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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

EXPERIMENTAL DAMPING IN PITCH OF 450 TRIANGULAR WINGS 

By Murray Tobak, David E. Reese, Jr., 
and Benjamin H. Beam 

SUMMARY 

The results of an experimental wind-tunnel investigation of the 
damping in pitch of two triangular wings having leading edges swept back 
450 are presented. The wings differed only in airfoil section, one wing 
having a sharp leading-edge biconvex section, the other a round leading­
edge section, NACA 0006-63. The investigation, which was conducted over 
a Mach number range of 1.15 to 1.70, consisted of tests made of the iso­
lated wings and of the wings in combination with a slender body. The 
results of a similar investigation for one of the wing-body compinations, 
made over a Mach number range of 0.23 to 0.94, are also reported herein. 

The results, obtained by a single-degree-of-freedom oscillation tech­
nique, were in qualitative agreement with the results of theoretical com­
putati ons for both subsonic and supersonic speeds. The prediction by the 
supersonic theory of the existence of ranges of Mach number and center­
of-gravity positions over which dynamic instability may be expected was 
confirmed by the experimental results. 

A significant reduction of the range of Mach numbers over which neg­
atively damped oscillations were encountered was obtained by removing the 
tips of the wings . 

Application of the theory to a study of the coupled two-degrees-of­
freedom short-period pitching motion of a tailless triangular-wing aircraft 
at supersonic speeds is discussed. 

INTRODUCTION 

In an effort to surmount the problems which arise with flight at 
transonic or supersonic speeds, many unconventional wing plan forms have 
been proposed. One of these, the delta or triangular wing, bas shown 



2 NACA RM A 50J26 

considerable promise and therefore bas been the subject of extensi~e 
theoretical and experimental investigations. One of these theoretical 
investigations (reference 1) bas shown that, over certain Mach number 
ranges and for certain center-of-gravity positions, dynamic instability 
in the form of negatively damped oscillations of the short-period pitch­
ing motion is to be expected. A later paper (reference 2) presented a 
similar theoretical result. 

Since the theory is based on linearized equations for the flow of 
an inviscid fluid, it is possible that second-order thickness and viscous 
effects may significantly alter the results. Further, the theoretical 
treatments are for quasi-£tationary flow (reference 2), that is, for 
relatively slow oscillations. 

In view of these limitations of the theory, an investigation has 
been undertaken in the Ames 6- by 6-foot supersonic wind tunnel for the 
purpose of determining the accuracy of the theory in predicting the 
dynamic behavior of wings and wing-body combinations in flight. The pres­
ent report is devoted to an experimental investigation of the damping of 
single-degree-of-freedom pitching oscillations of triangular wings and 
wing-body combinations about a lateral axis lying within the wings. The 
report includes the results of a similar limited investigation made at 
subsonic speeds in the Ames 12-foot pressure tunnel employing one of the 
models used in the investigation at supersonic speeds. 
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moment of inertia, slug-feet squared 

restoring moment per unit angular deflection, foot-pounds per 
radian 

Mach number ( V ) 
speed of sound 
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damping moment per time rate of change of angle of attack, 
foot-pound-seconds 

Reynolds number, based on wing mean aerodynamic chord 

wing area, including portion enclosed by body, square feet 

flight speed, feet per second 

wing span, feet 

wing root chord, feet 

wing mean aerodynamic chord [ C = ~ [b/" (local chord)" dy J, 
feet 

base of natural logarithms 

frequency of oscillation, cycles per second 

angular velocity due to pitching, radians per second 

time, seconds 

chordwise distance of the aerodynamic center behind the lead­
ing edge of t he mean aerodynamic chord 

chordwise distance of the center of gravity behind the leadi~ 
edge of the mean aerodynamic chord. 

:xa. c. - xc. g. 

spanwise coordinate, measured from line of symmetry of wing, 
feet 

angle of attack of wing center line, degrees 

semivertex angle of wing plan form, degrees 

Mach angle (sin-l 11M), degrees 

mass density of air, slugs per cubic foot 

angular frequency of oscillation (2rrf), radians per second 
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When ~, q, and ~ are used as subscripts, a nondimensional derivative is 
indicated and this derivative is evaluated as the independent variable 
(~, ~, q) approaches zero . For example: 

CIIla, (~~m) 
~->O 

Cmq == [ OCm ] 
o (qc/2V) 

q-;. 0 

Cma, 

A dot above a symbol denotes a derivative with respect to time. Angles, 
forces, and moments are referred to the center of gravity of the wing and 
are positive as indicated in figure 1. 

In addition to the preceding notation, which is used in the body of 
the report, the following notation is used in the appendices: 

Appendix A 

operational form of indicial lift coefficient 

rate of change of lift coefficient with the parameter qC/2V 
for pitching about the wing aerodynamic center 

CIDt pitching-moment coefficient due to effective twist 

Cm pitching-moment coefficient due to effective camber 
c 

Cmq pitching-moment coefficient due to pitching when the lift due 
o to pitching is zero 

F(n),G(n) indicial lift constants evaluated for elliptic wings 

i 

n 

local chord, spanwise distance y from . root chord 

rue 
2V 
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distance traveled in balf mean aerodynamic chord lengths 

(s = tk) 
angle of attack of the three-quarter-chord point of the root 

section mean line when the lift due to pitching is zero 

camber function 2 X (maximum height of camber line) 
chord 

total spanwise twist, measured at the three-quarter- chord line, 
positive when root section is at greater angle of attack than 
tip section 

Appendix B 

body base cross-sectional area 

body mean cross-sectional area 

local body radius 

local speed of sound 

body length 

vertical velocity of body 
II 

vol1lllle from nose (x = 0 distance of centroid of body 

distance of axis of rotation of body from nose 

rectangular coordinates (sketch, page 29) 

local loading on surface of body 

velocity potential 

A... 
dt 

Appendix C 

time for an oscillation to decrease to one-half amplitude 
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inclination of aircraft flight path with respect to horizontal 
axis (sketch, page 35) 

attitude of aircraft with respect to horizontal axis 
(sketch, page 35) 

m 
pVS 

damping parameter 

APPARATUS 

Wind Tunnel 

The experimental investigation of the damping-in-pitch characteris­
tics of the triangular wing models at supersonic speeds was conducted in 
the Ames 6- by 6-foot supersonic wind tunnel. This tunnel is of the 
closed-return variable-pressure type with a Mach number range of 1.15 to 
2.0 . A complete description of the wind tunnel is given in reference 3. 

Subsonic tests of one of these models were performed in the Ames 
12-foot pressure wind tunnel. This tunnel, also of the closed-return 
variable-pressure type, is capable of attaining air-stream velocities 
close to the speed of sound. 

Model 

Two triangular wings with leading edges swept back 450 were used in 
the investigation. Their pertinent dimensions are shown in figure 2. 
The wings were identical except for airfoil section, one wing having a 
sharp leading-edge biconvex section (see reference 4), the other a round 
leading-edge section, NACA 0006-63. Both sections were symmetrical in 
streamwise planes and 6 percent thick at their 30-percent chord lines. 
The maximum size of the model was limited by tunnel-wall interference 
effects, this limitation dictating a wing span of 30 inches. Both models 
were constructed of wood over a thin steel spar. The reduction in moment 
of inertia obtained by the wood construction permitted the use of a spring 
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sUFFort system of reasonable stiffness. The wing tiFs were reinforced 
with striFs of brass to minimize the Fossibility of elastic deformation 
of the tiFs under load. 

During the first series of tests, the model was fitted with a coni­
cal shroud of 300 included angle in order to shield the sFring sUFFort 
system. The dimensions of the shroud and its location on the wing are 
shown in figure 2. 

For the second series of tests, a slender body of the shaFe derived 
by Haack in reference 5 was fitted to the model as shown in figure 3. 
The body of thin laminated wood construction extended 15 inches ahead of 
the wing apex and terminated at the wing trailing edge. Its maximum diam­
eter was 4 inches, giving a ratio of wing span to body diameter of 7.5. 
A photograph of the triangular-wing-body combination installed in the 
Ames 6- by 6-foot supersonic wind tunnel is shown in figure 4. 

For the third series of tests, the tiFs of the wings were cut off, 
reducing the model span from 30 inches to 24 inches, the wing aSFect 
ratio from 4 to 2.67, and the ratio of wing span to body diameter from 
7 . 5 to 6. 

Model Support System 

In this investigation, the damFing in pitch was obtained by measur­
ing the decay of a free oscillation of the model. The model was there­
fore mounted on spring supports proFortioned to give a frequency of about 
10 cycles per second. The equivalent reduced frequency is essentially 
the frequency of the short-period oscillations usually experienced in 
dynamic stability studies of full-scale aircraft and missiles. 

As shown in figure 5, the model was mounted in a flexure Fivot 
system consisting of two thin vertical pivots which restrained the model 
in vertical motion but offered little resistance to rotation and a long, 
flat, horizontal spring which restrained the model in rotation and hori­
zontal motion. The latter sFring was equiFFed with a strain gage so that 
a recording oscillograph could be used to produce a record of displace­
ment of the model as a function of time. Flexure pivots were used for the 
spring support system since with this method the only damping due to fric­
tion was that caused by the internal friction of the pivots themselves. 
This quantity remained essentially constant throughout the period of test. 

The model was given an initial displacement of 7° by means of a pawl 
which engaged the wing in the course of its arc, deflected the wing and 
swung past, permitting the model to oscillate freely. The pawl was oper­
ated through the linkage system shown in figure 5 by a pneumatically 
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actuated piston in the s ting support. A positive lock to restrain any 
violent oscillations was also provided. This 10ck7 not illustrated in 
figure 5 for reasons of clarity, was also operated by a pneumatic piston . 

THEORY 

For the single degree-of-freedom os cillations of this investigation 
the damping coefficients presented are, i n the terminology of reference 17 
the sum of the damping due to pitching velocity Cffiq and the damping due 

to the rate of change of angle of attack with time CffiQ. In this single 

test , these derivatives cannot be separ ated. 

Triangular Wing 

Supersonic theory.- The theory of reference 1 is applicable in the 
range of super s onic Mach numbers for which the Mach lines are swept ahead 
of the wing leading edge. For higher Mach numbers, where the Mach lines 
are swept behind the wing leading edge, the theory developed by Miles in 
reference 2 was used. For this case, in the notation of the present 
report, the damping in pitch about a n arbitrary pi t ching axis is 

It is interesting to note that Miles' results for the case wherein the 
Mach lines are swept ahead of the leading edge, developed by a different 
procedure, concur with the theoretical results of reference 1 for the 
sum of CIng and Cma, . 

Subsonic theory.- The stability derivative Cmq is defined as the 

pitching-moment coefficient due to steady pitching so that it is possible 
to calculate its ID9.gni tude by using the subterfuge of r eplacing the thin 
fla t wing in pitching flight with a thi n cambered and twisted wing in 
straight flight. The charts and tables of references 6 and 7 may then be 
used to determine the lift and pitching-moment characteristics of such a 
cambered and twisted wing. 

ApproxiID9.te values of CmQ were calculated from expressions for 

unsteady or indicial lift, developed in reference 8. The Prandtl-Glauert 
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rule for the effect of compressibility was applied to the values of Cmq 
and C~ calculated by the preceding methods. A detailed presentation 
of the method of obtaining Cmq and C~ at subsonic speeds is given 
in appendix A. 

Triangular Wing With Cut-Off Tips 

Since the experimental damping in pitch of the triangular wing with 
cut-off tips was not investigated at subsonic speeds, only the theoreti­
cal results for this wing at supersonic speeds with Mach lines swept 
ahead of the leading edges are presented. The theoretical values for 
Cmo and Cmu at supersonic speeds for this wing were calculated by 
in~egrating the appropriate local loadings over regions I and II of the 
wing shown in figure 6. The pressure-coefficient terms were obtained 
from table 1 of reference 9. The damping-in-pi tch contribution of 
region III in figure 6 was neglected, since it is known that regions 
influenced by the wing-tip Mach cone contribute very little to the total 
load. 

Body 

The contribution of the body to the damping in pitch was calculated 
using Munk's slender body theory (reference 10) in a manner similar to 
that used by Ribner in reference 11 to obtain the stability derivatives 
of low aspect-ratio triangular wings. The development is given in appen­
dix B. The result of the analysis concurs with that given by Miles in 
reference 12. 

Because of the large ratio of wing span to body diameter, the inter­
ference effects between the wing and body were thought to be negligible, 
so that only the damping contribution of the portion of the body ahead of 
the wing apex was considered. Also, since the theoretical expression for 
the damping of the body is essentially independent of Mach number, the 
results developed in appendix B were used for both subsonic and super­
sonic speeds. 

EXPERIMENT 

Scope of Tests 

Supersonic tests in the Ames 6- by 6-foot supersonic wind tunnel.­
Investigation of the damping-in-pitch characteristics of triangular wings 
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at supersonic speeds was conducted over a Mach number range of 1.15 to 
1 . 70 at a constant tunnel absolute pressure of 5 pounds per square inch. 
The Reynolds number ranged from 1.23 million to 1.35 million, based on 
the wing mean aerodynamic chord. 

The models were oscillated about nominal angles of attack of 00 and 
50, the angles being measured from the mean line of the sting support to 
the axis of the test section. 

The various model configurations, each of which was investigated 
employing the airfoil sections shown in figure 2, are indicated below: 

Medel 
configuration 

Wing alone 
Wing and shroud 
Wing and body 
Wing and body 
Wing with cut--off 

tips and body 

Range of 
moment of 
inertia 

(slug _ft2) 

0.0124 -D.0127 
.0216 -. 0232 
.0376 -. 0389 
.0311 -.0319 
.0310 -.0315 

Axis of 
rotation 

(%M.A.C.) 

45 
45 
45 
35 
47.5 

(equivalent to tri­
angular wing axis 
at 0.35 c) 

Range of 
Wlnd--on 

frequency 
(cps) 

10-13 
11-13 

6-10 
11-14 
10-13 

Subsonic tests in the Ames ~-foot pressure wind tunnel.- Subsonic 
tests of the round leading-edge section NACA 0006-63 triangular wing with 
body attached were performed ov~r a Mach number range of 0.23 to 0.94 at 
constant Reynolds numbers of 1.23 million and 0.55 million. For these 
tests, the model was pivoted at an axis of rotation located at 35 percent 
M.A.C. and was oscillated about a mean angle of attack of 00

• 

Reduction of Data 

The technique used in this experiment of pivoting the model about 
a lateral axis and allowing it to perform pitching oscillations about 
that axis enabled the aerodynamic damping coefficient to be determined 
f rom the record of the oscillation-decay curve, after correction had been 
made for the damping provided by the internal friction of the supporting 
springs. 
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The motion described previously may be expressed as a linear differ­
ential equation 

(1) 

Each of these quantities defines a moment: the first due to the angular 
acceleration of the model mass, the second due to aerodyntlmic and friction 
damping forces, and the third due to mechanical and aerodynamic restoring 
forces. 

The total damping P 2 is written as P2 PO+P l 

where 

Po aerodynamic damping 

P l tare damping due to the internal friction of the supporting springs 

Then the aerodynamic damping moment is -(P~Pl)a, which when reduced to 
coefficient form becomes 

-(P2 -P l )a, 

~~sc 
(2 ) 

Writing the moment coefficient in the form of the parameter used in 

dynamic stability work 
[ 

_ d_C=m_ ] g1 ves 
d (CLc!2V) 

Cmg + Cma, = 

Thus, it is seen that it is only necessary to evaluate P2 and Pl 
in order to obtain the damping derivative. 

If in equation (1) the conditions ~o and d--0 exist at time 
t=O, the equation describing the model angle of attack as a function of 
time may be written as 

(4) 

J 
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where ill is the angular frequency of oscillation, and is given by 

The envelope curve for equation (4) is 

-(P2 /2I)t 
0.. = o..oe 

where P 2 is a constant which may be determined as 

(6) 

where 0..0 and 0.. are ordinates of the envelope curve, a time interval 
6t apart . It was found, however, that due to some nonlinearity inherent 
in the spring support system P2 was not a constant but was dependent to 
a small degree on the amplitude of oscillation. It was evident from the 
results of wind-off tests, made with the wind tunnel evacuated to a low 
pressure, that the nonlinearity was of mechanical, not of aerodynamic 
nature. To minimize its effect, the same initial amplitude and the same 
amplitude range was used in the reduction of all records. It was then 
always possible to draw a reasonable straight line through the experimen­
tal points when the amplitudes of the envelope curve were plotted on semi­
logarithmic paper as a function of time. A typical oscillation record and 
plot of the envelope curve is shown in figure 7. 

The tare damping P1 was obtained in a like manner by oscillating 
the model with the wind off through a wind-tunnel pressure range of 15 to 
3 pounds per square inch absolute. The resulting curve of tare damping 
versus tunnel pressure was extrapolated to zero tunnel pressure to obtain 
the tare damping due to mechanical friction alone, the extrapolation elim­
inating the effect of air damping. It was usually found, however, that the 
difference in tare damping at zero and 3 pounds per square inch absolute 
was negligible. 

The wind-off records were also used to determine the frequency in the 
equation, 

I = (8) 

so that the moment of inertia of the model could then be determined. The 
quantity Kl is the spring constant of the support system obtained by a 
static calibration. 

. - - -------
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The variation of ~itchingrmoment coefficient with angle of attack 
C~ was also obtained from the oscillation records since the frequency 

is a function of th,e sum of the spring constant and the aerodynamic 
r estori ng moment. The total restoring moment per unit angle of attack 
is wri t t en a s 

where 

Ko aerodynamic restoring moment for unit angle of attack 

Kl calibrated static spring constant 

Then the aerodynamic restoring moment is -(K2-Kl)~' which when reduced 
to coefficient form is 

dCm -2 (K2 -K1 ) 

d~ pV2Sc 

The quantity K2 was obtained by measuring the frequency of oscillati on 
of the model from the wind-on records and use of equation (5). 

Precision of Data 

As noted previously, reduction of an oscillation-decay curve to 
coefficient form involves the measurement of the exponents of the wind­
on and wind-off envelope curves, the model moment of inertia, and the 
density and velocity of the air stream. The accuracy with which these 
quantities can be determined may be considered to be a function of those 
factors involved in their determination. In the following analysis of 
the precision, the results apply to the data obtained at subsonic speeds 
as well as at supersonic speeds. 

The uncertainty in determining the exponent of a decay curve was 
taken to be the standard deviation resulting from repeated measurements 
for the exponent of a single record. The same uncertainty, found to be 
±o.ooB per second, existed for both wind-on and wind-off records. 

Uncertainties in the density and velocity of the air stream were 
determined from the least readings of the instruments measuring the tun­
nel stagnation temperature and pressure. These were ±2° F for the stag­
nation temperature gage and ±O.2 centimeter for the mercury manometer 
measuring stagnation ~ressure, which led to uncertainties of ±O.Ol per­
cent and ±O.9 percent for the density and velocity, respectively. 
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The uncertainty in the value for the moment of inertia of the model 
was primarily dependent upon the accuracy with which the wind-off fre­
quency of oscillation could be determined. Repeated measurements of the 
frequency of oscillation of a single wind-off record gave a standard 
deviation of ±0.015 cycle per second. This uncertainty, together with 
an uncertainty of ±14 inch-pounds per radian in the spring constant, 
gave a total uncertainty in the moment of inertia of the model of ±1.5 
percent. 

The total uncertainty in the damping coefficient (C~ + Cmq ) 
then taken to be the square root of the sum of the squares of the 
mentioned uncertainties, this computation resulting in a value of 

;,ras 
afore­
±0.02. 

There remains the necessity of discussing those factors which, 
either systematically or erratically, might have influenced the damping 
of the model in such a manner as to mask the trends of the damping coef­
ficients or to induce self-excited oscillations. 

Random errors, .exhibi ted by the scatter in the data, were due pri­
marily to indeterminate changes in the friction damping of the spring 
support system. When it is considered that friction forces account for 
25 percent of the damping moment, it is evident that only very small 
changes in the character of the spring support system can produce the 
scatter apparent in the data. Consequently, although the uncertainty 
in a single damping coefficient is of the order of ±0.02, the standard 
deviation of a number of observations at a given Mach number is of the 
order of ±0.06. 

A possible source of systematic error, which subsequently ;,ras deter­
mined to be negligible, was that due to the vibration of the model sup­
port sting. It was observed that, when the model was given its initial 
deflection and released, the consequently large and sudden change in lift 
caused a vibration of the sting support. This vibration, when coupled 
with the oscillation of the model, could have produced a motion consist­
ing of two degrees of freedom instead of one, with ensuing complication 
of the equations of motion and methods of analysis. To investigate this 
possibility, a strain gage was attached to the sting support and connected 
to a recording oscillograph, enabling a record to be made of the ampli­
tude and frequency of vibration induced in the sting. Upon analysis of 
the record, it was found that the maximum amplitude of vibration of the 
sting was ±O. cx5 inch, causing at most a change of ±0.150 in the angle of 
attack of the model. In addition to the above analysis, a 22-inch sec­
tion of the sting was removed, thereby stiffening the sting considerably. 
The results of tests made with the model mounted on the shortened sting 
agreed, within the precision mentioned previously, with tests made with 
the standard sting. 
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RESULTS AND DISCUSSION 

The results of tests of the damping-in-pitch characteristics of the 
various model configurations are presented in figures 8 to 12. The damp­
ing coefficients are given as a function of Mach number, and also at 
supersonic speeds as a function of the ratio of tan E/tan ~, the ratio 
of the tangent of the semi vertex angle of the wing to the tangent of the 
Mach angle. Values of tan E/tan ~ greater than one correspond to M9.ch 
numbers for which the M9.ch lines are swept behind the wing leading edge 
and less than one to Mach numbers for which the M9.ch lines are swept 
ahead of the leading edge. The damping coefficients presented are, in 
the terminology of reference 1, the sum of the damping due to pitching 
velocity Cmq and the damping due to the rate of change of angle of 

attack with time C~. 

Damping Coefficients 

Triangular wing at supersonic speeds.- The results of tests of the 
triangular wing conducted at supersonic speeds are shown in figure 8. 
For these tests, the model was initially fitted with a conical shroud of 
300 included angle in order to shield the spring support system. 

Examination of the data for the wing and shroud in figure 8 shows 
that the experimental points follow the trends predicted by the theore­
tical results. It is of importance to note that, for the axis of rota­
tion located at 45 percent of the mean aerodynamic chord, the theory 
indicates positive damping coefficients for a range of Mach numbers less 
than 1.17. In this speed range, oscillations of increasing amplitude are 
to be expected for the single degree-of-freedam motion of this investi­
gation. During the tests, these undamped or negatively damped oscilla­
tions were observed, as shown in figure 8 by the experimental points 
plotted below the axis. The reversal fram negative to positive dampir~ 
coefficients occurred at somewhat higher Mach numbers than indicated by 
the theory. 

During these tests, it was suggested that the interference between 
the shroud and the wing, consisting of an alternate attachment and 
detachment of the bow wave from the shroud, could have influenced the 
damping of the model in such a manner as to give the negatively damped 
oscillations which were observed. In order to investigate this point, 
further tes ts were made with the shroud removed. The results, als 0 

shown in figure 8, indicate a significant increase in negative damping 
coefficients in the low Mach number range. However, removal of the 
shroud exposed a sizable cut-out in the airfoil surface, which, according 

- I 
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to theory, should give an increase in damping. Further, removal of the 
shroud exposed the spring support to the air stream and may have resulted 
in serious interference effects. Whether the increase in experimental 
damping with shroud removed is attributable to the absence of the shroud 
or to the effect of the cut-out and/or support interference is not known. 

In view of the inconclusiveness of the results for the isolated wing 
due to the possibility of interference between the wing and shroud, a 
second series of tests was conducted. For these tests, a slender body 
of efficient aerodynamic shape was fitted to the wing. 

The results for the wing-body combination, shown in figures 9 and 10, 
again follow the trends predicted by the theory, and again ranges of Mach 
numbers were encountered over which the model experienced negatively 
damped oscillations. The verification of the existence of these regions 
of dynamic instability is considered to be the most significant result 
of this investigation. 

A compariSon of the data of figures 9 and 10 for the sharp leading­
edge section and round leading-edge section (NACA 0006-63) airfoils shows 
that the sharp leading-edge airfoil more closely followed the theoretical 
trends and usually gave slightly higher damping. It is felt, however, 
that the difference in damping was not sufficiently large, nor were the 
data sufficiently precise to warrant a conclusion regarding the relative 
merits of the damping qualities of the two airfoils. 

Likewise, there appeared to be no consistent significant difference 
between the magnitudes of the damping coefficients for the model oscil­
lating about 00 and 50 angles of attack. 

A comparison of the results for the wing-body combination pivoted 
at 45 percent M.A.C. (fig. 9) and at 35 percent M.A.C. (fig. 10) showed 
that, as predicted by the theory, results obtained at 45 percent M.A.C., 
gave both higher damping at a given Mach number and a smaller range of 
Mach numbers over which negatively damped oscillations were encountered. 

Wing with cut-off tips at supersonic speeds .- Theoretical calcula­
tions based on the results of reference 9 have indicated that significant 
improvement of the damping-in-pitch characteristics of a triangular wing 
may be realized by employing swept-back trailing edges. Since this 
improvement is accomplished by reducing the area of the triangular wing 
aft of the center of gravity, the possibility was suggested that the 
damping-in-pitch characteristics of the wings of this report could like­
wise be improved by removing the tips of the wings. The results of cal­
culations for such plan forms (see section on theory) also tended to 
support this suggestion. 
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In order to investigate this possibility, the wings o~ this report 
were modi~ied as shown in ~igure 3, removal o~ the wing tips reducing 
the aspect ratio of the wings ~rom 4.0 to 2.67. For this investigation, 
the model was pivoted at 47.5 percent M.A.C., which is the same root­
chord position as that for the triangular wing pivoted at 35 percent 
M.A.. C. 

Results of the test$ made with the modified wings (shown in ~ig. 11) 
can thus be compared with those of the triangular wings pivoted at 
35 percent M.A.C. (shown in fig. 10). This comparison, which is use~ul 
primarily for the purpose o~ verifying the theory, shows that, as pre­
dicted, a signi~icant reduction of the region of Mach numbers over which 
negatively damped oscillations were encountered was realized as the 
result of removing the wing tips. It is recognized that a more ideal 
comparison of the damping-in- pitch characteristics of the two wings 
would be one in which the axes of the wings were located so as to give 
equivalent static margins. Structural limitations o~ the model pre­
vented such an experimental comparison from being made; however, a theo­
retical comparison on this basis indicated that the wing with cut-o~~ 
tips possesses superior damping-in-pitch characteristics for all values 
of static margin, although the improvement is small for static margins 
less than 0.03. 

Triangular wing at subsonic speeds.- In order to obtain a more 
complete picture of the variation of the damping coefficients with Mach 
number, the round leading-edge section (NACA 0006-63) triangular wing 
with body attached was investigated in the Ames 12-foot pressure wind 
tunnel. 

In figure 12, the experimental variation of Cmq + Cma, with sub­

sonic Mach numbers is presented for a pitching axis located at 35 per­
cent M.A.C., and for Reynolds numbers of 1.25 million and 0.55 million. 
Examination of figure 12 shows that for both Reynolds numbers the damp­
ing coefficients becmme more negative as the Mach number was increased 
until a limiting Mach number was reached at which they abruptly became 
positive. The sudden appearance of this condition o~ instability is 
believed to be associated with the establishment of local regions of 
supersonic flow over the surface of the airfoil. 

Also shown in figure 12 are theoretical values of Cmq + CIDQ 

through the subsonic Mach number range calculated by two different 
methods. The values calculated using low-aspect-ratio theory (refer­
ence 11) indicate no change with Mach number and are numerically much 
larger than the experimental values. In reference 11, it is pointed 
out that assumptions made in the derivation limit application of the 
results to wings of aspect ratio less than 0.5. Thus, the application 
of values of Cmq and C~ obtained from low-aspect-ratio theory to 
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wings of the aspect ratio of this report for subsonic speeds does not 
appear to be justified. Values of C~ + C~ obtained using a theory 

for wings of moderate to high aspect ratio (see section on theory) are 
shown in figure 12 to agree well with the test results for a Reynolds 
number of 1. 25 million. The abrupt reversal in sign of the damping coef­
ficients is not predicted by the theory, however, since the theory cannot 
take into account the effect of mixed flow on the damping-in-pitch bebav­
i or of the wing. 

Aeroelastic Effects at Supersonic Speeds 

Since the models of this investigation employed wings having swept­
back leading edges, and since the wing tips were relatively flexible, it 
was thought possible that aeroelastic effects commonly observed on the 
static lift and pitching-moment coefficients might have similarly influ­
enced the damping coefficients. 

In order to investigate this possibility, the static pitching­
moment coefficient C~ was computed by the method outlined in the sec-

tion of this report entitled "Reduction of Data" for the triangular wing­
body combination pivoted at 45 percent M.A.C. Results of these computa­
tions for the round leading-€dge section NACA ooo6~3 wing are shown in 
figure 13, and for the sharp leading-€dge section wing in figure 14. 
Also shown in figure 13 are unpublished results, obtained in the Ames 6-
by 6-foot supersonic wind tunnel, of force tests of a triangular wing­
body combination built of steel, having a wing swept back 450 and employ­
ing an NACA OOO~3 airfoil section. These results were obtained at t he 
same tunnel pressure as the results of the present report. Since it was 
known that aeroelastic effects on the comparatively rigid force-test 
model were negligible, it was expected that the effect of aeroelasticity 
on the more flexible models of this report would show up a s a difference 
in the parameter C~ for the two models. Comparison of the results 
s hown in figure 13 at a Mach number of 1 .4, where the dynamic pressure 
and thus any aeroelastic effects are greatest, shows good agreement 
between the results of the two experiments. It was therefore concluded 
that, in the present investigation, aeroelastic effects on the static 
parameter CIna, and also the dynamic parameters CIllq and Cma, were 
negligible. 

It is interesting to note that the results of the present investi­
gation shown in figures 13 and 14 indicate that the triangular wing­
body combination pivoted at 45 percent M.A.C., had become statically 
unstable at a Mach number of 1. 55 for the round leading-€dge section 
NACA OO06~3 wing and 1.46 for the sharp leading-€dge section wing. 
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The fact that this reversal in sign of the pitching-moment coefficient 
was not observed in the results of the force tests of the wing-body com­
bination may be attributed t o the differences in airfoil-£ection thick­
ness and body shape between the two models. Both of these differences 
have more pronounced effects on the lift and pitching moment as the Mach 
number increases. 

Reynolds Number Effects 

In view of the relatively low Reynolds numbers at which the present 
tests were conducted, it was deemed advisable to obtain some measure of 
the effect of Reynolds number on the damping-in-pitch coefficients. 
Since the maximum Reynolds number was limited to that used in the super­
sonic investigation (1. 35 million) by strength limitations of the model, 
the investigation of Reynolds number effect could only be made by test­
ing at a lower Reynolds number. 

Accordingly, subsonic tests of the damping in pitch of the round 
leading-edge section NAeA 0006-63 triangular wing-body model were made 
a t constant Reynold£ numbers of 1. 25 milli on and 0.55 million. The 
results (fig. 12) show a significant reduction in the damping coeffi­
cients with reduction in Reynolds number, the damping coefficients at 
the lower Reynold.s number being about half the values obtained at the 
higher Reynolds number. However, the results of a check run made at 
supersonic speeds at a Reynolds number of about 0.8 million, shawn by 
the flagged symbols in figure 10(b), did not exhibit this reduction in 
the magnitudes of the damping coefficients. 

The reason for there being a large effect of Reynolds number on the 
damping coefficients at subsonic speeds and little effect at supersonic 
speeds is not yet understood. Further tests are needed at Reynolds num­
bers more closely approximating those of full-scale flight in order to 
clarify this point. 

Application of the Results to the Prediction of the 
Dynamic Behavior of Full-Scale Aircraft 

The previous discussion has shown that for the single4iegree-of­
freedom oscillations studied in the present experiments there exists a 
range of Mach numbers over which dynamic instability occurs. These 
results are summarized in figure 15 for the triangular wing-body combi­
nation which was investigated at both subsonic and supersonic speeds. 
For the NACA 0006-63 wing model pivoted at 35 percent M.A.C., it is seen 
that, for Mach numbers near 0.94 and 1.38, undamped or negatively damped 

I 
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oscillations occur. Although the evidence is not conclusive due to lim­
itations of the research equipment, the presumption is that negatively 
damped oscillations will occur over the entire range of Mach numbers 
between 0.94 and 1.38. 

These results, however, are not directly applicable to the predic­
tion of like phenomena for these wings in flight, since in flight an 
aircraft is free to respond to the impetus of the oscillating lift force. 
The motion of the airfoil in flight, therefore, consists of a coupled 
two-degree-of-freedom motion wherein the airfoil experiences vertical 
translation as well as a pitching motion. In the present experiments, 
since the center of gravity of the model was fixed, only the pitching 
motion was experienced by the model. 

Some calculations (see appendix C) have been made for the coupled 
two-degree-of-freedom motion of a tailless aircraft with fixed controls 
having the same leading-edge sweep as the models of this investigation 
and with representative full-scale dimensions. Results of these calcu­
lations (figs. 16 and 17) indicate that, as expected, the time to damp 
to one-half amplitude is decreased and the range of Mach numbers in which 
dynamic instability occurs is reduced, though not eliminated, by consid­
eration of the coupled motion. These calculations have also indicated 
that the terms containing the stability derivatives CLq and Cr..u in 

equation (4) of appendix C are small and may be discarded. This simpli­
fication permits the results of this investigation, combined with the 
results of static wind-tunnel measurements of the lift-curve slope C~, 

to be used to qualitatively predict the dynamic pitching behavior of 
similar full-scale aircraft. 

A comparison of supersonic stability boundary curves for one and. 
two degrees of freedom is shown in figure 17. It is interesting to note 
that altitude has little effect on the two-degree-of-freedom stability 
boundary; the magnitude of the reduction of the region of instability is 
depend.ent primarily on the inertia-mass ratio of the aircraft and the 
lift-curve slope C~. 

While discussing the range of Mach numbers in which unstable oscil­
lations may be expected, it should also be pointed out that the theory 
of reference 1 indicates that aspect ratio plays a significant roll in 
d etermining the damping-in-pitch characteristics of triangular wings at 
s upersonic speeds. According to the theory, the region of supersonic 
Mach numbers in which negatively damped oscillations may be expected dis­
appears entirely for all center-of-gravity positions when the aspect ratio 
is reduced to about 2.5 or less, even for the single-degree-of-freedom 
case. ThiS, incidentally, may account for the fact that no dynamic 
pitching instability was experienced with the tailless free-flight missi le 
employing a triangular wing swept back 600 , reported in reference 13. 

J 
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CONCLUSIONS 

Results of an experimental investigation of the single degree-of­
freedom damping in pitch of two triangular wings having leading edges 
swept back 450

, with and without a body, made at subs oni c speeds in the 
Ames 12-foot pressure wind tunnel and at supersonic speeds in the Ames 
6- by 6-foot supersonic wind tunnel lead to the following conclusions: 

1. Theoretical and experimental values of the 
parameter Cmq + C~ wer e in qualitative agreement 
supersonic speeds, except for subsonic Mach numbers 
dynamic instability, whi ch was observed at subsonic 
0.94, was not predicted by the subsonic theory. 

damping-in-pitch 
at bath subsonic and 

above 0.94. The 
Mach numbers above 

2. The prediction by the supersonic theory of the existence of 
regions of Mach number and center-of-gravity positions in which nega­
tively damped oscillations may be expected was confirmed by the results 
of experiments for two axis-of-rotation positions located at 35 percent 
and 45 percent of the wing mean aerodynamic chord. 

3. Considerable improvement in the damping-in-pitch characteristics 
of a triangular wing can be realized by reducing the span of the wing. 
Removal of the tips of the wings, whi ch reduced the aspect ratio from 
4.0 to 2.67, resulted in a significant reduction in the range of Mach 
numbers over which negatively damped oscillations were encounterea. 

4. Calculations made for the two-degree-of-f reedom motion which 
combines the pitching motion stUdied i n the present investigation with 
a vertical translatory motion shows that, while the additional damping 
of the oscillation resulting from the trans l atory motion reduced the 
range of Mach numbers over which dynamic uns tability is experienced, the 
unstable range was not el iminated. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 
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APPENDIX A 

EVALUATION OF THE STABILITY DERIVATIVES 

Cmq AND C~ FOR SUBSONIC SPEEDS 

EVALUATION OF 

In the following derivation for the parameter Cllq' the moments 
about the pitching axis of a thin flat wing in steady pitching flight 
are assumed to be the same as the moments about an equivalent thin wing 
in straight flight which has been cambered and twisted to the curvature 
of the pitching path. The charts and. tables in references 6 and. 7 can 
then be used to determine all the necessary characteristics of such a 
wing except the pitching moment at zero lift due to pitching caused by 
the effective camber of the wing. This last moment can be approximately 
evaluated by two-dimensional theory. 

The stability derivative Cmq for a pitching axis at a distance 

6xc •g . ahead of the aerodynamic center is (reference 14) 

(Al) 

where Cmqo is the pitching-moment coefficient due to pitching when the 

lift due to pitching is zero, and CL~.c. is the rate of change of lift 

coefficient with the pitching parameter gC/ 2V for pitching about the 
aerodynamic center. 

For a wing in pitching flight, the path of the wing has a radius of 
curvature of V/q. The curved flight introduces an angle~f--attack vari­
ation along the chord. The resulting moments have been approxiIIRtely 
evaluated by assuming a wing in straight flight with a camber and twist 
such that the angle~f--attack distribution along the chord is the same as 
that existing on the flat wing in curved flight . 

Consider first the pitching moment due to the equivalent camber of 
the wing when the lift due to pitching is zero. The pitching-moment coef­
fioient at zero lift for a two-dimensional wing section is (reference 15) 

. ~ r:l 
Clla = - 2" I-' 

(A2) 
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where ~ is defined geometrically also in reference 15. 
triangular wing under consideration 

23 

In terms of the 

(A3) 

where 0l is the local chord. The pitching-moment coefficient due to 
camber at zero lift for the entire wing can be approximately- obtained by 
integrating the section pitching-moment coefficient 

b/2 

CIIlc = s~ J q Crne q dy 

o 

b/2 
C = ~ J -!I. .1 q c l c l 2 dy = - 2!f. g£ me Sc 2 2 2V 32 2V 

o 

(A4) 

(A5 ) 

The contribution to Cmq caused by the effective camber becomes, for 
the triangular wing, 

(A6) 

This result should indicate slightly more negative values of (Cmq) c 

than actually exist because end effects have not been considered, but 
there should be considerably less error in (Cmq) c than would occur 
in the lift or pitching-moment coefficient due to angle of attack because 
at zero lift there are no induced effects of the wake. 

The total spanwise twist of the triangular wing due to the pitching 
motion measured at the three-quarter chord point is 

E = _ 1. qc = 3 qc 
2 2V -"4 2V 

The pitching moment due to this twist may be expressed as 

Cmb _ 3 CIntJ qc 
CIntJ = -€- € - - 4" € 2V 
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The contribution to Cmq caused by the effective spanwise twist of the 

triangular wing due to the pitching motion becomes then 

= dCIll[) _ 3 C~ 
d(qc/2V) - - 4 --€--

(A8) 

where can be obtained from reference 7. Thus the pitching-moment 
€ 

coefficient due to pitching at zero lift due to pitching becomes, for the 
triangular wing, 

91! ':l CIll[) = (Cm,,) + (Cmr.) = - - - .L -
~ C ~ b 32 4 € 

(A9) 

The lift coefficient due to the pitching motion for rotation about 
the aerodynamic center is equal to the rate of change of lift coefficient 
with angle of attack multiplied by the difference between the angle of 
attack due to the pitching motion and the angle of attack for which the 
lift due to pitching is zero (ar). 

o 

(A10) 

For convenience in using reference 7, the three-quarter-root-chord point 
was chosen as the reference point to determine ~. The effective angle 
of attack of this point for pitching about xa . c . is 

2 (~_ Xa.c. ) qc 
8 c 2V 

where ~.c. is obtained from reference 6. Thus, 

qc 
2V 

= qc [2 (~_ Xa.c. ) + i (eur)o ] 
2V 8 c 4 € 

(All) 

where (Ur) o/ € can be obtained from reference 7. Inserting this value 

------- -- - -
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into equation (Ala) and taking the derivative with respect to qC/2V 
gives 

_ dCLa..c. 

d(qc/2V) 
(A12) 

From equation (AI) then, the stability derivative Cmg for the 
triangular wing becomes 

C 6x. 
=: _ ~ _ 1 IlIb c.g. 

32 4 € C 
C~ [ 2( ~ _ Xa~c.) + ~ (~) 0 ] _ 2Cru (6x.~. g.)2 

where all angles in the above equation are expressed in radians. 
tbat Cmt/€ and Cru from references 6 and 7 must be converted 
ans before inserting in equation (A13).) 

(A13) 

(Note 
to radi-

The effects of compressibility can be approximately considered by 
calculating Cmg in incompressible flow for a triangular wing, the aspect 

ratio of which bas been reduced by the compressibility factor JI-M2 

and multiplying the value of obtained by 1 

EVALUATION OF C~ 

The stability deri vati ve Cma, can be approximately evaluated from 

operational expressions for the lift on a finite wing, the angle of attack 
of which varies with the distance traveled. Using the nomenclature of 
reference 8, a sinusoidal variation of angle of attack is written as 

(A14) 

where 

A amplitude of the oscillation 

s distance traveled in half mean aerodynamic chord lengths 

n 2~ times the number of cycles per half mean aerodynamic chord length 
of' travel 
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The lift coefficient resulting from this angle-<>f~ttack variation is 

(A15) 

where eLl (D) is the operational form of the indicial lift coefficient, 

the response of the wing to a sudden unit change of angle of attack. 
Solutions have been evaluated in reference 8 as 

(A16) 

CLn(s) = 2~ [F(n) + iG(n)] Aeins (A17) 

where values of F(n) and G(n) have been determined for elliptic wings 
of aspect ratios 3 and 6. In addition, as pointed out in reference 8, 
the center of pressure of the unsteady lift for a wing of infinite aspect 
ratio remains on the quarter chord throughout the motion. 

It is assumed that the unsteady lift on the triangular wing of this 
report would be equal to that for an elliptic wing of the same aspect 
ratio. Also, from the results of the infinite aspect ratio calculation, 
it is assumed that the center of pressure for unsteady lift is the same 
as for steady lift. The moment about the pitching axis of the wing due 
to a sinusoidal change of angle of attack can then be expressed as 

(A18) 

This same moment can also be expressed in differential form as a moment 
due to ~ and a moment due to eX, 

Thus, 

Since 

M = dM eX, + dM a, 

i ns e 

do' do, 

irot 
e 

(A19) 

(A20) 
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on making this substitution, 

dM. A iwt + dM Aeiart = _ 1.r,~s 6x 21t [F(n) + iG(n)] Aeimt 
"- :" ~m e "- ,... _I"' 
0"" 0"" 2 c.g. 

(A21) 

Separating the imaginary terms from the real terms and canceling Aeimt 

im dM = - ~y2s 6x i21t G(n) do:' 2 c. g. (A22) 

In reference 16, the function 21t G(n) is given as 

21t G(n) = - C~ (A23) 

where Cl , C2 , rl, and r2 are constants which depend on aspect ratio. 
Interpolating between values of the constants for the examples of aspect 
ratios 3 and 6 in reference 16, the values for an aspect ratio of 4 
become approximately 

and 

But since 

dM/do:' 
Cma = -=-1---,2-

~VSc 
4 

= 

C~ = - 1. 50 

rl = - 0 .36 

tsx c.g. 
c (:;) 

n = ~ < < 0.36 
2V 

( 1. 5 )( 0 • 36 ) n 

(0.36)2 + n2 
(A24) 

(A25) 

the value of CIDQ for the range of frequencies of interest in this dis-

cussion becomes simply 

6x 
C .... 4 c.g. 

IDQ"" c 
(A26) 
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f or a wing of aspect ratio 4. Due to the many approximations involved 
i n this derivation, a high degree of refinement in computing the effects 
of compressibility is not justified. The values of C~ at the higher 

subsonic Mach numbers were obtained by multiplying equation (A26) by 
1 
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APPENDIX B 

DERIVATION OF TEE DAMPING IN PITCH OF A SLENDER BODY 

In the development given below, the method used by Ribner in refer­
ence 11 to obtain the stability derivatives of low-aspect-ratio triangu­
lar wings is followed to obtain the damping-in-pitch derivatives of a 
slender body of revolution. 

Consider the body moving with velocity V and angle of attack Q, 

as shown in the sketch below: 

;--.~--t-+-+-+ .... ~ y 

Flow pattern at section 

(a) 

--.I 
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The linearized potential equation for unsteady flow is written as 

(Bl) 

where the coordinate system is moving in the negative x direction with 
the velocity V. If the development is limited in application to a slen­
der body performing slow oscillations, d2q>/dx2 , d~/dt2, and d~/dxdt 
may be considered to be negligible. Equation (Bl) thus reduces to 

(B2 ) 

Physically, equation (B2) implies that the flow at any transverse cross 
section of the body is similar to a two-dimensional flow. The floy at 
any section may thus be expressed as the potential flow for a circular 
lamina moving downward in its own plane with a velocity ~V (see sketch, 
page 29). For this case, the potential is equivalent to that of a doub­
let with its axis parallel to the z axis (reference 10) so that 

(B3) 

where 

a body radius at a section a distance x from the nose 

w vertical velocity of the section 

It can be shown that equation (B3) is a solution of equation (B2). The 
local loading is 

D.p = 2p ( ~ + V ~ ) (B4) 
dt dX 

The pitching-moment coefficient due to the rate of change of angle of 

attack with time em. arises from the term 2p dq>; the term 2p dq> 
~ dt dx 

yields the pitching-moment coefficient due to steady pitching Cmg. 
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EVALUATION OF 

As mentioned previously, for an accelerated translatory motion, the 
contribution to the local loading is given by the term 

~I> = 2p ~ = 2p ~ a, 
dt do. 

(B5) 

From equation (B3), since w = o.V, 

~ = Va2 _.:=.Z_ 

"" 2 2 00. Y +Z 

On the surface of the body 

Therefore, 

The pitching moment of the local loading about an axis a distance Xo 
from the nose may be written, 

Mx = _fa (X-Xo) 6.p dy 

-a 

The total pitching moment due to a, may then be found by the integra­
tion of equation (B7) over the body length 

The term J
2 

1!a2 dx 

o 

], 

M = - pVa, J 1!a2 (x-xo) dx 

o 

j'], 
gi ves the body volume, while 1!a2 xtU: 

o 

(B8) 

expresses 
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the moment of the body volume about the nose. If the volume is written 
as Bm2, where Bm is the mean bcrly cross~ectional area, the pitching 
moment can be written as 

(B9) 

where x is the distance of the centroid of the body volume from the 
nose. Then, referring the pitching moment to the wing dimensions, the 
moment in coefficient form is 

Cm = - 2a. B~ (i-xo) (B10) 
V Sc 

The stability derivative is formed by the derivative of Cm with respect 

to ac/2V. It is 

C • = _ 4Bro. 2 
(x-x ) (Bll) 

rna, sC2 0 

EYALUATION OF Cmq 

For an angular pitching velocity q about an axis located at a dis­
tance Xo from the nose, the vertical velocity of a stati on on the body 

located at x is 

Then 

From (B4), the local loading term is 

~p = 2pV ~ 
dX 

(B12) 

(B13) 

(B14) 

Performing the indicated differentiation, there results for the local 
l oading on the surface of the body 

~p = 4qpV (x-:o ) ~ z + 2qpVz (B15) 
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The pitching moment of the local loading is again 

a 

~ = - 2 J 6p (x-xo ) dy 
o 

( ) 2 da. 2 ( = 2~qpV x-x 0 a -- - qpV~a x-xo ) 
dx 

The total pitching moment due to q is 

33 

(B16) 

l l l 
M = J Mxdx = - qpV J 2~a ~ (x-xo) 2 dx - qpV J 1(a2 (x-xo) dx (B17) 
000 

The quantity 21(a ~ expresses the variation of the cross-sectional 

area of the body with x, or is dB/dx. Since the body cross-sectional 
area 1s zero at x = 0, and is equal to the area of the body base at 
x = 2, the first integral in equation (B17) reduces to 

l 

- qpVBb (l-xo ) 2 + 2pqV f 1(a 2 
(X-Xo) dx 

o 

The pitching moment may then be written 

2 
M = - qpVB1;> (2-xo) + qpVBm l (x-xo) 

Reducing to coefficient form in terms of the wing dimensions, 

and forming -the stability derivative, 
oCm ---=--, 

o (qc/2V) 

(BI8) 

(BI9) 
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4:sr, 2 4Bro.l 
C = - - (l-x) + -- (X-XO ) 
~ s"? 0 s"? 

(B20 ) 

'roo total damping in pitch of the body is the sum of C~ and Cma,o 

I t thus appears upon adding equations (B20) and (Bll) that 

(B2l) 



NACA RM A50J26 35 

APPENDIX C 

THE DAMPING OF THE SHORT-PERIOD PITCHING OSCILLATIONS OF A 

WING HAVING TWO DEGREES OF FREEJX)M 

In the following analysis, it is assumed that changes in the for­
ward speed of the aircraft are negligible. The assumption effectively 
limits the development to one describing the character of the short­
peri od pitching oscillations of the aircraft. 

Consider the case of a triangular wing aircraft in steady flight. 
If the aircraft is displaced from its state of equilibrium, the result­
ing equations of longitudinal motion (in wind-axis notation) are: 

(a) 

(b) 

From the sketch above, 
!9.. _ d 2e 
dt dt2 ' 

= mV d)' 
dt 

e = ex, + )" so tba t q = de = dex, ;- gz and 
dt dt dt 

(Cl) 

Making the above substitutions and converting to operational notation, 

(C2) 

C
- ) ( -

(b) ;v Cma, D + CIDa, ex, + , ;v CIDq - kD) q = 0 
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where T = m/pVS, k = 2I/pV2 Sc, D = d/dt. 

Solving the above equations simultaneously gives 

T: (Cmq + Cma) - k CLa, ] _ + [:V (Cmq CLa, - ClIla, CLq) + 2 T CIDa, ] } a, or q = 0 

(C3) 

Equation (C3) is recognized as the characteristic equation of free vibra­
tions with viscous damping (reference 17), the solution of which shows 
that the magnitude of the oscillations will build up or die out accord­
ing to whether the term W below is positive or negative. 

T c (Cm- + Cm ) + (c )2 (C1IL-. CL _ - Cm~_ GL ) - k CL 
W = V \L q 2V y. a, \L q a, 

2k (2
c
V CIti + 2T) 

(c4 ) 

The stability boundary curve for the two-degree-of-freedom motion may 
thus be obtained by setting the expression for W in equation (c4) 
equal to zero, and replacing the stability derivative terms therein with 
the general forms given below: 

(C5) 
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• 1 

where the subscripted terms are referred to the lateral axis passing 
through the aerodynamic center of the triangular Wing, and the value 

' tsx ) ~.g. represents the distance of the center of gravity from the 

aerodynamic center, measured positive forward of the aerodynamic center. 
The stability derivatives which appear in the above equations may be 
computed for supersonic speeds from results given in reference 1. 

Performing the manipulations indicated above, there again results 

d t " t" f (tsxcc•g ., a qua ra lC equa lon or / of the form 

where 

a = 

b = 

/!:sx. ) ( ~.g. 

2m C 
pSc Iu, 

m 0L + CL. ) + 1. CL Cma, 
pSc qo a, 2 a, 0 

£. 
a 

C = m fie + e )+ l~_ e C c)+ 21 e 
- pSc ~ IDqo mao '4 \~ l"qo mao - illgo La, pSG'3 La, 

The time to damp to one-balf amplitude for the wing oscillating 
about a given center-of-gravity position is obtained by computing ~ 

for that position, and substituting in the expression 

= _ 0.693 
~ 

-- -- - --- ---

(c6) 

J 
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2 I 3~ 
Equation of fuselage : r = IQ{I- (1_ I IX) j 

fo = 2.04" 

!' = 51" 

L-

30" 
1 

= f--(: f I} 
~ /5" -------. 1.1_ 

14 30" --- '" '< 

~ 

~I 24" 

Figure 3. - Sketch of model with fuselage attached, showing span wise stalion of which 
lips were removed. +:­

\...V 
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Figure 4.- The triangular wing4wly ccdxl.nation mounted in the ha 6- by &foot mpsrsonlc Hid. tumwl.
&

.

Figure 4.- The triangular wing-body combination mounted in the Ames 6- by 6-foot supersonic wind tunnel. 
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Experiment: . 
--& Sharp leading-edge sectIon, shroud on 
--<rNACA 0006-63, shroud on /.,. 

-4--Sharp leading-edge section, shroud off/ --,,£-/.,----+ 

--A-NACA 0006-63, shroud off 

Theory : --

-.5 l----.-----.------,...---- Axis at 0.45c 

-.3 1------l----h~~~-----::;;._9h~_+--8--_+_-____j 

- .2 l-----l---+-+--+---!---1f----t-----t------1 

Cmq+Cm• 

-./ l--~f----J.---tJI+--+-_+_--_t_--_t_-___j 

d 
./ I------l-~L-~--~--~-_+--_+_-~ 

.2 10 1/ 1.2 13 1.4 /.5 16 1.7 

I I I 
Mach number, M 

I 1 

0.2 .4 .6 .8 /.0 1.2 1.38 
Ton V70n),l 

ro)a =0.0 

Figure 8. - Experimental damping in pitch coefficients for 
the triangular wing with shroud on and off at a = 0 0 

and 50 and axis of rotation at 0. 45c. 
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Experimenl : ~~ 
--fJ-Sharp leading-edge section, shroud on /.?P;~""""", 
-+NACA 0006-63, shroud on ~ I ~ ~ "'" 
-~ Sharp leading-edge section, shroud off / I / \ " 
--fr-NACA 0006-63, shroud off / /_~ 

Theory: AxIs of o.45c -.6 1----.----..,..-----,----,---'.:..:..:....::........::r----=-'-'--''-T-----1 

/ ! i 
O~---+--/~+---/~/~--~,:rl-----r----+--~ 

! I 

.1 I I 

J " d 
.2l~0~-~l~/~-~L2~-~13~~~/.~4--~1~5~-~1~6--~17 

I I 
Mach number, M 
I I I 

0 .2 .4 .6 .8 /.0 12 1.38 
Tan VTanp, 

(b)a = 5.° 

A'gure 8. - Concluded . 



52 NACA RM .A50J26 

Experiment : 
-~Sharp leading-edge section 

--A-NACA 0006-63 

Theory: -
Axis at 0. 45c 

-1.2~----~----~----,-----,-----,-----.---~ 

-I.O~----~-----+------~----1-----~~o.--/-b~--~ 
o ,/ 

,/ 

.0 
-.8 ~--+----+----+------t---""""7'i""-----O-~~.L---~ 

-.6 ~--+---+-----+--6L------k;~:::::::1======4 
Cmq+Cmti 

-.4 1----+----+-----<.:~~~~____l;,!."'\________::;~=------1--__1 

Theor~ wing alone 

TheorYI wing-body 
-.2r-----+---~~~~~------r_----._~--~--~~ 

O~----~HGr-~~--+-----+_----~----~--~ 

.2/.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 
Mach numberlM 

I I I I I I I I 
0.2 .4 .6 .8 1.0 1.2 1.38 

Ton VTan)J. 

(0) a = O~ 

A"gure 9. - Experimental damping in pitch coefficients for the 
triangular wing -body combination at a = OD and 5 D and 
axis of rota lion at 0. 45c . 
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Experiment: 
--0-Sharp leading edge section 

--A-NACA 0006-63 

Theory: -- Axis at 0.45c 
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% ~.~ \ Theory, wing-body 
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il//l 
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IV ! 
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II 
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(b) a = 5.D 

Figure 9. - Concluded. 
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I 

Experiment: 
section f --o-Sharp leading- edge 

--A-NACA 0006-63 I 

Theory:- Axis at 0.35C~ t~ 
- .6 

I 

V 
V ~ 

// 

~~ 

Theory, wing-body / 

.-,r 
0~ 
~p,// ~ //. I ? 

Theory, wing ~ / ~i /f, / A 
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Mach number, M 
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0.2 .4 .6 .8 10 1.2 1.38 
Ton YTan )J. 

(0) a :0", 

Figure 10. - Experimental dampinq- in-pdch coefficients for the 
trianqular- wing-body combination at a: 0" and 5" and 
axis of rotation at 0 .35c. 
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Experiment : 
-~Sharp leading-edge sectionJ Rz/.3xI06 

--d-Sharp leoding-edge sectio~ R-08xI06 

--fr-NACA 0006-631 Rr/.3x/06 if'~ 
Theory: -- Axis at o.35c ! 

-.6 t-----"--r-----.,------r-----.------.-----.-----i..')-

/:) 
-.5 /, .y 

~-~--~--~---+---+V--.~~~:~-/-/~·~~{ 

-.4 .,.-::r /:~ 

/ 
er//~/ 

1/£/ -.3 ~---1I__-----'----.l.----'--f__~:..,.cn. ----!--+-------I 
Theory, wing-body iV;; / 

/1 t
l 

TheorYI wing alone 

-.21-----+-- }/f ;" 
Cmq+Cm• / r / 

/ 
~ I -. t---~--~--~--~-ff_-~--~--~ 

/ 
~J/ / 

// J / 
O~--~I----~--~+-~-+--~-+----~---~ 

j V,6'/ / 
1
/ / / / , I I 

.I ~--_+----~--_r~/--~~~/--+_----~--~ 
/ I / L:J 

.! I ~ 
I 

.2r--~--+------I~d~.-4--~-----I-------I 

~ 
.3/.0 1./ /.2 /.3 1.4 1.5 1.-6 1.1 

I I I 
Mach number, M 

! I 

0 .2 .4 .6 .8 /.0 1.2 1.38 
Ton V70n~ 

(b) a = 5.0 

Figure /0. - Concluded . 
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Experiment : 
--&-Sharp l eading- edge section 

--b-NACA 0006-63 

Theory : - - Axis at o.475c 

-.5 f-----r-----,---- -.----,------.-----.--- -l 

-.4 
Theory, wing- body 

Theory, wing alone 

-.2 1----+--+--k----{:1),L--r.r----7(-~--I__--+_-~ 

-./ 

O~-~~-~~~~~-----+----~~----+-----~ 

./ 1.0 /.I 1.3 /,4 
Mach number, M 

, ! I I I 

0 .2 .4 .6 .8 1.0 
Tan Yran,)J. 

(a) a=O.o 

I.S /.6 
I 

1.2 

/,7 
I 

1.38 

Figure II. - Experimental damping-in- pitch coefficients for the 
triangular wing with cut -off tips -body combination 01 
a = 0° and 5° and axis of rotalion at 0. 475c. 
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Experiment: 
-~Shorp leading-edge section 

--A-NACA 0006-63 

Theory: - Axis at 0. 475c 

-.s t-----------,-------y----r-----.------j 

-:4 
Theorl'J wing-body 

Theorl'J wing alone 
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Cm +Cm· q a 

~.I ..---++-+--r---+-~~r---r---~--~ 

fl 
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/ 
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, 

0.2 .4 .6 .8 1.0 1.2 1.38 
Ton o/Ton)J. 

(b)a=5.0 

Figure / /, - Concluded , 
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Experiment: 
--b- R = 1.25 x 106 

--0- R=0.55xI06 Axis at o.35c 

Theory: 

Theory, wing-body 

Low aspect ralio 
theory, NACA TN 1423, 
wing alone 

-2 l----
Theory, wing alone 

-I 

\ 
\ 

0 

~ 
+1 

0 .2 .4 .6 .8 1.0 

Mach number, M 
Figure 12. - Experimental damping-In-pitch coefficients at subsonic 

speeds for the NACA 0006-63 triangular-wing-body combination 
at a = O· and axis of rotation at o.35c. 
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A xis at 0.45c 
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I ~I I 

-0-NACA 0006-63 a =0° 
Cma I ~I 

I 

-Q-NACA 0006-63 a =5° 1 

--(>-- Force test data I 
-.1 I 'T'~ NACA 0005-63 

"l."!:I ~ i-j-O 
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Mach number, M 

Figure /3. - Experimental pitching-moment coefficients for the round- leading_ 
edge - section lriangular- wing-body combination at a =0 0 and 5° and 
axis of rotation at o.45c-
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Sharp /(J(Jding - edge section 
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Figure 14. - Experimental pitching-moment coefficients for the sharp leading-edge section 
triangular-wing-body combination at a=O° and 5· and axis of rolation at O.45c. 
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Figure 15. - Experimental damping-in-pitch coefficients at-subsonic and supersonic speeds for 
the NACA 0006-63 section triangulor-wing-lJody combination of a=O· and axis of 
rotation of 0.35 C. 
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C. G. at o.35c t 

1. 1 

26.1 ff 

~-4--~~ 
W.lght -15,200 Ib 
Moment of 

In.rtia -18,600 slug - ff 2 

Ar.a - 682 sq ff 

I d.gr •• of 
fre.dom, sea l.v.1 

2 d.gr.es of 
freedom, 60, 000 ' 

,/2 d.gr.es of fre.dom, 
40,000 ' 

2 degrees of freedom, 
sea lev.1 

1.2 1.3 1.4 

Mach number, M ~ 

Figure /6. - Comparison of the theoretical time for a short-period 
pitching OSCIllation to damp to one - half amplitude at various 
altitudes for one and two degrees of freedom for a 45 0 

triangular-wing aircraft with center of gravity al o.35c. 
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,1 xc, 4$0 } t 
~ -:T.cT C 
T/ -- - ~ + 

CentIJr of gravity at Axc, 
Weight 15, 200 Ib 
Moment of inertia 18, 600 slug - ft Z 
Area 682 sq If 

20~------~------.-------.-------,,------~ 

LJxc, 

C 

Stable 
07777»7 

I. 5 ~'?'H:---+----- Unstable 
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.5 

o 

2 degrees of freedom, sea levlJl 

'2 degrees of freedom 
40, 000 ft. and 60,000 ft. 

I degree of freedom, all altitudes 

-.5~------~--------~--------L-------~------~ 
/.0 1.1 1.2 1.3 1.4 

Mach number, M 

Figure 17. - Comparison of theoretical short-period pitching 
stability boundorifJs of various alfifudfJs for one and two 
dfJgrees of freedom for a 45- triangular-wing aircraft. 
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