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SUMMARY REPORl' OF RESULTS OBTAINED DURING D:RM:lNSTRATION 

TESTS OF THE NORTHROP X--4 AIRPLANES 

By Melvin Sadoff and Thomas R. Sisk 

SUMMARY 

Results obtained during the demonstration flight tests of the 
Northrop ~-4 No.1 and No.2 airplanes are presented. Information is 
included on the static and dynamic longitudinal- and lateral-stability 
characteristics, the stalling characteristics, and the buffet boundary. 

The data indicated that the airplane was almost neutrally stable 
in straight flight at low Mach numbers with the center of gravity 
located at about 21.4 percent of the mean aerodynamic chord for the 
clean configuration. 

In accelerated flight over a Mach number range of about 0.44 to 
0.84 the airplane was longitudinally stable up to a normal-force 
coefficient of about 0.4. At higher values of normal-force coefficient 
and at the higher (M~0.8) Mach numbers a longitudinal instability was 
experienced. 

The x-4 airplane does not satisfy the Air Force specifications for 
damping of the short-period longitudinal oscillation. The pilot, how­
ever, did not consider the low damping characteristics of the airplane 
objectionable for small disturbances. An objectionable lIDdamped oscil­
lation about all three axes was experienced, however, at the highest 
test Mach number of 0.88. 

Theory predicted the period of the short-period longitudinal 
osoillation fairly well, while, in general, the theoretical damping 
indicated a higher degree of stability than was actually experienced. 
This discrepancy was traced to a considerable error in the estimation 
of the rotational damping factor. 

The directional stability of the x-4 airplane as measured in 
steady sideslips was high and essentially constant over the speed range 
covered, while the dihedral effect decreased considerably with an 
increase in airspeed. 
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The damping of the lateral oscillation does not meet the Air Force 
requirements for satisfaotory handling qualities over the Mach number 
range covered. The data indicated decreased damping as the flight Mach 
number was increased above about 0.5, and at high Mach numbers (M>0.8) 
and at high altitudes the x-4, in common with other transonic research 
airplanes, experienced a small amplitude undamped lateral oscillation. 

The dynamic lateral-etability characteristics were estimated fairly 
well by theory at low Mach numbers and at a pressure altitude of 10,000 
feet. At 30,000 feet, however, at Mach numbers above about 0.6, the 
theory again indicated a higher degree of stability than was actually 
obtained. 

For the conditions covered in these tests the stalling characteris­
tics of the x-4 aiTplane, as measured in stall approaches in straight 
flight and in an accelerated stall to about 1.6g, were, in general, 
satisfactory. Both the stall approaches and the stall were character­
ized by a roll-off to the right. 

The x-4 buffet boundary showed a sharp drop-off in the normal-force 
coefficient for the onset of buffeting as the flight Mach number exceeded 
0.8. The boundary was almost identical to that obtained for the D-55B-II 
research airplane at comparable Mach numbers. 

INTRODUCTION 

The x-4 airplane was constructed as part of the joint NACA - Air 
Force - Navy research airplane program to provide research information 
on the stability and control characteristics of a semitailleas config­
uration at high subsonic Mach numbers. 

In the course of the demonstration flight tests of the airplane by 
Northrop Aircraft, Inc., at Edwards Air Force Base, Muroc, California, 
limited stability and control data up to a Mach number of about 0.80 
were obtained and reported in references 1 through 7. The present 
report consolidates the previous results and presents a limited analysis 
of these data. Additional information is also provided on the 
longitudinal-etability characteristics up to a Mach number of 0.88, the 
characteristics in steady sideslip at a Mach number of about 0.50, and 
the buffet boundary at low (M~0.30) and at high (M:::0.80 to 0.88) Mach 
numbers. 

SYMBOIS 

indicated airspeed, miles per hour 

pressure altitude, feet 
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AZ 

Ay 

AX 

M 

R 

H 

p 

q 

s 

M.A.C. 

w 

Hr 

q 

r 

p 

P 

normal acceleration factor (the ratio of the net aerodynamic 
force along the airplane Z axis to the weight of the 
airplane) 

lateral acceleration factor 

longitudinal acceleration factor 

Mach number 

Reynolds number 

total head~ pounds per square foot 

static pressure~ pounds per square foot 

static pressure error~ pounds per square foot 

dynamic pressure~ pounds per square foot 

impact pressure (H-P)~ pounds per square foot 

stick force~ pounds 

rudder pedal force~ pounds 

wing area~ square feet 

wing mean aerodynamic chord~ feet 

airplane weight~ pounds 

rudder hinge moment~ inch-pounds 

pitching angular velocity~ radians per second 

yawing angular velocity~ radians per second 

rolling angular velocity~ radians per second 

period of oscillation~ seconds 

time to damp t o one-half amplitude~ seconds 

effective longitudinal control angle (OeL ; O~) ~ degrees 

/ 0 0 '1 
effective lateral control angle \ eL - eR)~ degrees 

3 
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Or rudder angle, degrees 

~ sideslip angle, degrees 

CN normal-force coefficient ( WAqSZ) 

Fe/q stick-force factor, feet squared 

Cmu static stability parameter 

Cmq + Cmu rotational damping parameter 

Subscripts 

L left elevon 

R right elevon 

T true 

r recorded 

AIRPlANE 

The Northrop x-4 airplane is a semi tailless research airplane having 
a vertical-tail but no horizontal-tail surface. It is powered by two 
Westinghouse J-3~7-9 engines and is designed for flight research in 
high subsonic speed range. A three-view drawing of the airplane is pre­
sented as figure 1 and photographs of the airplane are shown in figure 2. 
The physical characteristics of the airplane are listed in table I. 

INSTRUMENTATION 

Standard NACA instruments were used to record the altitude, airspeed, 
right- and left-elevon positions, rudder position, and sideslip angle on 
the x-4 No. 1 airplanej and these same quantities plus the normal, longi­
tudinal, and lateral accelerations, the pitching and rolling angular 
velocities, the stick force, pedal force, and the elevon and rudder hinge 
moments were used on the x-4 No. 2 airplane. In addition, the normal 
acceleration, altitude, airspeed, right- and left-elevon positions, and 
rudder position on the No. 2 airplane were telemetered to a groUnd station. 
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All the internal records were correlated by a common timer. Since it was 
not possible to calibrate and maintain the hing~oment instrumentation 
properly~ the data were unreliable and are not presented. 

The airspeed. and altitude recorder was connected to the airspeed 
head on the vertical fin. This installation was calibrated by the 
"fly-by" method on the x-lt No. 1 airplane up to a M:!.ch number of about 
0.50. Subsequently~ an airspeed calibration was made On the x-lt No.2 
airplane OVer a M:!.ch number range of 0.70 to 0.88 using the radar method 
described in reference 8. The results of these calibrations are presented 
in figures 3 and 4 which show~ respectively~ the static pressure error 
ratio ~p/qc at low lift COefficients (AZ = 1.0) as a function of true 
Mach number and the variation of true Mach number NT with recorded Mach 
number Mr. Included for comparison with the x-lt data in figure 3 are the 
results from reference 9 of a calibration of a static tube ahead of the 
vertical tail of a free-fall model of a canard airplane at low lift 
coefficients~ 

TESTS~ RESUlIT'S~ AND DISCUSSION 

Longitudinal-Stability Characteristics 

Straight flight.- The static longitudinal-stability characteristics 
in straight flight were measured in the clean configuration at indicated 
airspeeds varying from 140 to about 400 miles per hour and at pressure 
altitudes between 10~OOO and 20~OOO feet. The center of gravity for these 
tests ranged from 18.0 to about 21.6 percent of the mean aerodynamic chord. 
Data were also obtained from the gear-down flaps- up configuration at 
indicated airspeeds between 145 and 215 miles per hour and at pressure 
altitudes between 2~200 and 15~OOO feet with the center of gravity varying 
from 19.5 to 22.0 percent of the mean aerodynamic chard. 

The results of these tests are presented in figure 5 for the several 
center-of-gravity positions. It may be noted that only approximate center­
of -gravity positions are given since~ because of the uncertainty of the 
exact sequence of fuel emptying from the wing tanks~ they are not known 
to within an estimated ± 0.5 percent mean aerodynamic chord. The results 
presented in figure 5 for the several center-of-gravity positions are 
consistent within the accuracy of the data. The data indicate that the 
airplane was almost neutrally stable at the higher indicated speeds or 
low normal-force coefficients with the center of gravity at about 21.4 
percent of the mean aerodynamic chord. It was indicated that the stability 
tended to increase as the normal-force coefficient was increased. It was 
also indicated that lowering the landing gear had little effect on the 
longitudinal stability. 
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Accelerated flight.- The longitudinal-stability characteristics in 
accelerated flight were measured in steady or wind-up turns and in gradual 
pull-ups. The data were obtained at a Mach number of 0.44 at 10,000 feet, 
at several Mach numbers from 0.5 to about 0.8 at 20,000 feet, and at 
several Mach numbers from 0.70 to 0.86 at 30,000 feet.1 In general, at 
10,000 and 20,000 feet the data presented for values of normal accelera­
tion less than 2g were obtained in steady turns, while the data for 
values of normal acceleration greater than 2g were obtained in steady 
or wind-up turns. The center of gravity for these tests was located at 
about 18.5 percent of the mean aerodynamic chord. 

Time histories of two typical test runs are presented in figure 6. 
It is interesting to note in this figure that, while the stick-force data 
show decreasing values, the elevon angle and normal-forc~ coefficient 
continue to increase. The apparent stick-free instability within each 
run was probably due to the friction and inertia forces in the hydraulic­
boost elevon system wherein the elevons continued to move in the direction 
of stick movement after the stick motion had stopped. Because of this 
characteristic, the stick-free data may be expected to exhibit more 
scatter than the stick-fixed data. The stick-free data are shown in 
figure 7 as a matter of interest although they are not analyzed further 
because of the uncertainty regarding the characteristics of the mechani­
cal feel and the hydraulic boost utilized in the elevon control system. 
Figure 7 shows the variation of elevon control angle with normal-force 
coefficient and the variation of elevon stick force with normal accelera­
tion for the several Mach numbers and altitudes. These data indicate 
that for values of normal-force coefficient up to about 0.4 over a Mach 
number range of 0.44 to 0.84 the airplane is longitudinally stable stick 
fixed and stick free. Above a Mach number of about 0.8, however, the 
airplane becomes longitudinally unstable at values of normal-force 
coefficient above about 0.4. (It should be noted, however, that the 
higher range of normal-force coefficient was not explored between Mach 
numbers of 0.5 and 0.8.) The instability is clearly shown by the data 
in figure 8 which present the variation of elevon control angle with 
normal-force coefficient for the several runs where longitudinal 
instability was encountered. It should be noted that the data above a 
normal-force coefficient of 0.4 are not strictly valid points since the 
airplane was pitching up rapidly at the time. It may be observed in 
this figure that the instability occurred at a normal-force coefficient 
of about 0.42 at Mach numbers of about 0.82 and at a normal-force 
coefficient of about 0.38 at a Mach number of 0.84. A typical time 
history of a run in which longitudinal instability was experienced is 
presented in figure 9. 

1 The data at M = 0.70 were obtained in straight flight during the radar 
airspeed calibration runs. The data were extrapolated to a CN of 
0.4 by using the elevon-angle gradient determined at 20,000 feet 
pressure altitude. 

J 
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From the results presented in figure 7, the elevon angles required 
for balance for several values of CN were derived as a function of 

7 

Mach number and are shown in figure 10 for altitudes of 10,000 and 20,000 
feet, and for 30,000 feet. Also presented for comparison with the experi­
mental values are the angles estimated from the wind-tunnel data of ref­
erence 10. The experimental results at 10,000 and 20,000 feet show 
little change in the elevon angles for balance over the entire range of 
Mach number from 0.44 to about 0.82. At 30,000 feet, the experimental 
data show a slight diving tendency as the flight Mach number is increased 
above 0.82. The estimated elevon angles compare favorably with the 
exper:lmental values at 10,000 and 20,000 feet. At 30,000 feet, the 
~5~eement is not quite as good, although the trends agree fa~rly well, 
especially at the higher values of normal-force coefficient. The 
estimated data, however, tend to exaggerate the diving tendency. 

A measure of the stick-fixed stability dOe/dCN is plotted as a 
function of Mach number in figure 11. The estimated values from. the 
data of reference 10 are also included. Both the experimental and the 
estimated data indicate an increase in stability of approximately the 
same magnitude as the Mach number exceeds 0.8. 

Dynamic stability.- The dynamic longitudinal-stability characteris­
tics of the x=4 airplane were obtained in longitudinal oscillations which 
were excited by abruptly deflecting the elevon control and returning it 
to the trim position. These oscillations were obtained at Mach numbers 
of about 0.50 and 0.80 at 20,000 feet and at Mach numbers between 0.82 
and 0.86 at 30,000 feet. Time histories of. two representative oscil­
lations are given in figure 12. Although these data show that for Mach 
numbers from 0.50 to 0.86 the x-4 airplane does not meet the requirements 
for satisfactory damping of the longitudinal short-period oscillation 
which stipulates that the oscillation damp to one-tenth amplitude in one 
cycle (reference 11), the pilot did not consid&r the low damping of the 
airplane objectionable for small disturbances. At the highest test Mach 
number reached during the demonstration tests (~.88), an objectionable 
undamped oscillation about all three axes was experienced which indicated 
that the dynamic longitudinal and lateral stability were about neutral 
at this Mach number at 30,000 feet pressure altitude. A time history of 
several of the pertinent measured quantities for this run is given in 
figure 13. The period P and the time to damp to one-half amplitude 
T1 / 2 were determined from these oscillations and others not presented 
here, and are presented as a function of Mach number in figure 14. The 
theoretical period and damping computed by the methods of ref.erence 12 
are also presented in this figure. It may be seen from figure 14 that 
the period is estimated fairly well by the theory. The theoretical 
damping, however, increases conSiderably as the flight Mach number is 
increased, while the experimental results show only a small increase in 
damping at 20,000 feet and actually a rapid decrease in damping above a 
Mach number of 0.86 at 30,000 feet. 
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In an attempt to determine the reasons for the fairly good agreement 
in period and the relatively poor agreement for the damping, values of the 
st a t ic stability parameter Cma and the rotational damping coefficient 
Cmq + C~ were derived from the experimental oscillations by the use of 
t he equations given in reference 13. The results of these computations 
are presented in figure 15 as functions of Mach number. Also included 
in this figure for comparison with the derived data are the wind-tunnel 
values of Cma (reference 10) and the values of Cmq estimated by the 
methods of reference 14. Two important observations may be made from 
figure 15. First, as compared to the wind-tunnel data, the flight results 
indicate a lower degree of static stability over most of the Mach number 
range and, within the experimental scatter of the flight data, the 
s t ability appears to be essentially constant over the Mach number range. 
Second, the values of rotational damping factor Cmq + Cma derived from 
t he flight result s are considerably lower than the estimated values of 
2tmq and ~ while the estimated values of Cmq remain approximately con­
s t ant at a value of -1.5, the experimental values decrease from a value 
of -0.5 at a Mach number of 0.5 to zero at Mach numbers around 0.8. At 
the highest test Mach number of 0.88 the damping factor Cmq + C~ 
corresponding to the undamped oscillation described previously assumes a 
relatively large positive value (negative damping in pitch) and of the 
same magnitude a s that contributed by t he airplane lift-curve slope. 

To illustrate the importance of properly accounting for the 
damping-in-pitch factor in the theoretical computations, the values of 
~ + C~ derived from the flight data were used to recompute the vari­
a t ion with Mach number of the time required for the longitudinal short­
period oscillation to damp to one-half amplitude. The results which are 
presented in figure 16 shOW, as expected, that the experimental and 
theoretical values of T1 / 2 are brought into very good agreement. I t 
should be noted in this figure that the time to damp to one-half amplitude 
still has a moderate finite value even though the rotational damping 
factor Cmq + Cmtt approaches zero at Mach numbers around 0.80. 

Lateral- and Directional-Stability Characteristics 

In st eady sideslips.- The lateral- and directional-Btability 
characteristics in steady sideslips were measured at indicated airspeeds 
of about 175 to 280 miles per hour at approximately 15,000 feet and at 
an indicated airspeed of about 260 miles per hour at 20,000 feet. The 
results of these measurements are shown in figure 17 which gives the 
variation of the effective longitudinal control angle, the effective 

2 It is assumed that for tailless airplanes c . 
IDa. is negligible. 
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lateral control angle, and the rudder angle as a function of sideslip 
angle. Several interesting observations may be made from this figure, 
notably that an increase . in nose-down trim occurs as the sideslip angle 
is increasedj the directional stability is high and remains essentially 
ccnstant over the airspeed range covered; and the effective dihedral 
decreases considerably with increase in airspeed from 175 to 280 miles 
per hour. The measure of directional stability d5r/d~ has an average 
value of about 1.80 as compared with a value of 2.0 obtained from the 
wind-tunnel data of reference 15. The effective dihedral, as measured 
by the rate of change of lateral oontrol angle with sideslip angle 
d5a /da, varies from a value of 0.28 at 280 miles per hour to 0.69 at 175 
miles per hour. The variation of the effective dihedral with normal­
force coefficient is given in figure 18. The values estimated from the 
wind-tunnel data in reference 15 are also presented in this figure. The 
agreement between the flight and wind-tunnel measurements is considered 
good. No corrections were applied to the wind-tunnel data for the 
effect of rudder deflection. 

Dynamic stability.- The dynamic lateral-etability characteristics 
were obtained from oscillations which were initiated by abruptly deflect­
ing the rudder ~nd returning it to the trim position and by deflecting 
and then releasing the rudder. These oscillations were obtained in the 
clean configuration at 10,000 feet for a range of normal-force coefficients 
of 0.2 to about 0.55 corresponding to a Mach number range of 0.25 to 0.4 
and at 30,000 feet over a Mach number range of 0.5 to 0.73. Oscillations 
were also obtained for the gear-down configuration at 10,000 feet at 
normal-force coefficients between 0.3 and 0.45 corresponding to Mach num­
bers of about 0.3. Typical time histories of the lateral oscillations 
obtained are shown in figure 19. From these oscillations and others not 
presented herein the period and time to damp to one-half amplitude were 
determined and are presented in figure 20. These results show that the 
x-4 airplane does not meet the Air Force damping requirements for satis­
factory handling qualities, although for the gear-down configuration at 
10,000 feet the characteristics are close to the satisfactory region. The 
period and time to damp to one-half amplitude are replotted as a function 
of normal-force coefficient in figure 21(a) and as a function of Mach num­
ber in figure 21(b). Also presented in this figure are the theoretical 
values of period and damping computed by the methods of reference 16. A 
comparison of the experimental with the theoretical results indicates, in 
general, good agreement of the periods and fair agreement of the damping 
at low altitudes and low Mach numbers. At 30,000 feet, however, the 
theory indicates a decreasing time required to damp to one-half amplitude 
as the Mach number is increased above 0.5, while the experimental results 
indicate a rapid deterioration of the damping. As noted previously i n 
connection with figure 13, the damping tends to zero as the flight Mach 
number approaches 0.88. It may be of interest to mention that the test 
point at 30,000 feet and at about 0.73 Mach number was obtained from an 
unusual oscillation which abruptly changed its period and damping 

-- ------------------------------------------~--~~-----------------------
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characteristics. (See fig. 22.) Although the period and ~ping varia­
tions shown in this figure may be explained by fuel sloshing and gyro­
scopic coupling of the lateral motions with the short-period longitudinal 
oscillation (reference 17)~ further testing is considered necessary 
before any definite conclusions can be made regarding the exact nature 
of these oscillations. 

Stalling Characteristics 

The stalling characteristlcs of the x-4 were determined from stall 
approaches made in the clean and in the gear-down configuration in Ig 
flight with the engine rpm set for 11~000 and from an accelerated stall 
made in the clean configuration with the engine rpm set for .13~000. 

(Rated rpm is 17,2000.) The pressure altitude for these stalls was about 
17~000 feet and the corresponding Reynolds number approximately 9 X 10 6 • 

As a safety measure~ an AAF spin chute was installed during these tests. 

The results showed that the unaccelerated stall approaches were 
characterized by a mild dropping of the right wing. Recovery was readily 
effected by a small forward movement of the stick. The accelerated stall 
was characterized by a fairly violent roll-off to the right and by mod­
erate buffeting which occurred at the stall and persisted through most of 
the recovery. Recovery was again easily and rapidly accomplished by a 
small forward stick movement. A time history of the motions of the air­
plane and the controls during the accelerated stall is given in figure 23 
to illustrate the above points. In this time history the stall is con­
sidered to occur at approximately 4.4 seconds, at which point a consid­
erable increase in elevon angle resulted in no increase in AZ (or ~). 
Rapid aileron motion at this time, which failed to check the right roll~ 
is eVident. 

A comparison of the peak values of normal-force coefficient obtained 
in flight with the values of C~x obtained from two-dimensional and 

three-dimensional wind-tunnel tests is presented in figure 24. In 
evaluating this comparison~ differences in the flight and wind-tunnel 
values of Reynolds number and elevon-angle setting and the dynamic effects 
on maximum lift should be conSidered. The Reynolds number and the dynamic 
effect differences are such as to increase the flight values of CN max 
relative to the wind-tunnel values, and the difference in elevon angle 
reduces the flight CN approximately 0.1 relative to the wind-tunnel 

max 
values. There is also shown in figure 24 the Mach numbers and normal­
force coefficients at which the longitudinal instability occurred in 
flight. These are included to show the possible limiting values of normal­
force coefficient that may be reached with this airplane. 
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It is of interest to note in connection with the longitudinal­
stability characteristics at high lift coefficients that no instability 
was encountered up to normal-force coefficients of about 0.73 and 0.84 
for the stall approaches and the stall, respectively. The accelerated 
stability data, on the other hand, indicated that longitudinal 
instability was experienced at normal-force coefficients around 0.4 at 
high (M:::::0.8) Maoh numbers. A possible explanation for this is that the 
boundary-layer fences with which the x-4 is equipped become less effec­
tive in preventing the instability as the Mach number is increased above 
the speeds at which the stall tests were run (M ~ 0.3) • 

Buff et Boundary 

During the course of the stall tests at about 17,000 feet and 
accelerated stability tests at 20,000 and 30,000 feet, some limited 
information on the buffet boundary of the x-4 airplane was obtained. 
The data which were only available at low (M~0.3) and at high (M:::::0.8 
to 0.88) Mach numbers are shown in figure 25. The complete buffet 
boundary for the D-55B-II airplane (reference 19) is also included in 
this figure for comparison with the x-4 results. The data for both air­
planes indicate a fairly rapid drop in the normal-force coefficient ~ 
at which buffeting first occurs as the flight Mach number exceeds about 
0.8, although the x-4 boundary is slightly lower than the D-558-II at 
comparable Mach numbers. An indication of the extent of penetration into 
the buffet region is shown by the peak ON values reached during the x-4 
demonstration tests (circled pOints, fig. 25). Another point of interest 
in figure 25 is that the normal-force coefficients and Mach numbers at 
which the longitudinal instability was observed very nearly coincide with 
the buffet boundary. The reason for this coincidence is not entirely 
obvious, although it may be reasonable to expect that the breakdown of 
flow over the wing which results in buffeting also produces the adverse 
aerodyanmic-loading changes which cause the instability. 

CONCLUSIONS 

From the results obtained during the demonstration flight tests of 
the Northrop x-4 No. 1 and No.2 airplanes and from a comparison of these 
results with estimated and theoretical data, the following conclusions 
were drawn: 

1. The airplane was almost neutrally stable in straight flight at 
low Mach numbers with the center of gravity located at about 21.4 percent 
of the mean aerodynamic chord for the clean configuration. Lowering the 
landing gear had no significant effect on the longitudinal stability. 
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There was some indication that the stability tended to increase for both 
configurations as the normal-force coefficIent "fas increased. 

2. The airplane was longitudinally stable in accelerated flight 
over a Mach number range of 0.44 to about 0.B4 up to a normal-force 
coefficient of about 0.4. At higher values of normal-force coefficient 
and at Mach numbers of about o.B a longitudinal instability was experi­
enced. 

3. The airplane does not meet the Air Force specifications for the 
damping of the short~eriod longitudinal oscillations. The pilot, how­
ever, did not object to the low damping for small amplitude oscillations. 
However, an objectionable undamped oscillation about all three axes was 
experienced at the highest test Mach number of about 0.88 which may well 
limit the x-4 airplane to this speed. 

4. The theory predicted the period of the short~eriod longitudinal 
oscillation fairly well, while, in general, the theoretical damping 
indicated a higher degree of stability than was actually experienced. 
This disagreement was traced to a large error in the estimation of the 
rotational damping factor. 

5. The direotional stability of the airplane was high and 
essentially constant over the speed range considered, while the effec­
tive dihedral increased considerably with an increase in normal-force 
coefficient. The lateral- and directional-stability characteristics 
estimated from wind-tunnel data compared favorably with the flight results. 

6. The damping of the lateral oscillation does not meet the Air 
Force requirements for satisfactory handling qualities. 

7. The dynamic lateral-stability characteristics were estimated 
fairly well by the theory at low Mach numbers at a pressure altitude of 
10,000 feet. At 30,000 feet, however, and at Mach number above about 
0.6, the theory indicated a higher degree of stability than was actually 
experienced. 

B. For the conditions covered in these tests, the stalling charac­
teristics of the airplane at low Mach numbers were, in general, satis­
factory. The stall was characterized by a roll-off to the right and by 
moderate buffeting which served as a stall warning. 

9. The buffet boundary for the x-4 airplane, which was almost 
identical to that for the D-558-II airplane, showed a sharp drop-off in 
the normal-force coefficient for the onset of buffeting as the Mach 
number exceeded about o.B. 

Ames Aeronautical Laboratory, 
Nati onal Advisory Committee for Aeronautics, 

Moffett Field, Calif. 
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TABlE I. - PHYSICAL CHARACTERISTICS OF x-4 AIRPIANE 

Engines (two) •••••• • • • • Westinghouse J-30-WE-7-9 

Rating (each) static thrust at sea level, pounds ••• 1600 

Airplane weight (average for flights 12, 13, and 15), pounds 

Maximum (238 gal fuel) • • • • • • • • 
Minimum (10 gal trapped fuel) ••• 

Wing loading (average for flights 12, l~and 15), 
pounds per square foot 

Maximum •• 
Minimum • . . . . . . . . . . . . . . . . . . 

• 7847 
6477 

39.2 
32.4 

Center-of-gravity travel (average for flights 12, 13, and 15) 
percent M. A. C. 

Gear up, full load ••• 
Gear up, post flight 
Gear down, full load • 
Gear down, post flight • 

. . . . . . . . . . . . 
. . . . 

Height, over-all feet . . . . . . . . 
Length, over-all feet • . . . . . . . 
Wing 

Area, square feet 
Span, feet ••• 
Airfoil section . . . . . . . . 
Mean aerodynamic chord, feet • • • • • • • 
Aspect ratio • • • • • • • . . . 
Root chord, feet • • • • • • • 
Tip chord, feet • • • • • • 

19.10 
17.10 
19.40 
17·50 

14.83 

23·25 

200 
26.83 

NACA 0010-64 
· . .. 7·81 
• • •• 3. 6 

10.25 
4.67 

Taper ratio • • • • • • • • • • 2.2:1 
Sweepback (leading edge), degrees 
Dihedral (chord plane), degrees 

Wing boundary-layer fences 

Length, perc ent local chord 
Height, percent local chord 
Location, percent semispan . 

. . . . . 

• • • • 41.57 . . . 

. . . . . . . . . . . . . . . 

o 

30 • 0 
5.0 

90.0 

15 
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TABLE 1.- CONCLUDED 

Wing flaps (split) 

Area, square feet • • • • • 
Span, feet • • • • • • 
Chord, percent wing chord • • • • • 
Travel, degrees • • 

Dive brake dimensions as flaps 

. .. . . . . . . . . . 
• • • e. • • 

Travel, degrees • • . . . . . . . . . . . . . . . . . . ±60 

Elevons 

Area (total), square feet. • • • • • • • ••• 
Span (2 elevons), feet • • • • • • • • • • • • • 
Chord, percent wing chord • • • • • • • • • • • • 
Movement, degrees 

Up • . . . . . . . 
Down •••••. . . . 

• • 17.20 
• • 15.45 

20 

35 
20 

Operation Hydraulic with electrical emergency 

Vertical Tail 

Area, square feet • 
Height, feet 

Rudder 

Area, square feet 
Span, feet • • • • • 

. . . . . . . . . . 

Travel, degrees • • • • • • • • • • • • • 
Operation . . . . ..•. . •.. 

4.1 
4.3 
±3° 

.Direct 
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23.25' 

~------2~B3' --------.-____________ ~ ______ ~ 
~------- /~42'---------~ 

---t 
14.83' 

Figure 1.- Three-view drawing of x-4 airplane. 

~~-~~--~-------- ----. 
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(a) Side view. 
~ 
A-15116 

\. . 

(b) Three-quarter front view. 
~ 
A-15117 

Figure 2.- The x-4 No. 2 airplane. 
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Figure 8.- Elevon-control-angle variation with normal-force coefficient 
for the longitudinal instability runs. X--4 airplane. 
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Figure 20.- Comparison between dynamic lateral stability of x-4 airplane 
and the criterion for satisfactory characteristics. 
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Figure 22.- Time history of unusual lateral oscillation experienced at 
a pressure altitude of 30,000 feet. x-4 airplane. 
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