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SUMMARY

The results of an experimental wind—tunnel investigation of the
damping in pitch of two triangular wings having leading edges swept back
450 are presented. The wings differed only in airfoil section, one wing
having a sharp leading—edge biconvex section, the other a round leading—
edge section, NACA 0006-63. The investigation, which was conducted over
a Mach number range of 1.15 to 1.70, consisted of tests made of the iso—
lated wings and of the wings in combination with a slender body. The
results of a similar investigation for one of the wing—body combinations,
made over a Mach number range of 0.23 to 0.94, are also reported herein.

The results, obtained by a single—degree—of—freedom oscillation tech—
nique, were in qualitative agreement with the results of theoretical com—
putations for both subsonic and supersonic speeds. The prediction by the
supersonic theory of the existence of ranges of Mach number and center—
of—gravity positions over which dynamic instability may be expected was
confirmed by the experimental results.

A significant reduction of the range of Mach numbers over which neg—
atively damped oscillations were encountered was obtained by removing the

tips of the wings.

Application of the theory to a study of the coupled two-degrees—of—
freedom short—period pitching motion of a tailless triangular-wing aircraft
at supersonic speeds is discussed.

INTRODUCTION

In an effort to surmount the problems which arise with flight at
transonic or supersonic speeds, many unconventional wing plan forms have
been proposed. One of these, the delta or triangular wing, has shown
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considerable promise and therefore has been the subject of extensive
theoretical and experimental investigations. One of these theoretical
investigations (reference 1) has shown that, over certain Mach number
ranges and for certain center—of—gravity positions, dynamic instability
in the form of negatively damped oscillations of the short—period pitch—
ing motion is to be expected. A later paper (reference 2) presented a
similar theoretical result.

Since the theory is based on linearized equations for the flow of
an inviscid fluid, it is possible that second—order thickness and viscous
effects may significantly alter the results. Further, the theoretical
treatments are for quasi-—stationary flow (reference 2), that is, for
relatively slow oscillations.

In view of these limitations of the theory, an investigation has
been undertaken in the Ames 6— by 6—foot supersonic wind tumnel for the
purpose of determining the accuracy of the theory in predicting the
dynamic behavior of wings and wing-body combinations in flight. The pres—
ent report is devoted to an experimental investigation of the damping of
single—-degree—of—freedom pitching oscillations of triangular wings and
wing-body combinations about a lateral axis lying within the wings. The
report includes the results of a similar limited investigation made at
subsonic speeds in the Ames 12—foot pressure tunnel employing one of the
models used in the investigation at supersonic speeds.

NOTATION
A aspect ratio < %2—>
B cotangent of Mach angle (#/'M®-1)
o 117t coefficient| it
1
—pVQS
2
Cm pitching-—moment coefficient pitching-moment
Lv2sc
2
I moment of inertia, slug—feet squared
K restoring moment per unit angular deflection, foot—pounds per
radian
v
M Ma.ch number
speed of sound
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ol

damping moment per time rate of change of angle of attack,
foot—pound—seconds

Reynolds number, based on wing mean aerodynamic chord
wing area, including portion enclosed by body, square feet
flight speed, feet per second

wing span, feet

wing root chord, feet

b/2
wing mean aerodynamic chord [ e g-\/F
feelb o]

(local chord)® dy },
base of natural logarithms

frequency of oscillation, cycles per second

angular velocity due to pitching, radians per second

time, seconds

chordwise distance of the aerodynamic center behind the lead—
ing edge of the mean aerodynamic chord

chordwise distance of the center of gravity behind the leadiny
edge of the mean aerodynamic chord.

Xa.c. ~ %c.g.

spanwise coordinate, measured from line of symmetry of wing,
feet

angle of attack of wing center line, degrees
semivertex angle of wing plan form, degrees
Mach angle (sin ™~ 1/M), degrees

mass density of air, slugs per cubic foot

angular frequency of oscillation (2nf), radians per second
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When a, g, and & are used as subscripts, a nondimensional derivative is
indicated and this derivative is evaluated as the independent variable
(a, &, q) approaches zero. For example:

Tt da g d(qc/2v)
a—>0 d—> Q

9 m
" [8(;/2V) Jo',—>o

A dot above a symbol denotes a derivative with respect to time. Angles,
forces, and moments are referred to the center of gravity of the wing and
are positive as indicated in figure 1.

In addition to the preceding notation, which is used in the body of
the report, the following notation is used in the appendices:

Appendix A
¢y, (D) operational form of indicial 1lift coefficient
1
Ciri rate of change of 1lift coefficient with the parameter qE/EV
9, c. for pitching about the wing aerodynamic center
Cmb pitching-moment coefficient due to effective twist
cn pitching-moment coefficient due to effective camber
c
Cmq pitching-moment coefficient due to pitching when the 1lift due
o to pitching is zero

F(n),G(n) indicial 1ift constants evaluated for elliptic wings

c1 local chord, spanwise distance y from.root chord

i V1

@c
n ==

2v
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(ar)

M|

X,Y,2

Lp

Ti/2

distance traveled in half mean aerodynamic chord lengths

vt

072

angle of attack of the three—quarter—chord point of the root
section mean line when the 1ift due to pitching is zero

e o Tehkicn e < <ma.ximum height of camber line>
chord

S =

total spanwise twist, measured at the three—quarter-chord line,
positive when root section is at greater angle of attack than
tip section

Appendix B

body base cross—sectional area

body mean cross—sectional area

local body radius

local speed of sound

body length
vertical velocity of body 3
god f na”xdx
distance of centroid of body volume from nose \x =
B -7
m

distance of axis of rotation of body from nose

rectangular coordinates (sketch, page 29)
local loading on surface of body
velocity potential

Appendix C

time for an oscillation to decrease to one—half amplitude
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21
k —_—
pVZSc
m aircraft mass
Y inclination of aircraft flight path with respect to horizontal
axis (sketch, page 35)
] attitude of aircraft with respect to horizontal axis
(sketch, page 35)
m
T e
pVo
¥ damping parameter
APPARATUS
Wind Tunnel

The experimental investigation of the damping—in-pitch characteris—
tics of the triangular wing models at supersonic speeds was conducted in
the Ames 6— by 6—foot supersonic wind tunnel. This tunnel is of the
closed—return variable—pressure type with a Mach number range of 1.15 to
2.0. A complete description of the wind tumnnel is given in reference Sl

Subsonic tests of one of these models were performed in the Ames
12—foot pressure wind tunnel. This tunnel, also of the closed-return
variable—pressure type, is capable of attaining air—stream velocities
close to the speed of sound.

Model

Two triangular wings with leading edges swept back 45° were used in
the investigation. Their pertinent dimensions are shown in figure 2.
The wings were identical except for airfoil section, one wing having a
sharp leading—edge biconvex section (see reference 4), the other a round
leading—edge section, NACA 0006—63. Both sections were symmetrical in
streamwise planes and 6 percent thick at their 30-percent chord lines.
The maximum size of the model was limited by tunnel-wall interference
effects, this limitation dictating a wing span of 30 inches. Both models
were constructed of wood over a thin steel spar. The reduction in moment
of inertia obtained by the wood construction permitted the use of a spring
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support system of reasonable stiffness. The wing tips were reinforced
with strips of brass to minimize the possibility of elastic deformation
of the tips under load.

During the first series of tests, the model was fitted with a coni-
cal shroud of 30° included angle in order to shield the spring support
system. The dimensions of the shroud and its location on the wing are
shown in figure 2.

For the second series of tests, a slender body of the shape derived
by Haack in reference 5 was fitted to the model as shown in figure 3.
The body of thin laminated wood construction extended 15 inches ahead of
the wing apex and terminated at the wing trailing edge. Its maximum diam—
eter was 4 inches, giving a ratio of wing span to body diameter of T7.5.
A photograph of the triangular—wing—body combination installed in the
Ames 6— by 6—foot supersonic wind tunnel is shown in figure L.

For the third series of tests, the tips of the wings were cut off,
reducing the model span from 30 inches to 24 inches, the wing aspect
ratio from 4 to 2.67, and the ratio of wing span to body diameter from
7.5 %0 O,

Model Support System

In this investigation, the damping in pitch was obtained by measur—
ing the decay of a free oscillation of the model. The model was there—
fore mounted on spring supports proportioned to give a frequency of about
10 cycles per second. The equivalent reduced frequency is essentially
the frequency of the short—period oscillations usually experienced in
dynamic stability studies of full-scale aircraft and missiles.

As shown in figure 5, the model was mounted in a flexure pivot
system consisting of two thin vertical pivots which restrained the model
in vertical motion but offered little resistance to rotation and a long,
flat, horizontal spring which restrained the model in rotation and hori-—
zontal motion. The latter spring was equipped with a strain gage so that
a recording oscillograph could be used to produce a record of displace—
ment of the model as a function of time. Flexure pivots were used for the
spring support system since with this method the only damping due to fric—
tion was that caused by the internal friction of the pivots themselves.,
This quantity remained essentially constant throughout the period of test.

The model was given an initial displacement of 7° by means of a pawl
which engaged the wing in the course of its arc, deflected the wing and
swung past, permitting the model to oscillate freely. The pawl was oper—
ated through the linkage system shown in figure 5 by a pneumatically




8 NACA RM A50J26

actuated piston in the sting support. A positive lock to restrain any
violent oscillations was also provided. This lock, not illustrated in
figure 5 for reasons of clarity, was also operated by a pneumatic piston.

THEORY

For the single degree—of—freedom oscillations of this investigation
the damping coefficients presented are, in the terminology of reference 1,
the sum of the damping due to pitching velocity C and the damping due
to the rate of change of angle of attack with time Cm&. In this single
test, these derivatives cannot be separated.

Triangular Wing

Supersonic theory.— The theory of reference 1 is applicable in the

range of supersonic Mach numbers for which the Mach lines are swept ahead

of the wing leading edge. For higher Mach numbers, where the Mach lines o
are swept behind the wing leading edge, the theory developed by Miles in

reference 2 was used. For this case, in the notation of the present

report, the damping in pitch about an arbitrary pitching axis is

b2
Ax “ Nx
G I 2—}_>+ —9-_=£~<—1-*—>—§<——@-_£~>
fq Lo 2B B c B3 B i

It is interesting to note that Miles'! results for the case wherein the
Mach lines are swept ahead of the leading edge, developed by a different
procedure, concur with the theoretical results of reference 1 for the
sum of C and €, ..

mg mg

Subsonic theory.— The stability derivative Cmq is defined as the

pitching-moment coefficient due to steady pitching so that it is possible
to calculate its magnitude by using the subterfuge of replacing the thin
flat wing in pitching flight with a thin cambered and twisted wing in
straight flight. The charts and tables of references 6 and 7 may then be
used to determine the 1ift and pitching—moment characteristics of such a
cambered and twisted wing.

Approximate values of Cm& were calculated from expressions for

unsteady or indicial 1ift, developed in reference 8. The Prandtl-Glauert -
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rule for the effect of compressibility was applied to the values of C
and Cm& calculated by the preceding methods. A detailed presentation

of the method of obtaining Cp and Cp. at subsonic speeds is given
q My,
in appendix A.

Triangular Wing With Cut-Off Tips

Since the experimental damping in pitch of the triangular wing with
cut—off tips was not investigated at subsonic speeds, only the theoreti-—
cal results for this wing at supersonic speeds with Mach lines swept
ahead of the leading edges are presented. The theoretical values for
(6 and Cp. at supersonic speeds for this wing were calculated by
iﬂ%egrating the appropriate local loadings over regions I and T of “the
wing shown in figure 6. The pressure—coefficient terms were obtained
from table 1 of reference 9. The damping—in—pitch contribution of
region III in figure 6 was neglected, since it is known that regions
influenced by the wing—tip Mach cone contribute very little to the total
load.

Body

The contribution of the body to the damping in pitch was calculated
using Munk's slender body theory (reference 10) in a manner similar to
that used by Ribner in reference 11 to obtain the stability derivatives
of low aspect—ratio triangular wings. The development is given in appen—
dix B. The result of the analysis concurs with that given by Miles in
reference: 12,

Because of the large ratio of wing span to body diameter, the inter—
ference effects between the wing and body were thought to be negligible,
so that only the damping contribution of the portion of the body ahead of
the wing apex was considered. Also, since the theoretical expression for
the damping of the body is essentially independent of Mach number, the
results developed in appendix B were used for both subsonic and super—
sonic speeds.

EXPERIMENT

Scope of Tests

Supersonic tests in the Ames 6— by 6—foot supersonic wind tunnel.—
Investigation of the damping—in—pitch characteristics of triangular wings
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at supersonic speeds was conducted over a Mach number range of 1.15 to
1.70 at a constant tunnel absolute pressure of 5 pounds per square inch.
The Reynolds number ranged from 1.23 million to 1.35 million, based on
the wing mean aerodynamic chord.

The models were oscillated about nominal angles of attack of 0° and
50, the angles being measured from the mean line of the sting support to
the axis of the test section.

The various model configurations, each of which was investigated
employing the airfoil sections shown in figure 2, are indicated below:

Range of Range of
moment of Axis of wind—on
Model inertia rotation frequency
configuration (slug —£t%) (% M.A.C.) (cps)
Wing alone 0.0124% —0.0127 45 10—13
Wing and shroud L0216 —.0232 45 11593
Wing and body .0376 —.0389 L5 6—-10
Wing and body .0311 —-.0319 35 111k
Wing with cut—off .0310 —.0315 75 1013
tips and body (equivalent to tri—
angular wing axis
at 0.35 ¢)
Subsonic tests in the Ames 12—foot pressure wind tunnel.— Subsonic

tests of the round leading—edge section NACA 0006—63 triangular wing with
body attached were performed over a Mach number range of 0.23 to 0.94 at
constant Reynolds numbers of 1.23 million and 0.55 million. For these
tests, the model was pivoted at an axis of rotation located at 35 percent
M.A.C. and was oscillated about a mean angle of attack of 0°.

Reduction of Data

The technique used in this experiment of pivoting the model about
a lateral axis and allowing it to perform pitching oscillations about
that axis enabled the aerodynamic damping coefficient to be determined
from the record of the oscillation—decay curve, after correction had been
made for the damping provided by the internal friction of the supporting
springs.
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The motion described previously may be expressed as a linear differ—
ential equation

I + Pott + Ko = O (1)
Fach of these quantities defines a moment: the first due to the angular
acceleration of the model mass, the second due to aerodynamic and friction
damping forces, and the third due to mechanical and aerodynamic restoring

forces.

The total damping Po 1is written as Po = Po+P;
where
Po aerodynamic damping
P, tare damping due to the internal friction of the supporting springs

Then the aerodynamic damping moment is —(P>—P;)& which when reduced to
coefficient form beccmes

_ =(P21)& 2)

G =
%‘pVESE

Writing the moment coefficient in the form of the parameter used in

dynamic stability work [——jﬁil——-] gives
d(&e/2V)
_ —h(p—Py)

Thus, it is seen that it is only necessary to evaluate P, and P;
in order to obtain the damping derivative.

If in equation (1) the conditions a=0y; and d&=0 exist at time

t=0, the equation describing the model angle of attack as a function of
time may be written as

e—(PZ/EI)t(cos wt + gz sin wt) (4)

£ 2Tw
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where o 1is the angular frequency of oscillation, and is given by

= ~/Z£é/1)—(P2/21)2 (5)

The envelope curve for equation (&) is

e el (6)

where P, 1is a constant which may be determined as

P ?-I—ln( ) (7)

where a, and o are ordinates of the envelope curve, a time interval

At apart. It was found, however, that due to some nonlinearity inherent
in the spring support system P, was not a constant but was dependent to
a smll degree on the amplitude of oscillation. It was evident from the
results of wind—off tests, made with the wind tumnel evacuated to a low
pressure, that the nonlinearity was of mechanical, not of aerodynamic
nature. To minimize its effect, the same initial amplitude and the same
amplitude range was used in the reduction of all records. It was then
always possible to draw a reasonable straight line through the experimen—
tal points when the amplitudes of the envelope curve were plotted on semi-—
logarithmic paper as a function of time. A typical oscillation record and
plot of the envelope curve is shown in figure 7.

The tare damping P; was obtained in a like manner by oscillating
the model with the wind off through a wind—tunnel pressure range of 15 to
3 pounds per square inch absolute. The resulting curve of tare damping
versus tunnel pressure was extrapolated to zero tunnel pressure to obtain
the tare damping due to mechanical friction alone, the extrapolation elim—
inating the effect of air damping. It was usually found, however, that the
difference in tare damping at zero and 3 pounds per square inch absolute
was negligible,

The wind—off records were also used to determine the frequency in the
equation,

_Ki-Py /A1 . Ky
T (8)

so that the moment of inertia of the model could then be determined. The
quantity K; 1is the spring constant of the support system obtained by a
static calibration.
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The variation of pitching-moment coefficient with angle of attack
c was also obtained from the oscillation records since the frequency

is a function of the sum of the spring constant and the aerodynamic
restoring moment. The total restoring moment per wnit angle of attack
is written as

Ko = KQ+K1

where

B aerodynamic restoring moment for unit angle of attack

Ky calibrated static spring constant

Then the aerodynamic restoring moment is —(K>—K; )a, which when reduced
to coefficient form is

dCp  —2(K>XK,)
da  PVPST (9)

Cmg, =

The quantity Ko was obtained by measuring the frequency of oscillation
of the model from the wind—on records and use of equation (5).

Precision of Data

As noted previously, reduction of an oscillation—decay curve to
coefficient form involves the measurement of the exponents of the wind—
on and wind—off envelope curves, the model moment of inertia, and the
density and velocity of the air stream. The accuracy with which these
quantities can be determined may be considered to be a function of those
factors involved in their determination. In the following analysis of
the precision, the results apply to the data obtained at subsonic speeds
as well as at supersonic speeds.

The uncertainty in determining the exponent of a decay curve was
taken to be the standard deviation resulting from repeated measurements
for the exponent of a single record. The same uncertainty, found to be
+0,008 per second, existed for both wind—on and wind—off records.

Uncertainties in the density and velocity of the air stream were
determined from the least readings of the instruments measuring the tun—
nel stagnation temperature and pressure. These were +p0% F for the stag—
nation temperature gage and *¥0.2 centimeter for the mercury manometer
measuring stagnation pressure, which led to uncertainties of £0.01 per—
cent and 0.9 percent for the density and velocity, respectively.
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The uncertainty in the wvalue for the moment of inertia of the model
was primarily dependent upon the accuracy with which the wind—off fre—
quency of oscillation could be determined. Repeated measurements of the
frequency of oscillation of a single wind—off record gave a standard
deviation of +0.015 cycle per second. This uncertainty, together with
an uncertainty of 14 inch—pounds per radian in the spring constant,
gave a total uncertainty in the moment of inertia of the model of *1.5
percent.

The total uncertainty in the damping coefficient (Cm& + Cp_) was

then taken to be the square root of the sum of the squares of the afore—
mentioned uncertainties, this computation resulting in a value of *£0.02.

There remains the necessity of discussing those factors which,
either systematically or erratically, might have influenced the damping
of the model in such a manner as to mask the trends of the damping coef-—
ficients or to induce self—excited oscillationms.

Random errors, exhibited by the scatter in the data, were due pri—
marily to indeterminate changes in the friction damping of the spring
support system. When it 1s considered that friction forces account for
25 percent of the damping moment, it is evident that only very small
changes in the character of the spring support system can produce the
scatter apparent in the data. Consequently, although the uncertainty
in a single damping coefficient is of the order of *0.02, the standard

deviation of a number of observations at a given Mach number is of the
order of *0.06.

A possible source of systematic error, which subsequently was deter—
mined to be negligible, was that due to the vibration of the model sup—
port sting. It was observed that, when the model was given its initial
deflection and released, the consequently large and sudden change in 1ift
caused a vibration of the sting support. This vibration, when coupled
with the oscillation of the model, could have produced a motion consist—
ing of two degrees of freedom instead of one, with ensuing complication
of the equations of motion and methods of analysis. To investigate this
possibility, a strain gage was attached to the sting support and connected
to a recording oscillograph, enabling a record to be made of the ampli-—
tude and frequency of vibration induced in the sting. Upon analysis of
the record, it was found that the maximum amplitude of vibration of the
sting was +0.06 inch, causing at most a change of +0.15° in the angle of
attack of the model. In addition to the above analysis, a 22—-inch sec—
tion of the sting was removed, thereby stiffening the sting considerably.
The results of tests made with the model mounted on the shortened sting
agreed, within the precision mentioned previously, with tests made with
the standard sting.
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RESULTS AND DISCUSSION

The results of tests of the damping—in—pitch characteristics of the
various model configurations are presented in figures 8 to 12. The damp—
ing coefficients are given as a function of Mach number, and also at
supersonic speeds as a function of the ratio of tan €/tan K, the ratio
of the tangent of the semivertex angle of the wing to the tangent of the
Mach angle. Values of tan €/tan p greater than one correspond to Mach
numbers for which the Mach lines are swept behind the wing leading edge
and less than one to Mach numbers for which the Mach lines are swept
ahead of the leading edge. The damping coefficients presented are, in
the terminology of reference 1, the sum of the damping due to pitching
velocity C and the damping due to the rate of change of angle of

attack with time Cm&-

Damping Coefficients

Triangular wing at supersonic speeds.— The results of tests of the

triangular wing conducted at supersonic speeds are shown in figure 8.
For these tests, the model was initially fitted with a conical shroud of
30° included angle in order to shield the spring support system.

Examination of the data for the wing and shroud in figure 8 shows
that the experimental points follow the trends predicted by the theore—
tical results. It is of importance to note that, for the axis of rota—
tion located at 45 percent of the mean aerodynamic chord, the theory
indicates positive damping coefficients for a range of Mach numbers less
than 1.17. In this speed range, oscillations of increasing amplitude are
to be expected for the single degree—of—freedom motion of this investi-—
gation. During the tests, these undamped or negatively damped oscilla—
tions were observed, as shown in figure 8 by the experimental points
plotted below the axis., The reversal from negative to positive damping
coefficients occurred at somewhat higher Mach numbers than indicated by
the theory.

During these tests, it was suggested that the interference between
the shroud and the wing, consisting of an alternate attachment and
detachment of the bow wave from the shroud, could have influenced the
damping of the model in such a manner as to give the negatively damped
oscillations which were observed. In order to investigate this point,
further tests were made with the shroud removed. The results, also
shown in figure 8, indicate a significant increase in negative damping
coefficients in the low Mach number range. However, removal of the
shroud exposed a sizable cut—out in the airfoil surface, which, according
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to theory, should give an increase in damping. Further, removal of the
shroud exposed the spring support to the air stream and may have resulted
in serious interference effects. Whether the increase in experimental
damping with shroud removed is attributable to the absence of the shroud
or to the effect of the cut—out and/or support interference is not known.

Tn view of the inconclusiveness of the results for the isolated wing
due to the possibility of interference between the wing and shroud, a
second series of tests was conducted. For these tests, a slender body
of efficient aerodynamic shape was fitted to the wing.

The results for the wing-body combination, shown in figures 9 and 10,
again follow the trends predicted by the theory, and again ranges of Mach
numbers were encountered over which the model experienced negatively
damped oscillations. The verification of the existence of these regions
of dynamic instability is considered to be the most significant result
of this investigation.

A comparison of the data of figures 9 and 10 for the sharp leading—
edge section and round leading—edge section (NACA 0006—63) airfoils shows
that the sharp leading—edge airfoil more closely followed the theoretical
trends and usually gave slightly higher damping. It is felt, however,
that the difference in damping was not sufficiently large, nor were the
data sufficiently precise to warrant a conclusion regarding the relative
merits of the damping qualities of the two airfoils.

Likewise, there appeared to be no consistent significant difference
between the magnitudes of the damping coefficients for the model oscil—
lating about 0° and 5° angles of attack.

A comparison of the results for fhe wing-body combination pivoted
at 45 percent M.A.C. (fig. 9) and at 35 percent M.A.C. (fig. 10) showed
that, as predicted by the theory, results obtained at 45 percent M.A.C.,
gave both higher damping at a given Mach number and a smaller range of
Mach numbers over which negatively damped oscillations were encountered.

Wing with cut—off tips at supersonic speeds.— Theoretical calcula—

tions based on the results of reference 9 have indicated that significant
improvement of the damping—in-pitch characteristics of a triangular wing
may be realized by employing swept—back trailing edges. Since this
improvement is accomplished by reducing the area of the triangular wing
aft of the center of gravity, the possibility was suggested that the
damping—in—pitch characteristics of the wings of this report could like—
wise be improved by removing the tips of the wings. The results of cal—
culations for such plan forms (see section on theory) also tended to
support this suggestion.
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In order to investigate this possibility, the wings of this report
were modified as shown in figure 3, removal of the wing tips reducing
the aspect ratio of the wings from 4.0 to 2.67. For this investigation,
the model was pivoted at 47.5 percent M.A.C., which is the same root—
chord position as that for the triangular wing pivoted at 35 percent
M.A.C.

Results of the tests made with the modified wings (shown in fig. 11)
can thus be compared with those of the triangular wings pivoted at
35 percent M.A.C. (shown in fig. 10). This comparison, which is useful
primarily for the purpose of verifying the theory, shows that, as pre—
dicted, a significant reduction of the region of Mach numbers over which
negatively damped oscillations were encountered was realized as the
result of removing the wing tips. It is recognized that a more ideal
comparison of the damping—in—pitch characteristics of the two wings
would be one in which the axes of the wings were located so as to give
equivalent static margins. Structural limitations of the model pre—
vented such an experimental comparison from being made; however, a theo—
retical comparison on this basis indicated that the wing with cut—off
tips possesses superior damping—in—pitch characteristics for all values
of static margin, although the improvement is small for static margins
less than 0.03.

Triangular wing at subsonic speeds.— In order to obtain a more
complete picture of the variation of the damping coefficients with Mach
number, the round leading—edge section (NACA 0006—63) triangular wing
with body attached was investigated in the Ames 12—foot pressure wind
tunnel.

In figure 12, the experimental variation of Cmq + Cmc.lL with sub—

sonic Mach numbers is presented for a pitching axis located at 35 per—
cent M.A.C., and for Reynolds numbers of 1.25 million and 0.55 million.
Examination of figure 12 shows that for both Reynolds numbers the damp—
ing coefficients became more negative as the Mach number was increased
until a limiting Mach number was reached at which they abruptly became
positive. The sudden appearance of this condition of instability 15
believed to be associated with the establishment of local regions of
supersonic flow over the surface of the airfoil.

Also shown in figure 12 are theoretical values of Cmq + Cmd

through the subsonic Mach number range calculated by two different
methods. The values calculated using low-aspect—ratio theory (refer-
ence 11) indicate no change with Mach number and are numerically much
larger than the experimental values. In reference 11, it is pointed
out that assumptions made in the derivation limit application of the
results to wings of aspect ratio less than 0.5. Thus, the application
of values of Cmq and Cm& obtained from low-aspect—ratio theory to
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wings of the aspect ratio of this report for subsonic speeds does not
appear to be justified. Values of Cmq + Cma obtained using a theory

for wings of moderate to high aspect ratio (see section on theory) are
shown in figure 12 to agree well with the test results for a Reynolds
number of 1.25 million. The abrupt reversal in sign of the damping coef—
ficients is not predicted by the theory, however, since the theory cannot
take into account the effect of mixed flow on the damping—in—pitch behav—
ior of the wing.

Aeroelastic Effects at Supersonic Speeds

Since the models of this investigation employed wings having swept—
back leading edges, and since the wing tips were relatively flexible, it
was thought possible that aeroelastic effects commonly observed on the
static 1lift and pitching-moment coefficients might have similarly influ—
enced the damping coefficients.

In order to investigate this possibility, the static pitching—
moment coefficient Cma was computed by the method outlined in the sec—

tion of this report entitled "Reduction of Data" for the triangular wing—
body combination pivoted at 45 percent M.A.C. Results of these computa—
tions for the round leading—edge section NACA 0006—63 wing are shown in
figure 13, and for the sharp leading—edge section wing in figure 1k4.

Also shown in figure 13 are unpublished results, obtained in the Ames 6—
by 6—foot supersonic wind tunnel, of force tests of a triangular wing—
body combination built of steel, having a wing swept back 45° and employ—
ing an NACA 000563 airfoil section. These results were obtained at the
same tunnel pressure as the results of the present report. Since it was
known that aeroelastic effects on the comparatively rigid force—test
model were negligible, it was expected that the effect of aeroelasticity
on the more flexible models of this report would show up as a difference
in the parameter CmOL for the two models. Comparison of the results

shown in figure 13 at a Mach number of 1.4, where the dynamic pressure
and thus any aeroelastic effects are greatest, shows good agreement
between the results of the two experiments. It was therefore concluded
that, in the present investigation, aeroelastic effects on the static
parameter CmCL and also the dynamic parameters Cmq and CméL were
negligible.

It is interesting to note that the results of the present investi—
gation shown in figures 13 and 14 indicate that the triangular wing—
body combination pivoted at 45 percent M.A.C., had become statically
unstable at a Mach number of 1.55 for the round leading—edge section
NACA 0006—63 wing and 1.46 for the sharp leading—edge section wing.
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The fact that this reversal in sign of the pitching-moment coefficient
was not observed in the results of the force tests of the wing-body com—
bination may be attributed to the differences in airfoil-section thick-—
ness and body shape between the two models. Both of these differences
have more pronounced effects on the 1lift and pitching moment as the Mach
number increases.

Reynolds Number Effects

In view of the relatively low Reynolds numbers at which the present
tests were conducted, it was deemed advisable to obtain some measure of
the effect of Reynolds number on the damping—in—pitch coefficients.
Since the maximum Reynolds number was limited to that used in the super—
sonic investigation (1.35 million) by strength limitations of the model,
the investigation of Reynolds number effect could only be made by test—
ing at a lower Reynolds number.

Accordingly, subsonic tests of the damping in pitch of the round
leading—edge section NACA 0006-63 triangular wing—body model were made
at constant Reynolds numbers of 1.25 million and 0.55 million. The
results (fig. 12) show a significant reduction in the damping coeffi—
cients with reduction in Reynolds number, the damping coefficients at
the lower Reynolds number being about half the values obtained at the
higher Reynolds number. However, the results of a check run made at
supersonic speeds at a Reynolds number of about 0.8 million, shown by
the flagged symbols in figure 10(b), did not exhibit this reduction in
the magnitudes of the damping coefficients.

The reason for there being a large effect of Reynolds number on the
damping coefficients at subsonic speeds and little effect at supersonic
speeds is not yet understood. Further tests are needed at Reynolds num—
bers more closely approximating those of full-scale flight in order to
clarify this point.

Application of the Results to the Prediction of the
Dynamic Behavior of Full-Scale Aircraft

The previous discussion has shown that for the single-degree—of—
freedom oscillations studied in the present experiments there exists a
range of Mach numbers over which dynamic instability occurs. These
results are summarized in figure 15 for the triangular wing-body combi-
nation which was investigated at both subsonic and supersonic speeds.
For the NACA 0006—63 wing model pivoted at 35 percent M.A.C., it is seen
that, for Mach numbers near 0.94% and 1.38, undamped or negatively damped
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oscillations occur. Although the evidence is not conclusive due to lim—
itations of the research equipment, the presumption is that negatively
damped oscillations will occur over the entire range of Mach numbers
between 0.94 and 1.38.

These results, however, are not directly applicable to the predic—
tion of like phenomena for these wings in flight, since in flight an
aircraft is free to respond to the impetus of the oscillating 1lift force.
The motion of the airfoil in flight, therefore, consists of a coupled
two—-degree—of—freedom motion wherein the airfoil experiences vertical
translation as well as a pitching motion. In the present experiments,
since the center of gravity of the model was fixed, only the pitching
motion was experienced by the model.

Some calculations (see appendix C) have been made for the coupled
two—-degree—of—freedom motion of a tailless aircraft with fixed controls
having the same leading—edge sweep as the models of this investigation
and with representative full-scale dimensions. Results of these calcu—
lations (figs. 16 and 17) indicate that, as expected, the time to damp
to one-half amplitude is decreased and the range of Mach numbers in which
dynamic instability occurs is reduced, though not eliminated, by consid—
eration of the coupled motion. These calculations have also indicated
that the terms containing the stability derivatives CLq and CLéL in

equation (h) of appendix C are small and may be discarded. This simpli—
fication permits the results of this investigation, combined with the
results of static wind—tunnel measurements of the lift—curve slope CL@’

to be used to qualitatively predict the dynamic pitching behavior of
similar full-scale aircraft.

A comparison of supersonic stability boundary curves for one and
two degrees of freedom is shown in figure 17. It is interesting to note
that altitude has little effect on the two-degree—of—freedom stability
boundary; the magnitude of the reduction of the region of instability is
dependent primarily on the inertia—mass ratio of the aircraft and the
lift—curve slope Cla'

While discussing the range of Mach numbers in which unstable oscil—
lations may be expected, it should also be pointed out that the theory
of reference 1 indicates that aspect ratio plays a significant roll in
determining the damping—in—pitch characteristics of triangular wings at
supersonic speeds. According to the theory, the region of supersonic
Mach numbers in which negatively damped oscillations may be expected dis—

appears entirely for all center—of—gravity positions when the aspect ratio

is reduced to about 2.5 or less, even for the single—degree—of—freedom
case, This, incidentally, may account for the fact that no dynamic
pitching instability was experienced with the tailless free—flight missile
employing a triangular wing swept back 60°, reported in reference 13.
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CONCLUSIONS

Results of an experimental investigation of the single degree—of—
freedom damping in pitch of two triangular wings having leading edges
swept back h5%'with and without a body, made at subsonic speeds in the
Ames 12—foot pressure wind tunnel and at supersonic speeds in the Ames
6— by 6—foot supersonic wind tunnel lead to the following conclusions:

1. Theoretical and experimental values of the damping—in—pitch
parameter C + Cmo.L were in qualitative agreement at both subsonic and

supersonic speeds, except for subsonic Mach numbers above 0.94. The
dynamic instability, which was observed at subsonic Mach numbers above
0.94, was mot predicted by the subsonic theory.

2. The prediction by the supersonic theory of the existence of
regions of Mach number and center—of—gravity positions in which nega—
tively damped oscillations may be expected was confirmed by the results
of experiments for two axis—of—rotation positions located at 35 percent
and 45 percent of the wing mean aerodynamic chord.

3. Considerable improvement in the damping—in—pitch characteristics
of a triangular wing can be realized by reducing the span of the wing.
Removal of the tips of the wings, which reduced the aspect ratio from
4.0 to 2.67, resulted in a significant reduction in the range of Mach
numbers over which negatively damped oscillations were encountered.

4, cCalculations made for the two-degree—of—freedom motion which
combines the pitching motion sttidied in the present investigation with
a vertical translatory motion shows that, while the additional damping
of the oscillation resulting from the translatory motion reduced the
range of Mach numbers over which dynamic unstability is experienced, the
unstable range was not eliminated.

Ames Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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APPENDIX A
EVATLUATION OF THE STABILITY DERIVATIVES

Cmq AND Cm& FOR SUBSONIC SPEEDS

EVALUATION OF C
Iy

In the following derivation for the parameter Cp , the moments

about the pitching axis of a thin flat wing in steady pitching flight
are assumed to be the same as the moments about an equivalent thin wing
in straight flight which has been cambered and twisted to the curvature
of the pitching path. The charts and tables in references 6 and 7 can
then be used to determine all the necessary characteristics of such a
wing except the pitching moment at zero 1lift due to pitching caused by
the effective camber of the wing. This last moment can be approximately
evaluated by two—dimensional theory.

The stability derivative Cmq for a pitching axis at a distance

Axc.g. ahead of the aerodynamic center is (reference 14)

_ AXc.g. AXc.g. >2
cmq = cmqo - Can.c. —=8= — 201, (-:c_—-— (A1)

C

where Cmq is the pitching—-moment coefficient due to pitching when the
o
1ift due to pitching is zero, and Can is the rate of change of 1lift
ack

coefficient with the pitching parameter QE/EV for pitching about the
aerodynamic center.

For a wing in pitching flight, the path of the wing has a radius of
curvature of V/q. The curved flight introduces an angle—of-attack vari-—
ation along the chord. The resulting moments have been approximately
evaluated by assuming a wing in straight flight with a camber and twist
such that the angle—of-attack distribution along the chord is the same as
that existing on the flat wing in curved flight.

Consider first the pitching moment due to the equivalent camber of
the wing when the 1ift due to pitching is zero. The pitching-moment coef—
fiocient at zero 1lift for a two-dimensional wing section is (reference 15)

= 7
Cmo_—EB (A2)
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where B 1s defined geometrically also in reference 15.‘ In terms of the
triangular wing under consideration

qc
2

o~

(a3)

oW

Il
N |-
3

where ¢; 1is the local chord. The pitching-moment coefficient due to

camber at zero 1lift for the entire wing can be approximately-obtained by
integrating the section pitching—moment coefficient

b/2
Cm, = é% J/\ c1 Cmy c1 dy (Ak)
)
o 2 b/= 5 1:964 = ‘3 on gc
g a-3-0r A i F - <

o

The contribution to Cmq caused by the effective camber becomes, for
the triangular wing,

ol
(0. ) 4o el erDi e R (A6)
" T 3(evey) 32
This result should indicate slightly more negative values of (Cmq)
@

than actually exist because end effects have not been considered, but
there should be considerably less error in (Cmq)c than would occur

in the 1ift or pitching—moment coefficient due to angle of attack because
at zero 1lift there are no induced effects of the wake.

The total spanwise twist of the triangular wing due to the pitching
motion measured at the three—quarter chord point is

Gy, = e = ol S I (A7)
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\

The contribution to Cmq caused by the effective spanwise twist of the
triangular wing due to the pitching motion becomes then

~ acmb ~ 3 Cmb
(Cmq)b = a—(ch/ej'v'j' = — E — (A8)
Cmy,

where = can be obtained from reference 7. Thus the pitching-moment

coefficient due to pitching at zero 1ift due to pitching becomes, for the
triangular wing,

C
. S
Cmqo (Cmq)c + (Cmq)b 3> L€ (A9)

The 1lift coefficient due to the pitching motion for rotation about
the aerodynamic center is equal to the rate of change of 1lift coefficient
with angle of attack multiplied by the difference between the angle of
attack due to the pitching motion and the angle of attack for which the
1ift due to pitching is zero (ay) .

o

C = C1., & A10
La.c. La ( )

For convenience in using reference T, the three—quarter—root—chord point
was chosen as the reference point to determine Ax. The effective angle

of attack of this point for pitching about x, . is
o (2 _ Fa.c. \ gqc
8 CH 2v
where X, . is obtained from reference 6. Thus,
ac
Ao = 2 i_xa.c.> = e
<8 =) av o
qc > Xa.c 3 (ar)g }
=5 == | & (| £ =S80 = A1l
2V[ 8 E> he =

where (aT)O/e can be obtained from reference 7. Inserting this value
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into equation (A10) and taking the derivative with respect to qc/2V
gives

o, # 2w, [o(Be )] 8]

From equation (Al) then, the stability derivative Cmq for the
triangular wing becomes

AT (ar) AxX 2
__ox _ 3 Smp &g o _5__xa..c.> 3 oj_ < c.g.>
cm‘l B e c CI“{2<8 . e *l c

(A13)
where all angles in the above equation are expressed in radians. (Note
that Cmb/e and Cr, from references 6 and 7 must be converted to radi—
ans before inserting in equation (A13).)

The effects of compressibility can be approximately considered by
calculating Cmq in incompressible flow for a triangular wing, the aspect
ratio of which has been reduced by the compressibility factor 1-M2

and multiplying the value of Cmq obtained by —fé:::.

1M

EVALUATION OF Cmd

The stability derivative C’m6L can be approximately evaluated from

operational expressions for the 1lift on a finite wing, the angle of attack
of which varies with the distance traveled. Using the nomenclature of
reference 8, a sinusoidal variation of angle of attack is written as

@ = aeins (a1k)
where

A amplitude of the oscillation

s distance traveled in half mean aerodynamic chord lengths

n 2% times the number of cycles per half mean aerodynamic chord length
of travel
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The 1ift coefficient resulting from this angle—of-attack variation is

ns

cL(s) = Op, (D) Ae’ (A15)

where Eil (D) 1is the operational form of the indicial 1ift coefficient,

the response of the wing to a sudden unit change of angle of attack.
Solutions have been evaluated in reference 8 as

CLn(s) = Eil(in) Aeins (A16)
o1, (s) = 2n [F(n) + 1G(n)] AelDS (A17)

where values of F(n) and G(n) have been determined for elliptic wings
of aspect ratios 3 and 6. In addition, as pointed out in reference 85
the center of pressure of the unsteady lift for a wing of infinite aspect
ratio remains on the quarter chord throughout the motion.

It is assumed that the unsteady 1ift on the triangular wing of this
report would be equal to that for an elliptic wing of the same aspect
ratio. Also, from the results of the infinite aspect ratio calculation,
it is assumed that the center of pressure for unsteady lift is the same
as for steady lift. The moment about the pitching axls of the wing due
to a sinusoidal change of angle of attack can then be expressed as

M = — 26V Axg g Cp (s) (A18)

This same moment can also be expressed in differential form as a moment
due to o and a moment due to &

_ OM ¢ oM
M==a+ =0 Nl
Fole da (@13)
Thus,

(OM/o&) & + (M/da) a = — ;QL—pVZS £%g. .01, (5)
Since

gins _ eiwt (A20)
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on making this substitution,
OM 3., pol®0t | OM polt _ _ LyBg iz ox [F(n) + iG(n)] Ae™®®  (a21)
Ja da 2 ch g

iwt

Separating the imaginary terms from the real terms and canceling Ae

c e i
o £ = — 5pvzs Ax, o i2% G(n) (a22)

In reference 16, the function 2x G(n) is given as

ok Gl = — 0y —adg il —-12:—2‘% (A23)
oy | 6 A6rm

where C;, Co, r1, and ro are constants which depend on aspect ratio.
Interpolating between values of the constants for the examples of aspect
ratios 3 and 6 in reference 16, the values for an aspect ratio of L
become approximately

Ci

- 1.50

- 0.36

r

1'2=Cz=0

and
s OM/d& _ e, g, <2_w_7_ (1.5)(0.36) n (a2k)
o ipVSEQ c we {0.36)1" +'0~
But since
n = (l_)_CT_ < < 0.36 (A25)
2V

the value of C_. for the range of frequencies of interest in this dis—

ma

cussion becomes simply

R (A26)
c
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for a wing of aspect ratio 4. Due to the many approximations involved

in this derivation, a high degree of refinement in computing the effects
of compressibility is not justified. The wvalues of Cmd at the higher

subsonic Mach numbers were obtained by multiplying equation (A26) by
i3

1-M2
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APPENDIX B

DERIVATION OF THE DAMPING IN PITCH OF A SLENDER BODY

In the development given below, the method used by Ribner in refer—
ence 11 to obtain the stability derivatives of low-aspect—ratio triangu—
lar wings is followed to obtain the damping—in—pitch derivatives of a
slender body of revolution.

Consider the body moving with velocity V and angle of attack a,
as shown in the sketch below:

W

r\\ \\\\\\\\ (b) Flow pattern at section
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The linearized potential equation for unsteady flow is written as

2 2 2 2 2
p29°% 079 979 ,2V9oTp , 1979 _, (B1)
dx2 dy2 0dzZ a- oxdt & ot®

where the coordinate system is moving in the negative =x direction with
the velocity V. If the development is limited in application to a slen—
der body performing slow oscillations, 929/0x2, 329/dt2, and 03%p/dxdt
may be considered to be negligible. Equation (B1) thus reduces to

S (B2)

Physically, equation (B2) implies that the flow at any transverse cross
section of the body is similar to a two—dimensional flow. The flow at
any section may thus be expressed as the potential flow for a circular
lamina moving downward in its own plane with a velocity oV (see sketch,
page 29). For this case, the potential is equivalent to that of a doub—
let with its axis parallel to the z axis (reference 10) so that

2
¢ = 5= (B3)
y +z

where
a body radius at a section a distance =x from the nose
w vertical velocity of the section

It can be shown that equation (B3) is a solution of equation (B2). The
local loading is

_ X,y
Ap Ep<at+vaX (BY4)

The pitching-moment coefficient due to the rate of change of angle of

attack with time C,.. arises from the term 2p él-)-; the term 2p éﬂ
Ty ot dx

yields the pitching-moment coefficient due to steady pitching Cmq.
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EVALUATION OF C..
ms,

As mentioned previously, for an accelerated translatory motion, the
contribution to the local loading is given by the term

pp=20 2 =2p R & (B5)
ot oa
From equation (B3), since w = aV,
oQ _ Va2 k2
da 372+z2

On the surface of the body

Therefore,

Ap = 2pVaz = 2pVa N a2—y2 (B6)

The pitching moment of the local loading about an axis a distance xg
from the nose may be written,

a
—f (X—Xo) Apdy

-8

¥e
(B7)

Vo (x—=xg) na®

The total pitching moment due to & may then be found by the integra—
tion of equation (B7) over the body length

1
M=— pvaf 1a® (x-x,) dx (B8)

o]
1 ~1

The term / na®dx gives the body volume, while / na2xdx expresses
o o
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the moment of the body volume about the nose. If the volume is written
as Bpl, where Bp 1is the mean body cross—sectional area, the pitching
moment can be written as

M = — pV& Byl — Bylx,) = — pVéBpl (xT—x,) (B9)

where X 1is the distance of the centroid of the body volume from the
nose. Then, referring the pitching moment to the wing dimensions, the
moment in coefficient form is

B
Cp = — 8% I (T x B1O
m v So ( o) ( )
The stability derivative is formed by the derivative of Cp with respect
to &g/2v. It is
Ty U SR
Chme = — By

. (==x,)
e §c2 2

(B11)

EVALUATION OF C
mg

For an angular pitching velocity q about an axis located at a dis—
tance xo from the nose, the vertical velocity of a station on the body
located at x 1is

v = q(x—=xg) (B12)
Then

2 VA
= e Bl
P a®q(x—xo) §§:;§ (B13)
From (B4), the local loading term is
AD = 2pV . (B1k)
ox

Performing the indicated differentiation, there results for the local
loading on the surface of the body

AD = 1+qu <x—:0> d

o

z + 2qpVz (B15)
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The pitching moment of the local loading is again

a
Me=-2 [ e (xxg) ay
o

1l

a 2 a
— 8qpV f (i_f._O)_ % ,/az—yz dy — LqpV f (x—xo) e y=td g

a
o] @]

2ngpV (x—xo)2 ol qpVra® (x—x,) (B16)
dx
The total pitching moment due to q is

1 1 1
M= f Mxdx = — qpV f 21a, gi‘— (x—xo)2 Az = quf na® (x—x,) dx (B17)
o o} o

The quantity 2mna g% expresses the variation of the cross—sectional

area of the body with x, or is dB/dx Since the body cross—sectional
area is zero at x = 0, and is equal to the area of the body base at
x = 1, the first integral in equation (B17) reduces to

1

— QpVBy, (Z—xo)2 + 2pqV f na® (z—=x,) dx
o

The pitching moment may then be written

M = — gpVBy (Z—xo)2 + gpVBpl (X—=xg) (B18)

Reducing to coefficient form in terms of the wing dimensions,

2qgB - 2q1 s
O = = q—E (L) 4 _lim (o) (B19)
Ve VST
oCnm

and forming the stability derivative, —m —j,
d(qc/2v)
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i 2 W 1 _
On, * - e

The total damping in pitch of the body is the sum of Cmq and Cm&.'
It thus appears upon adding equations (B20) and (B1l) that

4B, =
Cmq =+ Cmd' = == S—C_E (l—Xo) (le)
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APPENDIX C
THE DAMPING OF THE SHORT—PERIOD PITCHING OSCILIATIONS OF A

WING HAVING TWO DEGREES OF FREEDOM

In the following analysis, it is assumed that changes in the for—
ward speed of the aircraft are negligible, The assumption effectively
limits the development to one describing the character of the short—
period pitching oscillations of the aircraft.

Consider the case of a triangular wing aircraft in steady flight.
If the aircraft is displaced from its state of equilibrium, the result—
ing equations of longitudinal motion (in wind-axis notation) are:

)

(a 1V28<C a+@c.+£c = mv &
) 5P Iy "oy Tk Ly

% 2y at
(Cc1)
- — 2
(b) :—L-pV‘gSE:<C a+ %o, +3C ¢ >=Id9
2 To, ov M oy Mg at2 |

From the sketch above, 6 =a + 7, so that q = d6 - do . dy gpng
dg _ d%6 gew-d% - dt

dt a2’
Making the above substitutions and converting to operatiomal notation,
(a) B o) 5o | asfies 2r) q =0

L\ 2V “Ig, o ov g

(c2)
(b) <-2%CmdD+Cma>cn+<§C§Cmq—kD> q=0
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where T = m/pVS, k = 2I/pV3SE, D = d/dt.

Solving the above equations simultaneously gives

{Dz[_k S_VCM+2T>J+D[<§—V>2(C% Crg — Cmg Ory ) *
%(Cmq+cmd)_kclu:l +{'2%(Cchla"cmaCLq)+2"’Cma}}<10rq=0
(c3)

Equation (C3) is recognized as the characteristic equation of free vibra—
tions with viscous damping (reference 17), the solution of which shows
that the magnitude of the oscillations will build up or die out accord—
ing to whether the term V¥ below is positive or negative.

= (Cn < (Cmg, Cry — Cmg Cr,) — k C
¥ = ) g < (ch)

— CL& + 2f>

The stability boundary curve for the two-degree—of—freedom motion may
thus be obtained by setting the expression for ¥ 1in equation (CkL)
equal to zero, and replacing the stability derivative terms therein with

the general forms given below:
2 N
2 (8} ¢
7 Lo

cmqo—< c
Axc.g.>
mg, Cmao“<z— ‘re (c5)

Ax
C.8.
C + 2 — ¢
qu ( C > LC(‘

(d) Cmq

—~
o’
S
Q
1l

—
Q
~
Q
el
Q
Il
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where the subscripted terms are referred to the la.t'era.l axls passing
through the aerodynamic center of the triangular wing, and the value

i —-§§fhi> represents the distance of the center of gravity from the
Cc

aerodynamic center, measured positive forward of the aerodynamic center.

The stability derivatives which appear in the above equations may be

computed for supersonic speeds from results given in reference 1.
Performing the manipulations indicated above, there again results

Axc g
a quadratic equation for —:—) of the form
: C
7 Ax 5
Q__E_C- ) SR L) 8 Yok B (C6)
c 2a. 2a, a

azp_s%CLa

where

b=_£___<cL +cL.)+ch Cese
pSc q, QL 2 o gL

__ D0 /o o 1t ek - e g 2l ¢
: e \mqur m%>+b’ \Cqu o i, Iu>+ AST?

The time to damp to one—half amplitude for the wing oscillating
about a given center—of-gravity position is obtained by computing V¥
for that position, and substituting in the expression

Ti/2 = —O—'$—9-3-
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Figure I.- Velocilies, forces, and moments relalive to
stabilily axes with origin at the center of gravity.
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Equation of fuselage :

Figure 3.— Sketch of model with fuselage attached, showing spanwise station at which

tips were removed.
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Figﬁra ).— The trianguler wing-boly combination mounted in the Ames 6—- by 6-foot supersonic wind tummnel.
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a1 AL Round leading edge section, NACA 0006—63‘- ‘ i
N 0./ second|||| Triangular wing-body combination ‘
i Axis of rotation at .35¢C \

M=170, @=0° - |
.P

Wm mﬂ v TR

1
1
X
m——
o

i \ angle of attack variation
MT.J M Trace of sting vibration \ mt ‘ ‘ ‘
o L |

Time, seconds

Figure 7 - Reproduction of a typical oscillograph record and its semilogarithmic reduction.

920GV Wd VOVN

6



50

Cm,

NACA RM A50J26

Experiment: _
—--Sharp leading-edge section, shroud on

-—-NACA 0006-63, shroud on Z
—-O-Sharp leading-eage section, shroud aff/
—A-NACA 0006-63, shroud off

Theory :

o
N

Fo%i :
' /9 / .
/ /
é///
—r) /// 1//
l-l/ //
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T
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r
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I 1% /3 /4 15 T 4
1 : Mach number, M | ,
2 4 6 8 7] 12 /.38
Ton ¢/7on u
(a)a=0°

Figure 8.~ Experimental damping in pitch coefficients for

the ftriangular wing with shroud on and off at @ =0°
and 5° and axis of rotation af 0.45¢5.
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Experiment : _
~--a-Sharp leading-edge section, shroud on /
———-NACA 0006-63, shroud on \

—-o Sharp leading-edge section, shroud off
—-A—NACA 0006-63, shroud off
. 7y J
0¥ Theory : Axis at 0.45¢
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/ 0% " #h 25
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|
d )
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5 : | Mach number, M 1 |
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Tan E/ra” Y7
(b)a=5°

Figure 8. - Concluded .
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Experiment : _
—-O-Sharp leading-edge section

-&-NACA 0006-63

Theory : —— /C>éf:>\\
Axis at 0.45¢ |

|

=&
-10 et
o
D
-8 — - @ A /// /
. J -
7 =
/ -
=% fovd A
Cmq*Cms _____{
-4 /

Theory, wing alone
Theory, wing-body
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/
'2/.0 11/ 12 13 /4 15 /6 17
Mach number, M
L | | ! ] | |
o2 4 6 .8 10 12 1.38
Tan ¢/7an u
(a) a =0°?

Figure 9. -Experimental damping in pitch coefficients for the
triangular wing-body combination at @ = 0°and 5° and
axis of rotation at 0.45¢.
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Experiment : _ )
--0-Sharp leading edge section

-A&-NACA 0006-63
Theory: ——

Axis at 0.45¢ />4

2
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Figure 9.-Concluded .
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Experiment : )
—po—Sﬁarp leading-edge section /‘\
-&-NACA 0006-63 i
ey e Axis at 0.355/>4T' N
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¢ 7
- 4 ] 5
Theory, wing-body g/ #
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2 Theory, wing alone ;74 g
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/
/
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e
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Figure 10.- Experimental damping-in-pitch coefficients for the
triangular-wing-body combination at @ =0° and 5° and
axis of rotation at 0.35¢.
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Experiment : 3 '
—-0-Sharp leading-edge section, R=13x/10°
--~Sharp leading-edge section, R=08x/0° l
-4&-NACA 0006-63, R=1.3x/10° 4 }41_‘.
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Figure 10.- Concluded .
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Experiment : ;
--0-Sharp leading-edge section
--5&-NACA 0006-63 |
Theory Axis at 0.475¢ ﬁ%ll
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Figure 11.- Experimental damping-in-pitch coefficients for the
triangular wing with cut-off tips -body combination at

a=0° and 5° and axis of rotation at 0.475¢.
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Figure 11.- Concluded .
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a=0°
Experiment :
-& R=125x10° s
__O_ R=055110‘ AXis a’ 0350
Theory :  ——
e
/ 3;\ |
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= 5 \
Low aspect ratio
theory, NACA TN 1423,
wing alone l
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Figure [2.— Experimental damping-in-pitch coefficients at subsonic
speeds for the NACA 0006-63 triangulor-wing-body combination
at a=0° and axis of rofation at 0.35¢.
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Figure 13.- Experimental pitching-moment coefficients for the round- leading.

edge - section friangular- wing-body combination at a =0° and 5° and
axis of rotation at 0.45¢.
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Figure 14.— Experimental pitching-moment coefficients for the sharp leading-edge section
triangular-wing-body combination at a=0°and 5°and axis of rotation al 0.45¢.
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Figure 15.— Experimental damping-in-pifch coefficients a# subsonic aond supersonic speeds for

the NACA 0006-63 section triangular-wing-body combination at a=0°and axis of
rofation at 0.35¢.
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C.G at 0.35¢ 450 | o

¢ 26.1 ft
}
Weight - 15,200 Ib

Moment of
6 Inertia-18,600 slug- 1% _

Area - 682 sq ft

L '

! degree of 3
freedom, sea level | |
2 degrees of
freedom, 60,000
2
/ 2 degrus of freedom,

40, 000

Time to damp ro one-half amplitude, seconds
W

2 degrees of freedom,
sea Icn

o .
1.0 e/ 1.4

Mach number, M

Figure 16.— Comparison of the theoretical time for a short-period
pitching oscillation fo damp fo one-half amplitude at various
altitudes for one and two degrees of freedom for a 45°
riangulor-wing aircraft with center of gravity at 0.35¢. -
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Moment of inertia 18,600 slug-ft?

Area 682 sq ft
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Figure [7.— Comparison of theoretical short-period pifching
stability boundaries at various altitudes for one and two
degrees of freedom for a 45 ° triangular-wing aircraf?.
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