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ANALYTICAL l X V E ~ G ~ O I P  OF FLOW AND HEAT TRANSFER IM COOLAET 

PASSAGES OF F R E E - C O ~ C T I O N  LI"C00LED TTSRBIKES 

By E. R. G. Eckert and Thomas W . Jackson 

Gas turbinee provlded with  free-clonvection omling have 
rotating blades with  cylindrical holes that are closed on top 
of the  blade and connected with the fluid supply a t  the blade root. In the design of euch bladee, an  tmportant  question 
arises a8 t o  w h a t  Inin- diamzter a hole of a certain length 
can be drilled wlthout endangering the. circulrttim of the cool- 
ing liquid  in  it. ~n approximate m e r  t o  this problem is 
obtained by calculating  the  thickness of the heated boundary 
layer that build6 up around the  cglfzldrical surf'ace of a hole 
with large diameter. 

Numerical evaluations of the results of these calculations for 
a sample turbine and ccmprisons with t e s t  result6 shm *hat 
small holes euch a8 would be required in the Leading and trail% 
edge8 of turbine blades, the circulatfon and the CooliW effect 18 ap- 
preciablg impaired. The circulation and the oooUng effect fn these 
holes can be considerably i m p r o v e &  when a collnsction is proVided 
on top of the blades between the small holes and the larger hobs ,  
which can be located in the  central portion of the turbFne blade. 

In the boundary-layer cdculationa, tbe effect of the C o r i o l i s  
forces on the movement of the lfqufd i n  the rdating holes was 
neglected. !Fhe m i t u d e  of the Coriolis forces relative to the 
centrifugal forces was calculated. and the influence of the secondaxy 
movement set np by the  Coriolie  forces 011 the cooling  effect m a  
estimated by cmparison with test; result8 on inclined BUTfaoes i n  
gravi ta t iona l  free-cmvection  heat  tranefer. 

m R o m I o x  
Liquids are more effective  coolants than gases became of 

their better  conductivities. Gae turbines  can  therefoI= be 
aperat&  with  higher gas temper&turee and, accoFdlp81y, with bet ter  
effioiency and greater pawer per unit epte flow when they are cooled 
With liqUia8. 
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The "t crit ioal  parte  t o  be cooled. in gas turbfum are the 
rotating blades. In u s i q  l iquid8  to  cool the bladee, the verg 
large free-convection  ourrents thst are genemted by the  centri- 
f'ugal f'omes c8p be ueed. T h i s  cooling msthod was first propoeed 
by E, Schmidt (reference 1). -Experimente at the HACA Lewis lab- 
oratory proved ita effeotiveness. B5gure 1 show this oooling 
srmngenaent for a turbiue blade auoozding to the p r o p a d  of 
Schpnid-k. The cooling llqafa fi l ls  up the oylindrioal holes of 
oiraular cross section  inside  the blade. The holes are cloeted 
on fop and connected at  the bottom with the fluid eupply. 

When the bladee &re heated by hot gases, the he&% penetrates 
thrmgh  the so l i& material of the blades t o  the ~urf'ace of the 
holes, where  it heats a tbin laser of liquid acljaoent t o  the 
&ace. When the lfqaid  layer is heateb, the  density  in  the 
layer becomes m e r  thaa the density i n  the oooler liquid core 
near the oenter of the  hole, In the rotating turbine, the fluid 
in   the hole l a  subjected t o  8 oentrifugd  acceleration eqpd t o  
m?. (AU e m o l s  used tn this report are defined tn appemttz A,) 
The centrifugd forues prb? per unit volume are mmller i n  the 
heated layer (boundary layer) beosuee of its Bmaller density P 
ehnd cause th i s  layer to flow taprard the 6x5s of rotation. The hot 
fluid  leaving  the hole i n  this war has t o  be replaced by 0001 fluid 
flowing outward in the core. The velocity  profile  in a or088 
section of the hole must therefore have a shape similar t o  that 
shown in the  central hole of figure 1. 

The oirnrlation of the  l iquid  in a hole will be good aa long 
88 the O ~ B B  seotian of the core is large &B compareil vlth  the 
crom section of the heated banndary layer. When the d-ter of 
a hole is Bmall 88 ocmpxred with its length, then the space lef% 
for the o m  will become too amall and the cim6Lation w i l l  
dimlnieh. For holes with verg s n d l  dimnetere the flow may break 
d m  entirely. 

On the &her hanb, it is neoeseaxy t o  81pgzlge as p1&13y hole8 
as possible in the blaae in order to minimize the thickneee of 
solid ~patefial throngh vhioh the heat m e t  flow. If the heat has 
t o  flow over a 1- ttletanoe  within the solid laaterial, the blade 
cannot be  cooled effectively. An eLnalytfcal inveetigatlon of the 
probleme ar is ing  in  oonnection xfth this oooling metho& was con- 
ducted at the HACA Lewis laboratory and i e  presented herein. T h i s  
aaalyeis inveetiga.t;es: (1) ths smallest diaaaeter hole that o m  be 
made w i t h a a t  endangering thw  circulation of the liquid, and (2) 
methode of improving the cl,rcmlatian in a 6naLJ"diameter hole. 

. 
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A hole of very large diameter a8 ompared with its length 
is first considered. IA t h i e  hole, the cross-sectional area 
of the core of the  ltquid is very large conrpared with the 
cross-sectional area of the hated layer adjauent t o  the wall 
and consequently the  velocity of the fluid In the core is very small. By decxaeing  the diameter of the hole, the  flm in  the 
heated layer and i ts  thicknees will change; however, a8 long a8 
the  cross  section of the qore is considerably larger than the 
crose  seotion of the layer, the  change will be negligible. O n l y  
when both area8 eule comparable i n  e t u d e  will the  circulaticm 
start t o  decreaee  appreciably. Consequently, if it is possfbl- 
t o  calculate the'thickness of the heated layer for a very large 
hole, it is possible to estimate a t  w h a t  dlmneter the circulation 
will SiXWt to decrease a p c i e i b l y .  

3 

As long as the length of the hole is small oonnpsred with 
the diameter of the turbine wheel, so that the radius i n  the 
expression for the centrifugal forces may be replaced by  me 
average value, the canditiqns for the flow in such a hole are 
practically the same as the  oonditioas of free-oonveotion flaw 
in  a vertical  etationaq  cylinder that is f i l l e d  with liquid and 
whose walls are heated. The bottom of the cylinder is closed and 
the top is open and connected t o  a liquid mpply. A liquid flh 
mound the inside of the #a31 will be heated. and rise by i.ts 
buoyancy f m e e .  C o l d  l iquid from the suppls on top w i l l  replacle 
the Warm liquid film leavlng the cylinder. The centrifugal  force 
proi! th&t C&UBeS the  GirCdatiOn Of the Cooling l iquid i n  the 
turbine  bhde is replaced by the gravitational  force pg (per  unit 
volume) i n  the equipment just described. 

The flow condftione in a hole with a vem large d-ter are 
the 8am as on a vertical-plane plate. CcmBiderable information 
exists on g r a v i t a t i o n a l  free-convectian flow on a vertical wall. 
It is characterized by a din~ensiodess value, the Graehof number, 
i n  the 8- m y  that fo"cmvec t im flow is oharacterized by 
fhe Reynolds number. In  ccmpring the gravitatimal free- 
convection flaw with the centrifugal flow, the acceleration 
due to gravity g  ha^ t o  be replaced by the centrifugal  accele- 
ration in %he expression fo r  the Graehof number. When the 
Grashof nunibem in both eyerbema have the sque vdue, the res"  
obtained theoretically or  exprimentally on a gravitational flow 
0811 be transferred t o  the flow in  the turbine-blade  holes. 
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A boundary l a sr  builds up on tbe 8urf'ace of the vertical wall 
i n  free-convection flow in much t h e  same manner as i n  forced- 
conveotim flow. The flow within  the boundary layer ie laminar or 
turbulent, depending on the magnitude of the Grashof mrmiber. The 
transition take8 plaoe a t  a G-hof number beiween lo9 and 101'. 
The thickness of' the laminar boundary layer, as well 88 the 
temperature and velocity  profiles  within this layer, and the heat 
transfer were maeured by E.  Schmidt and W. Ikckm&nn (reference 2) 
and compared with d u e s  that they  oalculated with the .help of 
E. Pohlhaueen. The Graehof numbers i n  the holes of liquid-cooled 
turbine  blades, based on t h e  length of the holes, are i n  the 
approximate mnge of 1g2 , t o  lS5. The boundary layer is therefore 
expected t o  be turbulent over almost the whole length of the  holes. 
Some measurements exist on the heat transfer in the turbulent 
region, but they  cover only a range of Grashof numbem frm lo9 t o  
1 9  (references 3 and 4) .  nothing, however, is known 011 the thiok-  
ness of the  turbulent boundary layer o r  on the  velocity and tempera- 
ture prof i lea  i n  thie  layer. 

Insufficient information l e  available on turbulent  forced 
flar t o  calculate  exactly  velocity  profiles and b o u w - l a y e r  
thicknesses. In  addition,  practically no information is available 
on the mechanism of free-convection flaw i n  the turbulent range. 
It is therefore  possible to make o d y  approximate oalculstions 
for the boundary-layer thickness i n  t h i s  region. The calculations 
using the K&dn momentum equation of the bcunhry layer 
(refe-nce 5) and an analogous heat-flow equation are presented in  
the eection "? IOIT  OF FREE-CO";SCION BOUI'TBARP -. SM- calculations were made by squire (presented in  
reference 6 )  far the lamirum free-convection bau-' layer and 
hi8 results satisfactorily checked the results of the  exact  theory 
and of experiments. 

So far only the   centr l f lqd forcea in  the fluid that fills 
t h e  holes have been considered. It is ham, however, that in 
studgring the motion relative t o  a rotating s p t e m ,  two kinds of 
forces have t o  be considered, the  centrifugal and Corioli0 forces. 
The Coriolis  forcee set  up a secondary rnovemmt in the liquid 
circulating  in  the holes of tb rotating turbine blade that is 
euperimposed on the movement generated by the centrifugal forces. 
The relative magnitude of the centrif'ugal and Coriolis  forces l e  
considered and the secondary movement described i n  a eubsequent 
section of the wper. 

. 

. 
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If a Stationary, -ne, vertical  all i e  heated. to a tempera- 
ture higher  than itsl BFUToMdi-s, the layer of flnld a j a c e n t   t o  
the wall ie heatea by caadslction  frcm the wall. In th ie  way, 

' buoyancy foroes a m  ge-retted that catlee thie layer to flow in an 
upward direction. A boundary lsyer is buil t  up that begins with 
zero  thickness at the lover end of t h e  vertical  wal l  and increasee 
i n  thicknees .in the npward direution. The baundary layer beccmes 
turbulent, depending on t he  c r i t i ca l  Grushof nmiber, at a certain 
distance from the  lower end of the wall.. The diatance meamred 
vertically from the lower end of the  plate is called I and the 
distance normal to the plate 58 y. In order to determine  the 
baundsTg-layer thiolmese for ateedy etate, a Bmau stationasy 
volume element in the  turbulent r e g i o n  of the banndafy layer is 
considered. Figure 2 e h m   t h i e  volume element. The dimensiane 
of the element EUX dx dmg the plate and t n o m d  t o  it. 
The length 2 ahaald be larger than the badary-layer thickness 
8 .  Coneidering two~neional flw, the dhension of the volume 
element n o m d  t o  the  plane of figure 2 may be considered t o  be 
unity. The upward velocity of the fluid i n  plane 1-1 at a die-  
tame y from the  surface of the wal l  is t~. Then the ~ B B  flow 
througha mall area wit h a  width dr ia wdy and the flow of 
momeneUm in the x-dlseotion i e  pu2 dg. The nUXtentum flow in the 
x-direction  entering  the volume element through plane 1-1 is 

JO 
In progressing t o  plane 2-2, the mcmentum flow ch-es by 

I n  general, the m&~s flow entering the volume. el-nt. 
through plane 1-1 i e  different frcm the ~ S E  flaw leaving it 
through plane 2-2, which means that  fluid enters or leaves the 



6 NACA €U4 E50D25 

volume element thrmgh  the plane .parallel t o  the wall at a 
distance '1. Inasmuh as  it is assurned that the velocity  in  the 
x-direction can be neglected  outside the boundary layer, no 
mornentun in the  x-direction is carried through the plane. 

The ra te  of chsnge of mcanentum met be in  equilibrium with tlze 
forces acting  in the x-direction on the fluid within or on the 
surface of the volume element considered. A shesring stress T~ 

acts on the  wall. The forae connected with t h i s  Stress i e  T w  dx. 
No shearing stress occurs on the  surface of the volume element 
that is p a w e l  t o  the d l  and at a diatance 2. from it beuause 
onteide the boundary layer the velmitg in  the x-direction i a  zero. 

According t o  the boudary-lager theory,  the pressure change 
can be neglected along &G nomal to   the surface. A conatant pres- 
sure difference dp  therefore exists between planes 1-1 and 2-2. 
Thie pressure difference gives a force on the volume e l m n t  of 
magnitude 2 dp. I n  a d i t i o n  t o  t h e  forces on the surfaces, there 
is a force,due t o  the weight of the fluid within the volume element 

Summing up a l l  the forces and equating them t o  the change i n  
momentum flow gives the  momentum equation 

Outside of the boundary layer there is no flow and the pres- 
a w e  difference between planes 1-1 and 2-2 is therefore balanced 
by the weight of the fluid between the -planes 

dp = Pfj g dx 

Multiplying both sides of the last equation by 2 and changing t h e  
right side of the  equation to the integral form gives 

t dp = P$ dY 

Y 

r- 
0 
rl 
M 

. 
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Introducing  the  preceding  equation  into  the momentum equation 
gives 

By fntroducing the expeasion coeffioient defined by the 
equatiim 

the   f i r s t  term 
be transformed 

By designating 

on the  right  side of the preceding equation can 
t o  

the difference between the temperatwe t at the 

I n  the applications coneidered,  the change8 in the  deneity 
and in the expasleion coefficient are Wnau canpared with their 
mean values. Therefore, both quantities can be asmm2d constant 
in  the preceding  expreeafona. The mamenhun equatim  for the free- 
convection boundary layer therefore bec-s 
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A similar equation is se t  up for the heat flow thKIUgh the 
volum element i n  figure 2.  The heat carried tri th the f lu id  
thmugh pleane 1-1 is 

The difference in the heat flaw through planes 1-1 and 2-2 muat 
come from the surface and therefore the heat flow leaving the  
p l a t e  pey unit the and area is 

Equation (2)  ie   the  heat -flh equation 
boundary layer. 

for the free-convection 

Solution of Boudary-Layer EQuatione 

~ c ~ o r d i t ~ g  t o  von I d d n  (reference s), equatione (1) and (2) 
mag be solved by aesuming certain shapee f o r  the velocity and 
temperature profiles  within  the boundary layer and an empirical 
relation for the fr ic t ion fome on the wall. By introducing 
expreasions for  the  velocity and t e m p e r a t u r e  profilee into the 
preceding momentum and heat-flow equations, the integrationer i n  
the equations can be performed. Two total differential  equations 
result, from  which two unknm values (for example, the baundarg- 
layer thickness an& the maximum velocity  within the boundarg layer) 
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can be obtained 88 functions of x. R a t u r a l l g ,  the results of . 
mch a oalculatian are bet ter  if the aaaumed temperature a d  vel- 
ocity  profiles  closely approximate the actual temperature and 
velocity profiles. It W&E found, however, that the method is 
quite  insensitive  in  respect t o  the ehapee assumed. The difficulty 
fn calculating the turbulent  free-convection boundasy kqer in 
t h i s  war is that no fnfornaation whateoaver existe on the shape of 
either profile. It ia only lmm that the RpproYimFlte shapes m a t  
be shullecr t o  those shown in f i@;ure 3. The exceea temperature B 
has the value 8, at the wall and decrea,ees eteadflg t o w m d s  the 
value  zero, which is reached at a distance 6 frmm the wall. The 
velocity u has the value zero at the w8J-l and outside of the 
boundary layer and therefore  inoreases t o  8 maxfnazm value ulua~c 
with increasing  aistance from the wall and then decreses again t o  
zero. 

The velocity  profile in  the forced-convection  turbulent 
boundary layer is approximated quite well by the expreasian 

The shqe of ' the  velocity profile in the free-convection b m w  
layer m8t be different because the velocity is zero  outside of 
the boundary layer as well as on the -1. In the neighborhood 
of the wall both  selocftg profiles vlll probably be sfmilar. 
Equation (3) ie  therefore m o d i f i e d  bg 8 factor tht bringe the 
velocity t o  zero at  the mter border of the- boundary lager 

When the maximum velocity ie determined by differentiation, 
it is fmnd tptt 

Equation (4) repreeents  the  velocity  wofile that is used in 

the  f irst   calculation. The profile l e  ahawn as 

ure 4 together with two other  velocity profiles. 
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In hi6 mlazlation of the turbulent boundary layer on a rotat- 
ing disk, von € & d n  ueed the 6&me velocity  profile and found good 
agreement of the  ’calculated  friction values with experwnta l  
results (reference 5). The caloulation of the turbulent free- 
omvection boundaqy layer is repeated with the other velocity pro- 
f i lee   in   f igure 4 i n  order t o  study their effects. 

The temperature profile  in  the  turbulent forced-convection 
flaw for Prandtl numbere not too far froan 1 in sidlar t o  the 
corresponding velocity profile and it will probably be similar in 
shape for  free-convectian flow. The following equation is there- 
fore used f o r  the temperature profile : 

The shearing stress T~ on the d l  in turbulent faraed- 
convectian flaw is given in reference 5 REI 

By assuming that the 8- law holds for turbulent  free-omvection 
flaw in the Immediate neighborhood of the w a l l  and conaidering 
that the velocity  profile (equation (4) ) is identical with that 
represented by equation (3) for very 8- distances from the  wall, 
equation (7) can be transformed t o  

By using  equation (4) for the velocity  distribution,  the 
integral of the   f i re t  term in the manenturn equation  (equation 1) is 

I n  the preceding  equation, the upper lfmit of the integral waa 

changed frm 2 t o  x = 1 because equation (4) hold8 only for 

g 8, whereas for y > 6 the  velocity i 6  zero. 
6 
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The integral of the second term in  equation (1) is 

The integral   in  the heat-flow equation  (equation (2)) La 

= 0.0681 ~ ~ 8 ~ 8  

= 0.105 

Substituting t k  values of -the preceding integrals in  the 
momentum a d  heat-flaw  equations and coneidering that the heat- 
transfer coefficient H can be substituted for the  specific 
heat flow q, = EOT gives 

Solution of equations ( 8 )  and (9) : Method I. - I n  order to 
solve equations (8) and (9), additional information on the  heat- 
transfer  coefficient E l e  necessary. Jakob (reference 4) 
derived from a compfhtion of experiments the empirical relation 

Nu = 0.129 (Gr P r )  1/3 (10) 



Hx 
0.105 gpcg 

e a s i ~ y  be -grated. 
X = 0, 8 = 0, the 

The differential  quotient in equation ( 8 )  can be transformed by 
differentiation ae follows : 

No a m i c a l  solution waa found for this equation, whioh wa8 
therefore eolved graphically, as deecribed in appendix Bo The 
reeulte oan be appwxlmated with good acauraog by the equatfan 

Up t o  now, the boundary-layer thickness has been represented 
by the value 6, which is the dietance fraan tk wall w h r e  the 
velwity (ae approximated by equation (4)) and the tF?mperatUre 
(according t o  equation ( 6 ) )  Each  zero valuee. A more oharaoter- 
i e t i c  me~gu2.e for the baundssg-layer thiokness i n  general uae ie 
the s o - d l e f l  displacement thickness, which ha8 t o  be deffxd  fo r  
Free-oonvection flow by the e&ation 

P- 
O m 
d 
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which i e  the thickmse the b.gmdaq layer w o u l d  have if the vel- 
ocity within it were constant and equal to  tb?? value * eLnd 
the v o l m  flow were the same as in reality. 

By using the velocity  ratio a8 determine& from equations (4) 
and (5), the diaplaoePlent thiohess  beccmse 

I n  equation (U) the beat-tmmfer coefficient H and the 
meLxfimun velocity % can be replaced by the Graehof and Frandtl 
numbers by ma218 of equations (LO) and (13) The boundary-layer 
thichees 6 can be ohanged to the displacement thickness 6* by 
mane of equdion (14), vhich result8 in 

Soltrbion of equatione (8) and (9) : Method 2 - Because the 
g r a p h i d  solution i i i  a orbnr#T.ntively tediw8 p e e s ,  another 
approach to  solve the differential equations (8) etnd (9) is tried, 
It wi l l  be investigated haw closely t b  equations o m  be satisfied 
with the assumption that urnax and 6 &re proportional to ~ o m e  
power of the dist8me x. If 

and 

are introduced, equations (8) and (9) becozpe 

and 

0.105 gpcpCuCg (m+n) Pn-l = H 
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Ineunuch ae theee eqnations llBlBt be valid for any d u e  of x, all 
the exponents of x in any of the equatiane naret be equal. Frena 
the mamentum equation, values of m and n are obtained: 

m = 1/2 

n = 7/10 

It o m  be seen fran the heat-flow equation that the heat- 
tranefer  coefficient must be p m p o r t ~ ~ n a l  to ,115 in order to 
f'ulfill this equation. 

By writing 

H = C&' 

and intrducing th i s  erprese-lon into the heat-flow equation, 

is obtained. This equation o m  be ealved for 

Whsn the value of Cu f'rm equation (22) is introduced into 
the momentum equation,  keeping in mind that m = 1/2 anb n .I 7/10, 
the manenturn equation becnmes 

. 
IC 
0 
4 
rr) 

. 

which is 8 cubic equation f o r  Cg that characterizee the bcundary- 
layer thioknese. 
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It is u8wLU.y assumed thest i n  free-conveotion flow the  Xusselt 
nuniber i e  a funotion of the prcduct of the Gmehofand Frandtl num- 
bers. In  order t o  mill this condition  and equation (20), the 
Nusselt number for turbulent f'ree-oonvection flow m e t  be repreeented 
bY 

Nu = C(Gr  Pr)2/5 (24) 

The range of Gmehof numbers f o r  which test remlts are available 
( d o <  Gr ld-2) is too  mall to decide whether equation (10) or 
(24) is the  better one. The t e s t  points that axe presented in 
figure 25-3 of reference 4 and figure 129 of reference 7 agree 
even slightly better with the slope of equation (24). (See P i g .  5.) 
Cornparism of this equation with the preceding t e a t  result13 gives 
f o r  the constant C the numer id  d u e  0.0210. Therefore, 

If the displacelnent thfoknese E* ie made dWneionless by 
dividing by a length x and is then  introdwed in to  equation (23) 
together with the dbknsionlesa parameter8 

mu = = 0.0210 (Gr Pr)2/5 
k 

that characterize the flaw and *at tr&n8fer in  free  oonvectlm, 
the follarfng equation ie obtained: 

(2)3 - 0.0734 (Gr Pr) -0.2 "1.0 " 6* X 
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The local  heat-transfer  coefficient is needed for the cdcuht lone  
presented  herein, whereas the test points i n  fig. 5 are heat- 
transfer coefficient8 averaged  over the plate length. A slight 
difference  exists between both  values; however, inaemuch as the 
Grashof Dumbere for the t e s t  points me  too low t o  determine the 
exaut numerioal value of the canstant In equation (24), the cm- 
etant 0.0210 will be used. Because tes t   resul ts  are usually 
plotted as Nu against (Gr P r ) ,  the produot (Gr Pr) =E 
introduced into equation (26). 

Equation (26) vas muaericallg  solved for eeveral values of 
(Gr Pr)  . The results are presented i n  figure8 6 and 7 aa 

Inamuch as i n  both logarithmic3 charts the values for the dhm8lon- 
lese boundary-layer  thicknee8 are praotically straight lines, the 
-following expreeeim approximates t h e  reeult of the cubic equation 
in  the fndiuated range 1 9  < (Gr Pr) < ld-' very closely: 

( ) * *  

- = 0.296 (Gr Pr) 6* -0.100 "0'4u. 
I 

The second unknuwn value *ma the maximum velocity within the 
b o w  layer. T h i s  value is represented by the ReyndLde nurckr 

&om equatione (16) and (22), urnax is determined ae a f'unc- 
t ion of CH. Replaoing CB by meam of equatione (20) and (25)  
gives 

By introducing  equation (27) for the boundary-layer thickness, 

RemRX,1 = 0.355 (Gr Pr) 0 .SO pr-0 e589 

c 

is obtained. 



c 
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In figure 8 €he values R h  and 8*/x, a8 determined by 
both methods of solving the differential equations, are compared. 
It can be seen that the differences  are not excessive in  the 
ent i re  range of' Graehof nuniberg investigated, when the lack of 
information on turbulent  free-convection flow is considered; in  
no case do they exceed 25 percent. 

Solutions of Boundary-Layer Equations Using Other 

Velocity  Profiles 

The I&dn me tha  used in   the preoeding section proved com- 
paratively  insensitive  to the assumed shape of the  velooity and 
temperature  profilea in  fomed-convection flow. I n  order t o  check 
this   insensi t ivi ty  for the free-convection flaw, the calculatfons 
were repeated using two other expressione f o r  the velocity profiles. 

The shapes of these  velocity  proffles, together with  the  f i re t  
aseumpt;ion and the temperature profile, are shown in figure 4. The 
calculations reaulted in  the  following  equations : 

0.00218 (Gr  Pr)-003 Pr'0075 = 0 
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($)rn - 0.0308  (Gr Pr) -0.2 "1.0 (E) 
x m  

- 

0.00583 (Gr  P Y . ? ) ~ . ~  Pr'0-75 = 0 (32 1 

(5)* P 0.205 (Gr  Pr)-ooloo Pr-0*358 

The Reyn0 ld . s  Taunbers characterizing the me~cimum velocities 
can be appm"ted by 

(33) 

Re-, Ir = 0.418 (Gr Pr) 0.500 "0 :a2 

Disoussion of Results 

The boundary-layer thicknesse~~ and the msxirmM Reynolds n u -  
bers,  as.determined with the three velocity  profiles, differ only 
in  the oonstant and slightly in  the exponent of the Pmndtl number. 
The average value of the conetant for the boundary-layer thioknees, 
baaed on the three values that were obtsined  with  the different 
velocity  profiles, is 0.245 and the three individual conatante 
deviate by f 2 0  percent frtsn t h i s  average value. The corresponding 
average for the constant In  Re- AB 0.386 and the Indluid& 
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values  deviate by it8 percent fKrm this average  value. So it can 
be seen that  the influence of the  shape of the assumed profiles 
is not large, Of courBe, there may be an additional deviation of 
the  calculated  values *om the real ones, which is caused by the 
uncertainty of the  value for the shearing stresses. The calcula- 
t ions can be improved i n  t h i s  directfan as soon as more information 
on t h i s  value in turbulent  free-convection flaw fa available, 

It is quite interesting t o  8ee by which factors the coef- 
f icients m anB n i n  equations (16) and (17) are influenced. 
A check of the  calculaticms  leading to these equations s h m  that 
the  d u e  m = 1/2 follm from the assumption that the boundary- 
layer thicknees and the maximLlllL velocity  increase d t h  some p m r  
of X. The sans value for the coefficient m is valid in the  
laminar range. The dne f o r  the  coefficient n also depends on 
the l a w  f o r  the shearing st ress  TW. A value of z1 m y  be deter- 
mined by assuming that  the heat-transfer  coefficient i s  indepndent 
of x. 

The calculation  in th i s  manner gives  the result that the shear- 
ing stress Tx has t o  depend on the parer -112 of the Reyno lds  
number u y / U  in order to filfill this demaad. T h i s  large  deviation 
frau  the law for  the shearing s t ress   in  forced-convection  turbulent 
flaw (equatian (7) ), *ere the corre~p~na~ng power is -1/4, seems 
improbable . ?the shape of the  velooity  or t e m p e r a t u r e  profile does 
not influenoe m or II. 

Another assumflion involved In the mlculations should be 
mentioned. In  sseuming that the boundary-layer  thicloless 6 is 
proportional to 9, it is implie& that the turbulent boundiary 
Layer begins with the  th icbees  zero at the  lower end of the 
plate. In  reali ty,  f i r s t  a laminas boundary layer occurs and then 
the  turbulent boundary layer develops  within a certsin  distance x 
out of the laminar boundary layer. The assumption that is made 
here is ordinarily used for calculating the turbulent b o u w  
layer fo r  forced  flow dong a plate and proves qufte  sucoesaful 
(reference 8 ) .  In abditfon,  the  relative range of the lambar 
boundary layer at  the  high Grashof nunibera encaurrtered i n  turbine 
operation is so small that an error  in the correct starting point aP 
the  turbulent baundary layer  influences  the  result of the calculations 
t o  a very small degree. 

. 
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Camparison with Ekperiments 

HACA Rd E5OD25 . 

A ane-s-hge gas turbine with liquid free-convection  cooling 
was tested at the HACA Lewis laboratory  (reference 9 )  The results 
of these  tests may be wed t o  make a first check on t h e  calculatione. 
The teated  turbine wheel had. a mean radius rm of 5.72 inches . 
Each blade of the wheel had five holes  with a length L of 2.5 
inches Three holes were 0.125 inch in  diameter, one was 0.090, a d  
orse was 0.060 inch in dimueter. The circumferential  velocity of 
the  blades at the man radius was approxinaately 700 feet per second, 
This velocity  gives 1,030,000 feet  per second per second for the 
centrifhgd  acceleration. This  high  acceleration, which is  32,000 
times the  soceleratian due t o  gravity,  erplaina  the large Grashof 
nunibere a t ta ined  in  theme holes. The cooling water had a tempera- 
ture of approxhmtely U O 0  F. The b l a 8 e d  temperature was 4 2 5 O  F. 
By using the preceding  values and a film temperature of200° F for  
the property values, the Grashof mmer is found t o  be 1.25 x 1014. 
Considering the Prandtl  number t o  be 1.74, the Grashof T1um33er t o  be 
1-25 X d 4 ,  an& the kinemtic  viscosity to be 3.16 x lom6 square 
feet  per second, introduoing  these values into epuatllone (27) and 
(28), and solving for 6* and urnax gives 6* = 0.0214 inch 
% = 58 feet per second. If the diameter of a cooling  hole fs 
determined in such a way that the water velocity has the same value 
i n  the COIE of the fluid as in the heated baundary layer, the value 
for t h i s  diameter is found t o  be 0 -146 inch. In a hole of such a ' 
dimeter,  the  heat-tranefer  ooefficient has surely already decreased 
as ccanpare& with a bigit3mneter hole. A ccmprieon of t h i s  value 
with the  diameters of the holes that were used in the  test  turbine 
leads t o  the conclusion that the circulation of the oooling water i n  
these holee must  have been quite  restricted. 

I n  the tests, the average heat-transfer  coefficient  for a l l  
holes was measured. The corresponding Musselt nulpibera are plotted 
in figure 5 .  The 8- f igare s h m  the Nusselt numbers calculated 
wlth equatfon (24) and with equation (10) given by Takob. Both 
Nuseel.t,  nunibere refer t o  the heat-transfer  coefficient In a  hole 
with a large diameter. S m e  t e s t  reeults are also shown in figure 5 .  
They were taken from figure 25-3 of refereme 4 and figure 129 of 
reference 7 , St can be seen that equation (24) and Jakob's equatim 
f i t  the-teet results equally well and that  the Nusselt  values  given 
by both equations are very much larger  than  the Nusselt numbers 
measured i n  the t e s t  turbine; 80 the  gmclusion, which i~ drawn frcsn 
the  calculations, that the  holes in  the test turbine were too small 
in diameter f o r  proper oirculation, is codirmed. 

. .. 
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Inamch  as  it is impossible t o  avoid  holea with d l  dia- 
meters i n  turbine  blades,  the  question arises a8 t o  how the oi r -  
culation can be  improved in  these holes. This problem will be 
dealt with in  the fallowing section. 

A brief  oalculation reveals that veporizatian win never 
occur in  a hole if  its diameter is lmgs enough for good oir- 
d a t i o n .  By ueing equation (25), G r  Pr) equal t o  l&*, and 
a thermal  oonductivity of 0.393 (Btu > (hr)(f't)(OF)), the  heat- 
transfer  coefficient  in  the hole wag f w d  t o  be 15,500 (Btu/(hr) 
(sq fct) (9) ) . The heat -transfer  coeffioient on the outside of the 
blade is usual ly  in  the neighborhood of 80 (Btu/(hr) (sa ft) (%) ) . 
These values  determine the temperatnre differerne ew between the 
wall (or  the hottest portion i n  t& f luid)  and the  fluid  entering 
the hole. By using  the  preceding  values, it is faund that for 
a large hole eV is equal t o  9.1O F. Evaporation ocoura when the 
wall temperature  reaches or  exceed8 the saturation temperature of 
the water. In  the holes a considerable pressure increaee occur8 

. with increasing  dietame framthe axis of rotation. T U 8  increaee 
can easily be d c u l a t e d  from a balanoe between the pressure and 
centrifugal  forces . The eatnration temperature r ises  w i t h  the 

inch is eufficierrt t o  increase tbe saturation temperature by 
9 .lo F. Therefore, even if the liquid enters  the holes in a 
saturated s t a t e ,  evaporation prill ocmr only at the  entrance. 

pres- and 5% iS found thae an 1llCF288e ??&dill8 O f  d g  0 -004 

With the reduced circulation  in the experimental turbine 
and the  uorrespozding  decrease i n  heat-transfer  coeffiuient in the 
holes,  conditions me greatly ohanged and evaporation may occur i n  
the  innkr part of t h e  holea. 

The velmitfes connected with the  free-oonveotion flaw are 
extremely high when the holes are large enough in  diameter, which 
resul ts   in  very high heat-transfer  coefficients and is a definite 
advantage of the  free-convection  cooling as c w  wlth forced- 
convection  oooling. With the  forced-convection mthod it is 
ordinarily lmposaible to obtain equally high velooitiee, 

The circulation  in the  holes with small diameters  decreases 
because the boundary layer does not  leave  enmgh space through which 
the  cold  liquid nkay enter the holes i n  a direction opposite the  flow 
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in  the baund8.q layer.  It is therefore t o  be expected that the 
circulation i n  the holes can be materially improved when the  cold 
fluid is fed into  the holes from the  top of the bl&e (fig. 9) . 
In  the  central part of .t;urbine blades, it i e  always possible t o  
provide holes with larger diarmeters. If a comection i e  made on 
top of the b l a e  between these  larger hole8 and the small holes 
in   the leading and t ra i l ing edges of the blade, cold liquid will 
flow from the large-dismeter holes t o  the wnall holes. The pro- 
posed arraugemenk of oooling passages i n  free-oonveotion liquid- 
cooled turbine blades i n  shown i n  ffgnre 10. 

In'order t o  Bee how muoh the heat transfer in a amaU hole o m  
be  improved in thie m e r ,  a calculation 3.8 made 88 f o U m  : 
Hole (1) (fig. 9 ) ,  with a very small diameter, is canneoted an top 
with a second hole (2) of very large diameter. The diameter of 
hole (1) may be BO small that the boundary layere fill out the whole 
or088 section and the  liquid f l o w  anlg in  a downward dlrection. The 
velocity  profile will then have practically t h e  shape as In 
forced-oonvection flow. The s a m  thing wl11 be true for the d u e  
of the  friotian  forces. The oalculations  using the  friction  factor 
and heat-transfer  cceffioient of force& flow in  a tube are therefore 
applicable. First, the ohange of t h e  bulk temperature t of the 
liquid along the hole may be- caloulated. For this purpose, a 
heat balanoe is se t  up for  the length dx of the tube, assuming 
the temperature tw of the tube wall t o  be constant along the whole 
length. Denoting the average velocity i n  the hole by U and the 
heat-transfer  coeffiolent  built with the local temperature differeme 
h - t b  by Hb yields 

By introducing the difference &b between the temperature of the 
w a l l  and the bulk temperature of the liquid and the Bifference 
between the temperature of the wall and the  cold liquid  entering 
the hole €jw = tw-tgr equation (37) tmmfonns  into 

. 
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Integration with the  condition that for  x = 0, 0b = ev leads 
t o  the  expression 

and f o r  the temperature  difference a t  the  exit of the  hole (x = L), 

The logarithmic ma11 tempemkre difference that it3 t o  be used for 
heat-transfer  calculations 5s 

Introducing  the.preceding values gives 

The force that genemtes the  movement of the  liquid through 
the loop is the ~ u m  of all the buoyancy foroes. The pressure 
difference connected with theee buopncy force8 along the length 
dx is 

Introducing the expaneion coefficient  in the  sank= way as vas pre- 
viously done and assuming the ohangee in  speoific weight t o  be 
emall gives 
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The pressure difference available t o  overcaw the friction in the 

TWs presslule differenoe is uaed up by the frfction forues. 
It is assumd that the flow is turbulent in the mdl-diameter 
hole and that the formula for pressme drop for turbulent forced- 
convection flow &B given in refereme 4 (p. 433) can-be -&: 

Ap - 0.316 1 n 2 L  

Introbuoing th is  erpl-eesion into equation (40) ana conver*t;hg in to  
di.menslonlese values give8 

The Nusselt number for foroed-convection turbulent flow fn a 
tube ie given in reference 7 (p. 168) aa 

my, = 0.023 (44) 
c 
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Therefore, e w t i m  (42) s3mplif2ee to 

which may be solved for the Reynolds number 

In equation (G), the  Nusselt number and the Reynolds auILiber are 
based on the  diameter of the tube azld the heat-tranefer  ooefficfent 
Ea with the msan difference between the wall and the liquid bulk 
tempek.%ue. In  the previous cetlculations, the length x and the 
difference 8, between the wall fernperatare and the temperatame of 
the  entering oold liquid was aaed as a baBi8 for  the  heat-transfer 
coefffclent ard the  Nusselt number. I n  oMer t o  make possible  a 
comparison of Numelt numbers, equatfon (44) is converted t o  this 
Nusselt number. The apeoific heat flow q, from the wall into  the 
liquid must be the same expressed by both heat-transfer  coeffioiente. 
Theref ore 

Inasmuch e b ~  the  calmlatima here are for the whole tube 
length (x =I L), the  Nusselt number Nu used in prevfQU6 c d -  
culations is conneoted with the Kusselt nmiber mb, baaed on 
the  diameter and the mean temperature  differenoe, by 
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The R e S U s  number mag be inserted fram equation (46), 

r 1 
Nu = 0.0139 Groo41 pro *Is4 I - 0.103 ,0.538 @) 1 0 0522 1.21 

Gr 

Laminar Flow 

When the Reynolds number is smaller than t h e  or i t ical  value of 
2100 (reference 7, p 154), t he  flaw i n  the emall-dlameter hole is 
laminar. I n  t h i s  caae, the f olloving formulae for the p a s u r e  drop 
and heat-tranafer  coefficient in laminar forced flaw are used: 

. 
1 

The formula for the  Ihsselt Dlumber (reference 4, p. 530) i a  derfved 
from calculations by PTuseelt and is  valid only for fu l ly  developed 
flaw. I n  the inflow region, higher values occur and another more 
complicated fonrmla has t o  be used.. Because the ebnple formula (50)  
gives minirmun valuee, it is  used here. Carrylng aut the calcu- 
l a t i om in the same mmer as for turbulent flaw reaults in 
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Discussion of Results 
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The N u a s e l %  numbers  were caloulated from equation (49) for 
a loop, the hole of  which has r a t io8  L/D = 25 and 50. The 
results are eham in figure 5. With equation (46), it -8 asoer- 
tained  that in the mnge shown i n  figure 5 the flow ia trlrbulent . 
The minimum Reynolds number oalculated & 20,000. It c q  be seen 
that very  high  Xusselt numbers are obtained i n  t h i s  way. ?he Nusselt 
mnibers are even larger  thsn in a hole  closed on top  with 7 % ~  large 
diameter-to-length r a t io .  

The large  heat-transfer  coefficients  obtained by eane  of the 
loop oan  be used in turbine-blade  design, a f a o t  that will be dis- 
oussed in t he  h a t  aeotion of the report. 

Up t o  now the  action of the  Coriolis  foroes 011 the flow of the 
uooling liquid in   the holes has been negleoted. In order t o  get an 
e a t h a t e  of the  effect of these f m e e  on the flow and the heat 
transfer,  the m i t u d e  of these  farces is cmpared  with the 
centrif'ugal  fomes . In the holes the relative movemxrb of the fluid 
is normal t o  the  cfroumferentid  velmity of the  blade. In t h i a  
case,  the Coriolis aooeleration is 

2uw 

The aooeleration has the s a m  direction aa the ciroumferential 
velocity when the  relative  velooity  points towar@ the axis of 
rotation. When the  relative  velooity is directed away f'rom the 
axis of rotation,  the Corfolfs acceleration auts i n  a direction 
oppoaite t o  the  oirnrmferential  velocity. The comparison wlth 
the   cen t r im& foroes will be made in  the  crom  eeotian of the 
hole fixed by the mean radius rm. In a cross  section of the hole, 
the  relative  velmities of the fluid vary between zero and the 
maximum vdue as previausly  indicated. The greatest  difference 
between the Coriolis acceleration  acting on different fluid  particles 
i n  the cross  sectian  therefore has the value 
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Thie acoaleration i e  
the buopmoy force8 : 

The maximum difference in the temperature difference i n  one C ~ O B B  
section ieJ e,. Therefore, the maximum buoyant ameleration due 
t o  the centrif'ugal foroe i e  

The ratio of the m ~ ~ I n n l m  Coriolie acceleration t o  the  ma~ilmun 
acceleratlon oonnected with the buoJrant forcee is 

The velocity urnax: may be expreseed by the correepondfng Reynolds 
number Re-. E x p a s i n g ,  in aadi-kion, the angular velocity W by 
the Crashof number rmd~8+3/c2, which has t o  be used f o r  con- 
vection caused by centriRzgal fields, give8  

Inserting the Reynolds number  from equation (28 )  yields 

~t the &an radius rm, x i e  e q w  t o  ~ / 2 .  The r a t t o  x/rm haa 
values 1/4. I n  the teste on the free-convection  liquid-oooled 
turbine, the highest d u e  of the  temperature difference 8 m e  
315O F. The f91m t e m p e r a t u r e  for evaluating property m u e e  of the 
coding water x88 200° When thie  film t e m p e r a t u r e  is used the 
Prandtl number ie 1.74 a d  the expaneion Goefficient O.M)043/0 F. 
Ineerting theee va lues  Into  equation (56) gives the vctlue 0.84 f o r  
the ratio of the Coriolis  acceleration to the acceleration connected 
with the buoyancy fomee  in the  croee section of the hole. The 
Coriolie forcee are therefore quite appreoiable. 
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1 The Coriolia  forces se t  up a secondary moveneat of the type 
eham  in  figure 11. The secondary flow is e h i l a r  t o  tbe one i n  
a bent tube. It inoreasee the bazndEtry-lebyer thickness on the side 
of the hole in the airection of %he rotation and decreases fts 
thickness on the  opposite side. 

To Some extent it i a  possible t o  et* the influence of t h i s  
secondary movement qn heat transfer by means of s t a t i c  tests pre- 
ViOuSlg described. By inclining the  s ta t ic   tes t   sect ion,  the free- 
convection-flow setup would be exactly aimilar t o  the f l o w  i n  the 
rotating hole in  the turbine blade if the velmity and temperature 
profiles would be similar. In reality,  the profiles differ i n  
shape; however, the cnmparisan may be used as a ffrst eetimate of 
the Coriolis forces. The ratio of Coriolis to  centrifigal  accele- 
ration of 1.00 correspouds t o  a s t a t i o  tube  inclined at  450 from 
the  vertical. Unfortunately, no test results aze knoun for g r a v i t a -  
tional free-cmvectian flow in an inclined heated tube. Measurements 
were mile, however, on gravitational  free-oonveotion flow i n  an a i r  
layer between two @le1 plates, vertical  and imlined, and in  an 
air layer between two c0arfa.l cy l ide r s .  I n  both cases it was found 
that the  heat-transfer  coefficient changed very l i t t l e  when the 
test setup wa8 inclined frmthe vertigal  posit ion  to &z1 angle of 
450; the change was about 20 percent  (reference 4). This  infor- 
mation gives same indication that even when the r a t io  of the 
Coriolis to the centrifugal forces is oonsidemble, the =*fo does 
not affect the heat transfer to a large degree- 

The method of free-convection  cooling of rotating turbine 
blades utilizes  the  incense,currents generated in the liquid, which 
fills the hollow spaces within the blades, by the  centrfFugal  farces 
as soon as temperature differenoes are present i n  the liquid. In 
the  current designs using this method, holes are provided within 
the blades that are C l O S e d  on top a d  mnnected with sme liquid 
supply at the blade root. Such a blade was shown and the f'ree- 
convection currents se t  up in one hole of the blade were illuetrated. 
The heated flufd within the boundary layer along the wall of the hole 
moves toward the blade  root and is replaoed. by cold liqpid flowing 
tarard the top  in  the  central peuCt of the hole. When the diameter 
of the hole is very small as compared with the length, the two liquid 
streams flowing in oppoaite directians hinder each other and the 
circulation and oooling effect decrease. A meamre of this limiting 
diameter-to-length ratio was obtained by calculating the boundary- 
layer thiclmess of the  free-omveotim flow in  a hole with a Very 
large diameter-to-length ratio.  
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Inasmuch as the flow in the baandacry layer i 0  turbulent under 
the ,conditione preee& in a rotating turbine blade, the approrimste 
method introduced by vcm K6rndn was wed for the  calmlatione. I n  
t h i s  mthod the ehapee of the velooflty and temperature profile6 
have t o  be aesumeU, Unfortunately, no information is available on 
the shsp of either  profile i n  turbulerrt free-oonvection flaw. The 
oalculatlons were therefore carried through with three  dif'ferent 
shape8 for the velooity  proflle. The ehape of the temperertUre pro- 
f i l e  was assumed t o  be identi& t o  the me i n  turbulent f oroed- 
convection flaw. Also, the law for the. shearing  etreee on the wall 
in forced flow W&IJ use&. The method proved quite  ineeneitive to a 
change in the shape of the profilea. The values of the boundary- 
layer thlckneee and of the marinrum velocity for the flow in the 
range oovered by the reml te  of the  caloulatione  with the aifferent 
ebseumgtians varied approximately 20 percent . A more acourate 
answer t o   t h e  problem can be obtained only when more experimental 
infomation ie available on the shape0 of the  profiles . 

The oalculationa and their comparison wlth t e s t  results on a 
free-cmvectim ooolerl turbine  idicated that i n  blades of 2.5-inoh 
length the circulaticm and the cooling effect are decreased t o  a 
coneidemble degree i n  holes with diemeters lees than 0.146 inch. 
The oirculation and heat removal of a hole with a emsll d i e t e r - t o -  
length r a t io  oan, hmver ,  be reetored t o   t h e  value of one with a 
large diameter-to-length r a t io  when the hole with the riumU diemeter- 
to-length  ratio is oonnected on top of the blade with  neighboring 
large-diameter-to-length-io holee . A eeoond. se t  of caloalatione 
proved thie fact. 

t- 
0 
M 
rl 

P4.m the calculations,  the following reoormnendatione for the 
arrangement of the oooling holes in  turbine blades can be made. The 
blade should be thick  in  the  oentral prt 80 that holee with large 
dhnetere oan be arranged there. Theee h O h 8  ahould be conneoted 
on top of the blade with the small-diankzter holee. Such an arrange- 
nsent of 00011~ holee in a turbine blade was ahown. For eepeoiallg 
effective ooding, the cross  eeotion of the holes shuuld be aa large 
a8 po8slble . It must be kept in mind, of cmse ,  that vew high 
preseures are present inside the hole8 and that the  walls m e t  with- 
e t m d  these pressures. The rrtreaeee owsed by the internal preseures 
i n  the  holes must be added t o  the  etressea caused by the c e n t r i m  
forces in the  solid  material of the bladee. 
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In the boundary-layer caloulation, the  effect of the Coriolis 
foroea cm the movement of the liquid in the  rotating holes WBE 
neglected. Experinmrts on gravitational free-oonveotion flaw on 
inclined ob3ecte indicated that thie  e f f e o t  is of l i t t l e  Impohnce 
on the heat transfer. 

Lewis Flight Propt~leion Laboratory, 

Cleveland, Ohio. 
Rational Advisory Committee for Aeronautios, 
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APpENDM A 

SYMBOIS 

The following symbols are uaed i n  t h i s  report : 

constant 

coostant f o r  variation of heat-transfer coefficient with #15 

conatant .for variation of b o u ~ - l a y e r  thiakneas with  Xn 

spec i f io  heat at conatant pressure, Btu/(lb)(OF) 

diameter, f% 

acceleratton due t o  gravity,  .fi/sec 2 

heat-trernsfer coefficient,  Btu/(eq f't) (sec) (9) 
heat conductivity, gtu/(ft) (eec) (OF)  

length of hole, ft 

length, f't, (fig. 2)  

exponent 

specifio heat P&m, Btu/(hr)(aq f't) 

Reynolds number based on diameter D, 
. .  

- 
. .. 

. -. 

. " 
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Reynolds m e r  based, on  laxi in sun velocity ums~c, uolaxx 

radius, ft b 

t emperatme , OF 
velocity, %/set 
velooity component in x-afreotion, f t / s e o  

velocity outside boundary layer of comparable forced- 
conyection flow, f t / sec  

specific volume, cn f%/lb 

coordinate (distanue from ehrbing point of boundary layer), f% 

ooordinate (df8t&nCe from wall), f t  

thermal diff’ueitivity, sq f t / s ec  

expaneion ooeffiotent, 1/oP 

baundary-layer thichees,  ft 

displacement thickness of b a m b r y  layer, f’t 

ratio of maximum Coriolfs acceleration to maximaza oentrifugal. 
acce’ -ration 

temperature dmerence, 9 

temperature differenoe between uall  and fluid outside of 
boundary-layer, 

dynamic visoosity,  (lb)(sec)/eq ft 

kinematlo viacasity, eq ft/sec 

Qnamic densitg, (lb) (seo2)/f’t4 

shearing etreee, lb/eq f’t 

angular velocity, l/sec 

Subscripts : 

b buLk d u e  (mixed  mean) 
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ex i t  condition 

mean value 

maximum value 

on redl 

on outer border (and autside) baundary layer 

d u e s  c a l m l a t e 8  u i t h  f i r s t  assumption for velocity profile 

value8 u a l c u l a t e d  with second aeeumption for velocity profile 

values c a l d a t e d  with third &aeumptim f o r  velocity profile 

. 
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The differential  equation t o  be solved is 

It is advantage- t o  transform this equation by the t z~e  of nun- 
dimzneioaa3. values. The Grashof rumher Gr €8 ueed to replaoe 

the independent vasiable x and the Reynolds rider Xe- = '- lzmag 

f o r  the dependent variable k. Differentiating the Reynolds  
m e r  gives 

Intrcducing  the  differenttal  quotient dume;r/dx from t h i s  expression, 
and the Graahof IuzOiber in%o equation (12) f i e l d s  

The Nusselt namber is rephoed by use of equation (lo), whioh gives 

T h i s  equation m8 graphically solved (fig. 12). Inasmuch as the 
range of Grashof numbers concerned fs fairly wtde, it is adv&ntageous 
t o  obtain the gr&phical solution in a logarithmic diagram i n  which 
the Reynolds number is plotted over the Grashof IIupiber on a log- 
arithmic aoale. I n  order t o  determine the  curves that present the 
solution of the differential  equation in  the dhgram, the slope for 
any pair of d u e s  Re and Gr fe needed. I f  loge R- = $ and 
1% Gr = e, then  the. needed slope is 
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For any pair of values Re,, and Gr,  the differential  quotient 

d(R-1 
can be determined fram equation ( 5 8 ) .  Equation (59) 

givee  the slope i n  the logarithmio plot .  Figure 12 shows the elopes 
determined in  th is  way for two Prandtl numbers. The needed eolution 
of the differential eqpation (58) m e t  fu l f i l l  the conditlonthat 
for Gr = 0, Rernx P 0. This oondltion follow f r o m  the asallmpticm 
that the turbulent boundary layer starts with a thfckneers zero a t  x 
equal t o  zero. The validity of th is  assumption was previwsly die- 
ouseed. In starting out wi th  high Graehof numbers and drawing m v e e  
that have the desoribed elope8 for all Graehof  -em, it ie found 
that the curve that fulfilla the preceaing condition can be fe 
with very good aocuracy, A l l  ourves that start aut  with a Reyndde 
number that is too great turn away i n  an upwarti direotion 88 the 
Grashof number is decreased. Curves that starb art at  high Grashof 
Ilumbers with a law Reynolds Tutmker turn away in  a dm- direction. 

1. Sabmidt, E.: The PO88ibilitie8 of the Gae Turbine for Aircraft 
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F i g u r e  1 .  - F r e e -  

c o n v e c t i o n   I i q u i d -  

cooled t u r b i n e   b l a d e .  
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F i g u r e  2 .  - Nomenc l a t u r e   i n   d e r i v i n g  

e q u a t i o n s  f o r  f r e e - c o n v e c t   I o n  

b o u n d a r y   l a y e r .  
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F i g u r e  3. - S h a p e  o f  t e m p e r a t u r e  

a n d   v e l o c i t y  p r o f 1  i e s  i n  

t u r b u  I e n t  f r e e - c o n v e c t   i o n  

b o u n d a r y  I a y e r .  
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F i g u r e  6. - C a l c u l a t e d   d . i s p 1 a c e m e n t   t h i c k n e s s  6 o f  t u r b u l e n t   f r e e - c o n v e c t i o n  
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F i g u r e  7. - C a l c u l a t e d   d i s p l a c e m e n t   t h i c k n e s s  6 of  t u r b u l e n t   f r e e - c o n v e c t i o n  
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Figure 8. - Reynolds number Remax c h a r a c t e r i z i n a  maximum v e l o c i t y   i n  boundary layer  and  displacement 
thickness 6’ plotted  against   product  o f  Grashof number and Prandti  number c a l c u l a t e d   r l t h  two 
assumptlons for   hea t - t ransfer   coef f lc lent .   Prandt l  number = 1.0. 
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S e c t f o n  A-A 

U 

F i g u r e  9. - S m a l l - d i a m e t e r  

h o l e  ( I )  c o n n e c t e d   o n  t o p  
t o  l a r g e - d i a m e t e r   h o l e  ( 2 ) .  

F i g u r e  I O .  - P r o p o s e d   a r r a n g e -  

m e n t s -  o f  c o o l   i n g  passages 
1 n f r e e - c o n v e c t  I o n  I I q u   I d -  

c o o l e d   t u r b i n e   b l a d e s .  

w - 

F i g u r e  I I .  - I n f l u e n c e  o f  

C o r i o l i s  f o r c e s  o n  f r e e -  

c o n v e c t   i o n  f I ow i n  r o t a t   i n g  

h o l e  w i t h   h e a t e d   w a l l s .  
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Flgurs 12. - Graphical solutlon of  dlffemntlal wuatlon 
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