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NACA RM L50A13 CONFIDENTIAL 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

PRELIMINARY INVESTIGATION OF A SUBMERGED AIR SCOOP 

UTILIZING BOUNDARY-LAYER SUCTION TO OBTAIN 

INCREASED PRESSURE RECOVERY 

By Mark R. Nicnols and,P. Kenneth Pierpont 

SUMMARY 

A submerged air scoop consisting essentially of a conventional 
scoop located in a dimple in the fuselage surface has been investigated 
preliminarily at low speeds . The inlet had an entrance width-hei'ght 
ratio of about 3.7 and a steep approach ramp (190 at the entrance) which 
provided a short and compact installation. The internal and external 
flow characteristics of the basic inlet without boundary-layer control 
were studied by means of pressure and tuft surveys over a wide range of 
inlet~velocity ratio. S+-udies were then conducted to determine the 
effects of boundary-layer control, suction-slot location and model 
configuration, and variations of boundary-layer thickness on inlet 
performance. A self-activating boundary-layer bypass was incorporated 
in the final arrangement tested. An indication of the external drag 
was obtained by wake surveys downstream of the scoop and by pressure' 
surveys in the boundary- layer suction flow . 

In the presence of a thin initial turbulent boundary layer 
representative for a fighter airplane in the high-speed high-altitude 
flight condition, the peak total- pressure recovery at the end of the 
2 :1 area ratio diffuser of the basic inlet without boundary-layer control 
was 0.83q and occurred at an inlet-velocity ratio of 1 .1 . Application 

o 
of boundary- layer control increased the pressur~ recovery markedly over 
the entire inlet-velocity-ratio range and shifted the peak pressure 
recovery to a much lower value of inlet-velocity ratio . In the final 
arran ement tested, a suction quantity of 11 . 7 percent of the enterihg 
flow produced calculated increases in maximum net thrust of 6.2 percent 
or greater and calculated reductions in specific fuel consumption of 
3 .1 percent or greater ( compared to ~he bas i c inlet without boundary­
layer control) for a typical j et-engine installation operating at a 
flight speed of 600 miles per hour. It appears that the flow instability 
frequently encountered in the case of twin internally coupled inlets will 
be avoided with this arrangement for design high-speed inlet-velocity 
ratios as low as 0.5. 
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Appreciable increases in the thickness of the initial boundary 

layer caused significant decreases in inlet performance which cannot be 

overcome simply by increasing the suction ~uantity. Hence, the inlet 

appears desirable for application only at forward locations on the 

fuselage where the boundary layer is relatively thin. 

INTRODUCTION 

In modern thin-winged fighter aircraft, e~uipment such as the radar 

scanner and guns must be located on the fuselage nose. This placement 

of e~uipment fre~uently rules out the nose inlet and necessitates the 

use of either the wing-root inlet or the fuselage scoop. The submerged 

version. of the fuselage scoop, the subject of this paper, is of interest 

in such cases because installation usually can be accomplished without 

increasing the frontal area or changing the basic lines of the body and, 

presumedly, without increasing the drag of the body importantly. A 

secondary advantage of the submerged scoop is that the ingestion of 

foreign material into the ducting is reduced as c ompared to other types 

of inlets by external inertia separation. 

A satisfactory internal-flow pressure recovery is more difficult 

to achieve with a submerged inlet than with a conventional protruded 

inlet for two reasons: (1) the submerged approach ramp tends to confine 

the boundary layer approaching the entrance and to prevent it from being 

swept outboard around the entrance, as happens to an important extent in 

the case of the protruded inlet (see reference l)j and (2) the flow 

ahead of the entrance must turn inward where the floor of the approach 

ramp diverges from the basic fuselage contour. This turning of the 

flow decreases the surface pressures in this region and thus, by 

increasing the magnitude of the over-all pressure rise along the ramp, 

causes the boundary layer on the ramp to thicken more rapidly and to 

separate farther upstream~han in the case of the protruded inlet. The 

increased flow velocity in this region also may cause important decreases 

in internal-flow pressure recovery due to boundary-layer-shock inter­

action at free-stream Mach numbers appreciably lower than those for the 

protruded inlet. 

One type of submerged inlet, described in references 2 and 3, has 

been investigated previously by the National Advisory Committee for 

Aeronautics. This inlet has an approach ramp which diverges from the 

basic fuselage surface at an angle of about 70 and is bounded at the 

sides by trumpet-shaped walls which are approximately perpendicular to 

the fuselage surface. As described in reference 3, vortices originating 

at the tops of these ramp walls prevent most of the boundary layer 

outboard of the ramp walls from entering the ramp in the high-speed 

range of inlet-velocity ratio. Thus, as in the case of the protruded 
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inlet~ a large proportion of the fuselage boundary layer bypasses the 
entrance in this range of inlet- velocity ratio. As stated in refer­
ence 3~ the effectiveness of this self-activating boundary-layer 
control decreases as the inlet-velocity ratio is increased to values 
typical for climbing flight because a large proportion of the vortex 
flow then enters the inlet . 

3 

A second type of submerged inlet is the subject of the present 
investigation. This inlet~ designated a submerged scoop~ consists 
essentially of a conventional scoop located in a dimple in the fuselage 
surface deep enough to permit complete submergence of the air inlet and 
wide enough to provide "gutters" on each side of the scoop. If a large 
proportion of the ramp boundary layer can be made to bypass the entrance 
through these gutters~ this arrangement~ in the absence of shock waves~ 
should provide internal-flow pressure recoveries only slightly lower 
than those obtained with conventional protruded inlets. 

Inasmuch as a suitable high-speed facility was not immediately 
available for this type of research, the present preliminary phase of 

1 the investigation was conducted at low speeds in the 15 - scale model of 

the full-scale tunnel, which is described in reference 4. The results 
obtained obviously are directly applicable only to subcritical flight 
Mach numbers. Large changes in the performance characteristics of the 
inlet might Occur at flight speeds appreciably exceeding those corre­
sponding to the initial attainment of sonic velocity on the approach 
ramp. 

The model was installed in a groundboard curved in the transverse 
direction to simulat.e the side of a typical fuselage. The test inlet 
had a width-height ratio of about 3.7 and incorporated a steep approach 
ramp (190 at the entrance) which provide~ a short and compact instal­
lation at the expense of an increase in the magnitude of the negative 
pressure peak at the start of the approach ramp. The internal and 
external flow characteristics of the basic inlet without boundary-layer 
control were studied by means of pressure and tuft surveys over a wide 
range of inlet-velocity ratio . Studies were then conducted to determine 
the effects of boundary-layer control, suction-slot location, and model 
configuration, and variations of boundary- layer thickness on inlet 
performance. A self-activating boundary-layer bypass was incorporated 
in the final arrangement tested . The benefits obtained by the use of 
boundary-layer control are discussed ~uantitatively in terms of the 
performance of a typical jet-engine installation. 

External drag could not be determined directly in the present tests 
because of the obvious limitations of the experimental apparatus. An 
indication of the drag characteristics of the inlet at subcritical speeds 
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was obtaine~, however, by means of wake surveys ~ownstream of the scoop 
and by pressure surveys in the boundary-layer suction flow . 

~ag coefficient (Drag) 
'loAi 

SYMBOIS 

suction-flow coefficient based on boundary-layer thickness 

20 inches ahead of scoop lip (Qs ) 
Voo*b 

suction- flow coefficient based on inlet area of main duct 

~:;o ~ ~: (;:)) 
inlet-velocity ratio 

A area 

b span of suction slot 

H total pressure 

HI boundary-layer shape parameter (°8*) 
h inlet height of boundary-layer slot 

Mcr predicted critical Mach number 

p static pressure 

(
p ~oPQ\ P static-pressure coefficient ~ ) 

Q volume rate of flow 

dynamic pressure (~ PV' 
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V flow velocity 

x distance parallel to surface of fuselage ( see table I; 
station 0 corresponds to lip leading edge of configuration I) 

y distance from plane tangent to fuselage at center line of inlet 
(See table I .) 

y ' distance measured perpendicular to surface 

z distance f rom plane of symmetry of inlet (See table I.) 

p mass density of air 

5 total thickness of boundary layer 

5* displacement thiclmess of boundary layer (la5 
( 1 - :b) dy~ 

e momentum thiclmess of boundary layer (15 ~ (1 - :b) dY) 

Subscripts: 

av average value weighted according to mass flow in case of main 
duct and according to area in case of suction ducts 

b point just outside boundary layer 

d end of diffuser of main duct 

i point of minimum area near entrance of main duct 

o free stream 

s boundary-layer . suction flow 

1 suct ion slot in ramp ahead of entrance 

2 suction slot in duct floor downstream of entrance 
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APPARATUS AND TESTS 

A schematic diagram of the test setup is shown in figure 1 and 
views of typical scoops are shown in f i gure 2 . Line drawings comparing 
the six scoop configurations are presented as figure 3; details of the 
boundary- layer- removal systems are given in figures 4 and 5; and surface 
ordinates are given in tables I and II . 

The minimum area near the entrance of the main duct was 25.1 sQuare 
inches for configurations I ~ II~ and III and 24.7 sQuare inches for 
configurations IV ~ V~ and VI. The measuring station in the inlet was 
located in the diffuser 3 . 4 inches downstream of the lip . The upper 
and lower walls of the i nternal diffuser diverged at an included angle 
of 60 from the minimum area station to an area of 49 . 7 sQuare inches at 
the rear measuring station s o that an area expans i on ratio of about 2 
was provided . 

The internal- flow system ( fig . 1) included an axial- flow fan and a 
butterfly- type valve in the main duct and in each boundary- layer- removal 
duct to permit testing over wide ranges of flow rates. The Quantity of 
internal flow in each duct was measured by means of a calibrated 
venturi. In the final configuration tested~ a part of the boundary­
layer suction flow was not carried outside the tunnel but was ducted to 
exits at the sides of the scoop as might be desirable in an actual 
installation . (See figs. 2(d) , 2 ( e) ~ and 5 . ) In this case~ the suction 
flow was determined from the readings of total- pressure and static­
pressure tubes located just inside the exits of the bypass ducting . 
(See fig . 6 ( e) .) . 

Pressures at the entrance and end of the diffuser of the main duct 
and at the ends of the diffusers of the boundary- layer slots were 
measured by means of the rakes of total-pressure and static- pressurd 
tubes located as shown in figure 6 . The inlet rake of the main duct 
was always removed when measuring pressures at the end of the diffuser 
of this duct. Surface pressure measurements were obtained by the use 
of flush orifices . Boundary- layer surveys ahead of the inlet were 
conducted using a total- pressure and stat i c- pressure probe suspended 
from a rigid frame above the test section. The total- pressure tube in 
this probe was of O. 040- inch-outside-diameter tubing (0 . 002- inch wall 
thickness) flattened so that the over-all thickness of the front end of 
the tube was 0 . 012 inch . A micrometer screw at the top of the boundary­
layer- probe support strut permitted accurate positioning of this total­
pressure tube with respect t o the surface of the model . The static­
pressure tube in the probe wa s l ocated 1/2 inch above the total- pressure 
tube . Boundary- layer surveys aft of the scoop lip were made by the use 
of rakes of total- pressure and static- pressure tubes shown in 
figure 2 (b) . 

CONFIDENTIAL 



NACA RM L50Al3 CONFIDENTIAL 7 

All pressure measurements on the model were recorded by photo­
graphing a multitube manometer. The differential pressures of the 
several venturis and the survey- probe pressures were read visually from 
rrdcromanometers. Tufts were used to observe the direction and stability 
of the flow. Plexiglass windows were installed at several points in 
the ducting to facilitate observation of the flow within the diffuser. 

Each of the inlet configurations was investigated in conjunction 
with one or more of the turbulent boundary layers 20 inches ahead of 
the scoop lip shown in figure 7. Boundary layer A was the boundary 
layer on the groundboard surface without artificial thickening. 
Boundary layer B, which is considered to be approximately representative 
of full-scale conditions just ahead of the wing of a fighter airplane 
in the high-speed high-altitude flight condition with regard to its 
thickness relative to the inlet height, was obtained by shellacking a 
9-inch-wide band of coarse sand to the groundboard surface 40 inches 
ahead of the scoop lip. Boundary layer C, which was tested to determine 
the effects of locating this type of inlet in a region of thick boundary 
layer, was obtained by laying t~rrbulence rods transversely on either 
side of the sand strip used to generate boundary layer B. The displace­
ment thicknesses (5*) of the three boundary layers at station -20 
were 0.073, 0.085, and 0.169 inch in alphabetical order. The corre-

sponding shape parameters (HI = 5:) were 1.36, 1.29, and 1.24, as 

compared to the value of 1.286 for the ~-power variation. 
7 

All tests were conducted at a tunnel speed of about 100 feet per 
second which corresponds to a Reynolds number of approximately 1.4 x 105 
based on the inlet height. 

RESULTS AND DISCUSSION 

The CIuantity of boundary-layer suction flow usually is expressed in 

C -~ 
Q - V 5*b' 

o 
the present paper in terms of the suction-flow coefficient 

This coefficient has physical-significance in that it is the ratio of 
the quantity of flow entering the suction slot to the quantity of flow 
displaced by the boundary layer at station -20 over a transverse distance 
equal to the suction-slot span b. The value of this coefficient required 
to obtain a given total-pressure recovery in the main duct would be 
expected to remain nearly constant over a broad range of initial boundary­
layer thickness. The ratio of the quantity of suction flow to the flow 
quantity of the main duct may be readily determined by converting the 
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Qs 
form of flow coefficient from CQ to the e~uivalent value of Cq = AiV~ 

by use of figure 8. For an inlet-velocity ratio of unity, the value 
of Cq gives the flow ratio Qs/Qd directly; for other inlet-velocity 

Qs C~ ratios -----
Qd Vi/VO • 

All results discussed are those obtained with initial boundary 
layer B (fig. 7) unless otherwise noted. In the case of arrangements 
using two boundary-layer suction slots in tandem, the downstream slot 
always was faired out if a suction-flow coefficient is given for the 
upstream slot only. 

study of Basic Inlet without Suction 

Flow along ramp and duct bottom.- Static-pressure distributions 
along the center line of the ramp and duct bottom of slotless configu­
ration I (figs. 2(a) and 3 ) are shown in figure 9(a). The negative 
pressure peak in the region of sub stream pressure required to turn the 
flow ahead of the entrance occurred about 4 inlet heights ahead of the 
scoop lip. This negative pressure peak increased in value from -O.15~c 

to -O.30qo and moved slightly aft as the inlet-velocity ratio was 

increased from 0.31 to 1.54. Downstream of this negative pressure peak 

the surface pressure increased to a point 11 to 2 inlet heights ahead 
2 

of the scoop lip as the flow diffused along the ramp and then changed 
rapidly to the entrance pressure which was determined by the inlet­
velocity ratio, the inlet-velocity distribution, and the total-pressure 
losses ahead of the inlet. 

Static-pressure distributions in the valley approaching the inner 
corner of the inlet and along the edge of the dimple are presented in 
figures 10(a) and ll(a), respectively. In each case, the negative 
pressure peak near the crest of the ramp off the center line never 
exceeded that at the ramp center line. The pressures in the valley near 
station 0 were much more negative at the higher inlet-velocity ratios 
than those at the ramp center line because of the large induced 
velocities at the inner side of the scoop lip. (See fig. 12(a).) 

At inlet~elocity ratios below about 0.5, tuft observations showed 
that the boundary layer on the approach ramp separated ahead of the 
inlet somewhat downstream of the stations where the surface pressure 

distributions flatten out. (see distribution for :~ = 0.31, fig. 9(a)} 

As the inlet-velocity ratio was increased, the point of separation 
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moved progressively downstream and passed the measuring station at the 
end of the diffuser at an inlet-velocity ratio of about 1.0. The flow 
into the inner corner of the inlet was observed to be appreciably 
rougher than the entering flow at the center line. Tuft observations 
showed that this roughness was caused mainly by som.e of the boundary 
layer outside the span of the inlet flowing down the appro~ch valley 
and entering the inlet rather than passing outboard through the gutter 
as was desired. 

The boundary-layer thickness at the center line of the entrance 
measuring station decreased rapidly with increases in inlet-velocity 
ratio as the point of initial flow separation moved downstream along 
the ramp and duct bottom~ figure 13(a). An inlet-velocity ratio 
greater than 0.6 was required to obtain an Ht value as low as 2.6, 
the approximate upper limiting value for unseparated flow. (See 
reference 5.) 

- Total-pressure recovery.- The average total-pressure recovery at 
the entrance measuring station increased rapidly with inlet-velocity 

Vi Vi 
ratio from 0.67qo at -- = 0.26 to o.88qo at -- = 0.75, as the 

Vo Vo 
ramp boundary layer thinned rapidly, and then increased more slowly 

Vi 
to 0.92qo at -- ~ 1.54. (See fig. 14(a).) The average total-

Vo 

pressure recovery at the end of the diffuser likewise increased from a 
value of 0. 53Qo at an inlet~elocity ratio of 0.26 to a value 

of 0.83Qo at an inlet.~elocity ratio of about l.l~ but then dropped 
off again with further increases in inlet-velocity ratio because of an 
increase in the diffuser losses. 

9 

External flow.- The surface pressures at the edge of the dimple 
aft of the scoop lip (fig. ll(a)) generally were more negative than the 
surface pressures in the intersection of the scoop lip with the gutter 
floor (fig. 12(a)). As a result~ the boundary layer on the floor of 
the gutter tended to flow outward over the edge of the gutter at all 
inlet-velocity ratios. 

Tuft observations showed that the approaching flow was approxi­
mately alined with the base, top-center-line, and top-corner sections 
of the scoop lip at inlet-velocity ratios of the order of 0.5. At 
higher inlet-velocity ratiOS, the flow approached these sections from 
the outside at an angle which increased gradually with increases in 
the inlet-velocity ratio. The top portion of the scoop lip, figure 3(a), 
was well suited to this flow pattern since it incorporated reverse 
camber and a thick internal fairing. 

CONFIDENTIAL 



lO CONFIDENTIAL NACA RM 150A13 

Comparison of Arrangements utilizing 

Boundary- Layer Control 

Inasmuch as the internal- flow pressure recoveries obtained with 
configuration I were undesirably low~ a study of arrangements utilizing 
boundary- layer suction to obtain increased pressure recovery was 
undertaken . 

Configurations II and 111. - In configuration II, a flush suction 
slot shaped in accordance with the principles of reference 6 was in­
stalled in the approach ramp 3 . 82 inches · (1 . 40 inlet heights) ahead of 
the scoop lip . This slot ( figs . 3 and 4) was similar to that illus­
trated in figure 2( a ) and had a width of 0 . 187 inch and a span of 
14 inches compared to the entrance width of 10 inches. The location of 
the suction slot corresponds approximately to the most forward separation 

V· 
point observed for slotless configuration I for· ~ = 0 . 4 . 

Vo 

The original version of configuration III, figure 2(a) was identical 
to that for configuration II except that the suction slot was located 
5 inches (1.83 inlet heights) ahead of the scoop lip . In the course of 
preliminary tests} however , it was found necessary to relieve the central 
portion of the ramp ahead of this slot and to extend the center of this 
slot lip forward to 5 . 2 inches (1 . 90 inlet heights) ahead of station 0 
(thus providing a submerged scoop-type slot at the center line) in order 
to obtain reasonable spanwise uniformity of the suction flow at the lower 
suction- flow coefficients. (See figs. 2(b), 3, and 4.) At the same time, 
the span of this slot was reduced to 12.24 inches inasmuch as this small 
reduction in span had no measurable effect on the inlet flow, and the 
gutter was deepened a small amount (fig . 3) in an attempt to improve the 
flow into the corners of the inlet . The camber of the scoop lip also 
was increased positively (fig . 3(a)) to allow for the change in flow 
direction at the lip that was observed to occur when boundary- layer 
control was applied to the ramp . 

The application of boundary- layer suction to the approach ramp 
caused large increases in static pressure and large decreases in boundary­
layer displacement thickness downstream of the suction slot at the lOwer 
inlet-velocity ratios. (Compare results for configurations I and III, 
figs . 9 and 13(b).) In both configurations II and III, a suction- flow 
coefficient of about 0.7 was required to obtain a reasonably uniform 
flow int~ the suction slot . As illustrated for configuration III in 
figure l5(a), a suction- flow coefficient of 0.8 caused large increases 
in the average total-pressure recovery at the end' of the diffuser 
compared to the recoveries for slotless configuration I (about O. lQo 
at a tJ~ical high-speed inlet- velocity ratio of 0.6). Above this value, 
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the average total-pressure recoveries at the inlet and end of the 
diffuser continued to increase with further increases in suction- flow 
coefficient, but at a decreasing rate. Doubling the suction-flow coef­
fic ient produced an additional increase of only about 0.03qo at the 

Vi end of the diffuser at -- = 0.6j however, the minimum inlet - veloc ity 
Vo 

ratio for the same total-pressure recovery was reduced to about 0 .48. 
The increases in total- pressure recovery obtained by use of t he suction 
were large at the lower inlet - velocity ratios, but were small at inlet­
velocity ratios of 1. 0 and greater for which the entering boundary layer 
for slotless configuration I was already thin and unseparated. (See 
fig .13(a ).) It is noted that the total- pressure recoveries given for 
the inlet of configuration III at inlet-velocity ratios above 1.0, 
which are shown to be less than those for slotless configuration I in 
some cases, are believed to be lower than the true values. 

At the maximum suction- flow coefficients investigated (1.5 for 
configuration II and 1.6 for configurat ion III) the average total­
pressure recoveries at the inlets of configurations II and III were 
about equal . (See fig. 14(a).) The average total-pressure recoveries 
at the end of the diffuser of configuration III were somewhat larger 

than those for configurat ion II (0.04QO at ~~" 0.6). It is believed 

that the lower recoveyy f or configuration II resulted from a break in 
the duct floor at station 0.51 (fig . 3(a)) which may have caused flow 
separationj this break was faired out with a larger radius in configu­
ratio III. The near equality of the entrance total-pressure recoveries 
shows that the two suction slots were about equally effect i ve and that 
the pressure-recovery characteristics of this type of inlet are not 
critically sensitive to small variations in suction-elot location . 

Tuft observations of configurations II and III showed that neither 
suction slot was effective in eliminating the flow roughness at the 
inner corners of the inlet which had been observed in the flow studies 
of configuration I. In each case some of the boundary layer outboard 
of the slot ends was drawn into the slot. Some of the boundary layer 
still further outboard then flowed into the ramp and entered the inlet. 
Additional arrangements were investigated, therefore, to determine if 
the rough flow into the corner of the inlet could be eliminated by 
changes in the scoop configuration. Inasmuch as the average total­
pre ssure recoveries measured in the suction slots after diffusion, 
figures 16(a) and 16( d), were undesirably low, all succeeding suction 
slots were designed for lower slot inlet-velocity ratios. Raised 
scoop-type slots were used in most cases in an attempt to recover a 
larger percentage of the dynamic pressure in the boundary-layer flow. 
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Configuration IV.- In configuration IV~ figures 2 (cL 3~ and 4 ~ 
the point of divergence of the ramp from the basic fuselage contour was 
varied in the transverse direction from the original position at the 
center line to about half the original distance ahead of the entrance 
at the ends of the scoop. As shown in figure 2 ( c ) the divergence of 
the crest lines of the revised dimple was similar in shape to the 
divergence of the ramp walls of the submerged inlet of references 2 
and 3. The present arrangement .differed greatly from this submerged 
inlet~ however, in that the surface was smoothly faired at all points 
and that the divergence terminated at the edges of the original dimple 
outboard of the scoop ends rather than at the scoop ends themselves. 
It was hoped that this change in dimple shape would provide transverse 
gradients between the positive pressures at the center line of the ramp 
and the negative pressures along the ramp crest lines ahead of the scoop 
ends large enough to cause most of the ramp boundary layer to flow around 
the ends of the scoop at low inlet-velocity ratios. 

With boundary layer A~ the average total-pressure recovery measured 
at the end of the diffuser of configuration IV with a suction-flow coef­
ficient of 1.7 was higher than that for configuration III with a suction­
flow coefficient of 1.6 at inlet-veloCity ratios below 0 . 7. (See upper 
graph of fig. 14(b).) Tuft observations at and below this value of 
inlet-velocity ratio showed that the flow separated from the dimple 
crest 3 to 5 inches on each side of the center line and that strong 
vortices originated at the points of flow separation. These vortices, 
which were similar to those observed for the NACA submerged inlet 
(reference 3 ), entrained large amounts of boundary layer from the ramp 
floor , passed down the gutters, and then drifted outboard into the flow 
above the fuselage surface . It was found possible to fair over the outer 
Quarters of the suction slot (thereby reducing the over-all suction 
Quantity by one-half) without affecting the pressure recovery at the end 
of the diffuser. 

The total-pressure recovery for configuration IV was less than that 
for configuration III in the higher range of inlet-velocity ratio, 
figure 14(b). Also it appeared that the vortices shed at low inlet­
velocity ratios might cause large increments in pressure drag on the aft 

. portions of the fuselage and wi"ng in the high-speed flight condit ion. 
The drag of these vortices could not be evaluated in the present setup; 
further investigation of this arrangement was therefore discontinued 
pending the obtainance of drag data in future complet~odel tests. 

Configuration V.- In configuration V (figs. 2 ( d), 2 (e), 3, and 4) 
the ends of the scoop were slanted forward to the lip of a raised 
scoop-type boundary-layer slot which was long enough to extend into the 
gutters slightly outboard of these scoop lip extensions . This suction 
slot was located 3 .81 inches (1. 39 inlet heights) ahead of station 0 
and had an inlet , height of 0.35 inch and a span of 11.88 inches. A 
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second suction slot installed in the duct floor 3 . 09 inches (1.13 inlet 
heights) downstream of station 0 also was investigated to see if 
additional boundary- layer removal at this point would yield major gains 
in pressure recovery at the lower inlet- velocity ratios. This second 
slot (figs. 2(e) and 3 (a)) was a flush scoop-type slot and had a height 
of 0.22 inch over tlJ.e floor of the duct. The height of the slot tapered 
to 0 .1 inch at the tops of the O.5-inch-radius fillets in the bottom 
corners of the duct . 

Most of the gutters aft of the scoop lip extensions were faired out. 
This partial fairing out of the gutters increased the amount of gutter 
boundary layer flowing over the scoop lip extensions into the inlet. It 
was considered desirable , however, because it provided smooth flow out­
board of the scoop ends and greatly reduced the amount of fuselage 
surface distorted by the scoop installation . The tendency of the gutter 
boundary layer to flow outward over the edge of the dimple was eliminated 
apparently because of the changes in the surface pressures along the edge 
of the dimple relative to the surface pressures at the base of the scoop 
lip . (See figs . 11, 12(a), and 12(b ). ) 

Use of the raised scoop-type suction slot increased the surface 
pressures on the ramp ahead of the slot a small amount over those 
observed for the arrangements with flush suction slots. (Compare 
fig . 9(b) with fig . 9 (c) and fig. lOeb ) with fig. 10(c).) However, a 
static- pressure peak existed on the lip of this slot for most operating 
conditions, figures 9 (c) and 10( c) . This type of pressure peak is 
characteristic of raised sc oop-type slots operating at low value of slot 
inlet-velocity ratio, but does not occur in the case of flush slots, 
figures 9(b) and 10(b). The boundary-layer-displacement thickness at 
the center line of the entrance was slightly greater at a typical high­
speed inlet~elocity ratio of 0.52 than those for configurations II 
and III, probably because of the presence of this pressure peak, 
figure 13 (b) . 

Tuft observations showed that the flow into the corners of the inlet 
of configuration V was much smoother than that for configuration III. 
This improvement in the flow approximately compensated for the increased 
thickness of the boundary layer entering the center portion of the inlet. 
At comparable suction-flow coefficients, the average total-pressure 
recoveries for configuration V with only the ramp suction slot operating 
were slightly higher than those for configuration III at inlet-velocity 
ratios above 0 . 7 and somewhat lower than those for configuration III 
at inlet-velocity ratios below 0 . 7, figure 14(a). 

Operation of the second suction slot in conjunction with the ramp 
slot caused a further increase in the static pressures downstream of 
the second slot (compare figs. 9(c) and 9(d)) and an appreciable increase 
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in average total-pressure recovery at the end of the diffuser over most 
of the test range of inlet-velocity ratio J figure 14(c). Total- pressure 

Vi __ 0 . 52 are pre-
Vo 

r ec overies measured at the end of the diffuser at 

sented in figure 17 as a function of the suction-flow coefficients of 
the ram? and second slots . An examination of the lines of con-
stant \ CQl + CQ2) superimposed on this plot shows that the total-

pressure recovery was essentially independent of the distribution of 
suction between the two slots so long as the ramp slot was operating at 
a suction-flow coefficient greater than about 1.4J apparently the 
minimum value re~uired to prevent flow separation between the two slots. 
This insensitivity of the total-pressure recovery to the distribution of 
suction between the two slots prevailed over most of the inlet-velocity­
ratio range. (See fig. 14(c).) Thus J for a given suction ~uantitYJ ' no 
gain in effectiveness of the boundary-layer removal system was obtained 
by the addition of the second slot. 

The average total-pressure recoveries in the ramp suction slot of 
configuration V (after an area expansion of 2:1) at a suction-flow coef­
ficient of 1.7 were about O.ll~o greater than those for configu-

ration III at a suction-flow coefficient of 1.6 over the entire test 
range of inlet-velocity ratio J figure 16(d). These total-pressure 
recoveries were not changed to a major extent by large increases in 
suction-flow coefficient or by operation of the second slotJ 
figure 16(b). 

With a suction-flow coefficient of 1.7 into the ramp slot J the 
total-pressure recovery in the second suction slot of configuration V 
(also after an area expansion of 2:1) was much higher at a suction-flow 
coefficient of 0 . 9 than that for the ramp slot in the high-epeed range 
of inlet-velocity ratio (compare figs. 16(d) and 16( e ». The total­
pressure recovery in the second slot decreased rapidly) however J with 
increases in suction coefficient and with increases in inlet-velocity 
ratio. In all cases J the total-pressure recovery became negative at 
inlet-velocity ratios above about 1.2. The rapid decrease of the total­
pressure recovery of the second slot with increasing inlet-velocity ratio 
was caused apparently by the slot being located in a region where the 
static pressure decreased rapidly with increases in inlet-velocity 
ratio J figure 9(a). 

Inasmuch as the average total- pressure recovery at the end of the 
diffuser of configuration V was about the same as that for configu­
ration III) c onfiguration V is considered to be definitely preferable 
to configuration III because of: (1) the much greater pressure recovery 
in the suction flow of the ramp slot after diffusion; (2) the greater 
smoothness of the external flow; and (3 ) the reduced distortion of the 
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fuselage surface. The use of the second suction slot of configuration V 
is not considered desirable) however) because: (1) the gain in total­
pressure recovery obtained by its use is no greater than that obtained 
by increasing the suction quantity of the ramp slot an equal amount; 
and (2) the total- pressure recovery in the suction flow entering this 
slot becomes negative or undesirably low at the higher inlet-velocity 
ratios which are encountered in take-off and climbing flight. 

Configuration VI.- A total- pressure recovery at the end of the 
diffuser of 0. 9qo is usually considered to be the minimum value 
acceptable for modern turbojet aircraft in the high-spee d and c ruise 
flight conditions. The results for configuration V show that suction 
quantities of 15 to 25 percent of the entering flow were required to 
obtain this value in the high-speed range of inlet-velocity ratio. 
Only 5 to 10 pe~cent of the air flow to the engine is required usually 
for engine and tail-pipe cooling. The problem of efficiently handling 
and disposing the suction flow in excess of the amount required for 
cooling therefore arises in the process of applying configuration V to 
an actual airplane. 

It appeared that a possible solution to this problem would be an 
arrangement in which all or part of the suction flow entering the ramp 
slot is bypassed to the fuselage surface as close as possible to the 
slot inlet as was done for a protruded scoop in reference 7. This type 
of arrangement was investigated in configuration VI (figs. 2 to 4), 
which was exaGtly the same as configuration V except for the ducting 
and exits of the ramp suction slot (fig. 5). 

The suction-flow coefficient provided by the bypass) figure 18) 
varied from a maximum of 1.97 at the lowest inlet-velocity ratio 
of 0.31 to a minimum of 0.8 at the highest inlet-velocity ratio of 1.54. 
This decrease in suction- flow coefficient with increasing inlet­
velocity ratio was caused ma:tnly by the corresponding decrease of static 
pressure in the region of the slot inlet. (See fig. 9.) 

As shown by a comparison with the results for configuration V f or 
a constant suction-flow coefficient of 1.7) figure 14(d)) the effect of 
the variable suction flow provided by the bypass of configuration VI was 
to increase the average total-pressure recoveries at the lower inlet­
velocity ratios and to decrease these recoveries at the higher inlet­
velocity ratios. The maximum total-pressure recovery at the end of the 
diffuser of configuration VI was about 0.03qo greater than that for 
configuration V although the suction coefficients were nearly the same 
for the two arrangements at the inlet-velocity ratio corresponding to 
peak recovery for configuration VI. It was found that the pressure 
recoveries obtained with configuration VI were consistently higher than 
those for configuration V at equal suction~low coeffic ients. This 
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difference may have been caused by a dissymmetry i n the suction flow 
entering the ramp slot of configuration VI . Tuft observations showed 
that appreciably more flow entered the outer ~uarters of the slot than 
entered in the central half . 

The peak total-pressure recovery at the end of the diffuser of 
configuration VI with only the ranp suction slot operating was 0 . 905~0 

as compared to 0.83~0 for slotless configuration I , and the suction 
shifted the inlet- velocity ratio for peak pressure recovery from 1 .1 for 
configuration I to about 0 . 83 for configuration VI . (See fig . 15 (c) . ) 
At this inlet- velocity ratio the suction- flow coefficient for configu­
ration VI was about 1 . 66 (fig . 18) or about 8 percent of the entering 
flow (fig . 8 ). 

The total- pressure recovery at the exit of the bypass ducting of 
configuration VI , figure 16(c ), was only 0 . 10~0 . to O . l~o over the 
test range of inlet- velocity ratiO; thus, on the basis of the results 
for configuration V, fig. 16(b), the losses in the additional ducting 
used in this arrangement amounted to about 0 . 15~0 . This loss is 

regarded as excessive . It probably could be reduced appreciably by 
more careful design of the bypass ducting . 

Performance of Configurations V and VI 

wi th Boundary Layer B 

Configurations V and VI are considered to be the most desirable 
arrangements investigated. The results obtained with these arrangements 
are summarized in this section of the paper and are analyzed to indicate 
the optimum design conditions and the benefits obtained through the use 
of boundary- layer control . At the present time, the over-all performance 
of these inlets cannot be compared with the over-all performance of other 
types of fuselage scoops and wing- root inlets because comprehensive 
external-drag data are not available either for the present inlets or 
for any other inlet of this general class . 

Total- pressure recovery.- The average total- pressure recoveries in 
the main ducts and boundary- layer removal systems of configurations V 
and VI are summarized in figures 15(b ) , 15( c) , and 16 . As previously 
noted , the use of the second slot inside the inlet is not considered 
desirable because of the low t0~al-pressure recovery in the suction 
flow entering this slot at the hi gher inlet- velocity rat ios . However , 
it has been shown also that the total- pressure rec overy at the end of 
the diffuser of the main duct was essentially independent of the 
distribution of suction between the ramp and sec ond slots s o l ong as 
the ramp slot was operating at a suction- fl ow coefficient greater than 

CONFIDENTIAL 



NACA PM L50Al3 CONFIDENTIAL 17 

about 1 . 4 . Thus~ the total- pressure recoveries at the ends of the 
main-duct diffusers of the two-slot versions of c onfigurations V and VI~ 
given in figures 15 (b ) and 15(c ) , furnish an acceptably accurate 
indication of the total- pressure rec overies that would be obtained at 
the end of the diffusers of the single-slot versions of these configu­
rations at suction- flow coefficients greatly exceeding the maximum 
values investigated . 

It is noted in figure 15 that when suffi c i ent suction flow was 
provided to obtain a peak total-pressure rec overy at the end of the 
diffuser of 0 . 90Qo or greater, the total- pressure recovery at this 

point remained above 0 . 85Qo over a range of inlet- velocity ratio 
broad enough to cover the more important fl i ght. conditions. It also 
is noted in figure 15 that the peak total- pressure recovery at the end 
of the diffuser with the maximum suction-flow coefficient investigated 
was lower than that which would be obtained by a well-des i gned nose 
inlet even without boundary- layer cont r ol . The use of the present type 
of inlet can be justified, therefore , only ·on the basis of a design 
compromise . 

The over-all induction losses measured at the end of the 
diffuser of configuration V at an inlet- velocity ratio of 
infinity (Vi = 100 ft/sec , Vo = 0) are presented as a function 
of the inlet dynamic pressure in the following tabl e : 

Condition 
Ho - Hd 

Qi 

Both slots sealed and faired 0.033 

Both slots vented to room pressure .034 

Ql ~ 
.036 - = 0 . 066, -- = 0 . 032 

Qd Qd 

These small induction losses indicate that an auxiliary inlet (or "blow­
in door" ) would not be reQui red to increase the take-off thrust of a jet 
airplane utilizing this type of air inlet . 

Diffusion effectiveness .- The static- pressure recovery at the end 
of the diffuser) figure 19) is the lower limit of the total- pressure 
recovery that would be obtained after any addit i onal amount of diffusion 
and also is a direct measure of the over-all diffusion effectiveness of 
the inlet-diffuser combination . As shown in this figure~ the static­
pressure recovery for slotless configuration I was 0.4Qo to 0 . 5Qo less 
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than the theoretical value for uniform frictionless flow, the differences 
being chargeable to the total-pressure losses and the nonuniformity of 
the flow at the measuring station. The effectiveness of boundary-layer 
suction in increasing the over-all diffusion effect iveness is shown by 
the large increases in static-pressure recovery obtained by the 
application of suction. A total suction coefficient (CQl + CQ2) of 2 . 6 

provided a gain in static- pressure recovery throughout the high-speed 
range of inlet-velocity ratio eQual to about one-half of the differences 
between the values for slotless configuration I and the ideal values 
which are approached closely by a well-designed nose inlet. 

Velocity distributions in internal flow.- Representative distri­
butions of the flow velocity at the inlet and end-of-the-diffuser 
measuring stations of configurat.ion V are presented in figures 20(a) 

. and 20(b), respectively. As previously noted, the inlet measuring 
station actually was located in the diffuser after appreciable area 
expansion; hence the velocity ratios given for this station are lower 
than those for the minimum area station of the entrance on which the 
nominal inlet-velocity ratios were based. With an inlet-velocity ratio 
of 0 . 52 and a suction-flow coefficient of 1.7, the flow~elocity 
distributions at both stations were very nonuniform, mainly because of 
the thick residual boundary layer entering along the ramp. (See 
fig. 13(b).) Inasmuch as the entering boundary layer thinned rapidly 
with increasing inlet~elocity ratio (for example, see fig. 13(a)), the 
flow distributions became appreciabl~ more uniform as the inlet-velocity 
ratio was increased to 1.03 (fig . 20). The improvement in uniformity 
of the flow distribution caused by increasing the inlet velocity from 
0.52 to 1.03 was much greater than that obtained at an inlet-velocity 
ratio of 0.52 by increasing the suction-flow coefficient from 1.7 
to 2 .6, for which the improvement in flow uniformity was negligible. 
It appears that a prohibitively high suction-flow coefficient would be 
reQuired to obtain a near-uniform velocity distribution at the end of 
the diffuser at low inlet-velocity ratios. 

External drag.- Boundary-layer surveys were conducted at 
station 8.0 both before and after installation of the scoops. Section 
wake-drag increments for configurations V and VI calculated from these 
measurements are presented in figure 21 . In each case, installation 
of the scoop reduced the drag over the span of the entrance and 
increased the drag at the spanwise location of the gutter. The increase 
in drag behind the gutter of configuration VI was much greater than for 
configuration V because of the low energy air flowing out of the bypass 
exit of configuration VI Just ahead of the measuring station . 

The section-wake-drag increments of figure 21 were integrated in 
the spanwise direction to obtain the over-all increments in wake drag 
at station 8 caused by installation of these two scoops . As shown by 
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the lowest curve qf figure 22, the installation of scoop configuration V 
reduced the wake drag at station 8 throuBhout the test range of inlet­
velocity ratio . Installation of scoop configuration VI also reduced 
the wake drag at station 8 for inlet- veloc i ty ratios above 1.0, but 
increased the wake drag by a small amount in the high-speed range of 
inlet- velocity ratio . Inasmuch as the wake drag of configuration V was 
essentially unaffected by suction ~uantity, consideration of the effects 
of suction ~uantity on the friction drag of the fuselage would not 
appear necessary in the determination of the optimum suction ~uantity . 

The increment in external drag caused by installation of the scoop 
in the basic body is consi dered to be the sum of the change in body 
friction drag and the drag of the suct i on fl ow. In order to obtain an 
indication of the external drag increment chargeable to scoop configu­
ration V, the drag e~uivalent of the suction fl ow of this arrangement, 
calculated from the suction-flow ~uantity and the total-pressure 
recovery in the suction fl ow after diffusion, was added to the friction­
drag increment determined from the wake surveys at station 8 to obtain 
the two corrected drag-increment curves given in figure 22 . In the 
case of configuration IV, no correction was necessary because the 
surveys at station 8 covered the wakes of the bypass exits as well as 
the wake of the scoop. The external drag increments for configuration V 
obviously are slightly lower than the values which would be obtained if 
a small additional total-pressure l oss of O . l~o or less was assumed to 

occur in the suction ducting between the measuring station and the duct 
exit. The external drag increments for configuration VI also are 
slightly higher than the values whic~ would be obtained if the bypass 
ducting of this arrangement was redesigned to reduce the previously 
noted excessive ducting loss of about 0 . 15~0 . 

The external-drag-increment data of figure 22 indicate that 
installation of an air scoop of this type in a region of comparable 
boundary- layer thickness will not increase the external drag importantly 
above an inlet- velocity ratio of about 0 . 5, provided that the suction­
flow coefficient is less than about 2 . 0 and provided that the bypass 
exits are properly located so that they do not upset the flow in a 
critical region such as the wing- fuselage juncture . This conclusion is 
applicable only to subcritical Mach numbers . Further research is 
re~uired to establish the drag and other performance characteristics of 
this type of inlet at supercritical Mach numbers. 

Critical Mach number .- Representative surface pressure measurements 
for configuration V are given in figures 9 to 12 . Critical Mach numbers, 
figure 23, were predicted from these and similar measurements by means 
of the Von KArmin relation (reference 8) . This relation is strictly 
applicable only to the two-dimens i onal case j however, results reported 
in reference 9 for nose inlets show that this relation also is reasonably 
accurate for the three-dimensional case so l ong as the critical Mach 
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number is not prediated from a sharp local pressure peak . The values 
given are unconservative in that the induced velocities due to the 
fuselage, wing, and so forth, were not simulated in the test setup . 
The results of reference 9, however, also show that the actual critical 
Mach number is appreciably hi gher than the critical Mach number predicted 
from low- speed pressure measurements and that a further margin of the 
order of 0 . 05 exists between the actual critical Mach number and the 
force- break Mach number . Similar results have been observed in numerous 
airfoil and wing investigations . It is believed that these effects 
approximately counterbalance the unconservatism of the pressure 
measurements so that no losses in pressure recovery or drag rises due 
to shocks would occur at flight Mach numbers below the values presented . 

The predicted critical Mach numbers of configuration V were not 
affected importantly by variations in suction ~uantity . (Compare parts 
(a) and (b) of fig . 23 .) The critical Mach number of the installation 
was established by the top surface of the scoop lip at the inlet- velocity 
ratio~ below about 0 . 6, · by the center section of the ramp at inlet­
velocity ratios between about 0 . 6 and 0 . 8, and by the inner surface of 
the side of the scoop lip at inlet- velocity ratios above about 0.8 . The 
limitation imposed by the top surface of the scoop lip is not regarded 
as important because of the large delay in the force break which would 
occur for this component and because shocks in thi s region would not 
affect the internal flow . Hence, the center section of the ramp also 
is considered to be the limiting factor at the inlet- velocity ratios 
below 0 . 6 . 

The results of figure 23 indicate that in the high- speed range of 
inlet- velocity ratio the scoop would perform essentially as at low 
speeds up to a Mach number of at least 0 . 81 . An appreciable delay in 
adverse effects due to shocks appears possible through modifications to 
the transit i on curvature at the crest of the ramp. A further delay 
could be obtained by reduc i ng the inclination of the ramp . 

Design inlet~elocity rat io.- The inlet- velocity ratio for 
maximum total- pressure recovery at the end of the diffusers of configu­
rations V and VI was approximately 0 . 8 at the lowest suction-flow coef­
ficients investigated . (See figs . 15(b) and 15 (c) . ) A much lower value 
of inlet- velocity ratio is desirable for the high-epeed design condition 
so that the corresponding inlet- veloc i ty ratios for take-off and climb 
will not be so large as to cause excessively low pressure recoveries . 
An inspection of figures 15(b ) and 15 ( c) shows that the total- pressure 
recovery at the lowest suction- flow coefficients decreased only a small 
amount ( 0 . 025~o ?r less ) when the inlet- velocity ratio was decreased 

to 0 . 6; but appreciable further reductions resulted in significant 
losses . At the higher suction- flow coeffiCients, decreases in total­
pressure recovery greater than 0 . 025~o did not occur down to an 
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inlet-velocity ratio of 0.5. It appears, therefore, that single scoops 
of this type should be designed for an inlet~elocity ratio in the high­
speed condition of 0 . 5 to 0 . 6. 

The flow into twin internally coupled inlets has been observed to 
be unstable in a number of installations when the inlets were operated 
at an inlet-velocity ratio below that for peak total-pressure recovery 
at the end of the diffuser. This flow instability apparently arises 
when some disturbance changes the flow ~uantity into one inlet. Inas­
much as the flow ~uantity to the engine tends to remain fixed, the flow 
quantity into the second inlet undergoes an opposite and approximately 
equal change. Then, since the total-pressure recovery in each duct 
increases with flow rate, the flow ~uantity continues to increase into 
one inlet and to decrease into the other inlet . 

Results obtained in an investigation currently under way at the 
Ames Laboratory show that the divergeRce in flow rates of twin ducts 
just desc ribed ceases when the static pressures in the two ducts become 
e~ual at their juncture . This research also shows that this type of 
flow instability cannot occur if the static pressure in each duct at 
its juncture with the other duct decreases continuously with increasing 
inlet- velocity ratio . Thus, as shown in figure 19, twin-duct instal­
lations using the single-suction- slot version of scoop configuration V 
or VI can be designed safely for high-speed inlet-velocity ratios as 
low as 0.5, the minimum value recommended for single scoops. An inspec­
tion of the surface pressure distributions along the duct bottom, 

figure 9(c), shows that the surface pressure for Vi = 0.31 is more 
Vo 

positive than that for Vi = 0 . 52 for all longitudinal stations between 
Vo 

the inlet and the end of the diffuser; hence, this design value is 
satisfactory regardless of the amount of area expansion that has been 
obtained between the duct entrances and the point of juncture. 

Optimum suction guantity.- In order to obtain an indication of the 
optimum suction ~uantity, the effects of the suction flow in increasing 
the maximum net thrust and reducing the corresponding specific fuel 
consumption of an installation incorporating a typical jet engine rated 
at 4000 pounds static thrust at sea level were computed for a typical 

. Vi hlgh- speed design condition, Vo = 600 miles per hour and 0.6. 
Vo 

The results of reference 10 were used to determine the effects of changes 
in total- pressure recovery at the end of the diffuser on the performance 
of the engine itself. The drag of the suction flow, computed from the 
suction- flow ~uantities and the estimated , total-pressure recoveries 
in the suction flows at the exits of the suction ducts, was subtracted 
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from the increase in net thrust indicated in reference 10 to obtain the 
over-all increase in net thrust. In the case of the ramp suction slot 
of configuration VI, the total-pressure recoveries in the exiting 
suction flow assumed were those given in figure 16(c). For all other 
suction slots, a factor of ?15~0 was subtracted from the values 
given in figure 16 to allow for additional 10sse8 in the suction ducts 
between the measuring stations and the duct exits . The results of the 
computations, figure 24, represent the gains in performance obtained by 
the use of boundary-layer control relative to the performance of the 
installation using scoop configuration I. Boundary- layer control would 
be expected to effect appreciable gains in performance in this case or 
in any other case in which flow separation occurs ahead of the inlet. 

The application of boundary-layer suction is shown in figure 24 to 
cause important increases in' maximum net thrust and important decreases 
in specific fuel consumption for all altitudes between sea level and 
40,000 feet . The calculated specific fuel consumption decreased 
regularly with increases in suction-flow coefficient for both the single 
and tw()--£lot arrangements . The calculated gain in maximum net thrust, 
however, reached maximum values for both the single and tw()--£lot 
arrangements and then decreased as the drag o~ the suction flow began 
to increase more rapidly than the gain in thrust due to the suction . 
At a total suction coeffi c i ent CQl + C

Q2 
of 2.6, the specific fuel 

consumptions for the single-elot and tw()--£lot versions of configu­
ration V were the same and the maximum net thrust for the tw()--£lot 
version was only about 1 percent greater than that for the single-elot 
version . Thus, in view of the low total-pressure recoveries obtained 
in the second suction slot at higher values of inlet-velocity ratio, 
the use of a second suction slot of the type investigated again does 
not appear Justified. 

As shown by the data for configuration III, the peak value of 
maximum net thrust for the single-el~t versions of the present type of 
submerged scoop apparently occurs at a suction- flow coefficient of 0 .8 
or below. However, inaamuch as the net thrust decreases only slowly 
as the suction- flow coefficient 1s increased above this value, a much 
larger value of suction-flow coefficient is desirable in order to 
realize a further decrease in specific fuel consumption . The results 
for configuration V indicate that a suction- flow coefficient as high 
as 3 may be desirable. It is noted that the decrease in net thrust 
caused by the increase in suction-flow coefficient above the value for 
peak net thrust probably can be minimized by redesigning the suction 
slot to obtain a lower slot entry velocity ratio. Several investigations, 
such as that of reference 6, have shown that an average flow velocity into 
the slot entry of 0.6 of the local flow velocity is approximately optimum. 
With a main duct inlet-velocity ratio of 0.6, the inlet-velocity ratio of 
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the ramp suction slot of configurat ion VI was about 0.53 based on the 
local flow velocity at a suction-flow coefficient of 1.8. 

For the single-elot version of configuration VI, a suction-flow 
coefficient of 1.8 (11.7 percent of the entering flow) produced 
calculated increases of 6.2 and 6.4 percent in maximum net thrust at 
sea level and 40,000-foot altitude, respectively. The corresponding 
decreases in specific fuel consumption were 5.1 and 3.1 percent. 

Variation of Boundary-Layer Thickness 

23 

Average total-pressure recoveries in the main ducts of configu­
rations III and V are presented in figure 25 for the three initial 
boundary-layer thicknesses investigated (fig. 7). The results for 
boundary lay~rs A and B, which had displacement thicknesses of 0.074 
and 0.085 inch, respectively; were very nearly the same for comparable 
suction-flow coeffic ients. Doubling the displacement thickness of the 
boundary layer, however, produced losses of as much as 0.08~o. 

(Compare recoveries at the ends of the diffusers for boundary layers B 
and C at e~ual values of the total suction- flow coefficient CQl + CQ2.) 

This result shows that the suction-flow coefficient re~uired to obtain 
a given total-pressure recovery is not independent of the initial 
boundary-layer thickness, but instead increases rapidly with increases 
in the initial boundary- layer thickness. 

Average t otal-pressure recoveries in the ramp and second suction 
slots of configuration V after area expansions of 2:1 are presented in 
figure 26 for the three initial boundary-layer thicknesses. It has been 
shown previously that the total-pressure recovery in the ramp slot was 
essentially independent of the suction- flow coefficient . The results 
of figure 26(b) indicate, therefore, that the total-pressure recovery 
in this slot is changed only a small amount by variations in the 
initial boundary- layer thickness . It should be noted, however, that 
even though the total-pressure recovery in this slot remains constant, 
the drag e~uivalent of its suction flow will increase continuously 
with increases in initial boundary-layer thickness at a constant 
suction-flow coefficient because the absolute ~uantity of suction flow 
for a constant suction-flow coefficient varies directly with the 
boundary- layer thickness . 

Results of calculations of the effect of boundary-layer thickness 
on the maximum net thrust and corresponding specific fuel consumption of 
a jet-engineinstallation using scoop configuration III are presented in 
figure 27 . The operating conditions considered are the same as those 
considered in the preceding section of the paper. The calculation 
procedure also was identical except that the differences in wake drag aft 
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of the inlet for the three boundary layers was taken into account. 
Increases in the thickness of the initial boundary layer are shown to 
cause important decreases in maximum net thrust and important increases 
in the corresponding specific fuel consumption. These adverse effects 
cannot be eliminated by merely increasing the suction-flow coefficient 
because attending increases in the drag of the suction system would 
offset any gain in total-pressure recovery obtained at the end of the 
diffuser. Hence, the present type of inlet appears desirable for 
application only at forward locations on the fuselage where the boundary 
layer is relatively thin and not at aft locations such as might be 
desirable for an engine installed in the rear part of the fuselage. 

SUMMARY OF RESULTS AND CONCLUSIONS 

A submerged air scoop consisting essentially of a conventional 
scoop located in a dimple in the fuselage surface has been investigated 
preliminarily at low speeds both without and with boundary-layer control. 
The more important results of the tests of this inlet in the presence of 
an initial turbulent boundary layer approximately representative of full­
scale conditions just ahead of the wing of a fighter-type airplane in 
the high-£peed high-altitude flight conditions are summarized as follows: 

1. Without boundary-layer control, the peak total-pressure recovery 
at the end of the 2:1 area ratio diffuser was 0.83~o and occurred at 

an inlet-velocity ratio of 1.1. Application of boundary-layer control 
increased the pressure recovery markedly over the entire inlet-velocity­
ratio range and shifted the peak pressure recovery to a much lower value 
of inlet-velocity ratio. 

2. When sufficient suction flow was provided to obtain a peak 
total-pressure recovery at the end of the diffuser of 0.90~o or 

greater, the total-pressure recovery at this point remained above 0.85~ 
over a range of inlet-velocity ratio broad enough to cover the more 
important flight conditions. 

3. The total-pressure recovery was not critically sensitive to 
small variations in suction-elot location and, for a given total suction 
~uantity, was not increased by the use of two slots in tandem. 

4. It is indicated that installation of an inlet of this type will 
not increase the external drag importantly above an inlet-velocity ratio 
of about 0.5 provided that the suction flow is exited in a region which 
is not critical with respect to flow separation. 

CONFIDENTIAL 



NACA RM L50A13 CONFIDENTIAL 25 

5 . In the final arrangement tested , a suction quantity of 
11.7 percent of the entering flow produced calculated increases in 
maximum net thrust of 6.2 percent or greater and calculated reductions 
in specific fuel consumption of 3 .1 percent or greater (compared to the 
basic inlet without boundary-layer control) f or a typical jet-engine 
installation operating at a flight speed of 600 miles per hour. 

6. It appears that the flow instability frequently encountered in 
the case of twin internally coupled inlets will be avoided with this 
arrangement for design high-speed inlet-velocity ratios as low as 0.5 . 

Appreciable increases in the thickness of the initial boundary 
layer caused significant decreases in inlet performance which cannot be 
overcome simply by increasing the suction quantity. Hence, the present 
type of inlet appears desirable for application only at forward locations 
on the fuselage where the boundary layer is relatively thin and not at 
aft locations such as might be desirable for an engine installed in the 
rear part of the fuselage . 

Further research on the present type of inlet, including in par­
ticular measurements of the total drag, appears desirable. Tests at 
transonic speeds to establish the high-speed characteristics and complete 
model tests to establish the effects of pitch and yaw are necessary 
before the inlet can be recommended for application. 

Langley Aeronautical Laboratory 
National Advisory Committee f or Aeronautics 

Langley Air Force Base, Va. 
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I~ -9 . 73 

0 a-O. 38 
2 .00 -.43 
4.00 -.62 
4.50 -- --- -

4.75 ------
5.00 -·75 
5 .25 ------
5 .50 ------
5. 75 ------
6.00 -.84 
7.00 -. 94 
8 .00 -1.17 

>\ -9 . 73 - 7 .06 

0 -0 .38 -0.92 
2. 00 -. 43 -.99 
4.00 - .62 - 1.13 
4.50 ----- -----
4. 75 ----- -----
5.00 -.75 -1. 23 
5 .25 ----- -- - --
5. 50 ----- -----
5. 75 ----- -----
6.00 -.84 - 1 .29 
6 .25 ----- -----
7.00 -. 94 - 1 .26 
8 .00 -1.17 -1.25 

aOrdinate ( y) . 

CON FI DENTIAL 
TA13LE I 

ORDrnATES OF EXTERNAL SURFACES OF THE SEVERAL SCOOPS 

(a) Configurations I and II. 

0 

-7. 06 -5.34 - 3.73 --e.O Ramp Lip 1.0 3.0 

-0. 92 -1. 39 -1. 93 --e . 53 - 3.22 -0.10 0 0 
-. 99 -1.44 - 1 . 93 --e . 53 - 3 .22 -.18 -. 07 -. 07 

-1.18 -1. 59 -e.05 - 2 . 56 - 3 .16 -. 42 -. 31 -. 30 
----- ----- ----- ----- -3 .08 -. 74 -. 50 -. 42 
----- ----- ----- ----- - 3 .00 -1. 00 -.68 -. 53 
-1. 26 - 1 ·70 -e.13 - 2 .48 - 2 .75 - 1 . 40 -. 99 -. 69 
----- ----- ----- ----- - 2 .46 -1. 92 -1. 32 -.89 
----- ----- ----- ----- - 2 . 25 -e .25 - 1.69 -1.10 
----- ----- ----- ----- - 2.14 -e .14 -1.81 -1. 24 
-1.29 -1 .65 -1. 92 -e .08 - 2 .03 -e .03 - 1.80 -1. 30 
-1.26 -1.42 - 1 . 57 - 1 .66 - 1.60 - 1.60 - 1.54 -1. 22 
-1. 26 -1. 30 -1. 33 -1. 34 - 1 .30 - 1.30 -1. 28 -1. 21 

(b) Configuration III . 

- 5 ·93 -4.93 - 2.93 -0 .93 0 0 .16 1.1 3 .1 

-1. 23 -1.53 -e. 22 -e. 91 - 3 .22 -0.15 0.22 0 .20 
-1. 27 - 1.53 -e. 22 -e.91 - 3 .22 -. 23 .05 .07 
- 1 . 38 -1. 68 -e .29 - 2 .92 - 3 .16 -. 52 -.18 -.17 
-1. 44 ----- ----- ----- - 3 .08 -. 74 -. 34 -. 29 
-1.48 ----- ----- ----- - 3. 02 -. 96 -.46 -. 38 
-1. 50 -1.80 - 2 . 34 -e .83 -e .94 - 1 . 30 -. 67 -. 52 
-1 . 52 ----- ----- ----- -e .85 - 1 .82 -. 95 -. 69 
-1. 53 ----- - - --- ----- -e .76 -e. 25 - 1 . 36 -. 95 
- 1.53 ----- - - --- ----- - 2 .66 -e. 58 - 1 .95 - 1 . 30 
-1. 52 -1.77 -e.14 -e .42 -e.53 -e .52 -e .37 -1.80 
----- ----- ----- ----- -e.40 -e.40 -e .33 - 2 .00 
-1. 39 - 1 . 55 -1.80 - 1.97 -e.00 -e .00 - 1 ·97 - 1 . 78 
-1. 30 -1. 33 -1.42 -1. 51 -1. 54 -1. 55 -1. 55 -1. 53 
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All linear dimensions are in inches . 
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5.0 

0 
-.07 
-.29 
-. 38 
-.44 
-. 52 
-.60 
-.69 
-.75 
-·77 
-. 90 

-1.17 

5.1 7.1 

0.11 0 .02 
-.05 -.10 
-.26 -. 31 
-. 36 -. 39 
-.41 -. 42 
-.50 -.48 
-.62 -. 55 
-. 78 -. 65 

-1.01 -· 77 
-1. 34 -.92 
-1.54 -1.00 
- 1.43 - 1.06 
-1.27 -1. 20 



~ -9 .84 -6 .84 - 3 .84 

0 a~ . 35 ~ · 97 -e .08 
2 .00 - .31 - ·90 -e .07 
4 .00 -. 34 -. 62 - 1.98 
4 .50 -. 39 -. 57 -1.81 
4 .75 - . 43 -. 55 -1.62 
5 .00 -. 48 -. 55 - 1.45 
5-.25 -.51 -. 56 -1. 31 
5 .50 -. 56 -. 58 -1.18 
5.75 -.60 -. 61 -1.05 
6 .00 -.66 -.66 - .93 
6 .25 -. 71 -.71 - .85 
6 .50 -.76 -. 76 - .82 
7 .00 -.88 -.88 - .88 
7 ·50 -1.01 -1.01 -1.01 
8 .00 - 1.17 - 1.17 -1.17 

Configu-
ration 

~ -9 ·73 -6.80 --4.73 

0 ~ . 38 ~ . 98 -1.67 
2.00 -. 41 -1. 06 -1. 72 
4.00 - .62 - 1.21 - 1.79 
4. 75 ----- ----- -----
5·00 - .75 - 1.30 -1.85 

5.25 -· 77 - 1.31 - 1.86 
5. 50 -.80 -1. 31 - 1.85 
6.00 - .84 - 1.30 -1.77 
7·00 -.94 -1. 28 -1.63 
8.00 - 1.16 - 1.27 -1.52 
9·00 -1. 47 -1. 50 - 1.53 

aordinate (y). 
All dimensions are in inches. 
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TABLE I 

ORDINAftS OF EXTERNAL SURFACES OF THE SEVERAL SCOOPS - Concluded 

(c) Configuration IV. 

-e .84 - 1.84 ~ . 84 0 0 .16 

-e·54 -e .40 -e .83 - 3.18 ~.15 

-e .54 -e.40 -e.83 - 3.18 - .23 
-e .52 -e .40 -e .83 - 3.18 - .52 
-e .43 -e .40 -e .81 - 3.17 -.74 
-e .34 -e . 40 -e .79 - 3.16 -.96 
-e .14 -e .37 -e .74 - 3.14 -1. 30 
- 1.92 -e .29 -e .65 - 3. 08 -1.82 
- 1. 72 -e .15 -e .55 -e .97 -e.25 
- 1.53 -1. 97 -e .42 -e .74 -e .58 
- 1.35 -1.78 -e .21 -e .50 -e .52 
-1.18 - 1.60 -e .00 -e .25 -e.27 
-1.04 -1.42 -1.80 -e .06 -e .07 
-. 94 - 1.15 -1.46 -1. 74 -1.77 

-1.01 -1. 07 - 1.25 -1.47 -1. 51 
- 1.17 -1.17 -1. 20 -1.34 -1. 37 

(d) Configurations V and VI . 

V and VI 

-e ·73 -1.73 ~ · 73 0 

-e .03 -e.45 -e .87 - 3.18 
-e .03 -2 . 45 -e .87 - 3.18 
-e .03 -e.45 -e .87 -3 .18 
- 1.97 -e.39 -e .81 - 3.12 
- 1.53 ( -1. 95) (=:~) (-e . 68) 

-1. 22 - .72 
-1. 29 -. 96 -.65 -----
- 1.35 -1.00 -.72 -----
- 1.46 -1.16 -.88 -----
-1.51 -1.38 - 1.16 -----
- 1.50 -1.43 - 1.32 -----
- 1.53 - 1.51 - 1.50 -----
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1.16 3.16 

0 .23 0 .19 
.05 .06 

- .18 -. 17 
- .33 -. 29 
- .45 -. 38 
-.66 -. 52 
-.94 -.69 

- 1.36 - .95 
- 1.94 -1. 29 
-e .37 -1.78 
-e .23 -e .00 
-e .08 -1. 94 
-1.82 -1.78 
-1.62 - 1.60 
-1. 42 -1.42 

~-

0 .16 1.27 

~.15 0.23 
- .23 .14 
- . 34 - .07 

----- -----
- . 44 -. 30 

----- -- - - -
-.53 -. 43 
-.65 - . 55 
-.96 -.84 

-1. 21 -1.13 
- 1.50 -1. 49 

5.16 7.16 

0 .10 0 .02 
-.05 -. 10 
-. 26 - . 32 
- . 36 -. 39 
-. 41 - . 43 
- . 50 -. 49 
-.61 -. 55 
- .78 -.65 

-1.00 -·77 
-1. 34 - .91 
-1. 53 - .99 
-1. 54 -1. 03 
-1. 43 - 1.06 
-1. 31 -lo ll 
-1. 27 -1. 20 

V 

3.27 5.27 

0 .19 0 .10 
.11 .02 

- ·09 - .18 
---- - - --- -

-.28 -. 36 

----- -----

-.40 -.46 
- . 54 -. 58 
- . 82 - .87 

-1.12 -1.17 
-1.47 -1. 50 
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Stat i on 0 
x 

x 

0.160 
. 200 
. 240 
. 320 
.490 
• 650 
. 820 
. 980 

1.145 
1 . 470 
1.800 
2 . 000 
2 . 500 

Yout 

~ . 15° 
- .080 
-. 050 

.000 

.070 

.130 

.175 

.197 

.223 

.250 

.250 

.240 

.225 
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TABLE II 

ORDINATES OF CENTER- LINE SECTION OF LIP OF 

~ 

Yi n 

~ . 150 

-. 230 
- .280 
- .360 
-.460 
-. 530 
- . 600 
- . 658 
- .720 
- . 845 
- . 955 

-1.023 
-1.183 

SCOOP CONFIGURATIONS III TO VI 

e1age surface (y = 0 ) Station 7.59 

I 

All linear dimensions are inches • 

~ 
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~ 
Artificial 
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\:, :,".', :;~,' ,',~: ; ; ~:: 
".".,.t,I,'I,I,I, 

A 

Groundboord 

Axial flow fan 
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station 

Measuring station In 

boundary -layer slot 

Settling 

o 

Venturi ) I 

By-pass valve~ 

7.6 

l I ~7.!2:T,2r;?/.'727.2n2h"72-r2~?b~2-2-V-

< ,3 

Measuring s~' 
In diff"~~~ / 

Screen 

Main venturi -----' 

Butterfly valve -------' 

Axial flo w fon 

tI tI a a ____ I ........ , ,/ 
,- -4-- " ~ 

CON FI DENTIAL 

Figure 1 .- Schematic diagram of test setup. All l inear dimensions are in inches . 
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ere,t of ,.\ ~ 
Rump 

(a) Original vers i on of configuration III . Configuration I was identical except 
Configuration II also was identical except that slot was 0.43 inlet heights 

Figure 2 . - Views of typical scoops . 
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(b) Final version of configuration II~ with modified slot, scoop lip, 

Figure 2.- Continued. 
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(c) Configuration IV. 

Figure 2.- Continued. 
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( d) Configuration VI, side view. Configuration V was identical except for absence of bypass exits . 

Figure 2 .- Continued. 
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(e) Configuration VI, plan view. Configuration V was identical except for absence of bypass exits. 

Figure 2. - " Concluded. 
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5ro.-1 4 .44 
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Pro f ile of Confi". 
(No slo t) 

(a) Longitudinal section t hrough centerli ne. 
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Stc. 0 ~ L l p . Conf ig s.I.II 

,--.. - lIP. Conflgs.m -:szI , 

~ 

5to. 3.09 

-"",-...1 
Rear slot 
Configs.Y'SZI 
h= 0.22. b=IO. 

Figure 3.- Line dr awi ngs comparing t he severa l configurations . All l inear dimensions ar e i n i nches . 
See figure 4 for s l ot dimensions and t ables I and II for surface ordinates . 
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--____ ~Basic fuselage contour 
Config. IT 

~-- ~------rrr /' -----L IBn 
/ -/~ Y8:lI 

~ ~~-~-~~-~-~~~~ 
~~~~~~~~~~-=~ 

(b) Transverse section through sta. -4.5. 

----
/ ~--~-­

~~I;;;~ 
I ~) Transverse section through sta. -2.0. 
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(d) Transverse section through st~. 1.0. 

·~---III 

Figure 3.- Concluded. 
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0.047"R 

(0) Config. II and 
out board portions 
of Config. ill . 

(e) Conf ig. N. 

13.9 1" R 
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Sta.-7.06 I r Prof ile of bosic romp 
_ ;( Sta. - 5.20 " 

- - - _ J 0.063 R 

y : - 2.23 

(b) tk. of Config. III. 

0.50" R 

Sto.-3.81 

(d) Fore slot, Configs. Jl,3ZI. 

Sto.3.09 

10.5" R 

(e) Rear sl ot , Configs. Y,3ZI. 

CON FI DENTIAL 

Figure 4.- Dimensions of boundary-layer slots. 
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Section 0 D 

Section B B 

Figure 5.- Bypass ducting of configuration VI. 
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~ 2 0 0 

\ [J a D '/ 
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(a) Inle t of main duct. Arrangements with second slot 

r<---g·'O 

1.1"R 0 

8 0 
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x .l"R 
2 

o X 0 
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o x 0 

o total pressure tube 
x static 
" tube present in Configurations ill-jl[ only 

(b) End of diffuser of main duct. 

I • 10 

I 
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(c) End of diffuser of fore slot of Configuration "5[. 

f--IE-------- IO'83 ~I~ 
~I ------~~------------~----------~~----~I ~ 

(d) End of diffuser of rear slot of Cmfiqurations Il a 1lI. 

I E 3.63 -------o~ I 

I : [[ 
(e) By pass exit(stQ. 2B5 ) of Configuration ::5l[ 
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Figure 6.- Dimensions and instrumentation of measuring stations in ducting. 
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Figure 25. - Effect of boundary-layer thickness on average total-pressure recoveries at inlet and end 
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