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ANALYTICAT. INVESTIGATION OF FLOW AND HEAT TRANSFER IN COQLART

PASSAGES OF FREE-CONVECTION LIQUID-COOLED TURBIRES
By E. R. G. Eckert and Thomas W. Jackson

SUMMARY

Gas turbines provided with free-convection ccoling have
rotating plades with cylindrlcal holes that are closed on top
of the blade and connected with the fiunid supply at the blade
root., In the deslign of such bledes, an important question
arises ag to what minimm dlameter a hole of a certain length
can be drilied without endengering the clrculation of the cocol-
ing liguid in it. An epproximate enswer to thls problem is
obtained by calculating the thickness of the heated boundary
layer that buillds up around the cylindrical surface of a hole
with large dlameter.

Numerical evaluatlons of the results of these calculatlons for
a sample bturbine and comparisons with test results show that in
emall holes such as would be required in the leading and tralling
edges of turbine blades, the circulatlon and the cooling effect is ap-
preciably impaired. The circulation and the cooling effect in these
holes can be considerably improved when a commnsction is provided
on top of the blades between the small holes and the larger holes,
which can be located in the central portion of the turbine blade.

In the boundery-leyer cslculetions, the effect of the Coriolis
forces on the movement of the liguid in the rotatlng holes wes
neglected. The magnitude of the Coriolis forces relatlve to the
cenbrifugal forces was celculeted and the Influence of the secondary
movement set up by the Coriolis forces on the coollng effect was
estimated by comparison with test results on inclined surfaces in
gravitetional free-convection heat trensfer. '

TINTRODUCTION

Liguids are more effective coolants than gases because of
their better conductivitlies. Gas turbines can therefore be
operated with higher ges temperatures and, accordingly, with better
efflclency end greater power per unit gas flow when they ere cooled
with liquids.
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The most critical parts to be cooled in gas turdbines are the
rotating bledes. In using liquids to cool the dlades, the very
large free-convection currents that are generated by the centri-
fugal forces can be used. This cooling method was first proposed
by E. Schmidt (reference 1). 'Experiments at the NACA Lewis lab-
oratory proved 1ts effectiveness. Figure 1 shows thls cocling
arrengement for a turbine blade according to the propossl of
Schmidt. The cooling liquid fills up the cylindrical holes of
clrcular cross section ingide the blade. The holes are closed
on top and connected at the bottom with the filuld supply.

When the blades are heated by hot gases, the heat penetrates
through the s0l11d materiel of the blades to the surface of the
holes, where 1t heats a thin layer of liguid adjacent to the
surface. When the liquid layer 1s heated, the density in the
layer becomes smaller than the density iIn the cooler liguid core
near the center of the hole. In the rotating turbine, the fluiad
in the hole i1s subjected to & centrifugal acceleration equal to

ref. (A1l symbole used in this report are defined in appendix A.)

The centrifugal forces pru? per unit volume are smaller in the
heated layer (boundery layer) because of its smaller demsity p
and cause this layer to flow toward the axie of rotation. The hot
£iuid leaving the hole in this way has to be replaced by cool fluid
flowing ocutward in the core. The velocity profile in a coross
gsection of the hole must therefore have a ghape simllar to that
shown in the central hole of figure 1.

The circulation of the liquid in 2 hole will be good as long
as the oross section of the core is large s8 compared with the
crosg sectlon of the heated boundary layer. When the dlameter of
a hole is small as compered with its length, then the space left
for the core will become too small and the cirenletion will
diminish, For holes with very small diameters the flow may break
down entirely.

On the other hand, it 18 necessary to argrange as many holes
as possible in the blade iIn crder to minimize the thickmess of
golid material through which the heat mmst flow., If the heat has
to flow over a long distance within the solid material, the blade
cannot be cooled effectively. An enalytical investigation of the
problems arising in connection with thils cooling method was con-
ducted at the NACA Lewls laboratory end is presented herein. Thie
analysis investigates: (1) the smallest diameter hole that can be
made without endengering the circulation of the liquid, and (2)
methods of improving the circulation in a small-diasmeter hole.
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METHOD OF ANALYSIS

A hole of very large dlameter as compared with ite length
is first consldered. In thia hole, the cross-sectlonsl area
of the core of the liguid 1s very large compared with the
cross-sectlonal ares of the heated layer adjecent to the wall
and consequently the velocity of the fluid in the core is very
smell. By decreasing the diameter of the hole, the flow in the
heated layer and its thilckness wlll change; however, as long as
the cross section of the core ls conslderably larger then the
cross sectlon of the leyer, the change will be negligible. Only
wvhen both arees are compareble in magnitude will the circulation
start to decrease appreciably. Comsequently, if 1t is possible
to calculate the thickness of the heated layer for a very large
hole, it 1s possible to estimeate at whabt diameter the clrculation
wlll stert to decreese appreclably.

As long as the length of the hole is smell compared with
the dlameter of the turbine wheel, so that the radius in the
expression for the centrifugal forces may be replaced by some
average value, the conditions for the flow 1n such a hole are
practically the same as the condlitions of free-convection flow
in & vertical statlonary cylinder thet ig filled with liguid and
whose walls are heated. The bottom of the cylinder is closed end
the top 1s open and comnected to a ligquid supply. A liquid film
arocund the inside of the well wlll be heated and rise by its
buoyancy forces. Cold liguid from the supply on top will replece
the warm liquid £ilm leaving the cylinder. The centrifugal force

prm2 that causes the cilrculation of the cooling liquid in the
turbine blade is replaced by the gravitetionsl force pg (per unit
volume) in the equipment just described.

The flow conditions in & hole with a very large diasmeter are
the same ag on & vertical-plane plate. Consldersble information
exists on gravitationel free-convectlon flow on a vertical well.
Tt 1s characterized by & dimensionless value, the Grashof mmber,
in the same way thet forced-convection flow 1s cheracterilzed by
the Reynolds number. In comparing the gravitational free~
convection flow with the centrifugel flow, the sacceleration
dune to gravity g has to be replaced by the centrifugal accele-

retion m)z in the expression for the Grashof number. When the
Greshof numbers in both systems have the same valne, the results
obtained theoreticelly or experimentally on a gravitational flow
ocan be transferred to the flow in the turbine-blade holes.
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A boundary layer builds up on the surface of the vertical well
in free~convection flow in mmch the same manner as in forced-
convectlon flow. The flow within the boundery layer is leminar or
turbulent, depending on the magnitude of the Grashof mumber. The

trangition takes place at e Grashof number between 109 and 1010.
The thickness of the laminer boundery layer, as well as the
temperature and veloclty profiles within this leyer, and the heat
transfer were measured by E. Scimidt and W. Beckmenn (reference 2)
and compared with values that they calculated with the help of

E. Pohlhausen. The Grashof numbers 1ln the holes of liquld-cooled
turbine blades, based on the length of the holes, are in the

approximate range of 1012 to 1015, The boundary layer is therefore
expected to be turbulent over almost the whole length of the holes.
Sone measurements exlst on the heat trensfer in the turbulent

region, but they cover only & range of Grashof mumbers from 102 to

1012 (references 3 and 4). Nothing, however, is known on the thicke-
ness of the turbulent boundary layer or on the veloclty and tempera-

ture profiles in this layer.

Insufficient information is availsble on turbulent forced
flow to calculate exactly velociity profiles and boundary-layer
thicknesses. 1In addition, practicelly no information is available
on the mechanism of free-convection flow in the turbulent range.
It is therefore possible to meke only approximate calculations
for the boundary~layer thickness in this region. The calculatlons
using the Kérmén momentum equation of the boundary layer
(reference 5) and an anslogous heat-flow equation are presented in
the section DETERMINATTION OF TURBULENT FREE-CONVECTION BOUNDARY
LAYER. Similer calculations were made by Squire (presented in
reference 6) for the laminar free-convection boundary layer and
his results satlsfactorily checked the results of the exact theory
and of experimenta.

So far only the centrifugal forces in the fluld that fills
the holes have been considered. It is known, however, that in
studying the motion relative to a rotatling system, two kinds of
forces have to be considered, the centrifugal and Coriolis forces.
The Corlolils forces set up a secondary movement in the liguild
circulating in the holes of & rotating turbine blade that is
superimposed on the movement generated by the centrifugal forces.
The reletive magnitude of the centrifugal and Corilolls forces is
considered and the secondary movement described in & subsequent
section of +the paper.

1307



LOST

NACA RM ESOD2S 5

DETERMINATION OF TURBULENT FREE-CONVECTION BOUNDARY LAYER
Derivation of Boundery-Layer Equetions
If e stationary, plane, vertical wall is heated to & tempera-

‘ture higher then its surroundings, the layer of finid esdjacent to
the wall is heated Dy condnotion from the wall. In this way,

" buoyancy forces are generated that ceuse this layer to flow in an

upward direction. A boundary layer 1s built up that begins with
zero thickness at the lower end of the vertical wall and increases
in thickness .In the upward direction. The boundary layer becomes
turbulent, depending on the critlcal Grashof number, at a certailn
distance from the lower emd of the wall, The distance measnred
vertically from the lower end of the plate is called x 2nd the
distance normal to the plate is y. In order to determine the
boundery-layer thickness for steady state, a small stationery
volume element in the turbulent region of the boundary lsyer is
considered. Figure 2 shows this volume element. The dimensions
of the element 2re dx along the plate and 7 normal to it.

The length 7 shonld be lerger then the boundery-layer thickness
8. Considering two-dimensional flow, the dimension of the volume
element normel to the plane of figure 2 mey be considered to be
unity. The upwerd veloclty of the fluid in plane 1~1 st & dls-
tence y from the surface of the wall 1g u. Then the mass flow
through a small ares with a width dy 1s ou dy and the flow of
momentum in the x~direction is pu? dy. The momentum flow in the
x~direction entering the volume element through plene 1-1 is

z
fpuzdy
0

In progressing to plene 2-2, the momentum flow chenges by

?
a 2
dIJ\pudydx
0

In general, the mess flow entering the volume element.
through plane 1-1 is different from the mass flow leaving 1t
through plane 2-2, which means that fluld enters or leaves the
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volume element through the plane parallel to the wall et =2
distance 1. Inasmuch as 1t 1ls assumed that the velocliy in the
x~direction can be neglected outslde the boundary layer, noc
morpentum in the x-directlon 1is carried through the plane.

1307

The rate of change of momentum must be in equilibrium with the
forces acting in the x~-directlion on the fluid withirn or on the
surfece of the volume element consldered. A shearing stress L

acts on the well. The foroe connected with this stress 1s Tw dx.

No shearing stress occurs on the surface of the volume element
that 1s persllel to the wall and at a distence 1 from 1t because
ocutsilde the boundary layer the veloclity in the x-direction is zero.

According to the boundary-layer theory, the pressure change
can be neglected along eny normal to the surface. A constant pres-
sure difference dp therefore exlsts bebtween plenes 1-1 and 2-2.
This pressure difference gives & force on the volume element of
magnitude 1 dp. In addition to the forces on the surfaces, there
is & force due to the weight of the fluid within the volume element ,

1

fpgdxdy )
0

Summing up a1l the forces and equating them to the change in
momentum flow glves the momentum egquation

L | (mPay)ax=14p- | pgdyadx-Tydx

0 0

Outgide of the boundery layer there 1s no flow and the pres-
sure difference between planes l1l-1 and 2-2 1s therefore belanced
by the weight of the fluld between the planes

dp = Py & Gx

Multiplying both sides of the last equation by 1 and changing the
right side of the equatlon to the Integral form glves

1

de=f Pg8 dx 4y =
0 .
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Introducing the preceding equetion into the momentum equation
glves

1 3
2
g—x-fo (ou dy)d-x=sf (pg-p) dx dy - 7, dx
0

By introducing the expension coefflolent defined by the
equetion

s 1

B = =

Vg t-ta

the flrst term on the right side of the preceding equation can

be transformed to
1
8 dxf Bo (t-tg) ay
o}

By deslgnating the difference between the temperature + =at the
distence y end the temperature ta outside of the boundsary
layer by 6, the following expression 1s obtained:.

1
gd.xf Bpé dy
0

In the applicetions considered, the changes In the density
end in the expenslion ceoefflclent are small compared with their
mean values, Therefore, both quentlitles can be assumed constant
in the precedlng expressions. The momentum eguation for the free=-
convection boundary layer therefore becomes

1 1
a 2 3y = - T 1
EL[udy—sB ®dy - 5 (2)
0
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A similar equation is set up for the heat flow through the
volume element in figure 2. The heat carried with the fluid
through plane 1-1 is '

3 pcpue dy
0

where the enthalples cpe are mesgured from the temperature out-~

slde of the boundery layer. The specific heat is considered
constant. '

. The heat ‘carried ocut of plane 2-2 differs from that carried
into plane 1-1 by

1

a . 8 .
g —. pcpyul dy )| dx
ﬂxf P
(o]

The difference in the heat flow through planes 1-1 and 2-2 muat
come from the surface and therefore the heat flow leaving the
plate per unit time and area is

1
q_w = gpcp %—[ ué dy (2)
o .

Equation (2) is the heat-flow equation for the free-convection
boundary layer.

Solution of Boundary-Layer Equatlons

According to von Kédrmén (reference 5), equetions (1) and (2)
may be solved by assuming certalin shapes for the veloclty and
temperature profiles within the boundary layer and an empirical
relation for the friction force on the wall. By introducing
expressione for the velocity and temperature proflles into the
preceding momentum end heat-flow equations, the integrations in
the egquations can be performed. Two total differential equations
result, from which two unknown values (for example, the boundary-
layer thicknesa and the maximum velocity within the boundary layer)
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can be obtained as functions of x. Naturally, the results of
such a calculation are better if the assumed temperature and vel-
oclty profiles closely epproximate the actual temperature and
veloclity proflles. TI% wes found, however, that the method is
qulite insensitive in respect to the shepes assumed. The dlfficulty
in calculatling the turbulent free-convectlon boundery layer in
this way is that no Informatlion whatsoever exlets on the shape of
either profile. It is only known that the spproximate shapes must
be similar to those shown in figure 3. The excess temperature 6
has the value 6,, at the wall and decreases steadily towards the
value zero, which is reached at a distence & from the well. The
veloclty u has the velue zero at the wall and ocutside of the
boundary layer and therefore lnoresses to & meximim value Wax

" with increesing dlstance from the wall and then decreses agelin to
Zero.

The veloclty profile in the forced-convectlon turbulent
boundary layer is approximsted qulte well by the expression

u = ul(%)l/—[ (3)

The sghape of the velocity profile in the free-convection boundary
layer mat be dilfferent because the velocity ls zero outslde of
the boundsry layer es well &s on the wall. In the neighborhood
of the wall both velocity profiles will probably be similar.
Equation (3) is therefore modified by a factor thet brings the
veloclity to zero at the outer border of the boundary layer

» = ()7 (- F) @

When the maximum veloclty is determined by differentlation,
1t is found thet

uy = 1.54 Upey (5)

Equation (4) represents the velocity profile thet 1s used in

the first calculation. The profile is shown as _u_) in fig-
Umax/X

ure 4 together with two other veloclty profiles.
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In his calculatlon of the turbulent boundary layer on & rotat-
ing disk, von KArmén used the seme velocity profile and found good
sgreement of the calculated friction velues with experimentel
results (reference S5). The caloulation of the turbulent free-
convection boundary layer is repeated with the other velocity pro-
files in figure 4 in order to study thelr effects.

The temperature profile in the turbulent forced-convection
flow for Prandtl numbers not too far from 1 is similar to the
corresponding wveloclty profile and it will probably be similar in
shape for free=-convection flow. The following equation 1s there-
fore used for the temperature proflle:

1/7 '
9 = ew!}-%) ] ()
The ghearing etress T,; on the wall in turbulent forced-

convection flow is glven in reference S5 asg

1/4

T. = 0.0225 pu2<-"—) (7)

By essuming thet the same law holds for turbulent free-convection
flow in the immediste neighborhood of the well and considering
that the veloclty profile (equation (4)) is identical with that
represented by equation (3} for very small distances from the wall,

equation (7) can be transformed to
1/4

T. = 0.022 2( v _
w 5 pul <u15

By using equation (4) for the velocity distribution, the
integral of the first term in the momentum equetion (equation 1) is

1 1 _ _
2/7 2 2
2 2 y 25 _
f v’ ay = uy 5f<%) (1- g> a(%)= 0.207 u3%6 = 0.491 u 5
) 0 -

In the preceding equetion, the upper limit of the integral was
changed from 1 to L = 1 because equation (4) holde only for
s}

y< 8, whereas for y > & the velocity 1s zero.
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The integral of the second term in equation (1) is

l

[owmne [ @7 )30

The integral in the heat-flow equation (equation (2)) is

1

[ oo [ e 0EE

= 0.0681 ulewﬁ

0.105 Upgy 6.5

Substituting the values of the preceding Iintegrals in the
momentum and heat-flow equations and consldering that the heat-
transfer coefficient H can be substituted for the specific
heat flow gq. = st gives

v \1/4
0.1 S (umza) = L P05 - 0.0479 uy, 2 < = ) (e

oy d 5

Solution of equations {(8) end (9): Method I. - In order to
solve equations iBi and 395, additional informastion on the heat-
transfer coefficient H 1is necessary. Jakob (reference 4)
derived from a compiletion of experiments the empirical relation

Nu = 0.129 (Gr Pr)1/3 (10)
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Because the Nusselt number is proportional to x and the Grashof
number 1s proportional to xs, the foregolng equation gives a
hegt~-trensfer coefficient that is independent of x. With this
relation, the differential equation (9) can easily be integrated.
Considering the boundary condition that for x = 0, 8 = 0, the
result is :

Hx
& & —_—— 11
Upax 0.105 8PCy _ (1)

The differential quotient in equation (8) can be tranaformed by
differentlation as follows:

= um28)= umxd%(umaxs)+um5du‘f‘§

Introducing the values from equations (9) and (11) for the product
Upay8d end ite differential quotient in eguation (8) gives the

following differential equatlon for the velocity Upax

5/4
Simax o osBP%  _ Umax _ ) oepn <3‘:’°P> / unax® /¢
ax T T T x : E 574

(12)

No analybtlical solution was found for this equatlion, whioh was
therefore solved graphicelly, as described in appendix B. The
results can be approximated with good acouracy by the equation

=0.65

Re .. = = 0.377(ar Pr)°*5% pr (13)

max

Up to now, the boundary-layer thickness hms been represented
by the value &, which i1s the distance from the wall where the
velocity (as approximated by equation (4)) and the tempersture
(according to equation (6)) reach zerc values. A more character=-
istic measure for the boundary-layer thickness in general use 1s
the so=-called displacement thickness, which has to be defined for
free-convection flow by the equation

o]

5 = _u..._dy

0 Ymax

1307
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which is the thickness the boundery layer would have i1f the vel=-
oclty within it were constent and equal to the value upsy and

the volume flow were the seme as In reality.

By using the velocity ratio as determined from equations (4)
and (5), the displacement thickness becomes

5% = Q.628 & (14}

In equetion (11) the heat-transfer coefficlent H and the
maximim velocity wup,, can be replaced by the Grashof and Prandtl
numbers by means of equaetions (10) and (13)}. The boundery-layer
thickness & can be ochanged to the dlsplacement thickness % by
means of equatlion (14), which results in

5%

=. 2.04 (Gr P.1.)-0.16’1' -0.35 (15)

Er

Solution of equations ge; and §9) ¢ Method 2. - Because the

graphical solution 18 a comperatively tediocus process, another
epproach to solve the differential equatlons (8) and (9) is tried.
Tt will be investigated how closely the equatione cen be gatlgfled
with the assumption that L Ny and 5 e&are proportional to gome
power of the distance x. If

Upay = Cpx™® (16)

5 = Cgx® (17)

are introduced, equations (8) a2nd (8) become

0.481 20y (2min)x®mn-l - 2 gpe cpx™ -

2
0.0479 C,

( v )‘/ ¢ (1/am-(3/)n 20)

CucS

0.105 groCyly (msn) Y™™ = B (19)
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Inasmch as these equations must be valid for any value of x, all
the exponents of x 1in any of the equetions must be equal. From
the momentum equation, values of m and n are obtained:
m=1/2
n = 7/10

It can be seen from the heat-flow equation that the heat-

transfer coefficlent must be proportlonal to zl/ S in order to
fulfill this equation.

By writing
E Cﬂxl/ 5 (20)

and introdncing thls expression into the heat-flow equation,

0.126 gpepCyCy = Cy (21)

is obtained. This equatlion can be solve@ for

: c
C = 31 22
u " 95.126 80c.Cs (22)

When the value of Cu from equation (22) is introdnced into

the momentum equation, keeping in mind that m = 1/2 and n = 7/10,
the momentum equation becomes

2 1/4
%sﬁe,,cas - 52.6 g—%' Cg - 1.80 (Ei%-) VL (23)
P P

which 1s a cublic equation for 08 that characterlzes the boundery-
layer thickness.

1307
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It is usuelly assumed that In free-convectlon flow the Rueselt
pumber is a function of the product of the Grashof and Prandtl num-
bers. In order to fulfill this condition and egquation (20), the
Nusselt number for turbulent free-convectlon flow mmet be represented
by

Nu = (Gr pr)2/5 (22)

The range of Grashof numbers for which test results are available

(1010< Gr < 1012) is too small to decide whether egquation (10) or
(24) is the better one. The test points that are presented in
flgure 25=3 of reference 4 and figure 129 of reference 7 agree

even slightly better with the slope of equation (24). (See fig. 5.)
Comparison of thls eguetion with the preceding test results gives
for the constant C the numerical valme 0.0210. Therefore,

Nu = 0.0210 (Gr Pr)2/5 (25)

If the displecement thickness &% 1s made dimensionless by
dividing by a length x and is then introduced into equation (23)
together with the dimensionless parameters

3
Gr = ———gﬁe"x
2
pr - 28
k

Ru = %’ = 0.0210 (Gr Pr)2/5

that characterize the flow and heat transfer in free convection,
the following equation ig obbtained: '

-lco 5_* -

i’i) - 0.0734 (Gr Pr)°2 Pr >

0.00415 (Gr Pr)~C+3 pr 07 = 0 (26)
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The local heat-transefer coefflclent ls needed for the calculatlons
presented hereln, wherees the test pointe in fig. 5 are heat-
transfer coefficients averaged over the plate length. A alight
difference exists between both values; however, lnasmuch as the
Grashof numbers for the test pointe are too low to determine the
exact numerical value of the constant in equation (24), the con-
gtant 0,0210 will be used. Because test results are ususlly
plotted 28 Nu ageinst (Gr Pr), +the product (Gr Pr) wes
introduced into equation (28). ' ' '

Equation (26) was nmumerically solved for several values of
(Gr Pr). The results ere presented in figures 6 end 7 as %f- .

I
Inasmich as in both logaritimic charts the values for the dimenslion-
lesa boundary-layer thickness are practlcally straight lines, the
Tollowlng expression approximetes the result of the cublic equatlion

in the indicated range 10°2< (Gr Pr)< 10%° very closely:

5%

== 0.296 (Gr Pr)‘°‘1°° pp-0e411 (27)

The second unknown value was the maximm velocity within the
boundary layer. This value is represented by the Reynolds number

X
Renay = B

From equations (16) and (22), wup,y 1s determined as & func-

tion of Cg. Replacing Cg by means of equations (20) snd (25)
glves

ar /5

X
Repay,T = 0-105 _373—(3*)
Pr
By introducing equation (27) for the boundary-layer thickness,

Repax,1 = 0+355 (Gr Pr)0-500 pp~0.589 (e8)

18 obtained.
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In figure 8 the values Re ., and &%/x, as determined by

both methode of solving the differentisl equatlons, are compared.
It cen be seen that the differences are not excessive in the
entlre range of CGrashof numbers investigated, when the lack of
information on turbulent free-convection flow is considered; in
no case do they exceed 25 percent.

Solutions of Bourdary-Leyer Equetions Using Other
Velocity Profiles
The Kérmén method used in the preceding sectilon proved com-
paratively insensitive to the assumed shape of the veloclty and
temperature profiles In forced-convection flow. In order to check

this insensitivity for the free-convectlon flow, the calculations
were repeated using two other expressions for the veloclty profiles.

g =y (91/7 [1 _ (%):la (29)

u; = 1.69 Upex'
oaz = (B [2 - (877 &
u, = 2.80 | S

The shapes of these velocity profiles, together with the first
esgumption and the temperature profile, are shown in figure 4. The
calculations resulted in the following equetions:

3
(ﬁ) - 0.0315 (Gr Pr)=0+2 pr-1. 0( ) -
x JTT TT

0.00218 (Gr Pr)=0-3 prC-75 - o (31)
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(Qﬁ)s - 0.0308 (Gr Pr) 02 pp1-0 5_*.> -
X IIT x /TIT

0.00583 (Gr Pr)=C3 pr=0.75 - ¢ (32)

For the dimenslionless displacement thickness of the boundary
layer, the equations can be approximated in the range of Grashof

numbers from 1010 to 1015 by

-5-’5) = 0.205 (Gr pr)~0.100 pp-0.358 (33)
X/IX
é’.‘.) = 0.235 (Gr Pr)=0+100 p,-0.328 (34)
X/I11
The Reynclds mumbers characterizing the maximum velocltiles
can be approximated by
Repay, 77 = 0-418 (Gr Pr)0-500 pr=0.642 (35)
Repax, ITT = 0.384 (Gr Pr)0+3%0 pr=0.672 (36)

Disoussion of Results

The boundary-layer thicknesses and the maximum Reynolds num=-
bers, as determined with the three velocity profiles, differ only
in the constant and slightly in the exponent of the Prandtl number.
The average value of the constant for the boundary-layer thilckness,
baged on the three values that were obtalined wilth the different
veloclty proflles, is 0.245 end the three individual constants
deviate by £20 percent from thils average value. The corresponding

average for the constent in 'Remax 1ls 0.386 and the individnel
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velues deviate by +8 percent from this average value. So i1t can
be seen that the influence of the shape of the assumed profiles

is not large. Of course, there may be en additionsl deviation of
the caloulated values from the reel ones, which is caused by the
uncertalnty of the value for the shearing stresses. The calcula~-
tions can be Improved in this direction as socon as more informastion
on this value in burbulent free-convection Plow is availsdble.

It is gqulte interesting to see by which factors the coef-
ficlents m and = in equations (16) and (17} ere influenced.
A check of the calculatlons leading to these equations shows that
the value m = 1/2 follows from the eassumption thet the boundary-
layer thickness snd the maximm velocity increese with some power
of x. The same value for the coefficlent m 1la valid in the
leninar range. The value for the coefficient n also depends on
the law for the shearing stress T,. A value of n may be deter-
nmined by essuming tThat the beat~-transfer coefficient is independent
of =x.

The caslculastion In this manner gives the result that the shear-
ing stress T, has to depend on the power -1/2 of the Reynolds

number uy/v in order to fulfill this demend. This large deviation
from the law for the shearing stress in forced-convection turbulent
flow (equetion (7)), where the corresponding power is -1/4, seems
improbable. The shape of the veloolty or tempersture proflle does
not influence m or n.

Another assumption invoived In the calcoculations should be
mentioned. In essuming that the boundary-layer thickness & 1is
proportional to X, it is implied thet the turbulent boundary
layer begins with the thickness zero at the lower end of the
plate. In reality, flrst a leminar boundary layer occurs and then
the turbulent boundary layer develops within & certaln distance x
out of the laminar boundery layer. The same assumptlon that ip mede
here 1s ordinarily used for celculating the turbulent boundary
layer for Fforced flow slong a plate and proves guite successful
(reference 8). In addition, the relative remge of the laminar
boundary layer at the high Grashof numbers encountered I1n turblne
operation is so emall that en error in the correct sterting point of
the turbulent boundary layer influences the result of the calculations
to a very smsall degree.
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Comparison with Experiments

A one-gtage ges turbine with liguid free-convection cooling
wvas btested at the NACA Lewis laboratory (reference 8). The results
of these tests may be used to meke a first check on the calculations.
The teated turbine wheel hed a mean radius ry of 5.72 inches.

Each blade of the wheel had five holes with a length L of 2.5
inches. Three holes were 0.125 inch in diameter, one was 0.090, and
one was 0,060 inch 1n diemeter. The clrcumferential velocity of
the blades at the mean radius was spproximetely 700 feet per second.
Thls veloclty gives 1,030,000 feet per second per second for the
centrifugal acceleration. Thls high acceleration, which is 32,000
times the acceleration due to gravity, explains the large Grashof
numbers atteined in these holes. The cooling water had a tempere-
ture of approximastely 110° F. The blade-~wall temperature was 425C F.
By using the preceding values end a film temperature of200° F for
the property values, the Grashof ntmber is found to be 1.25 x 1014,
Congidering the Prandtl number to be 1.74, the Grashof mumber to be

1.25 x 1014, and the kinemstic viscosity to be 3.16 x 10~ square
feet per second, introducing these values into equations (27) and
(28), and solving for &% eand upy,, gives &% = 0,0214 inch and

Upey = 58 feet per second. If the diameter of a cooling hole is -

determined in such a way thet the water velocity hes the same value
in the core of the fluld as in the heated houndary layer, the value
for this diameter 1s found to be 0.146 inch. In a hole of such a
dismeter, the heat-transfer coefficient has surely already decreased
as compared wlth a big-diameter hole. A comperieon of this value
with the dlameters of the holes that were used in the test turbine
leads to the conclusion that the circulation of the cooling water in
these holes must have been qulte restricted.
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In the tests, the average heat~transfer coefficlent for all
holes was measured. The corresponding Nusselt numbers are plotted
in figure 5. The same flgore shows the Nusselt numbers calculated
with equation (24) and with equation (10) given by Jekocb. Both
Nussely numbers refer to the heat-transfer coefficient in a hole
with a large diameter. Scme test results are also shown in Iigure 5.
They were taken from figure 25-3 of reference 4 and figure 129 of
reference 7. It cen be seen that equation (24) and Jakob's equation
fit the test results equally well and that the Nusselt values glven
by both equations are very much larger than the Nusselt numbers
measured in the test turbine; so the oonclusion, which is drawn from
the calculations, that the holes in the test turbine were too small
in diameter for proper olrculation, is confirmed.
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Ipasmich as it is impossible to avoid holes with em=ll dia-
meters in turbine blades, the question arises as to how the cir-
culation can be improved in these holes. This problem will be
dealt with in the followlng section.

A brief ocalculetion reveals that vaporization will never
occur in a hole 1f 1lts dlameter is large enocugh for good cir-
culation. By ueing equstion (25), (Gr Pr) equal to 104, and
a thermal conductivity of 0.393 (Btu/(hr)(ft)(°F)), the heat-
trensfer coefficient in the hole was found to be 15,500 (Btu/(br)
(sq ££)(°F)). The heat-transfer coefficient on the cutside of the
blade is usually in the neighborhood of 80 (Btu/(hr)(sq £t)(°F)).
These values determine the tempersture difference ew between the

wall (or the hottest portion in the finid) and the fluild entering
the hole. By using the preceding wvalues, it Is found that for

a large hole Gw ig equal to 9.1° p. Evaporatlon ocours when the

wall temperature reaches or exceeds the saturation temperature of
the water. In the holes a considersble pressure Increase occurs
with increaslng distence from the axlis of rotation. This increase
can easily be calculated from & balance between the pressure and
centrifugel forces. The saturation tempersbture rises with the
pressure and it is found that an incresse in redlus of only 0.004
inch is sufficlent to inorease the saturatlion temperature by

9.1° F. Therefore , even 1f the 1liquid enters the holes in &
satureted stete, evaporation will occur oniy at the entrance.

With the reduced circulstion in the experimental bturbine
and the corresponding decrease 1n heat-transfer coefficlent in the
holes, conditions &re greatly changed and evaporation may cccur Iin
the imnér part of the holes.

The velocitles commected with the free-convectlon flow eare
extremely high when the holes are large enough in dlesmeler, which
results in very high heat-transfer coefficlents and is & definite
advantage of the free-convectlon cooling as compared with forced-
convection cooling. With the forced-convection methoed it is
ordinarily impossible to obteain equally high velocities.

FREE-CONVECTION HEAT TRANSFER IN LOOP
Turbulent Flow

The circulation in the holes with small dlameters decreases

because the boundary layer does not leave encugh space through which
the cold ligquid may enber the holes in & direction opposite the flow
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in the boundery layer., It 1s therefore to be expected that the
circulation in the holes can be materielly improved when the cold
fluid is fed into the holes from the top of the blade (fig. 9).
In the central part of turblne blades, it 1s alwsys possible to
provide holes with larger dlameters. If a connection ie made on
top of the blade between these larger holes and the smmll holes
in the leadlng and tralling edges of the blade, cold liguid will
flow from the large-dlameter holes tc the small holes. The pro-
pesed srrangement. of cooling passages in free-convection liguid-
cooled. turbine blades in shown in figure 10.
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In‘order to see how much the heat transfer in & small hole can
be lmproved in this manner, a calculetion 1s made as follows:
Hole (1) (fig. 9), with a very small diameter, is connected on top
with & second hole (2) of very large dlameter. The diameter of
hole (1) may be so small that the boundary layers fill ocut the whole
cross section and the liguid flows only in a downward direction. The
velocity profile will then have practically the seme shepe as in
forced~convection flow. The same thing will be true for the value
of the friction forces. The calculations using the friction factor -
end heat~-transfer coefficient of forced flow in a tube are therefore
applicable. First, the change of the bulk temperature + of the
liguid along the hole may be celoulated. For this purpose, a ' .
heat belance 1s set up for the length dx of the tube, assuming
the temperature +,, of the tube wall to be constant along the whole

length. Denocting the average velocity in the hole by U and the
heat~transfer coefflcient built with the local temperature difference
tu-ty BY H yields

2 -
cpng'Eg_ dty = BpnD(t,-ty,) dx (37)

By introducing the difference €y between the temperature of the

wall and the bulk temperature of the liguid and the difference
between the temperature of the wall and the cold liguid entering
the hole 6 = t,-ty, equation (37} trensforms into

i

ax (38)
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Integration with the corndition that for =x ='0, 8y = 6, leads

to the expression
4=E-bx
GGPQDU

6b=e-we

and for the temperature difference at the exit of the hole (x = L),

4F L.

" gc_pDU

The logarithmic mean tempersture difference that 1s to be used for
heat~-transfer calculations is

b,e ~ 6%

e
1°5e b,e

Introducing the preceding velues glves

- 4E, T,

9 c p DU - ———

om_ ZpBP M, o 8opPDU (39)
6, ~ T4EL

The force that generates the movement of the liquld through
the loop is ‘the sum of e11 the buocyancy forces. The pressure
difference connected with these buoyency forces along the length
dx is

ap = g(pg-py,) ax

Introducing the expension coefficient in the same way as was pre-
viocusly done and assuming the chenges In speocific welght to be
smell gives

dp = gegP(by-ts) dx = gpgB(6,-6y) dx
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The pressure difference avallable to overcome the friction in the
small-diameter hole is

L 4H L
ol P
pp= | ap=gonpo, |L - B |1 - 8% (40)
P 8w AHy,
(8]

Thie pressure difference ls used up by the friction forces.
It 1s assumed that the flow ig turbulent in the smsll-dlameter
hole and thet the formula for pressure drop for turbulent forced-~
convection flow as given in reference 4 (p. 433) can be uged:

ap = 0,316 —2 L Q
P Reg/E | Z D (1)

Introdncing this expression into equation (40) and converting into
dimensionless values gives

1,75 b L
Re_ ** ReIPr = R D
—_ e = D - epPT
0.158 =1 - T © l1-e (42)

D
Gr (L)
where Wu; = HD/k. The expression on the right side of the equation

can be simplified because it turns out, in the renge of Grashof

mmbers of 103 to 10°° apd of lengbh-diameter ratios less than
50, that the exponent of e 1s & small value. The expresslon on
the right side of equation (42) hes the form 1 - 1/z(l-e"%).
Trensforming the e function into a series and comsidering only
the first three terms gives

1-= [ - <1-z+ %2):]= g. (43)

The Kusselt number for forced-convection turbulent flow in a
tube is given in reference 7 (p. 168) as

Nu, = 0.023 Rep?-Cpr’" (44)
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Therefore, equation (42) simplifies to

1.75

Re:D _ 12 .66 Nu-b E - 0.291 L_ (45)
3 RepPr D O.ZP 0.6 D
® S '
Gr L
which may be solved for the Reynolds number
0.531 G_rO.Sls D 1.03
R = — 46
D = T,0.308 (L (48)

In equetion (44), the Nusselt mumber and the Reynolds number are
based on the diameter of the tube and the heat-transfer coefficient
Hy, wlth the mean difference between the wall and the ligquid bulk

temperature. In the previous calculstlons, the length x apd the
difference Bw between the wall tempersture and the temperature of

the entering cold liquid was used ag a basis for the heat-transfer
coefficient and the Nusselt number. In order to meke possible a
comparison of Nusselt numbers, equation (44) is converted to this
Nusselt number. The specific heat flow g, from the wall into the

Jiquld must be the seme expressed by both heat~transfer coefflclents.
Therefore

Ebem = HO,

Inasmuch ap the calounlations here are for the whole tube
length (x = L), +the Nusselt number Nu used in previous cel-
culations is connected with the Nusselt number mt-b, based on

the dlemeber and the mean temperature difference, by

< e°

Tntroducing the values for the mean temperature difference Gm
from equation (39), the values for Nu, from equation (44), end
simplifying according to equation (43) gives '
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Nu = 0.023 Re. 08 pp04L (5 _ __0.046 L

D ~—0.25.0.6 (48)
Rep0+2pr0-6 D
The Reynolds number may be inserted from equation (486),

0.176
Nu = 0.0139 GpO-4l pp0.154 @) 1 - — 1850522 - (E)l.Zl
Gr”* Pr-° D
(49)

Laminer Flow

When the Reynolds number 1s smeller than the crltical wvalue of
2100 (reference 7, p. 154}, the flow in the small-diameter hole is
leminar. In thils case, the following formmles for the pressure drop
and heat-transfer coefficient in lemlnsr forced flow are used:

A=32E-_tr-_L_
® o2

(s0)
Nub = % = 3-65

The formuls for the Nusselt number (reference 4, p. 530) ia derived
from calculations by Nusselt and is valld only for fully developed
flow. In the inflow region, higher values occur and ancther more
complicated formmle hss to be used. Because the simpie formmia (50)
glves minirmm vaelues, it 1s used here. Carrying out the calcu~
lations in the same mammer as for turbulent flow results in

14.6 L

32 Rep /1,\3 RepP “RePr D
32 Rep(1\S _ |, _BerPropl, _, FOF (51)
Gr D 14,6 L

Nu = 3.65-(%)E - 52”1;?(%)1 (s2)
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Discussion of Results

The Nusselt numbers were celoulated from eguation (49) for
a loop, the emall hole of which has ratios L/D = 25 and 50. The
results are shown in figure S. With equation (46), it wes ascer-
tained that in the range shown in figure 5 the flow is turbulent.
The minimum Reynolds number calculated was 20,000. It can be seen
that very high Nusselt numbers are obtalned in this way. IThe Nusselt
nunbers are even larger then in & hole closed on top with vhry large
dlameter~to-length ratlo.

The large heat-trensfer coefficients obtained by means of the
loop can be used in turbine-blade design, a fact that will be dis-
cussed In the last seoctlon of the report.

ACTION OF CORIOLIS FORCES

Up to now the action of the Corlolis forces on the flow of the
cooling ligunid in the holea has been neglected. In order to get an
estimate of the effect of these forces on the flow and the heat
transfer, the magnitude of these forces is compared with the
centrifugal forces. In the holes the relative movement of the fluid
is normel to the cirocumferential velocity of the blade. In thia
case, the Corlolis acocelerstion is

2uw (53)

The acceleration hes the seme directlon &s the circumferential
velocity when the relative velocity polnts towerd the axis of
rotation. When the relative veloclty is directed away from the
axis of rotation, the Coriolis acceleration acts In & dlrection
opposite to the circumferentiasl velocity. The comperison with

the centrifugel forces will be made in the cross seotlon of the
hole firxed by the mean redius ry. In a cross section of the hole,

+he relative velocities of the filunild vary between zero and the
maximm velne as previocusly indicated. The greatest dlfference
between the Coriolis acceleration acting on different fluild particles
in the croes section therefore hes the value

2Upax®
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This acceleration is compared with the acceleration connected with
the buoyancy forces:

rmw?Be

The meximum difference in the temperature difference in one cross
sectlon is 6,. Therefore, the meximim buoyent acceleration due

to the centrifugal force is
r 02RO,

The ratioc § of the maximum Corlolis acceleration to the maximmm
acceleration connected with the bucyant forces is

2Upny
t = T (54)

The velocity Uypey WAy be expressed by the corresponding Reynolds

number Rep,.. Expressing, in addition, the angular velocity © by
the Grashof mmmber rmu?ﬁewxs/‘uz , which has to be used for con-

vection caused by centrifugal fields, glves

0.5
=2 R L (x/ry 55
Cmax 505 o, (55)
Inserting the Reynolds number from equation (28) yields
pp0-089 \ BBy

At the mean radius Ty, X 1s equal to L/2. The ratlo x/r, has

velues neer 1/4. In the tests on the free-convection liquid-cooled
turbine, the highest value of the temperature difference @ wes
3150 F. The film temperature for evaluating property values of the
cooling water was 200° F. When this film temperature is used, the
Prandtl mumber is 1.74 and the expansion coefficient 0.00043/° F,
Inserting these values into equation (56) glves the value 0.84 for
the ratio of the Coriolls acceleration to the acceleration connected
with the tuoyancy forces in the cross section of the hole. The
Coriolis forces are therefore quilte appreoia_.ble.

1307



LOST

NACA RM ES0D25 29

The Corlolis forces set up a secondary movement of the type
shown in figure 1l. The secondary flow is simllar to the one in
2 bent tube. It increases the boundary-layer thickness on the side
of the hole in the direction of the rotetion and decreases its
thickness on the opposite side.

To some extent it 1s possible to study the influence of this
secondary movement on heat transfer by means of static tests pre-
viously described. By inclining the static test sectlon, the free-
convectlon-flow setup would be exactly similar to the flow in the
rotating hole in the turbine blade if the velocity and tempereture
profiles would be similar. In reality, the profiles differ in
shape; however, the comparison mey be used as a first estimate of
the Corlclis forces. The ratioc of Coriclis to centrifugal accele-
ration of 1.00 corresponds to a statlc tube inclined at 45° from
the vertical. Unfortunately, no test results are known for gravita-
tional free-convection flow in an inclined heated tube. Measurements
were made, however, on gravitational free-conveotion flow in an air
layer between two parallel plates, vertical end inclined, and In an
alr layer between two coaxlael cylinders. In both cases 1t was found
that the heat-tranefer coefficlent changed very little when the
test sebup was Inclined from the vertical position to an angle of
459; the change was about 20 percent (reference 4). This infor-
matlon gives some indication that even when the ratio of the
Coriolis to the centrifugal forces 1s consilderable, the ratio does
not affect the heat transfer to e large degree.

SUMMARTZING REMARKS ARD RECOMMENDATIONS

The method of free-convection cooling of roteting turbine -
bledes utilizes the incense currents generated in the 1llguid, which
fills the hollow spaces within the blades, by the centrifugal forces
as soon as temperature differences are present In the liquid. In
the current designs using this method, holes are provided within
the blades that are closed on top end connected with some liquid
supply at the blede root. Such & blade was shown and the free-
convection currents set up in one hole of the blade were illustrated,
The heated fluid within the boundery layer along the well of the hole
moves toward the blade root and is replaced by cold liquid flowing
toward the top in the central pert of the hole. When the diemeter
of the hole is very small as compared with the length, the two llguid
streams Flowing in opposite directlions hinder each other and the
circuletion and cooling effect decrease. A measure of this limiting
diameter-to-length ratio was cobtailned by calculating the boundery-
leyer thickness of the Pree-convection flow in & hole wilth a very

large dlameter-to-length ratio.
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Inasmnch as the filow in the boundary layer ls turbulent under
the conditione present in a rotating turbine blade, the approximate
method imtroduced by von Kdrmdn was used for the calculations. In
this method the shapes of the veloecity and temperature profiles
have to be assumed. Unfortunately, no information is avallable on
the shape of elther profile in turbulent free-convection flow. The
calculations were therefore carried through with three different
shapes for the veloclity profile. The shape of the temperature pro-
file was assumed to be ildentical to the one in turbulent forced-
convectlion flow. Also, the law for the shearing stress on the wall
in forced flow was used. The method proved guite insensitlve to a
change in the shape of the profiles. The values of the boundary=-
layer thickness and of the maximum veloclty for the flow in the
range covered by the resulis of the calculatlions with the different
asgpunptions verlied approximately 20 percent. A more acocurate
answer to the problem can be cobtalned only when more experimental
information is avalleble on the shapes of the profiles.
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The calculations and their comparison with test results on 2
free-convection cocled turbine Indicated that 1n blades of 2.5-inch -
length the circulation and the cooling effect are decremssed to a
considerable degree in holes with dlameters lese than 0.146 inch.
The circulation and heat removal of a hole with a small dlsmeter-to-
length ratlo can, however, be restored to the value of one with a
large dlemeter-to-length ratic when the hole with the small diemeter-
to-length ratlo 1s connected on top of the blade with neighboring
large-dlameter-to-length-ratio holes. A second set of caloculations
proved thig fact.

From the calculations, the following recommendations for the
arrangement of the coollng holes in turbine blades cen be made., The
blade should be thick in the central pert so that holes with large
dlametere can be arranged there. These holes should be connected
on top of the blede with the small-dlameter holes. Such an arrange-
ment of cooling holes in a turblne blade was shown. For especially
effective cooling, the cross seotion of the holes should be as large
as posgsible., It must be kept in mind, of course, that very high
pressures are present inside the holes and that the walls mist with-
gtend thege pressures. The stresses csused by the lnternal pressures
in the holes must be sdded to the stresses ceused by the centrifugel
forces in the solid materiel of the blades.
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In the boundary-layer caloculation, the effect of the Corilolis
forces on the movement of the liguid in the rotatlng holes was
neglected. Experiments on gravitational free-convection flow on
Inclined objects Indicated that this effeoct 1s of 1little Importance
on the heat transfer.

Lewis Flight Propulsion Laboratory,
Nationsl Advisory Committee for Aeroneutics,
Cleveland, Ohlo.
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APPENDIX A

SIMBOIS

The following symbols are used in this report:

c constant

Cy constant for variation of heat-transfer coefficient with xl/ 5

Cu constant for variation of maximum velocity in boundary layer
with xo

Cg constant for variation of boundary-layer .thiokness with @

cp specific heat at constant pressure, Btu/(1b) (°F)

D diameter, £t

Gr Grashof number, §P2.‘in

g acceleration due to gravity, _f“b/s_e_cz o

H heat -transfer coefficient, Btu/(sq ft)(sec) (°F)

k heat conductivity, Btu/(£t)(sec)(°F)

L length of hole, £t

1 length, £t, (fig. 2)

m exponent

Nu Nusselt number, H-:-E-

n exponent

gCpH
Pr Prandtl number, % = —kp-

P pressure, 1b/sq ft
a specific heat flow, Btu/(hr)(asq ft)

Rep Reynolds mumber based on dliemeter D, %
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R‘em Reynolds munber based on maximum veloclty up.,, u_m;if

r redius, £t .

4 temperature, °F

U velocity, ft/sec

u veloolty component in x-direction, f£it/sec

Ty velocity outside boundary layer of compareble forced-
convection flow, ft/sec

v specific volume, cu £t/1b

x coordinste (distance from starting point of boundary layer), £t

¥y coordinate (distance from wall), ft

a thermsl diffusitivity, sq f£t/sec

8 expansion coefficient, 1/°F

ol boundary-layer thickness, £t

&% displacement thickness of boundary lay'ez:, £t

¢ ratlo of maximum Corlolis acceleration to maximmm centrifugal
accelaration

e temperature difference, °F

ew- tenmperature difference between wall and flunid ocutslde of
boundary-layer, °F

n dynamic viscosity, (1b)(sec)/sq £t

v kinematic viscosity, sq ft/sec

dynemic density, (1b)(sec®)/rt¢

T shearing stress, 1b/sg £t

w engular velocity, 1/sec

Subsecripts:

b bulk value (mixed mean)



II

NACA RM ES0D25

exit conmdltion

mean value

maximm value

on wvall

on outer border (and outeide) boundary layer

values calculated wlth first assumption for velocity profile
values calculated with second assumption for velocity profile

values calculated with third sssumption for veloclty profile
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APPENDIX B

SOLUTION OF EQUATION (12)

The differentisl eguation to be solved is

(12)

- QUpay 8F0y  Upay _ 8PCp 5/4 “maxz'l’ /4

x
It is advantegeous to transform this equation by the use of non-
dimensional values. The Grasghof nuwmber Gr i1s used 4o replace

the indeperdent variable x and the Reynolds mumber Rep,, = u'-“’._%lx.

for the dependent variable Uyeyes Differentieting the Reynolds
mmbey gives

d(Bepey)
dx

= =
v dx v

Introducing the differential gquotlent d.uma_z/d:x from this expresslon,
end the Grashof number into equation (12) yields

d(Regey) o0.0ssp  0-00194 Bey, 2 pro/4
a(er) Remax Gr Fu/4

The Nusselt number is replaced by use of eguation (10), which gives

2 /6
a(Req) _ 0.0852 _ 0.0250 Rep,y Pr>
d(Gr) ~ Begay arli/iz

(s8)

This equation was graphically solved (fig. 12). TInasmich as the
range of Grashof numbers concerned is falrly wlde, it 1s advantageous
to obtain the graphical solution in a logarithmic dlagram in which
the Reynolds number is plotted over the Grashof number on a log-
arithmic goale. In order to determine the curves that present the
gsolution of the differential eguation in the diagram, the slope for
any peir of values Re end Gr is needed. If log, Repyy = V and

loge Gr = £, +then the needed slope is
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g-!’_ = Gr &(Remax) (59)
at Repey a.(Gr) 5
1P
For any pair of values Repg, &and Gr, the differential quotient -
d(Repey)
ey °en be determined from eguation (58). Equation (59)

glves the slope in the logarithmio plot. Figure 12 showe the sglopes
determined in this way for two Prandtl mumbers. The needed solution
of the differential equation (58) mast fulfill the condition that

for Gr = 0, Rep,y = 0. This oondition follows from the assumption

that the turbulent boundary layer starte with a thickness zero st x
equal to zero. The valldity of this assumption was previously dis-
cussed. In starting out with high Grashof numbers and drawing curves
that have the desorlbed slopes for all Grashof numbers, it is found
that the curve that fulfills the preceding condition can be found
wlth very good accuracy. All ocurves that start out with a Reynolde
number that 1ls too great turn awey In an upward direction as the
Grashof number 1s decreased. Curves that start out at high Grashof
numbers with a low Reynolds number turn away in & downward directlon.
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