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RESEARCH MEMORANDUM

ANATYTICAT, TETERMINATIOR OF LOCAL SURFACE HEAT-TRANSFER
COEFFICIENTS FOR COCLED TURBINE BLATES
FROM MEASURED METAT, TEMPERATURES

By W. Byron Brown and Jack B. Esgar

SUMMARY

Analytical methods for the determinetion of locel wvalues of
ocutside and inside heat-transfer coeffliclients and effective gas tem-
peratures from turbine-blade-temperature measurements were developed.
Temperature-distribuntion equations are derived for typical turbine-
blade configurstions at the central section when the well thickness
is uniform, at the leading-edge section, and at the treiling-edge
sectlon. The equations have the same general form for all sections
of the blade, but the blade configuration at the location where the
deta measurements are taken affects the evalustlon of some terms in
the genersl equation.

Procedures for applying these analytical methods to experimen-
tally measured blade-metal temperatures are presented. Data are
presented for the leading end trailipg edges of a symmetrical water-
cooled blade to illustrate the validity of the methods for those
portions of the blade.

In gddition to the application to turblne blades, the methods
can be zpplied to any heat-transfer epparatus having g profile that
cen be approximated by the shepes discussed.

IRTRODUCTION

The development of s sound basis for the design of cooled tur-
bines is dependent on knowledge of the inside and outside heat-
transfer coefficients for turbine blades. Average heat-transfer
coefficients can be determined for any particular blade configuration,
but it appears infeasible at present to obtain a correlation of average
coefficients that is sultable for all blade configurations at all tem~
perature ratlos and all velocity distributions., The fundsmental
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boundary-layer and heat-transfer theories are therefore being studied
at the NACA Lewls laboratory as a means of predicting local heat-
transfer coefficients for any given set of flow conditions. These
studlies will eliminate the necessity for experimental work on every
conceivable blade shape.

In order to verify end to extend these theoretlcal studies,
local heat-transfer coefficients around the periphery of a limited
number of turbine blades must be determined over a wide range of
flow conditioms.

Three methods were proposed for obtzining these coefficlents:
(1) boundary-layer surveys using s hot-wire enemometer, (2) boundary-
layer surveys using an optical interferometer, and (3) anelytical
solutions using measured turbine-blade temperatures. Considerable
progress has been made in the development of operating techniques
for the hot-wire anemometer and the interferometer, but some prob-
lems must still be solved. The third method is probgbly the best
means presently svallable. A development of analytical solutions
is presented herein for calculating local values of outside- and
inside~-convection hest-trensfer coefficients from experimental deta
obtained at steady-state conditions from the measured temperatures
of turbine blades having a known thermal conductivity.

METHODS OF ANALYZING HEAT-TRANSFER DATA TO OBTAIN LOCAL
CONVECTION COEFFICIENTS AND EFFECTIVE GAS TEMPERATURES

The quentity of heat transferred per unit area by convection
from a gas stream to a solid surface can he expressed as the product
of the surface heat-transfer coefficient and the effective tempera-
ture difference hetween the gas and the surface. For one-dimensionsal
heat flow, this same quantity of heat will be conducted through the
wall of the solid and can be evaluated by multiplying the thermal
conductivity of the wall material by the temperature gradient in the
wall., If the inside of the wall is convection-cooled by a fluid, the
heat transferred can also be expressed as the product of the inside-
surface heat~-transfer coefficlient and the effective temperature d4dif-
ference between the inside surface snd the coolant. By using this
reasoning, a heat balance can be set up so that the inside and out-
side heat-transfer coefficients can be calculated from a known tem-
perature difference between two known locations ir the wall having
a known thermel conductivity.
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The temperature-distribution equations for any wall configura-
tion where the heast flow is one dimensional can be reduced to the
following form (Symbols are defined in appendix A and equations are
derived in sppendix B.):

tg - by = D(tg - tg) (1)
and . )
hy = X -l (2)
te—e )
te - Ty

where

ty and 'by wall temperatures at two specific locations lying in
Girection of heat flow

tg wall temperature any place in line of heat flow
(usuelly teken as either ty or ty)

r proportionality factor that is function of wall con-
Piguration, location of temperature meesurements
tx and ty, and retio of outside heat-transfer
coefficient hy to wall thermel conductivity kg;
can be mathematically expressed and experimentally
determined '

t and il proportionality factors that are functions of wall con-

figuration, location of temperature measurement tB!
well thermal conductivity, eand ratio of outside heat-
transfer coefficlent to waell thermal conductivity;

can be methematically expressed and evaluated by use
of ratio hi/kp calculated from experimental deter-

minstion of T

The mathematical expressions for . I', {, and 1 are relatively
simple for a simple shape such as a wall of wnlform thickness, but
they become more complicated for walls defined by concentric circles
or for rectangular- or trapezoldal-shaped fins. Mathematical expres-
sions for shapes other than those mentioned have not been derived.
For a given configuration and thermocouple locetion, T, kpl, and

kpn can be methematically evaluated as functions of hi/ky and
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plotted over the range of hi/kp that can be expected in experi-
mental investigations. This fact greatly simplifies the use of
these quantities,

1347

From equation (1) it can be seen that if tx, ty, and te
are known from experiment, the value of I' 18 easily calculated.
The quantity ht/kB can then be obtained for a mathematlically deter-
mined curve of I' as & function of ht/kB. For a known value of the
thermal conductivity kp, the outside heat-transfer coefficient hy

is then also known. The values of hi/kp and kg can then be used
to evaluate ! and 17, and if the coolant temperature t, is known

from experlment, the inside heat-transfer coefficlent hy can be
calculated from equation (2).

Frequently the effective gas temperature %t 18 unkrown and
will also have to be evaluated from experimental investigstions.
In order to evaluate tg, a series of exzperimental data points must
be obtained for a constsnt outside heat-transfer coefficient hy., -
From equation (1), if ty -ty is plotted against ty for a constant
value of I', the intercept on the tx-axis will be te (this 1s the
case where tx- ty = 0) and the slope of the plotted line will be
-I'. By using this method it is possible to determine both hi (from
-P) and te-

It is often more convenient to write equation (1) in the form

t t. t
ZX- Y. r@ - %E.) (3)
tg g |
where tg 15 an observed ges temperature, an@
t
Q=2 (¢4)
g

From equation (3), 1f (tx- ty)/tg is plotted against tx/tg,
the intercept on the tx/tg-axis will be £l sand the slope will
again be -~I'. The effective gas temperature is then calculated from
the velue of £} by use of equation (4), and the.outside heat-transfer
coefficient is determined from the slope -I%

Sometimes measuring the temperasture at twe points in the wall L
is impossible. If only one well tempersture +tg 15 known, the
temperature-distribution equation for determining the outside heat- .

" transfer coefficient cen be written
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tp - tg = D(tg - t¢) (5)
or

tg ~ o te

%5 - "@ - ?g') (&)

For the cases where the temperature gradient in the metal could
be measured by means of two thermocouples, the term I' was a function
of hi/kp and the blede dimensions. TFor the case with one wall-
temperature measurement, however, I is also a function of the inside
heat-transfer coefficient h;. Consegquently, the method of applying:
equation (5) or (6) to experimental dsta is different from the method
used for equations (1) and (3). The procedure is rather complex and
hes been utillzed for a uniform wall thickness only; it is explained
in detail in the section entitled "Application of Heat-Transfer Equa-
tions to Experimental Data."

The tempsrature-distribution equations used for all these ana-
lytical methods are based on a total ocutside-surface heat-transfer
coefficient that is a combination radiation and convection coefficient,
Correctlions can be made to this total heat-transfer coefficlent for
radlgnt-heat transfer o obteln a true convection coefficient.

These methods of calculating heat-transfer coefficients and
effective gas temperatures cen be applied to any epparatus where the
heat flow is one dimensional end the heat transfer is through a shape
that can be spproximated by the simple shapes discussed herein. The
central section (with uniform wall thickness), the leading-edge sec-
tion, and the trailing-edge sectlon of most turbine blades can be
epproximated by simple shapes so that these methods of analysls can
be used to determine local wvalues of inside snd outside heat-transfer
coefficients and effective gas temperatures.

Central Section of Turbine Blade

Equetions are presented for blades having a uniform wall thick-
ness between the leading-edge and trailing-edge sections for plain
hollow blades as shown in figures 1(a) and 1(b). Analyses for the
central sections of other blade configurations have not been verified
and therefore will not be presented here. The derivations for all
equations are glven in eppendix B.

Case for measurable wall-temperature gradient. - In order to
use this method, the wall temperature must be known at two polnts
located in the line of heat flow. ’
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The heat flow through the blade wall is assumed normal to the
blade surface, and the surface curvature is assumed small enough
thet the wall can be trested as & flat plate. With the substitution
of temperatures t1 and t2 at the locations shown by small circles

on figure 1l(a), equations (1} ard (3) take the form
ty - tg = I(tg - t1) (7)
and
tg P@ ) EE) (®
where
];5 (89 - 83)
r=—2 (9)

1+%(§-51)

The dimensions &1, 2, and 3 are shown in figure 1(a)

The values of { and 73 in equation (2) are

k
!—I}B EE*S"‘"’Z) (10)
and X
1 =-i:'— —-E+-8') (11)
B

Case with one tempersture measurement in blade wsll. - The
temperature-distribution equetion for the case with one thermocouple
in a wall of uniform thickness can be written

tp - to = D(tg - 1) (5)
or
where
h (kg + & hy) (12)

- kB(ht + hi) + 8 hihy
The dimensions & and & are shown in figure 1(b).

1347
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As previously mentioned, I' is a functiom of hy/kg and hy
as well es of blade conflguration and thermocouple location. In
order to meintain I' comstant, the term hj in equation (12) should
be replaced by a quantity that can be maintained at a constant wvalue,
In general, the inside heat-tramsfer ¢oefficient is proportional to
the coolant flow reised to some power 1f the coolant temperature is
constant, that is

hy = C W™ (13)

Equation (12) now becomes

ht(kB + Séwcn)

= = — = (14)
kp(ht + Cwe ) + © htCwe
Equation (14) can also be written
1-T c Ec) 5C
= r' —— e — ] = (15)
wcn Q’t kp kp

The application of equations (5), (6), and (15) to experimental
heat~transfer data will be dlscussed later.

The wvalue of the inside heat-transfer coefficient can be obtained

from equetion (2) where
k —_
;=_1.(_B.+a-) | (16

1]=-£'—B Eb—-l--g) (17)

Leading-Edge Section of Turbine Blade

The heat 1s assumed to be transmltied from the gas stream
through the blade at the leading edge to the coolant along a sector
having an included angle d9, as shown in the cross-sectional view
of - the leading-edge sectlon in figure 1(c), where thermocouples 3
end 4, indicated by small clrcles, lie in s direct line between the
stagnation point on the blade surface end the coolant passage. The
equation for the temperature distribution at the leading edge can
be written
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t3 - tg = D(te - t3)
or
t3—t4= I‘(l-t—"i)
tg g
and
riht loge ;E
I - B 4
1+ r;zt loge ;g
where

r radii as shown with subscripts on figure 1l(c)

The values of { and n 1in equation (2) are
T k T
i B o
; = E-B- 'Eé——ro + loge ?)

end

Tralling-Edge Section of Turbine Blade

(18)

(19)

(20)

(21)

(22)

A cross section of the trailing-edge section of most turbine

blaedes can be very closely approximated by & trapezold, a rectangle,
or & combination of trapezolds and rectangles. Temperature distribu-

tions have been determined for rectangular and trapezoidal cross

sections where the heat flow is assumed to be one dimensional.
lvations are. given in sppendix B for trailing-edge sectlons composed

of the following shapes:
1. Trapezoidal

" 2. Rectanguler

Der-

1347
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3., Combination of one trapezoid and one rectangle
4, Combination of two trapezoids

Equations for I‘,- 4 » and 7 &are given for each of the shapes.
Trapezoidal trailing-edge section. - By referring to the trap-

ezoidal trailing-edge section on figure 1(d) for thermocouple loca-
tions and dimensions, equations (1) ernd (3) can be written

ts - te = I(te ~ t5) (23)
and
te - & tg
- %_pla. _) (24)
tg ( tg
where
Ng - Ng
== _ 2 (25)
N5

The velues of § end 17 in equation (2) are

N
t=3 (26)
and
_E
n1=F (27)
where
N = %—féi];[ﬂl(ih) Jo(18) + 1J1(i81) iHo(iE)] (28)
I =15 (185) B (28,) - B (28y) 133 (i8p) (29)
B- 2 [ (h) Bty + 1 (i8y) Holty)]  (30)

2B%kg
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o l - tan o
¢ -_-..ZB/J(Y"‘Z 71) *T (m)

- . T
T kp sin a
and
T, - T
a = tap~1 3 1
2L
Ns evaluated for y = yg5
Ng evaluated for y = yg
T
£ evaluated for ¥y + ~1_o0
1 z
£ evaluated for y =1L

¥, Tl’ 1'3, L shown on trailing-edge sectlion sketch for trap-
ezoldal shape (fig. 1(4))

Where there are no subscripts on N and §, they can be
evaluated for either thermocouple in the trailing-edge section. The
resulting value of hg in equation (2) should be the same in either
case. .

Rectangular trailing-edge section. - For the rectangulaer trailing-
edge section ass 1llustrated by the trailing-edge section shown in com-
bination with & trapezoldal section in figure 1(e), equations (1) and
(3) are written

tg - t7 = I(tg - tg) (31)
and

ts5 - % s

_T = r‘@ - .t_g.) (32)
and

_ cosh cPQY7 + E Tl) - cosh CP(ys ¥ E Tl) (33)

cosh CP(ys + -E 'l'l)

1347
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The velues of { and 1 in equation (2) are

cosh CPy+5‘l')
_ 2 L (34)

g sinh Ty + 5 T )

and
cosh CP(LZ + i‘- Tl)

kg® sinh cp(x.g + 3 'rl)

2hyg
? = NEgT

The dimensions y, T, and L are shown in figure 1l(e).

(35)

where

Combination trapezoldal and rectanguler trailing-edge section. -

For rectangular portion 4 of the trailing-edge sectlon shown on
figure 1(e), the value of I' is the same as in equation (33).

cosh de(y.? + E Tl) - cosh CPG_(YS + .;t_: Tl)

P=Iy= (332)
a a
cosh CPd(ys + z— 1'1)
For the trapezoidsl portion b,
t7 - tg = Dp{te - t7) (36)
or
t7 - % t7
g rb@ "Iz (37)
end
I, (18, &) - I,0, o) + 21 aE (18, ) - 1B (1¢, )
- 0'1%p,6 o'y, 7) * & | Eplity,g) - Hplisy 7
.b 4

Jo(iky 7) + % 18y (18y,7)

(38)
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where

az _ 28,713 (iﬁb 1) * i1 q’dE“a“h Q(Le + 3 71 ]Jo(iﬁb 1)

K 2B, Hl(ig b,l) - &,1 % [tanh cPd(LZ * E Tl):l 8o (igbsl)
(39)
- Ay (P
op = tan” -1 -—§2—;—1——]:

and gb,l is evaluated for y = O. The subscript b refers to
portion b of tralling-edge sectilon.

The value of I'y, in equation (38) is a function of both
ht b/kB and ht d/kB° For the most accurate solution to the equa-

tion, it is necessary to evaluate dZ/dK in equation (39) using the
value of ht, d/kB obtained for the rectangular portion of the trail-
ing edge by use of equation (33a). It 1s doubtful that this much
trouble is warranted, however, because the terms in equation (38)
involving d%Z/dK are small compared with the other terms in the
equation so that the error caused by assuming ht,q = ht b would

be negligible. By using this essumption, Pb can be evaluated as

a Tunction of ht,b only.

The method for determining the value of h; at the trailing-
edge where the sectlion is composed of two different portions is so
insensitive to the metal-temperature measurements that the anslytical
golution is not believed to be worthwhile end therefore is not
presented. The determination of hjy Iis much more accurate at the
central portion of the blade where the shape factor is simpler. The
evaluation of the outside coefficient ht is considered to be quite
sccurate at the trailing-edge section, however. Because such a small
portion of the coolant passage is next to the trailing-edge section,
the evaluation of the inside heat-transfer coefficient at that por-
tion of the blade 1s of minor importance,

Combination of two trapezoldal portions in tralling-edge sec-
tion. - For trapezoidsl portion df on figure 1(f),

1347
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ts - t7 = Tgi{tg - t5) (20)
or
ts - by _ t |
2 rd,@ - %E) (41)
and
N’? - NS
Tar = g (42)
where
el | - ]
= _Z_B—Lé_k— H]_(iﬁdt,l) Jo(ikge) + iJ;_(iﬁdt,l) 1H, (1€ 41)
at =B
B..2 = ____ht__
4t kB sln C!.d'l
3 1l -~ tan gt
§d_a = ZBd_I '\l(y + E Tl) + Tl (—Z'tal——-Tv_)
and

21 To =T
S = tan T 2 _ 1
2L,

For trapezolual portion b' on figure 1(£),

t7 - tg = Ipt(te - ©7) (43)

or

t-[ - ts ’ t’[ [
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and
Jo(ypr g) - Folilyr 7) + 'gz—K:—EHo(iﬁb',e) - iHo(iﬁb'J)]
bt T . 1
Jo(ig-bl’-?) + % iHo(igb"?)
(45)
where
az! _ GiJl(igb!’l) + SJO(iEb',l)
&' " THE (I, 1) - SiE(1kpr,1) (48)
13 (1 gr 1 )4Ho(1Egy )
and
2
Bar bpr, 1| 193(i84r 1) By (itgr 5)
o Bb-zid',l[ By (3840 ,3) - 20 )
Also
1l - tan '
gbl = ZBbI)\/y + Tz W—TEE’-?_)
and
Gab| = tan"l T_s.z_.-Ll_Tg.
where

Eb',s evaluated for y
Eps ,7 evaluated for y

€pr,1 evaluated for y

I8
-y7 (y7 = 0 for this case)

0

=

1347
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Ed',z evaluated for y = Lg

T
€qr,1 evaluated for y + _Zl =0

A method of evaluating h; for this section of the blade is not
presented for reasons previously discussed.

Radiation Corrections

The effects of radiation have been neglected up to this point
in the analysis so that the local cutside heat-transfer coefficients
obtained are combination convection and radistion coefficients. In
most cases, the heat trensferred by radiation is relatively small
(ebout 3 to 10 percent of the heat traunsferred by convection for
uncooled surface temperatures up to 1500° E), but it is still of
sufficient megnitude to require evaluation.

The combination convection and radiastion coefficient has bhesen
defined s hy; 1If the convectlon coefficlent is designated bhy
and the radiation coefficlent, by, the following equations may be
written:

"

hy = by + by (47)
and
Qt _ Q+Qr
Bt = AB,o(te - tg) B AB,o(te - tg) (+8)
where

Q¢ total heat-flow rate to blade
Q heat-flow rate to blade by convection
Qy heat-flow rate to blade by radiation

The heat transferred by radiation is glvern in reference 1 as

4 n\d
Qp = 0.173 Ap & R%) - (ﬁ):’ (49)
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therefore
[~ 4]
=) - ()
hr ) 0.173%F ._,(-1—6-0- - \I60 B (50)
te - tB
where
F = L (51)
l + (_]_'- - ) + Aw Q—l—- - 1)
F €w AB,O €x

The actual value of the convection heat-transfer coefficient hg
can ?ow be calculated for each gas temperature from equations (47)
end (50).

A comprehensive discussion of radiation is unwarranted here.
For a precise evaluation of radlation, it 1s necessary to accurately
determine the geometry factor F end the eumissivitieas. A method
of determining geometry factors by the use of a mechenical integrator
on large-scele models 1s suggested by Hottel in reference 2. For
most applications wlth cooled turbine blades, the metal surfaces will
be tarnished end socot covered so that the emmissivity will be high,
probably ranging from 0.80 to 0.95 for nearly ell materials.

APPLICATION OF HEAT-TRANSFER EQUATIONS TO EXPERIMENTAL DATA

There are two methods of applying the heat-transfer eguations
to experimental heat-transfer data. The firat method, which 1s the
more direct and probably the better method, depends upon 2 knowledge of
the effective gas temperature., The usual method of determining the
effective gas temperature is calculatlon by use of e known blade
recovery factor. A discussion of recovery factors ls contained in
reference 3. When the effective gas temperature, the measured bleade
tempersture at two positions in the direction of heat flow, and the
metal thermal conductivity are known, the outside and inside heat-
trensfer coefficients can be calculated directly. The second method
can be used if the effective gas temperature is unknown, but data are
necessary from heat-transfer runs where the heat-transfer coefficilient
on the outside surface of the blade 18 maintained constant while the
amount of heat transfer to the blade 1is varied by allowing the coolant
flow end either the roclant temperature or the gas temperature to
change.
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The second method cennot be used to determine the effective
gas temperature with as great an accuracy as is possible using s
local blade recovery factor. The method is therefore best applied
when other means of determining effective gas temperature fail, such
g8 the cgse where temperature greadients in the gas stream mske meas-
uring the stream temperature at the blade impossible. ~

Case with Known Effective Gas Temperature and
Measurable Wall-Temperature Gradient

The effective ges temperature, or the gas temperature effecliing
heat trensfer, is deflned as the adisbatic surface temperature in
reference 3; that is, the effective gas temperature is the tempera-
ture that the surface would assume if it were thermslly insulated
so that there would be no heet transfer. The local effective gas
temperature can be celculated from the totdl gas temperature, the
total pressure, and the local static pressure if the local blade
recovery factor is known. For simple shapes such as flat plates,
tubes, and wedges, anelytical solutions for the recovery factor are
aveilable (reference 3). For more complex shapes, such as turbine
blades, recovery factors can be determined from adigbatic tests of
the blades. Experimental work at the Lewls laboretory has shown
that turbine-blade recovery factors are usually quite close to 0.90
for 21l Reynoclds numbers and for local Mach numbers from 0.4 to 1.0.
The effective gas tempersture is then

te = t + Ag(T - %) ' - (52)

or
-1

tg =T 11 - (L -4Ag)j1 -(%j_;— (52a)

In actual practice for subsonic flow, the value of the effective
gas temperature tg Wwlll Dbe

0.98 T <tg €T

so that in many cases the error in assuming tg = T will be neg-
ligible., The size of the error will be dependent on the temperature
difference te - tyx. A more complete discussion of this error will

be found in the sectlion entitled "Accuracy Considerations.”
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BEquation (1) can be written

t, - T
r=_2*__17% (1a)
te = tx

so that I' can be evaluated directly from the effective gas tenm-
pereture and the measured blade temperatures. For & given config-
uration and given thermocouple locations, I' can be mathematically
represented as a function of hi/kg so that the heat-transfer coef-

ficient ht can be easily calculated. The inside heat-transfer
coefficlent hy cen then be evaluated from

1
hy = To < to (2)
L Qte _ tB) -7

where { eand 71 are obtained from mathematically determined curves
of kB; and kpn plotted against ht/kB for the given configurs-

tion and thermocouple location.

Case with Unknown Effective Gas Tempsrature and
Meesurable Wall-Temperature Gradient

The method of applicetion for this case 1s considerably more
complex than for the case where the effective gas temperature is
known. As prevliously steted, a constant heat-transfer coefficlient
must be mainteined on the outside surface of the blade for a seriles
of experimental hest-transfer runs in order to utilize this method
of analysis. If the coolant flow and the coolant tempersture are
allowed to vary.for a series of rums, the outside hest-transfer
coefficlent can be held constant by maintaining the gas flow end
the gas tempersture constant. The values of inside and outside heat-
transfer coefficlents and the effective gas temperature can then be
obtained rather easily by use of equation (1)

ty - ty = T{tg - ty) (1)

which can be solved by use of suitable plots. If tx - ty (ordinste)
is plotted against tx at & comstant velue of I' (constant ht/kB)

over a range of blade-metal temperatures, the slope of the resulting
line will be -I' and the intercept on the ty-axis will be the

»
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effective gas temperature tg. The value of the locel outside heat-
transfer coefficient hi can now be calculated from the equation
for I’ for the section of the blade in question.

In order to obtain a sufficient number and & sultable range of
temperatures tx eand ty to determine the line in the plot of

tx - ty against tx, it is necessary to vary both the coolant flow
and the coolant temperature over as wide a range as possible.

After determining ht eand +tg, the value of the local inside
heat-transfer coefficient h; can be determined from equation (2).

The values of § and 7 are evaluated as functions of ht/kB for
the section of the blade.

If no provision is made for varylng the coolant temperature,
the gas temperature must be varied. The outside-surface heat-transfer
coefficient is apparently affected by the ratioc of gas temperature to
blade temperature; therefore it may be necessary that the weight rate
of gas flow be varied at the same time the gas temperature is varied
in order to maintain a constant value of ocutside-surface heat-transfer
coefficient. By making heat-transfer runs over a large range of gas
flow and gas temperature, the effect of the ratioc of gas to blade
temperature ¢an be determined so that data for & constent value of
the outside~surface heat-transfer coefficlent can be obtained for
the required plots.

This effect can be evaluated 1f the variation in average con-
vection coefficients with temperature ratio is azgsumed to be the same
as the variastiorn in local convection coefficients. This assumption
will be valid if the point of transition from laminsr to turbulent
boundsry-layer flow on the outside surface of the blade remains at
the same place for all temperature ratios. Evidence exisgts indi-
cating that the amount of laminarity is s function of temperature
ratio unless the pressure gradient is strong enough to maintain a
completely laminar boundsry layer. Where the pressure gradient would
Indicate that the boundary layer is either almost completely laminar
or almost completely turbulent, the following procedure can be used
for evaluating the effect of temperature ratio on the outside heat-
transfer coefficlent:

1. The average outside heet-transfer coefficient ht,av cen
be calculated from the eguation
woht,

h’b,a‘v‘ = A_o(tp ,CC

- tB,av)
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vhere

tg = 0.98 tg (assumed value of 2 = 0.98 as en approximation)

Then bht,qv can be plotted against the weight rate of gas flow vg

for various measured gas temperatures tg as shown in figure 2(a),
Plot I. . )

2. From Plot I, a cross Plot can be made as shown in fig-
ure 2(b), Plot II, to obtain tg as a function of wg for various

values of ht, av.

3. Local blade temperature ty end coolant temperature t. can

be plotted egeinst wg for the various measured gas temperatures at
a constant coolant flow, as shown in figures 2(c) and 2(d), Plots III
and IV, respectively.

Prom Plots II, IIT, and IV, it 1s possible to correlate the
welght rate of gas flow end the temperatures of the blade, coolant,
and gas for given constant values of hy gy and coolant flow. These

plots are required for obteining temperatures te use in additional
plots to determine outside and inside heat-transfer coeffilclents and
effective gas temperatures.

By use of equation (3)

ty - ty
= DI - =
tg (\ tg) ()

it can be seen that If (tx - ty)/tg (ordinate) is plotted against
tx/tg for a wide range of gas temperatures and coclant flows at a
constant value of ht,gv, the slope of the resulting line will be
-I' and the intercept on the tx/tg——axis will be £2. The values
of ty, tx, e&nd tg are obtalned from graphs like Plots II and
ITI of figure 2.

The value of the local outside heat-transfer coefficient hy

can be obteined as before from the equation for I’ for the section
of the blade in question, and the effective gas temperature is cal-
culated from

tg = Q‘bg (4:8.)
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In order to simplify the evaluetion of hy from a known value
of I', it is convenient to plot I' as a function of ht/kp for

the paerticular section of the blade, as previously explained.
The value of the local inside heat-transfer coefficient hs

can be determined from equation (2) where the value of 1%, is
cbtained from Plot IV of figure 2, ht and te &re determined from

equation (3) s and the wvalues of ; and 1 are evaluated as functions
of ht/kp for the blade section.
Case with Known Effective Gas Temperature and
One Temperature Measurement in Blade Wsll

Equation (5) can be written

tn - t '
P =2 ¢ (5a)
te'tc

go that ' can be evelusted directly-from the effective gas tem-
pereture, the coolant temperature, and the blade temperature. Because
I' is a function of both hi and ht/kB, a plot is necessary to
determine the outside heat-transfer coefficient hy. The data for
this plot must be obtained from a series of experiments where the
outside heat-transfer coefficlent is maintained constant while the
coolant flow is varied, which varies the Inside heat-transfer coef-
ficient. The value of I’ is then calculsted from equation (S5a) for
each experimental point. The mathematicsl expression for T 1s

he(k + 8 by)

' =
kp(hy + hy) + 5 hibs (12)
which can be written
1-T c §c) 5C
= M=+ &) (15)
wol hy kg kp

where hj was replsced by Cwc?. The exponent n  can be evaluated
from calculations of the product of the average inside coefflcient
end the coolant-passage area for the varlable coolant-flow runs.
(The area need not be evaluated as it is constant.)
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cP c wcAtc

; (53)
tp,av~ tc

Aihi,av =

If Aihi,av is plotted against w, on logarithmic coordinates,
the slope of the resulting line is the exponent n. ’

It can be seen from equation (15) that if (1 -T)/w.™ is plotted

against @' for varisble coolant-flow runs, the intercept on the
Iaxis of the resulting straight line is fr (for (1 - ) /w2 = 0).

Substitution of this value of I''* into equation (15) ylelds

bty __ D' (54)
kg & - 85It

from which the value of hi can be caslculated.

The local Inside heat-transfer coefficient hi 1s then cal-

culated from equation (2) using equations (16) and (17) to evaluate -

and 1n, respectively.

This method of determining heat-transfer coefficients using only -

one blade-metal-tempersture measurement, however, is not completely
satisfactory in all cases. The method works best for blades made of
metals having low thermal conductivi’ies. When the blade metal is
thin and the metal thermal conductlvity is high, obtaining an accu-
rate evaluation of the outside coefficient ht becomes difficult,
although the ratio of inslde to outside coefficients can be quite
accurately eveluated. If the local imside coefficlent hj can be
obtained from measurements in the coolant passage, the value of hy
can then quite easily be obtained from equations (5a) and (12).

Case with Unknown Effective Gas Temperature and
One Temperature Measurement in Blade Wsll
When the effective gas temperature is unknown, the experimental

values of local heat-transfer coefficient and effective gas tempera-
ture are obtained from e graphical solution of equation (6)

tp - ' te
2 - PG? - ?§> | (6)
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as illustrated in figure 3. In Plot I (fig. 3(sa)), (tp - t.)/tg

is plotted sgsinst tc/tg for various constant values of coclant
flow (and thus constant h;)}, where tc, tg, and tB are obtained
from plots like those in figure 2 for a constant value of ht,av'

The slope of each line is -I" and the intercept of all lines
on the tc/ts-axis is {). The effective gas temperature te can

now be cslculated from
te = th (4_.3)

The graphical solution to equation (15) is illustrated in Plot IT
(fig. 3(b)). The values of I' for corresponding values of w, are
obtained from Plot I (fig. 3(a)). The straight line representing the
plotted values of I' s&ageinst (1 -F)/wcn on Plot IT can be extended
to intercept the I'—axis at a point denoted by I'', as previously
explained. The value of ht can then be calculated from equa-
tion (54). The local inside heat-transfer coefficient hy 1is then
calculated from equation (2) in the same manner as previously
explained. Again, this method is not completely satisfactory for
all cases, particularly when the metal thermsl conductivity is high.

ACCURACY CONSTDERATIONS
In the experimental determinstion of heat-transfer coefficients
from cooled turbine blades, sources of error exist in the experi-
mental measurements and in the method of anslysis that must be
minimized. These posslble sources of error are:
1. Assumption of one-dimensionsl heet transfer

2. Effect of approximations to blade configuration

3. Effect of veristions of thermal conductivity in direction
of hest flow

4, Effect of variation in heat-transfer coefficient along blade
in chordwise direction .

S. Effect of teqperature gradient .in trailing-edge section

6. Accuracy required in locating thermocouples
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7. BEffect of thermocouple hole on heat-flow path
8, Accuracy of temperature measurement

Eech of the preceding items is discussed in detail.

Assumption of One-Dimensional Heat Transfer

Errors in the assumption of one-dimenslonal flow are negligible
except near the rim on a cooled turbine, as shown iIin references 4 and
5. The lower the metal thermal conductivity, the smaller the errors
involved. The metals used in nearly all turbines do have a low con-
ductivity. In static-cascade work, some means of thermally insulat-
ing the ends of the blades is usually used so that spanwlse tempera-
ture gradlents are minimized even at the blade ends.

The temperature distribution through the cross section of a
typical water-cooled turbine blade was computed by relaxation methods
(reference 6} for two metal thermal cornductivities and for both a
constant and a variable outside heat-transfer coefficient. In all
cases, the isothermel lines showed that the heat flow was wvery close
to being one dinmensional at the leading and tralling edges. It was
also found that the temperature distribution in the treiling-edge
section of the blade could be sccurately determined by & calcula-
tion of the temperature distribution through a wedge of comparable
dimensions.

At the central section (midchord) of & blade with & uniform
wall thickness, the heat flow will be one dimensional except at the
ends of the coolant passage next to the leading- and treiling-edge
sections. At such locations, where the flow is known to be two or
three dimensional, these analytical methods should not be used.

The assumption of one-dimensional heat flow 1s valid when
reasonable cere is used in locating thermocouples 1n reglons sway
from end effects.

Effect of Approximestions to Blade Configuration

As previocusly mentioned, the temperature distribution in the
trailing~-edge section can be accurately determined by a calculation
of the temperature distribution through s wedge (trapezoldal trailing-
edge section) of comparable dimensions (reference 8). Conversely, 1if
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the temperature distribution is known (defined herein by two tem-
peratures at two known locations), the cutside heat-transfer coef-
ficient can be accurately determined. The ssme assumption of one-
dimensional heat flow 1s used for a rectangular trailing edge, and
therefore the same accuracy should be obtained. Tralling-edge cross
sections can ususlly be approximated very closely by some combination
of rectangles and trapezoids, so that errors due to shape approxima-
tions can be made negligible.

At the leading edge of the blade, the accuracy will depend upon
the configuretion. If the lsading edge 1s well rounded, relaxation
calculations indicate that the shape approximation of two concentric
arcs will give results accurate to sbout 10 percent. The applica-
tion of the leading-edge analysis is less accurate than the applica-
tion of enalyses for the central end tralling-edge sections because
the shape gpproximation is not completely walid.

The assumption that the centrsl portion of the blade can be
approximated by a flat plate is accurate for large radii of curva-
ture. For small radii of curvature at the central porition of the
blade, more accurate resulis can be obtained by use of the leading-
edge equations for arcs of concentric circles., The leading-edge
equatlon approaches the central-section equation as the radius
approaches infinity. The approximate percentsge error involved in
using the flat-plate equation for determining I' can be determined
from the expression

<]

Error(percent) = 100 T (55)

where
s wall thickness
r radius of curvature of outside surface of blade

O

For a given value of I'y the calculated heat-transfer coefficlent hy
is always higher for the flat-plate equation.
Effect of Variations of Thermal Conductivity
in Direction of Heat Flow
The analytical methods were derived with the assumption that

the section of the blade in question was of a material having a uni-
form thermal conductivity. The thermel conductlivity of = material
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is a function of 1ts temperature. There must be a temperature gre-
dient to have heat flow; therefore the thermal conductivity varies
in the dlirection of heat flow. Analyses have been made toc evaluate
the effect of variable thermel conductivity caused by temperature
gradients. For a typlcal high-temperature-metal alloy with the
thermel conductivity glven by

k = 2.763 X 10-6T7 + 1.246 x 1073 (586)

the temperature distribution was calculated for temperature differ-
ences as high as 130° F between two points in the metal. The error
caused by using an average metal temperature for evaluating the
thermal conductivity was negligible.

If the blade is laminated or coated on the inside or ocutside
s0 that s nonuniform thermal conductivity is caused by the use of
different materials, a great deal of care will be requlred in inter-
preting the results of the analysis. The heat flow can still be
measured as long as the temperature meassurements are made in a plece
of material of constant thermal conductivity, but the heat-iransfer
coefficlents obtained from the analysis will contain the effects of
convection, radlation, and conduction through the materiel having a
thermal conductivity different from the material in which the tem-
perature measurements are made,

Effect of Variation in Hest-Transfer Coefficient
along Blade in Chordwise Direction

At the leading edge of .the blade where the heat-transfer coef-
ficient changes rapldly with the distence from the stagnation point,
the determination of the outside hest-transfer coefficient will be
inaccurate unless the thermocouples used to measure the temperature
gradient lie in & direct line between the stagnation point and the
coolant passage. If the leadlng-edge section is long and relatively
sharp, the results obtained from the analysis will be of very doubtful
quallty. The analysis method ls based on a short, well-rounded
leading-edge section.

At the central and tralling-edge sections of the blade, the
variation in heat-transfer coefficlent in a chordwlse directlon is
usually gradual so that 1ts effect will be quite small. At the cen-
tral portion of the blade the effect wlll be negligible and at the
trailing-edge section the calculated heat-transfer coefficient will
be an average value for the blade surface between two thermocouple
stations. The closer these stations are together, the smaller will
be the effect of wvariation in heat-transfer coefficient.
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Effect of Temperature Gradlent in Trailing-Edge Section

A decrease ocecurs in the magnitude of local heat-transfer coef-
ficients as the surface tempsrature of a flat plate increases in the
direction of filuid flow for a leminar boundery leyer (reference 7).
Thig decrease in heat-transfer coefficient is caused by the formation
of a cool boundary leyer that serves to insulate the surface from the
gas stream and thus decreases the amount of heet transfer.

This decrease in heat trensfer can be defined by a decrease in
effective gas tempersture rather than s decrease in heat-transfer
coefficient; but it is believed that defining the effective gas tem-
perature using a recovery factor is a better procedure. The tem-
perature gradient should then cause a decrease in heat-transfer
coefficients glong the trailing-edge sectiom.

By using the analytical method incorporating a known effective
gas temperesture, this effect of decreasing heat-transfer coeffi-
cients can be experimentzlly determined by placing the thermocouple
stations close together. By using the method where the effective
gas tempereture and the hest-transfer coefficienis are simultene-
ously determined, the effective gas temperature would probably be
ebnormally low because of the effect of the cooled boundary layer,
and the heat-transfer ccefflcient would be higher than for the case
using a known effective gas temperature. The calculated rate of
heat transfer to the blade would be the same In either case, but
cere should he exercised in evaluating the results obtained by the
two different methods,

Accuracy Required in Locating Thermocouples

The distance between any two thermocouples used for messuring
‘a temperature gradient should be known as atcurstely as possible
beceuse the errors ir the resulting data are in direct proportion
to the error in the measurement of the distence between the loca-
tions where the temperature measurements are taken. Because ther-
mocouples are usuelly located inside drllled holes, it is advanta-
geous to have relatively shallow holes in order to reduce the amount
of drift in the drilling operation as much as possible.

The location of the thermocouple Jjunction in the hole is alsc
of prime importance. The thermocouple Junction should therefore be
as small as possible and the junction itself should be ir a hole of
reduced diameter to insure the proper location of the junction. For
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differential thermocouple readings, the Junctlion must also be elec-
trically Insulated from the blade unless the blade is used as one

of the elements of the thermocouple. The insulation should be thin
to reduce the thermocouple time lag end it should he of such & nature
that the location of the Junction is slso known. In generel, errors
resulting from improper thermocouple location and installation can
be reduced by placing the thermocouples as far gpert as possible
consistent with other requlremente of the installation and by placing
the thermocouples In small shallow holes.

Effect of Thermocouple Hole on Heat-Flow Path

An analysis has not been made to evaluate the effects of holes
placed in the heat path similar to those holes in which thermocouples
are placed. If the holes are small compared to the wall thickness
and if the metal beyond the thermocouple Jjunction is solid, the
errors caused by the holes are believed to be negligible,

Accurecy of Temperature Measurement

Accurate measurements of the temperature difference between
two known locations in the blade metsl are necessery. In most cases
the difference between the two observed sbsolute temperature readings
1s not accurate enough. The method of measurement that has been
found to be most successful is the use of a differential thermocouple
circuit and the measurement of the potential from the circuilt with a
sensitive potentiometer and a light-beam galvanometer. Frequently,
use of the blade metal as one of the thermocouple elements is con-
venient because differential readings can be made with the thermo-
couple wire bonded to the blade metal. The single-wire thermocouples
cen also be placed in smaller holes. In order to use this method of
temperature-difference measurement, an accurate calibration of tem-~
perature ageinst electromotive force must be made of the metals used
to form the thermocouple. .

The necessity for the high degree of accuracy required in the

differentisl temperature measurements between two locations in the
blede metal can be illustrated by equation (la):

r-=-% (1a)
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The outslde hesi-transfer coefficlent 1s almost a linesr func-
tion of ' for the range encountered in most investigetions so
that the coeffiéient is directly proportional to tx - ty and
inversely proportional to tg - tx. The temperature difference
tx - Ty can range from less than 1° to over 30° F depending on the
blade-metal thermal conductivity and the dlstance between the loca-
tions where the measurements are made. A 1° error in reading this
temperature difference can therefore amount to an error of from
3 to 100 percent in the heat-transfer coefficlent. The temperature
difference te - tx may range from 100° to 1000° F or higher, how-
ever, so that considerably larger errors can be tolerated in its
measurement,

EXPERIMENTAL RESULES

Preliminary heat-transfer runs were made to determine how suc-
cessful these methods of analyzlng heat-transfer dats are in actual
practice. For the sske of simplicity, a single symmetrical water-
cooled blade having s chord and span of & inches waes mounted in a
test sectlon with contoured wells as shown in figure 4. With this
wall arrengement, the pressure distribution found on & typicel reac-
tion turbine blade can be simulated. A series of heat-transfer runs
wereomade with heated air at temperatures ranging from 200° to
1000° F.

The leading edge, the tralling edge, and the central sections
of the test blade were of shapes that could be used with the
temperature-distribution equations presented herein. Multiple ther-
mocouples were placed in the line of heat flow at the leeding and
trailing edges and single thermocouples were placed in the wall at
the central portion of the blade. The circles on the blads sketch
indicate the locations of the temperature measurements. The blade
used for these hest-trensfer determinstions was made of aluminum,
which has a relatively high thermal conductivity; because of 1its
high .thermal conductivity, the deta obtained from the singie ther-
mocouples in the blade walls could not be used to evaluate local
heat-transfer coefficients at the centrel portion of the blade.
Experimental data are therefore given for only the leading and
trailing edges.

Tralling-Edge Section

Beat-transfer data obtained from the temperature measurements
in the trailing edge are shown in figure 5. The scatter in the
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experimental dsta points 1s quite small and the data fall in small
clusters. Each cluster represents a different gas temperature. In
this case, datas were taken at 200°, 400°, 600°, 800°, and 1000° F.
Varlable coolant-flow points are shown at each gas temperature. The
equation of the experimental line was determined by the method of
least squares and the intercept £) on the abscissa was 0.954. With
this value of ‘), the local effective gas temperature can be cal-
culated at any of the observed gms temperatures in the series of
runs represented on this plot. .

The slope of the line representing the date is -I', which in
this case is equal to -0,0477. A straight-line approximation of
equation (25) for the trailing edge of this blade is :

hy % 0.3775 T (25a)

From this approximate relstion, the resulting local value of the
outside heat-transfer coefficient at the trailing-edge section is
0.01802 (Btu/(°F)(sq f£t)(sec)). The average outside coefficient
for the entire blade was slightly higher than this wvalue, which
serves as a rough check on the magnitude of the trailing-edge
coefficient. )

If the effective gas temperature is calculated from the local
blade recovery factor end the local Mach number, the calculated heat-
transfer coefflcients are lowsr than for the case where the effec-
tive gas temperature 1s calculated from the Iintercept on figure S.
The calculation for the quantity of heat transferred is the same in
either case, however, as long as corresponding values of heat-transfer
coefficient and effective gas temperature are used in the calculation.
Because it is usually easler to celculate the effectlive gas tempera-
ture from a blade recovery factor, outside heat-transfer coefficients
were also calculated at each gas temperature using this value of
effective gas temperature.

The recovery factor for this blade at the tralllng edge was
0.90 at a Mach number of 1.0. The Mach number was maintained con-
stant at 1.0 for this series of runs. Use of these values in egua-
tion (52a) results in

te = 0,983 T (52b)

A plot of ocutslde heat-transfer coefflcient against gas tem-
persture where the effective gas temperature 1s defined by equa-
tion (52b) is shown in figure 6. The date points shown were cbtained
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from arithmetlcally averaged blade temperatures at each gas temper-
sture. All the experimental data used in figure 5 were zlso used
to obtein figure 6. The outside heat-transfer coefficient increases
as the gas temperature increases and is from 2.5 to 16 percent less
than the constant coefficient obtained from the plot on figure 5.

Leading-Edge Section

Heat-transfer data obtained from the temperature messurements
in the leading-edge section of the blade are shown in figure 7 for
gas temperatures from 200° to 800° F. The scatter in the dats for
the leading-edge section of the blade is considerasbly grester than
that for the tralling-edge section (fig. 5). There are two explana-
tions for this scatter: (1) The change in local heat-transfer coef-
ficient with distance from the stagnation point is very rapid. In
this blade, the heat-transfer coefficient was not measured directly
at the stagnation point and any stream fluctustions that might cause
the stagnation point to shift would meterislly affect the value of
the local outside heat-transfer coefficient. (2) In addition to
this condition, the coolant flow near the leading edge of the blade
was unstable and caused the blade temperatures to be unstable also.
In a previous discusslon, small errors or fluctuations in the blade-
temperature measurements were shown to affect the accuracy of the
data; the effect is illustrated here.

At the leading edge of the blade, the value of 2 was found

. to be 0.940. The straight-line aspproximation of equation (20) for

the leading-edge section of this blade is
hy = 1.738 T (20s)

By using this relation, the local heat-transfer coefficient at the
leading-edge section was found to be 0.0441 (Btu/(°F)(sq ft)(sec)).

Theory for the leading edge of cylinders indicates that the
heat-trensfer coefficient at the leading edge should increase with
increaese in gas tempersture for a constant weight rate of gas flow.
The plot of heat-transfer data In figure 7 indicates that this trend
is also present here because the data points could be best repre-
sented by a curved line. The data obtalined at a gas temperature of
1000° ¥ were not included in figure 7 because of this trend. The
data points et gas temperatures from 200° to 800° F can be spproxi-
mately represented by a straight line and were presented in this
figure for illustrative purposes only.
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For a more accurste determinstion of the hest-transfer coeffl-
clents, the leading-edge-section date were also calculated using
effective gas temperatures calculated from the recovery factor and
the Mach numbér. The Mach number at the leading edge was 037 and
the local recovery factor was 0.87, so that from eguation (52a)

te = 0.997 T . (52¢)

A plot of hest-transfer coefficient against gas temperature at
the leading edge of the blade where the effective gas temperature
is defined by equation (52¢c) is shown in figure 8; for reference
the heat-transfer coefficient obtained from figure 7 1s shown as
& dashed line.

The heat-transfer coefficient at the leadlng edge is dependent
to a very large degree on the leading-edge configuration. The coef-
ficient 1s lowest for a clrcular section, lncreases materially as
the section becomes elliptical, and becomes infinite for the leeding
edge of a flat plate. The heat-transfer coefficlents represented
by the solid line on figure 8 lle between those calculated from
theory for a circular section and an elllipticel section with a major-
to minor-axis ratio of 2, Although this fact cannot be used as an
accurate check on the heat-transfer date at the leadlng edge, it
shows that the data are in the right range and the trend of varia-
tion in gas temperature is verified.

CONCLUDING REMARKS

The analytical methods for the determination of local heat-
transfer coefficlents and effective gas temperatures present a con-
venient method for obtaining these data and the actual application
of the equations to experimental data is relatively simple. The
application of the equations for the various sectlions of the blade
is made In a similar manner for each section, greatly increasing
their utility.

Measuring the temperature gradient in the metal with two or
more thermocouples whenever possible is adventageous because the
analysis methods using one thermocouple are considered less accurate
and considerably more difficult.
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A desirable festure of these enslytical methods is that they
are not limited to turbine blades alone but can be used to determine
local heat-transfer coefficients and effective temperatures for many
other types of apparatus where the heat is being transferred through
metal in e shape that can be spproximated by the shapes discussed
herein. ' '

Lewis Flight Propulsion Leboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio.
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

blade surface area, sgq ft

P
kg 8in o
constant
specific heat at constant pressure, Btu/(1b)(°F)

differential

quantity in equation for tralling-edge analysis
(equation (30))

radiation geometry factor
radistion geometry factor for gray surfaces
function

quantity in equation for trailing-edge analysis
(equation (46))

Hankel function of zero order
Hankel function of first order
heat-transfer coefficient, Btu/(°F)(sq ft)(sec)

guantity in equation for trelling-edge analysis
(equation (29))

d -1
Bessel function of zero order

Bessel function of first order
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K,K? constants of integration (function of hi/kg)

k thermal conductivity, Btu/(°F)(ft)(sec)

L length, ft

M Mach number

N gquentity in equation for tralling-edge analysis
(equation (28))

n exponent

P total pressure, 1lb/sq ft sbsolute

P static pressure, 1b/sq It absolute

Q heat-flow rate, Btu/sec

a heat-flow rate per unit lemgth, Biu/(ft)(sec)

r radius, ft

S quantity in eguation for trailing-edge enalysis
(equation (46})

T total temperature, °r

t temperature, °r

W weight-flow rate, 1b/sec

X constant of integration (function of ht/kp)

Y constaent of integration (function of ht/kg)

¥ distence from trailing edge, £t (figs. 1(d) to (f))

7,7t constants of integration (functions of ht/kB)

o trailing-edge wedge angle, deg

function of ht/kB, thermocouple locetion, and blade
conflguration
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Subscripts:
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intercept on plot of (1-IV/w.," against T
(fig. 3(b))

ratio of specific heats

thermocouple location dimension, £t (fig. 1(a))

blade-wall thickress, £t (fig. 1(a})

emissivity

fy (hy/kp, kg, and blade dimensions)
fo (hy/kp, kg, and blade dimensions)

engle, radiens

recovery coefficient
1l - tan a
2B V(y + —T + 1'(2 o ———

- tan o4,
2By «jy * 2 tan oy, )
thicknees, ft (figs. 1(d)} to (f))

25,
kB T

(]

I

ct

aversage

blade

trapezoidal portion of trailing-edge sectlon composed

of trapezoid and rectangle (fig. l(e)})
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bt first trapezoidal portion of trailing-edge section
composed of two trapezoidsl(fig. 1(f))

c coolaent

da rectanguler portion of trailing-edge.section composed
of trapezoid and rectangle (fig. 1l(e))

at second trapezoldal portion of tralling-edge section
composed of two trapezoids (fig. 1(f))

e effective; subscript used with symbol for temperature
to denote temperature effecting heat transfer

g gas

i inside blade surface

o outside blade surface

r radiation

T thermocouple

£ combinatlion of radistion and convection

w rediating surface

x local value at some locstion

v 1oc;1 value at some locatlon different from location
of x

1,2, « o« « 7 refer to thermocouple locatlons unless otherwise noted
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APPENDIX B

DERIVATION OF HEAT-TRANSFER EQUATIONS
Central Section of Blade
The heat flow through the blade wall is assumed normel to the
blade surface and the surface curveture small enough that the wall

can be treated as a flat plate. By reference to figure 1(b) for
symbols and dimensions, the following heat balance can be written:

k X
2 = hylte - o) = %1—3 (to - t1) = 5= (tB - 1) = hi(t1 - tc)

(B1)
where
ty, metal tempersture on outside surface of blade
tq metal temperature on inside surface of blade
tg metal temperature at distance & from coolant passage
The following equations can be obtained from equation (Bl):
knty + Shyt,
ty = B¥1 e tve (B2)
kB + 5ht
k'BtO -+ Bhitc
kp + Bhi
2.2 (B2)
E to -t

When to and ti are eliminated from equations (B2) to (B4),

_ hy(kg + 8hy) | ) 3
B - e = kp(hy + hy) + Bhghy (Fe - %o) (55)
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If ' is defined here as

kp(hy + By) + Shyhy
then .
tg - to = Ntg - &) (5)

The effective gas temperature te in equation (5} is defined
as the temperature that the test blade would assume if there were
no heat transfer to or from the blade (reference 3). A blade recov-
ery factor Ag that is a function of the blade configuration and

Mach number can be obtained, so that the effective gas temperature
cen be determined from the equation

y-1_2
1+dg 5= M

- 2
1_,_.7__1.55

tg =T (B6)

Simllarly, the ges-temperature reading from s shielded ther-
mocouple placed in the gas stream shead of the blade will be

1+ATZ_;_}.MIZ

tg =T 1 2 (B7)
1+ — Mp
where
tg observed gas temperature reading from thermocouple, °gr
T total gas temperature, OB
AT recovery factor for thermocouple
My Mach number et thermocouple
Ie
tg = th (4a)
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where £ 1is a constant of proportionality, from equations (B6),
(B7), and (4a),

q . [ + Ay Z—%—l M2 [+ Z—é-l My (58)
= B8
y =12 -1 2
1 +VAT == Mp 1 4+ 1_5—_ Mg

In order to determine the effect of varistions in local Mach
numbers and recovery factors of the blade and the thermocouple,
values of {3 were calculated for Mach numbers from O to 1.0 by
use of values of recovery factors from 0.65 to 1.0. The maximum
variation in () with Mach number was about 2% percent.

Combination of equations (5) and (4a) and division by tg yileld

tn - t
_.l%£=r@-%£) (8)
g N 4
For the case when two temperasture measurements can be made to

obtain the tempersture gradient in the blade wall, as shown on
figure 1(a), temperatures t; snd tp at corresponding distances

8] and B can be substituted into equation (BS), which results

in two equations., Subtraction of the equation involving t5; from
the equation involving tq results in

b1 - tp  Bhy (8 - 8p)

= BS
te - tc  kp(hy + hy) + Bhyhy (89)
Equation (B§) can also be written
tq - t (kn + 87h4)
1~ b hilkp + 8yhy (B10)

e - Yc  kplhy + By) + Bhyhy

Subtraction of both sides of equation (BlO) from unity and com-
bination with equation (B9) to eliminate h; give

hy
2 (e, - 8,)
b - tp e =BT B (- 4) (B11)
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If I is now defined as

z—t' (89 - 85)
r=—2p (9)
1+-]5 (5- 81)

then equation (Bll) becomes
ty - tp = T(tg - tq) (7)

Equation (BS) can be written

- 1 2
hy = (e ’Gc) (2)
/-1
le - T3
where
k
1 B =
L==|—=+3- 5) (16
kp \Bt )
and
1 (%8 —)
=== \=+3 (17)
TR \By
If tp 1in equation (2) is replaced by tp5, equation (16)
becones =
=1 ﬁ 3-8 10
kg \By 2) (10)

Leadihg-Edge Section of Blade

Heat 1s assumed transmitted from the gas stream to the blade
coolant at the leading edge of the blade along & sector with an
included angle dP, &as shown in the leading-edge cross-sectlonal
view in figure 1{(c). It is assumed that no heat is transmitted in
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a direction normal to the sector path from the gas to the coolant;
this assumption has been verified by relaxation calculations for
well-rounded leading-edge sections. The following heat-balance
equations cen now be written:

dg = (tg - ty)(r, @9)ny (B12)
dq = (ti - tc)(ri de)hj_ (Bls)
dtp
dq = r 4o kB T'i_; (314)
where
dq heat transferred along sector having included angle d6

per unit length normal to sector, Btu/(ft)(sec)

r,ry,r, radli to concentric arcs of clrcles

ty blade temperature at sny point in sector, °r
ty inside-blade-surface temperature, °r

t outside-blade-surface temperature, °r

(o]

From equation (Bl4),

tgp = E% logg Cr (B15)
Then
by = E];Baﬁ logg CTo (B186)
end
ty = 99 logg Cry (B17)

kp 46
Subtracting equation (B17) from (Bl6) yields
kn 48
dq = —-3-—1,; (to - t1) (B18)
loge ;;'
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It is obvious thsat

to'ti to'ti

te - tc - (te - Bo) + (By - B} + (%5 - &4) (59)

Combination of equations (Bl12), (B13), (B18), and (Bl9) yields

t, -t
t_ - %, = e ¢ (B20)
+ = +
To \BtTo BiTi
1oge -ITi'

Subtraction of equation (Bl7) from (BIS) and division by (B18) give

lo
g -ty fo y

= (B21)
Yo = ®1 1lo ﬁ
Ze Ty
When equations (Bl3) and (B18) are combined,
g - b, = = (to - %4) (B22)
rihi 108e e}
T3
Combination of equations (B20) arnd (B22) results in
i< t, -t
ty - ¢ = B S (B23)
T k
r.h, log L1114 B 1 + L
i7i e ry ro \Btry hiry
loge r—i

From a combination of equations (B20) and (B21), it 1s found that

loge —
-t
‘e c (B24)

To kg 1 1
log —_ 1 + +
e Ty ro \BgTo hirj__

tg -ty =
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It is obvious that

tg - to = (tg - t4) + (B - tg5) (B25) 5
By combination of equations (B23) to (B25), -
k
B
log, — + .
tB - tC - Ee I‘i hiri (st)
T. -t = X
e ¢ logg 2 + —EE- + B

Ty BgTo  ByTy

If two temperatures tz and t4 are messured in the sector
at points 3 and 4 at radii rz end r4, these values can be sub-
stituted into equation (B26), which results in two equations - one
for each temperature. Subtracting the equation involving %4 from
the equation involving tz ylelds

roht g 'z
t - ¢ k e n,
St — = (B27)
¢ 1+ hy({-2 logg 2 + -2
ri hiri

Equation (B26) can also be written

r rz To
hy (=2 loge — +
ts - tC - t (kB I'i hiri (st)
tg - tg To rq Ty
: 1+ ht — 1083 —
kB I'i h.iri

Subtraction of both sidee of equation (B28) from unity and combina-
tion with equation (B27) give
r h'b : rz
ks e E,
Toby o (te - tz) (B29)

kg fe Ty

ts-t4=
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If I' is defined as

roht T3
k‘B 1oge 7
T = (20)
o]
1+ T loge -173—,
equation (B29) can be written
tz - bty = D(tg - tz) (18)

Combination of equations (18) end (4a) and division by tg yield
t, -t t
3 4 3
= _2_rQ -= (19)
tg _ ( ts)
In order to determine the value of the inside heat-transfer

coefficient hy, both sides of equation (B26) are subtracted from
unity and the equation is rearranged to yield

1
hy =
17z 10 To e\ _Ti 1o ro kg
kg €e T htro te - t3 kg €e 77 htro

1
ct

If § and n are defined as (830)
T k r
=_i( B _o
4 g (h'bro + logg r) (21)
and
I‘i kB rO
==\ ¥ loge = 22
m kB htro ge ri ( )

equation (B30) can be written

1 = ¢ e _l o (2)
(te - tp %)' !
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Trailing-Edge Sectlon of Blade

The trailing-edge cross section of most turbine bledes can be
approximated by a trapezold, a rectangle, or a comblnation of
trapezoids and rectangles. Heat-transfer equations are given for
each case.

Trapezoldal trailing-edge section. - The temperature distribu-
tion in & trapezoldal trailing-edge section of a turbine blade is
derived in reference 4 and is given herein by the expression

t - tB' h,N
'c: ~t, I+ B (B31)
where
4
N = 2321:3 [Hl(iﬁl) Jo(18) + 137(st;) 1H0(i§):] (28)
I = 13(18)) B (18p) - Ey(ify) 13(18p) (29)
E= gz [EL(2£1) To(1ka) + 1oy (1ky) 1Bo(itz)]  (50)
2B%ky
¢t = 2B Q“E‘fl)”l (12'1:__%‘_.;2)
h,
B2 = kg sin a
a = tanfl Ié_;;fl
2L
t evaluated for y + E.Ti =0
52 evaluated for y =L

y,Tl,Ts,L shown on trailing-edge section for trapezoidal shape
(fig. 1(4))
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correction term in equation for § +to account for
rounded end of wedge and considered more accurate than
T1/2 as given in reference 4.

Lalt
-
=

If two temperatures, t5 and tg, are measured in the trailing
edge at distences yg; and Jyg, &as shown on figure 1(d), these

values can be substituted into equation (B31l), which results in two
equations, one for each temperature. Subtraction of the equation
involving t5 from the equation involving tg leaves

Ng - Ng
tg - tg TT 8y
tg - Tt T (B32)

where N5 and Ng are evaluated at the positions where ts5 and
tg are measured. Replacement of ¥ by i end N Dby Ns in
equation (B31l) and combination with equation (B32) result in

Ng - Ng
-t = eme——— (t = ) (335)
t5 6 N5 e tS
If I’ is defined as
N. - K,
r--86_25 25
% (=)
equation (B33) becomes _
tg - tg = I'(tg - tg) (23)

Division of both sides of equation (23} by tg and combination of
the result with equation (4a) yield

tg - tg -t
_St = r@‘?) (24)



48 : NACA RM ESOFO09

Solving equation (B31l) for .hy yields

hy = T 1 (B34)
N (.9.___2) E
T\t -t/ I
Letting
N
= = 26
t =3 (26)
and
==
n=3 (27)
results in a transformation of equation (B34) to
(2)

- 1
hy = . -
t{(=2—2)-n
te = tB
Rectangular trailing-edge section. - The temperature distribu-

tion in a rectangular tralling-edge section is given in reference 4.
In the notation of thils report, the expression becomes

h

i T
-t E‘°°th’y+z"1)
B B (B35)

t, - T h y
e [+ T 3
fPsinhch2+Z‘r1)+.E§coshq>(;.2+llT1)

where

Lo,¥5T1 shown on rectangular portion of trailing-edge sectlion
gketch (fig. 1(e))

correction for semicireuler end of trailing-edge section

~la
-4



Lral

NACA RM ESOF09 ' 49

e
® =\t

If two temperatures tg and %7 are measured in the treiling
edge at distances y5 and ¥y, as shown on figure 1{e), these

values can be substituted into equation (B35), resulting in two
equations - one for each temperature. Subtraction of the equatlon
involving tg from the equation involving t7 leaves

and

ts - t7 by | cosh CP(Y? + % Tl) - cosh q’(y5 ’ ETl)] (B36)
Te - to —cpkB sinh CP(LZ + % "'1) + hy cosh CP(I?_‘L I Tl)

Replacement of tp by %5 and ¥y by y5 in equation (B35) snd -
combination with equation (B36) result in

cosh CP(y.{. + -E Tl) - cosh CP(ys_ + E 1'1)
t5 - t? = T (te - ts)(Bs?)
cosh q(ys + z 1'1)
By letting
Lo i
- cosh ‘P(yT + Y ’l’l) - cosh @ Y5 + 1 Tl) (53)
cosh cp(ys + z- Tl)
equation (B37) becomes
tg - B = D(tg - tg) (31)

Division of equation (31) by tg and combination of the result with
equation (4a) yield

5 - %7 s
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Equation (B35) can be solved for hi, which results in

= 1
T cosh @(y + 1’! Tl) (bé’ - tc) cosh CP(L + = Tl)
kp® sich q:(Lz +E1,) e - B/ kypetoh CP(L ;X Tl)
(B38)
By letting
_ cosh Cp(y +j Tl) (34)
kg sivh ®(Tp + I ™)
and
. .cosh CP(LZ + ’—4:- Tl) (35)
kg® sinh cp(Lg + E-rl)
equation {B38) becomes
hy =-7% -lt . (2)
¢ (s t) -
e B

Combination trapezoldal and rectangular tragillng edge. - By
writing equation (B35) for ty and 17, equating the two expres-
sions, and solving them, the temperature distribution In the rec-
tangular portion of the trailing edge can be written as

cosh tp(y + ;_,:— Tl) (B39)

cosh CPQ"'Z + g— Tl)

te - tg = (te - t7)

where
tB temperature at eny point in rectangulsr portion.

te temperature at point where y =1L, = ¥y
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The temperature distributlon for any trapezoidel shape is given
in reference 8, and in the notation of thils report becomes

- tg = KJp(it) + ZiH,(it) (B40)

The integration constante K and 'Z are functions of hj.
At the Junction of the two portions of the trallling edge, the metsl
temperature and the heat flow must be continuous; therefore relations
between the integration constants can be written.

At the junction, the blade temperature 1s t;; therefore

tg - t7 = KJo(iky 1) + ZiHy(ify 1) (Ba1)

where

it
Q

¢ b,1 evaluated for ¥y

and

1 tan
€p ZBb’\/Y+ TL =

Ztancnb

-1 Tz - Ty
ay = tan~ _—ZL]_

For the heat flow to be conmtinuous s Tthe following relation must exist:

a dt
kphy, o2 = kpha oo (2s2)

but Ay = Ag at the junction where the subscripts b and 4 refer
to the portion of the treiling-edge section in figure 1l(e).

Differentiating equations (B39) end (B40) with respect to ¥
and substituting the result in equation (B42) result in

2 2
(te - t7) Pg t_anhCPa_(Lg + E Tl) = -g:i‘:z |:- Kiq (i€p,1) + ZH]_(iﬁ'b,]_)]

(B43)
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L4

Temperatures tg and t; at corresponding distances ysg

and y7 can be substituted into equation (B39), which results in
two eguations., Subtracting the equation involving tg from the
equation involving t; results in

= It
cosh @d(y'? + Z Tl) - cosh q’d(:Y5 + -4- Tl) (t

ts - t7 = x e - t7)
(Ba4)
Equation (B39) can slso be written
cosh @ (y + X7
tg - tg = (tg - tq) aN5 4 1) (B45)

cosh de<]:.2 + i‘t Tl)

The rigorous solution to equations (B44) end (B4S) is rather
complex. From equations (23) and (31) it can be seen that the final
solutions for the various shapes take on the general form

'tx - - = P(te - tx) (1)

where I' is a function of the blade dimensions, the end conditioms,
and the ratio hy/kp. .

The simplest method of solving equations (B44) and (B45) to get
them in the general form of equation (1) is to calculate the slope
1"d of a plot of tg5 - t; against +t5. In order for the slope to

be constant it cannot involve hj. The slope of the line is
d(t5 - tq)
dh
I o=t
a a(ts)

dhy

(B46)

From equation (B44),

a(ts - tq) cosh ¢d(y7 + 2— Tl) - cosh cpd(ys + -;‘-: Tl) dt.,
dhy ) cosh de(]:.z + E Tl) dby

(B47)
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and from equation (B45),

I
dtg cosh EPd(ys + 3 Ty ) dty

= = (B28)
dhi  cosh de_(Lz + :15 Ty ) 9B
Then from equations (B46) to (B48),
cosh de(y7 + z ‘l’l) - coshcpd(ys + g- Tl)

—
cosh ':Pd(ys + I Tl)

For the trapezoldal portion of the trailing-edge section In
figure 1(e), the temperatures t7 and tg can be substituted into

equation (B4l), which results in two equations. Subtracting one
equation from the other and differentiatling yield .

4 -t
__(%i_s_)_ = %‘i Jolidp, ) "'70(151:,7{‘*“%‘530(1%,6) 'ﬂo(iﬁb,'ﬂ]
(B49)
and
dt
E:_ = - %71 Jo(iﬁb,'z) - %Za_h—{ iHO(ig'bﬂ) (B50)
where

§-b’ g evaluated for ¥ = yg

E'b,? evaluated for y =y7 (y7 =0 for this case)

Division of equation (B49) by equation (B50) to cbtain the value

of the slope - b for the trapezoidsl part of the trailing edge
results in

_ Jo(ig'b’s) - Jo(igb,'f) + % E‘-Ho(ig'b,s) _ iHO(ig'b,.'F):!

Jo(iky,7) + & 1Ho(it,7)

b (38)
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The value of dZ/dK in equation (38) can be found from equa-
tions (B41l) and (B43) as follows:

When equeations (B4l) and (B43) are differentiated with respect

to by, 3
dtq
T - -552 Jo(ily,1) - ——; 185 (1€y 1) (BS1)

and

dt- dK

@, ¥y tenh vd(LZ + 7 Tl) ----i'b 1 [ iJ]_(iib 1) - Hl(igb 1)]

(Bs2)
where

gb,l evaluated for y = 0

Eliminetion of dt,/dh; yields .
2
ZBb :LJl(iEb,l) + §b,1 0] tanh CPd(Lz + f Tl):l Jo(iﬁb’l)

5 ,
2By By(ify 1) - £, ePa!—_-f'*'*:ﬂh Pa Lz + 5 "'1)] 1Hp(1fp,1)
(39)
Combination of two trapezoldal sections in treiling edge. -
The temperature distribution in the trapezoidal portion b' is given
in different form in reference 8 as

gz |
a&

te - tg = K'Jg(ifyr) + Z'1iBp(16y) (B53)
end in portion &' +the dlstribution is
te - tB = X'Jo(ifar) + Y'iHp(1ila+) : (B54)

where

K',Z2',X',Y! integration constants
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tan o,
gb'_ZB‘b'/J;'I'T <2ta.nmb>

- tap-l .3 T2
Oy 1 tan’ 21'1

hy
i ‘\}m
1 tan ag.
td V{y+_T)+T (2tancr.d,)

_sz 'Tl
Gyy = tan ————
d 2L2

Bat = ___.ht— )
dt kg 8in og:

Here again the integretion constants are functions of hj -and
et the junction of the two trepezoidal sectlons the metesl. temperature
end heat flow must be continuous, The following relations between
the integration constents can be written:

and

For temperature contimuity,
K'3o(iky o) + Z1iBG(38,, 1) = T a5(k,, ) + THE,(18,, )
(BS5)
and for heat-flow continuity,

dtgr
kphpt Etl = kpAg:s —d—- . (B42e)

Differentiating equetions (BS3) and (BS4) with respect to ¥
and substituting in equation (B42a) yleld
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2
By
gb' ) E— K‘iJl(igb:,l) + Z'Hl(igb-,l)]
¥
Bdtz , .
= 5&? n [- X153 (18gr o) + X Hl(if,d.,z)] (BS86)
2>
where
A‘bl‘ = Ad_l
ﬁb',l evaluated for y =0
Edt,z eveluated for y = Lo

The equation for portion d4d' is
tg - t7 = I'd-(te - ts) (40)

From equation (38), the equation for Fd| can be written by
Inspection: .

ay*
) Toltlye =9k I+ & [iﬂo(igd'ﬂ) - mo(iﬁd.,s)]

Jollar,s) + %':' 18y (ifg1 5)

Ty
(B57)

Edn’7 evaluated for Yy = yq

it

gd',S evaluated for y = ¥yg

Y, X integration constants for portion d' that replace integra-
tion constants K and Z for portion b in equation (38)
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The equation for dY '/ dX*' can also be written by inspection
from equation (39). If the rectangular portion d were removed
from portion b (fig. 1(e)), the quantity (I, + -g T1) in equa-

tion (39) would be equal to zero and the equation would reduce -to

az 190 1)

#eztmg o
>

Because nothing is sttached on the rear of portion 4' on
figure 1(f), the equation for day'/aX' is

ayt _ 15 (1ka: )

ax' (i ,1)

(B58)

wvhere

T
gd',l evaluated for y + 5 T; =0

£ = 2B (y+£‘l')+T _____1-tana.a_:
ar ar 4 '1 1 2 tan agq

A correction for the rounded end is included in eguation (BS8)
but not in equation (39a).

and

Substitution of equation (B58) into (B57) and notation of the
definition of N given in equation (28) yield

) N, - N, .
Pgr =43 (42)
N5

When the same process as before is used to obtain an equation
for portilon B! in the form

't-[ - ts = I‘b: (te - tT) (45)



58
it 1s fourd that

_ Io(1pr 6)

NACA RM ES0F09

- To(aky, o) + d_Z.'_[m (1, 6) - 1y (38, )]

Jo(iﬁb' 7) + o 1B (1 7)
(45)

The value of dZ'/dK' can be obtained from equations (BS5) and

(B56) by differentia

ting and grouping to yield

25% Jb(iﬁb',1)+'g§%_iﬂb(iib' 1)= [%o(iid' 2)+ T 1Hy(itar, i]
and (59)
- %%i 137 (28ye 9) + %%i By (18pr 1)
= %-;—[- 17y (1kgr 3) + &-,— Ey (itq ]—9—'—?}:-1'-2—— (B60)

Byt Ear,1

Elimination of

dx'/ah; from equations (B59) and (B60) and

substitution of the value of dY'/dX' from equation (BS8) yield

azZ' _

GiJl(if,-b, ,1) + SJO(ig‘bl ,1)

ag'

where

G = J’O(iﬁd:,a) +

and.

ByeZlye o

GHy (18pr 1) - S1Hp(ip 1) (48)

15y (184 1) 1Ho(igr 5)
B (itar,1)

= Bbtzgd.',l

107 (1841 1) By (ifgr 2)
[ Hl(igd_t,l) - iJl(i§d|,2{|
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(a) Central section with two temperature
measurements. ’

(b} Central section with cne tesperature
neesurement.

(c) Leading-edge section.
{a) Treiling-edge section - trapezoidal shape.

(e) Trailing-edge section - combination of
trepezoidal and rectangular shapes.

(?) Trailing-edge section - combination of
two trapegzoldal shapes.

Tigure 1. - Shape of turbine-blade sections for ons-dimensional heat-transfer analysis.
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Figure 2. - Illustrative plots to indicate method of determining turbine-blade
and coolent temperatures for constant outside heat-transfer coefficiert.
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Plgure 3. - Illustrative graphical solution of
temperature-distribution equation for central
portion of blade using one thermocouple.
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Figure 4. - Water-cooled blade used for experimental determination of local heat-transfer
coefficlents and effective gas temperstures.
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PFigure 5. - Experimental determination of loca) outside-surface heat-transfer coefficient
and effective gas temperaturs at trailing edge of water-cooled blade.
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Figure 8. - Comparison of outside-surface heat-transfer coefficients at trailling edge of

tlade obtained from figure S with those calculsted where the effactive gas temperaturs
was based on recovery factor.
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Figure 7. - Experimemta) determineation of local ocutside-
surface hesat-transfer coefficient and effective ges
temperature at leading edge of water-cocled blede.
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Yigure 8, - Comparison of outside-surface heat-transfer coefficlents at leasding edge
of blade obteined from figure 7 with those cslculated where effective gas tempera-

ture was based on recovery factor.
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