a) of figure 1, figure 2 shows that the dynamic effect of longitudinal
acceleration occurs &s an increasing initial speedwise lag in angle of
pitch with increasing longitudinael acceleration.

In figure 2 and most of the succeeding figures, the average longi—
tudinal acceleration 'Alav correspornding to each value of constant thrust

is noted. The longitudinal acceleratlion was found to be nearly constant
over the Mach number range at high walues of thrust, but incressing devi—
ations from & constant magnitude occurred at lower thrusts. It is partly
for this reason that data at low thrusts are omitted and partly due to the
fact that the extreme changes in attitude and altitude and the relatively
large time Interval necessary to traverse the balance change associated
with low thrusts preclude thelr practicability.

In figure 3 are plotted Mach number histories of the angle of
attack and normal acceleration for the same average longitudinal acceler—
ations as in figure 2 and for the static-balanced condition. It is appar—
ent from this figure that at a relatively low value of Alav the response
of the aircraft follows closely the static—balanced condition with increas—
ing departures occurring at higher accelerations. At some magnitude of
Aza ; &a peak in the maximum change of normal acceleration is reached,

v
which, for the conditions assumed, 1s appreclably greater percentagewise
than for a low value of Aza ,» although the actual magnitude of the

v

increase in g 1is small due to the extreme altitude. This effect of
longitudinal acceleration upon the maximum change in normal scceleration
(or to the ratio of the maximum change in dynemic to static—balanced nor—
mal acceleration, whilch, for convenience, will be referred to hersafter
as the normal-acceleration response ratio) is largely dependent upon the
variation of the static-balianced angle of attack with Mech number.

Figure 4 shows the results of & number of solutions by the differential
analyzer for three variations of <., but an identical variation of

=}
with Mach mumber. The variations in o, were obtained by changing the

B8



8 : NACA RM AQJ26 -

Mach number variation of a, and CL@' It is seen that the most pro- e

nounced effect of longitudinal acceleration upon_normal acceleration
occurs for the condition of ‘the greatest variation of ag with Mach
number. . R I R LT .

Comparatively large changes in initial flight—path angle (Oo and 309),
moment of inertia (5,000, 10,000, and 20,000 slug—ft?), and sltitude
(30,000, 40,000, and 50,000 ft) have relatively little effect on the mag—
nitude of the peak of the normal-acceleration response ratio. A change
in Mach number width of the balance change, the width being defined herein
as the Mach number increment between the initial Mach number and that for
maximum change in Ans’ also has little effect on the peak normal-

acceleration response ratio if and ag plotted as & function of

percent of the Mach number width of the balance change remain the same.
As illustrated in figure 5, independent changee in moment of inertia,
Mach number balance change width, and altitude have an appreciable effect o
on the magnitude of the average longitudinal acceleration at which the
peak normal-acceleration response ratioc occurs., The assumed balance
change in this instance is cof a larger magnitude than that for previous
figures, but it 1s believed that the results in figure 5 indlcate the
general trend. ' s S

From the date presented, it is apparent that, 1f the Mach number
width of the balance tchange is of .the order of 0.05, the totel thrust
capabllities of transonic research aircraft may place them in a region
wvhere the normal acceleration is appreciably affected by longitudinal e -
acceleration.

STMPLIFIED COMPUTATION METHODS

Since a differential analyzer is not always avallable, the develop—
ment of relatively quick approximate analytical methods by which the
response of an aircraft to longitudinal acceleration could be computed .
was believed desirable. In the following two methods, the validity of .
the assumptions mede in developing these methods was indicated by the
results from the differential analyzer and was substantiated in each case
by comparing the normal acceleration computed by the analytical method
with the differential-analyzer answers for two values of longitudinal
acceleration. These methods are based on reducing the three longitudinal
equations of motion to a single differential equation in angle of attack
which is of the second order, linear, and nonhomogeneous.

Modified Step by Step

Theory.— Examination of Mach number histories for the longitudinal —
accelerations considered revealed that the flight-path angle (but not 7) .
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was relatively constant. Since the time interval to traverse the balance
change is small, resulting in little change in altitude, the density of
the air and speed of sound slso can be considered unchanged during the

flight.

If V 1is replaced by aM and V by aM, the two force equations
may be combined by eliminating thrust and the longitudinal equations
reduce to the following:

} o +

&'=é-[<']é-'%31§' M(CLG‘+CD)+<I:{+§sin71>

K
(35), new (8 ),

= -

(1)

=

2. .
. s¢ .
X

(%——————pﬁstzta) | M ni cI-cx..b ( Lo+ % dr.) (2)
K

Iy
where the terms enclosed with parenthesis with a subscript K are con—
stant. Differentiation of equation (1) gives
=% —| fLees g
o =6 [(2 = M(CI,G+CD)+<M+ sin’ri) ]
X X

(G5) W (@egn) ()]

(1) ow <o) @)
K _

E

=~

It is advantageous to evaluate the term ( i—) at this time.
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aQM)_ @ (1) .
dt M2

Substituting equations (1), (2), and (L4) into equation (3) to eliminate
P and its derivatives and noting that

C + C

_Cmc,ms= My e

the equations of motion reduce to the following single, second—order,
linear, nonhomogeneous dlfferential equation with variable coefficients:

.

it + Cmﬁe _53 —_— Cma CLO
%+ b + ke =f o : (5)

where

- (X pasS ) ' . g )
b = (2 = M (CLor, + Cp) +<M + 2 8in 73
K

4l
+

K

G55, o, (8)

k=—<]2' pa2sc Mzcma (1 P&Sthf) MntCL% [( EsiKm(cLa+CD)+

] afm(c Cp)l
<fd+gsin7> L] (pemsy) a0
a 1 M 2 m K aM
K

=] g . )
(M +EMsin71 K B . o " .
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_ _ (1 pas3) ,2 19’-‘-51;%2) 1 pas
£ = —(L083%68) W op g + (L BSEMD) )
<2 Iy Mg 78 2 Iy Kk ntcl“fbg 2 mKMcI'cx.m°+

a(M c (Eﬁ )
(5- cos 71 l'-:!+ <l ﬁM) ( Lo, %) — & °F Tk
a M o % aM M=

Equation (5) is recognizable as the fundamental equation of simple, damped,
vibratory motion with the exception that in this instance the coefficients

b and k, representative of the damping and the spring constant, respec—
tively, are nonlinear functions of Mach nuwber or time. Therefore, consider
the case in which the Mach number range under investigation is divided into a
number of interwvals, the interval being chosen sufficiently small so that the
variables b and k can be assumed constant In magnitude amd £ &a linear
function of Mach number. The solution of equation (5) for comstant coeffi—
cients can take any one of three forms, depending on whether both roots of
the auxiliary equation are real and unequal (b/2)2>k, real and equal
(b/2)2 = k, or complex k> (b/2)2 and can be found in any standard text

on differential equations or vibrations. The following is the solution

(in terms of M since t = AM/M) for the most common case of k> (b/2)2:

R G RPN C= )

Fq

Fo + 7 O : (6)

& = e;‘%m [ <B Vi — (b/2)2- (b/2)A> cos( i —ﬂ<‘°/2)2 m) _

(1)

(AJ k — ('b/2)2+ (‘::./2)13) sin ( K ; (o/2)" AM) ] + Fy
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where . S oL . .

£ 18 represented by + gﬁ-am

Tam=0

o
y
N
&R
Ll o]
N

Fo= fAM.=O — bFy

= %am=0 — ¥o

Gy + (D/2) A —Fy

Nk — (b/2)?

The Mach number interval is denoted by AM and the initial &am=0

is obtained from equation (1) by assuming 6 equal to zero. The Mach num—
ber history of angle of attack of the aircraft is computed step by step by
means of equations (6) and (7) for each Mach number interval, the initial
conditions of one interval being equal to the end boundary conditions of %he
previous intervel. The motion of the airplane can then be completely defined
by obtaining the angle of pitch from equation (1).

Results and discussion.— The necessary curve fitting and computations
of an exsmple are shown in figure 6 and table I, respectively. The selec—
tion of AM (& constamt velue of 0.02 for the example shown) is obviously
an important factor and is a compromise between the  AM for minimum com-
putation tims and the AM for greatest accuracy. The optimum value i
clearly that magnitude which will give the desired accuracy in the minimum
time and may be best selected by the examination of the computations at a
number of values of AM. The AM need not be the same for each interval,
but the camputations are reduced slightly if it is constant. The results

of this example and one at a higher value of Az are compared with the
av

differential-analyzer answers in figure 7. It is evident that by this
method good correlation is obtained with the differemtial-analyzer Mach
number historiles. :

Initially, it may appear that this method 1s at least as time L . e
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consuming as the normal step—by-step procedure, but & careful scrutiny of
the equations defining b, k, and £ shows that only portions of these
factors are affected by M, and then only in a simple manner. This is a
very important time-saving characteristic if Mach number histories are
desired for a number of longitudinal accelerations. Some simplification
in the factors b, k, and f usually mry be made. For instance, Cp
is normally negligible compared to ch even 1n the transonic reglon,

and the portion of k containing the tail damping may be negligible,
depending upon the amount of static stebility. It has been estimated
that, given the necessary asrodynemic data in the form as shown in flgure
1, & Mach number history in angle of atbtack for one longitudinal accelera—
tion would require approximately two and a half computer days and that
each succeeding longltudinal acceleration would necessitate aboubt one
additional computer day.

A study of the terms forming the coefficients b, k, and f of
equation (5) indicates that there are two basically different effects
of longitudinal acceleratlion; one that arises from the terms which are
functions of M; and the other from the fact that different longitudinel
accelerations csuse the assumed disturbance to be traversed in different
lengths of time or perioda. The lstter effect is analogous to that of
firgt—order vibrating system in which the amplitude of the response
depends both on the magnitude of the Input disturbance and on the ratio
of its frequency to the natural frequency of the system. For simple
disturbances then, an estimatlon of the longitudinal ecceleration for
maximum chenge in normel scceleration mey be made by computing the 14
which will result in the perlod of the disturbance belng equal to the
average natural perlod of the sirplane.

A method of research in the tramsonic range which 1s belng increas—
ingly utilized is the rocket—powered model flight, wherein the controls
are programmed to have simple motions throughout the flight and the
response of the model measured by appropriate Instruments. Much useful
information 1s obtained from these tests, such 28 sn estimstion of the
static and dynamic—stebility characteristics derived from the period and
damping of the osclllation following the control deflection. The pericd

and time to damp are inversely proportional to the coefficlents \h@(b/e)z
and b, respectively, of equation (5). It appears from an exemination of
these coefficients that appreciable errors can occur in the determination
of the stabllity of the full-size configuraetion from the powered portion
of such flights of high longitudinal accelerations are developed during
this period and for this reason the coasting portion of flight is used for
the data analysis.

Equivalent-Disturbance Method

Theory.~ The differential-analyzer results indicated thaet the Mach
number history of Ans (or CLS) and a, had considerable effect on the

response of the aircraft during longitudinally accelerated flight. This
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fact suggested the concept of an “equivalent disturbance"; that is, one
in which the Mach number variation of the serodynamic parameters which
define cLs and ag could be changed to suit some particular purpose,

and, provided the Mach number history of CLs and g remained the
same, the response of the airplane would remain relatlvely umaltered.

A close approximation to the correct solution is then obtainable by
assuming Cr_, Cp s Bt Cr, > defda, t, and M (where it appears in

the equations of motion) constant over the Mach number range and adJjusting
Cmo + Cm1 1t + Cﬂa 3¢ &and og 80 that the Mach number variation of
t e ’

c and o remains the same. For this method, it 1s convenlent to
rewrite the equations of motion in terms of the angle of attack, the angle

of zero 1lift, and the static angle of-attack, all measured from initiel
condition. With C; neglected, equation (1) can then be rewritten as

I:i+ssin7
s 1 - a i
a—é—(-e—ﬁmMC + S ) <cx.t=o+/_u>+

(35 CI°°>K (ogeo + 20) +(& Q—MLL)K (8)

where, as before, the terms enclosed within parenthesis or brackets with
8 subscript K are cansitant. For steady—state conditions at t=0,

equation (8) becomes

_ 1 pas g sin 74 1 pas
0'“(5?’“’1@."_; M ) d’t=°+<2 m MCIu) %og=0 *
K K

(S’ cosM?’j_ )K (9)

Subtracting equation (Q) from (8) gives
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. g
-_- 1p8.S M+Esin71> (lpas > _
@ =6 — <2 mMCI'a.+ " N+ 2 MCI.G Act.

(%)K “t=0 : (10)

Similarly, the pitching—moment egquation becomes

5 - (f_‘ﬁ%) (sortee)- (322 o, ) [, 6 5

K
%2 ‘5‘] (11)

Combining equations (10) and (11) as before, the resulting differential
equation is

A+ DA ¢ KA = ET (12)

where
g
M+ =2 sin ¥ paS?,ZM
1 paS a i.1 tot de
bt = | = = c &£
[2 mMCIu,+ % +2 I ng Clg, §+d
1 pa®sc 2 1 paSyly”
Kkt = [—2L M Cp, += MngCp ¢t(f88 mcp +
2 Iy Iy, 2 Iy . 2 m L

y g
M+a—sinyi>}
M

2—
£1 = <_1pali°m2cma ms+<;E;‘ES—MCIq> Ny +
K

X

|
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pesS; 1+2M
<g__ the M

1 eas
> Iy Clg, ¢35 = M.CL&% -

the negligible constant term

pastlt
=2

nt CI'% LM %=o>

being omitted from £!'. Equation (12) is now of the form where the prin—
clple of superposition applies and Duhamel's integral theorem may be used
to calculate A due to the irregular variation of the disturbance f!t.

A semigraphical application of this theorem which was applied in reference
1 to the calculation of the motion of an airplane under the influence of
irregular disturbances and more recehtly in reference 2 was used for the
present computations. Thls method reduces essentially to the solution of
equation (12) for a unit step—forcing function f£'(1) and the combination
of this response with the variable f' by means of Duhemelts integral i
through use of a simple graphical procedure. -

Results and discussion.—~ The assumed equivalent—disturbance param—
eters, along with the original variation of the parameters with Mach num—
ber for the same examples as shown in figure T are presented in figure 8.
The values of ch’ Cmm, ng Cp, » £, @and de/da represent average

values over the range from the initisl Mach number to the Mach number for
maximum chenge in An65 it was found that these magnitudes glive good

results. The Mach number at the maximum change in Ang wvas used in com—
puting the coefficients b*, k', and 1'.

Figure 9 illustrates the graphical integration procedure for one of
the examples at a specified instant of time, and is discussed in detail
in the appendix. A

Figure 10 shows the good agreement between the computations by this
method and the differential-analyzer sanswers for the same two longitudinal
accelerations used in the modified step-by-step method camparison. The
method 1s relatively rapid, the first case requiring approximately two
computer days and each succeeding case about three—quarters of a computer
day. It should be noted that if-the effect of M wupon b' and k! is
small, the response to a step input f7'(l) mneed be computed only once, a
very important time-saving factor if a number of longitudinal accelerations
are to be investigated.

An evident inaccuracy arises from the use of a constant Mach number
in the simplified equations of motion in place of the true Mach number .
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variation over the range being Investigated. It 1s believed, therefore,
that this method should be applied omly to a balance change, the Mach
number range of which is sm=ll.

CONCILUSIONS

As & result of an investigation to determine the effect on the
motion experienced by a hypothetical, small, straight—wing aircraft wken
accelerated at various rates through an assumed controls—fized pitch—
down balance change in the transonic range, the following conclusions
may be made: '

1. The maximum change in normal acceleration increases with increas—
ing longitudinal acceleration up to a certain magnitude of longitudinal
scceleration, after which it decreases with further increases in longi--
tudinal acceleratiom.

2. The Mach number variation of the angle of attack for static bal-—
ance determines to a great extent the degree of the effect of longitudinal
acceleration on the normal acceleration.

3. Changes in altlitude, initial flight—path angle, moment of inertia
and a factor representative of the Mach number range of the balance change
(defined herein as the Mach number width) have little effect on the magni—
tude of the peak of the ratic of the maximum change in dynamic to static—
balanced normal scceleration, but an increase in moment of inertia and
altitude and & decrease in Mach number width decreases the magnitude of the
average longitudinal acceleration at which this peak occurs.

4, The two approximate analytical methods for solving the equations
of motion which were developed give good results for the assumed balance
change. The modified step-by-step method appesars to be applicable to all
problems of this type. However, the accuracy of the equivalent-disturbance
method has not been adequately investigated so 1ts use should be limited to
cases similar to the one investigated.

5. The methods presented hereiln may be used to study the effects
of longitudinael acceleration on the results obtained from rocket models
flown to determine the static end dynamilc stebility characteristics and
es an ald in planning flight programs to avoid the effects of longitudinal
acceleration on these characteristics.

It is difficult to generalize on the basis of the results of this
brief investigation, but it is believed that the above noted trends
indicated should apply to any similar balance change.

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeromautics,
Moffett Fleld, Calif.
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APPENDIX

CAICUIATION OF THE INCREMENTAI. ANGLE OF ATTACK Ax
FOR ANY VARTATION OF THE FORCING FUNCTION £

The solutions of equation (12) for a unit step function f£!'(1) can
take any one of three forms, as explained in the section on the modified
step—by—step method, but only the solution for k':»(by2)2 will be pre—
sented in the following equation:

puk! g, B'/2)t (Mo K'-(b'/2) [ /o + |
e (D) + e Oy sin [ . ~(b*/2) ]

cos [JPZTZE;:7ESE t ] .}

The graphical method for combining the response of a unit disturb-—
ance with the variable forcing function f' can best be understood by
following a sample computation. The work sheet for an example is shown
in figure 9, and the procedure is as follows: )

1. Plot Aak!/f'(l) as a function of time to some convenient
scale.

2. Plot £t as a function of-time using the same time scale.

3. Select a time *t, at vhich the Aax due to f' 1is desired.
Project the point on the f!' curve corresponding to this time horizon—
tally until it intersects the 45° line. This line is then deflected
vertically until it intersects the horizontal projection of Aak!/f1(1)
at t=0. This establishes the point labeled (1).

L, The ordinate of the f! .curve at some time less than t, by
the amount At 1s next projected as before until it intersects the
horizontal projection of-the Aak!/f'(1l) at At. The point (2) is
obtained in this manner.

5. Other points are similarly obtalned to complete the closed
curve for the time +t,. Note that the addition of t on the f' curve
and t on the Aak!/f*(1) always equals tg,. The area encompassed by
the curve is proportional to Aax &t time tqo.

6. The area 1s found by integrating in the direction (0), (1),
(2), etc. If a counterclockwise path is followed in enclosing the
area, the value is positive regardless of the quadrants involved and
vice versa for clockwise integration.
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T. Other curves are drawn for different times. The finnl step is to
correct the areas into the Ao associated with the function f' by multi-
plying the areas by the appropriate scale factors of Ack!/ft(1) and £!
and dividing by kt!. The 1lift coefficient is equal to CI-cra

sgumed

(tp=g + &0 — m°ass ed.)' The correct angle of attack can be cbtained from
um
c
the formula o = —& — 4 g and the angle of pitch from equation (1).
CLa. true
true
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TABLE I.— COMPUTATIONS OF. NCRMAL ACCELERATION BY MODIFIED STEP-BY-STEP METHOD
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