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LEADING- AND TRAILING--EDGE FIAPS - FIAPS 

DEFLECTED IN COMBINATION 

By Louis S. Stivers, Jr., and Alexander W. Malick 

SUMMARY 

Aerodynamic characteristics of an unswept wing having an aspect 
ratio of 2.67, a taper ratio of 0.5, and employing full-span, 
25-percent-chord, plain, leading- and trailing-edge flaps have been 
determined from wind-tunnel tests of a semispan model. Sections of the 
wing were 8-percent chord thick from the 25- to the 7~ercent-chord 
points tapering to sharp leading and trailing edges. The data were 
obtained for a range of angles of attack from -30 to 120 and for ranges 
of leading-edge-flap deflection from -200 to 100 and of trailing-edge­
flap deflection from 00 to 600• The Mach numbers ranged from about 0.50 
to 0.95 and from 1.09 to 1.29 with corresponding Reynolds numbers vary­
ing from about 0.94 X 106 to 1.27 X 106 • 

The increments of lift coefficient produced by the combined deflec­
tions of the leading- and trailing-edge flaps were for the most part 
approximately equal to the sum of the increments produced by the corre­
sponding deflections of each flap alone only at the supersonic Mach num­
bers and for the smaller flap deflections at a Mach number of 0.50. 

Because of the large differences between the effects of Mach number 
on the rates of change of hinge-moment coefficient with angle of attack 
for the leading- and trailing-edge flaps, the degree of balance of the 
control forces of one by those of the other, afforded by interlinking 
the flaps, would vary over the ranges of test Mach number. 

In contrast to the results of higher Reynolds number investigations 
of similar low-aspect-ratio wings, the lift-drag ratios of the wing for 
a given trailing-edge-flap deflection were not increased on the whole by 

• deflections of the leading-edge flap. The disagreement was believed to 
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have resulted from separation of the flow over the wing of the present 
investigation due to the effects of the low test Reynolds numbers on the 
particular wing section employed and of the relatively large fla~ing 
gaps. 

INTRODUCTION 

Among the many problems associated with the application of low­
aspect-ratio unswept wings to aircraft designed for flight at supersonic 
Mach numbers are those of increasing the lift coefficients of such wings 
at moderate angles of attack and of providing sufficient control for 
flight in the transonic Mach number range. As a solution to these prob­
lems for wings having sharp leading-edge airfoil sections, it has been 
proposed to use both leading- and trailing-edge control surfaces. The 
results of several investigations of low-aspect-ratio unswept wings hav­
ing various plan forms and section profiles, and employing leading- and 
tl'ailing-edge control surfaces in combination, have been reported in 
references 1 to 4. With the aim of providing additional information 
concerning the effectiveness and hinge-moment characteristics of such 
control surfaces used in combination, an investigation has been made in 
the Ames 1- by 3-1/2-foot high-speed wind tunnel of a semispan model of 
a wing of aspect ratio 2.67 and taper ratio 0.5 equipped with ful l-s pan , 
0.25 chord, plain, leading- and trailing-edge flaps. The aerodynamic 
characteristics of the wing with the leading- and trailing-edge flaps 
deflected separately have been reported in references 5 and 6, respec­
tively. It is the purpose of this report to present the aerodynamic 
characteristics of the wing with the flaps deflected in combination for 
Mach numbers from about 0.50 to 0.95 and from 1.09 to 1.29, with corre­
sponding Reynolds numbers varying from ~bout 0.94 x 106 to 1.27 X 106 • 

NOTATION 

c wing chord in streamwise direction 

c mean aerodynamic chord of wing ( f c
2

d£'j 
f c dyl 

CD drag coefficient 

hinge-moment coefficient of trailing-edge flap, positive when 
moment tends to move trailing edge of flap downward 

( 
trailing-edge-flap hinge moment \ 

2q x moment about hinge line of flap area behind hinge line ) 
• 
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hinge-moment coefficient of leading-edge flap, positive when 
moment tends to move leading edge of flap upward 

3 

/ leading-edge-flap hinge moment ) 
(2q X moment about hinge line of flap area ahead of hinge line 

b 
D 

q 

R 

y 

rate of change of trailing-edge-flap hinge-moment coefficient 
with angle of attack, per degree 

rate of change of leading-edge-flap hinge-moment coefficient 
with angle of attack, per degree 

lift coefficient 

pitching-moment coefficient about lateral axis through quarter­
chord point of mean aerodynamic chord, with mean aerodynamic 
chord as reference length 

lif~ag ratio 

free~tream dynamic pressure 

Reynolds number based on mean aerodynamic chord 

spanwise distance measured from wing root-chord line 

wing angle of attack, degrees 

wing geometric angle of attack, uncorrected for wind-tunnel jet­
boundary interference (at supersonic Mach numbers, equal to ~), 
degrees 

trailing-edge-flap deflection, measured in plane norIlRl to hinge 
line, positive when trailing edge is below chord plane 

leading-edge-flap deflection, measured in plane normal to hinge 
line, positive when leading edge is above chord plane 

DESCRIPTION OF APPARATUS 

The investigation was conducted in the Ames 1- by 3-1/2-foot high­
speed wind tunnel, a single-return closed-throat tunnel vented to the 
atmosphere in the settling chamber. To permit operation at both sub­
sonic and supersonic Mach numbers the tunnel was equipped with a 
flexible-throat assembly vThich is illustrated in figure 1. 
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The semispan model used in the investigation was the same as that 
employed in the investigations reported in references 5 and 6. The model 
represented a complete wing with an aspect ratio of 2.67, a taper ratio 
of 0. 5 , and an unEwept 50-percent-chord line. The wing model ~as fitted 
wi th full-span, 25-percent-chord, plain, leading- and trailing-€dge 
f laps, the hinge axes of which were coincident ~ith the 25- and the 
75-percent-chord lines of the wing. Sections of the wing in the stream­
wise direction were 8-percent chord thick from the 25- to the 75-percent­
chord points and tapered to sharp leading and trailing edges. The 
leading- and trailing-€dge angles thus formed were 18.20. The gaps 
between the flaps and the ~ing panel ~ere approximately 1/32 inch. Plan 
and section views of the wing model together with the principal dimen­
s ions are shown in figure 2. 

The model was mounted on an 18-inch-diameter balance plate in the 
tunnel sidewall, as shown in the photograph of figure 3. Approximately 
1/32-inch gaps were maintained between the roots of the undeflected 
f laps and the balance plate. The face of the balance plate exposed to 
the tunnel air stream was flush with the tunnel wall, and an approxi­
mately 1/16-inch annular gap existed between the periphery of the plate 
and the tunnel wall. Flow through this gap from the outs ide atmosphere 
was prevented by an external pressure-tight housing. The force reactions 
on the wing and the hinge moments of the flaps were measured by electri­
cal resistance strain gages. 

TESTS 

Lift, drag, and pitching moments of the wing and hinge moments of 
the leading- and trailing-edge flaps were determined as a function of 
Mach number for constant geometric angles of attack from -30 to 12° and 
for the following combinations of leading- and trailing-€dge-flap deflec­
tions, with the flap-wing gaps unsealed: 

On, degrees Of, degrees 
5 10 

10 20 
-5 10 

-10 20 
-20 60 

In addition, hinge moments of the undeflected leading-edge flap were 
measured for trailing-€dge-flap deflections of -10°, 10°, 20°, 40°, and 
60°; binge moments of the undeflected trailing-edge flap were measured 
for leading-€dge-flap deflections of 5°, 10°, -5°, _10°, and -20°. 
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The test Mach numbers ranged from about 0.50 to 0.95 and from 1.09 
to 1.29 for the wing at the smaller angles of attack with the smaller 
flap deflections. No tests of the wing with flaps deflected could be 
made at Mach numbers between 0.95 and 1.09 because of choking conditions 
in the tunnel test section. The Reynolds numbers were based on the mean 
aerodynamic chord of the wing and varied from about 0. 94 X 106 at a Mach 
number of 0.50 to a maximum of about 1. 27 X 106 at a Mach number of 1.15 , 
as shown in figure 4. 

CORRECTIONS TO ~TA 

Wind-tunnel-wall interference corrections to the angles of attack 
and to the drag coefficients of the wing at subsonic Mach numbers were 
determined by the methods of reference 7. The following corrections, 
which are indicated in reference 8 to be independent of Mach number, 
were added: 

~ (deg) = 0.51 CL 

All the subsonic Mach number data have been corrected for model and wake 
blockage by the methods of reference 9. These blockage corrections vary 
with the measured drag coefficient but were generally small, never 
exceeding a value of 3 percent even for the highest drag coefficients. 

Tare corrections determined with the wing held independently of the 
balance plate ba. ve been subtracted from the data at all Mach numbers. 
These corrections were found to be practically independent of angle of 
attack or flap deflection and are given in coefficient form as follows: 

M Lift Drag Pitching moment 
0.50 0.018 0.031 0.006 

.70 .015 .031 .004 

.80 .014 .031 .003 

.90 .013 .031 .001 

.95 .017 .033 -.003 
1.09 .001 .020 0 
1.20 .005 .025 -.002 
1.29 .003 .021 -.001 

The pitching-moment data were obtained from the lift and drag reac­
tions and are subject to the combined errors of the lift and drag meas­
urements. Consequently, in the present report, the pitching-moment 
coefficients are regarded as being of qualitative rather than quantita­
tive value. 
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The stream inclination at the model position was found to be suffi­
ciently small at all the test Mach numbers that no strea~ngle correc­
tions to the angles of attack were necessary. Tunnel-wall boundary­
layer measurements made at Mach numbers from 0.50 to 1.20 with the tun­
nel empty have indicated the existence of a turbulent boundary layer with 
a displacement thickness of about 0.12 inch at each Mach number. The 
velocity in the boundary layer at each Mach number varied approximately 
as the 1/10 power of the distance from the wall. The effect of possible 
drainage of low-energy air from the tunnel-wall boundary layer by the 
low induced pressures on the wing is unknown. It is felt that the pos­
sible flow of air around the gaps at the roots of the flaps and through 
the gap between the balance plate and. the tunnel wall would have had a 
negligible effect on the measured data. 

RESULTS AND DISCUSSION 

The basic force and moment data for the wing with undeflected flaps, 
gaps unsealed and sealed, are reproduced in graphical form from refer­
ences 5 and 6. The corresponding data for the wing with the leading­
and. traili ng-edge flaps deflected in combination are presented in 
tables I to VII. 

Lift Characteristics 

The effects of Mach number on the lift coefficient of the wing with 
flaps undeflected for various geometric angles of attack are shown in 
figure 5, which bas been reproduced from reference 6. Lift coefficient 
as a function of angle of attack for the various combinations of flap 
deflections is presented in figure 6. Corresponding lift-coefficient 
data from references 5 and. 6 for separate deflections of the leading­
and traili ng-edge flaps (gaps unsealed) are reproduced in figure 7. From 
a comparison of figures 6 and 7 it is observed that at the supersonic 
Mach numbers the increments of lift coefficient produced by the combined 
deflections' of the flaps are for the most part approximately equal to 
the sum of the increments which resulted from the separate deflections. 
This result is also evident at a Mach number of 0.50 for the smaller flap 
deflections, but not at the higher subsonic Mach numbers, where, for the 
wing of the present investigation, the effects of boundary-layer separa­
tion would be expected to be severe. 

It is noted further from a comparison of figures 6 and. 7 that, 
except for angles of attack greater than about 60 at the subsonic Mach 
numbers, the lift coefficient of the wing for a given trailing-edge-flap 
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deflection is increased by a positive deflection (upward) of the leading­
edge flap. A negative deflection of the leading-edge flap for a given 
trailing-edge-flap deflection reduced the lift coefficient of the wing 
at each angle of attack. This latter result is also apparent in the 
higher Reynolds number data (at low subsonic Mach numbers) of references 
1 and 2 for comparable wings at angles of attack up to about 100

• 

Increments of lift coefficient due to separate deflections of the 
leading- and trailing-edge flaps have been calculated for a Mach number 
of 0.50 using thin airfoil theory modified for the effects of aspect 
ratio and compressibility (see references 10 and 11), and also for a 
Mach number of 1.29 using linear theory. The increments for 100 deflec­
tions of the flaps are compared with the corresponding experimental 
values (gaps unsealed) in the following table: 

Increments of lift coefficient 

Mach Leading-edge flap Trailing-edge flap 

number Calculated Experimental Calculated Experimental 

0.50 0.03 0.06 0.33 0.11 

1.29 .13 .11 .21 .09 

Considerable disagreement is observed between the calculated and experi­
mental lift-coefficient increments for the trailing-edge flap. It is 
believed that the differences were caused by separation of the flow over 
the flap and that this separation resulted from the effects of the 
unsealed gaps and of the low test Reynolds numbers on the particular 
wing section employed. 

Hinge-Mament Characteristics 

The effects of Mach number on the hinge-moment coefficients of the 
undeflected leading- and trailing-edge flaps with geometric angle of 
attack as a parameter are shown in figures 8 and 9. These figures have 
been reproduced from references 5 and 6. 

Hinge-moment coefficients of the leading- and trailing-edge flaps 
as a function of angle of attack are presented in figure 10 for the var­
ious combinations of flap deflections. It may be seen in this figure 
that the variations with angle of attack of the leading-edge-flap hinge­
moment coefficient are very marked at each Mach number and are much 
greater than those for the trailing-edge flap. 
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The variations of hinge-moment coefficient with angle of attack for 
separate deflections of the leading- and trailing-edge flaps are repro­
duced in figure 11 from references 5 and 6. A comparison of figures 10 
and 11 reveals that at both subsonic and supersonic Mach numbers the 
hinge-moment coefficients of the leading-edge flap are not greatly 
affected by a deflection of the trailing-edge flap. Except for the 600 

deflection, the hinge-moment coefficients of the trailing-edge flap are 
markedly decreased when the flap is deflected in combination with the 
leading-edge flap. 

The effects of trailing-edge-flap deflection on the hinge-moment 
coefficients of the undeflected leading-edge flap, and the effects of 
leading-edge-flap deflection on the hinge-moment coefficients of the 
undeflected trailing-edge flap are presented in figures 12 and 13, respec­
tively, for various geometric angles of attack. 

The effects of Mach number on the rates of change of hinge-moment 
coefficient with angle of attack for the leading- and trailing-edge flaps 
are shown in figure 14 for an angle of attack of 00 • It may be seen in 
this figure that the effects of Mach number on dChn!d~ and dChf/d~ 
are markedly different. As a consequence, the degree of balance of the 
hinge moments of one flap by those of the other, accomplished by means 
Gf a linkage between the flaps, would vary over the ranges of test Mach 
number. In the investigation reported in reference 3 for a Mach number 
of 1.9 it was also found that such a procedure for effectively reducing 
the hinge moments would be limited. For purposes of comparison, the 
effects of Mach number on the rates 0:' change of hinge-moment coeffi­
cient with angle of attack for separate deflections of the leading- and 
trailing-edge flaps have been reproduced in figure 15 from references 
5 and 6. 

Drag Characteristics 

The effect of Mach number on the drag coefficients of the wing with 
undeflected flaps for various geometric angles of attack is shown in 
figure 16, which has been reproduced from reference 6. The vari~tion of 
drag coefficient with lift coefficient for the various combinations of 
leading- and trailing-edge-flap deflections are presented in figure 17. 
Lift-drag ratio as a function of lift coefficient is shown in figure 18 
for the various combinations of flap deflections (gaps unsealed). It is 
evident in this figure that the combined deflections of the flaps are 
effective in improving the lift-drag ratios of the wing only for the 
higher lift coefficients. A comparison of these lift-drag ratios with 
those provided by deflections of the trailing-edge flap alone (refer­
ence 6) indicates that the lift-drag ratio of the wing for a given 
trailing-edge-flap deflection is generally not increased by deflecti ons 
of the leading-edge flap. (See also reference 5) . This result, however, 
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is at variance with the results of investigations which were made at low 
subsonic Mach numbers and at Reynolds numbers from about 3 X 10 6 to 
8 X 106 , and reported in references 1 and 2. The disagreement is due 
principally to the relatively large drag-coefficient increments of the 
present investigation which resulted from deflections of the leading­
edge flap. The large increments are believed to have resulted from sep­
aration of the flow due to the low Reynolds numbers and the particular 
wing section employed, as well as the relatively large flap-wing gaps. 

Pitching-Moment Characteristics 

The effect of Mach number on the pitching-moment coefficients of 
the wing with undeflected flaps for various geometric angles of attack 
is exhibited in figure 19, which has been reproduced from reference 6. 

Pitching-moment coefficient as a function of lift coefficient is 
presented in figure 20 for the various combinations of flap deflections . 
Large variations in the location of the center of pressure for each co~ 
bination of flap deflections are indicated in this figure. 

CONCLUSIONS 

An investigation of a semispan model of an unswept, tapered wing 
of aspect ratio 2.67 employing both leading- and trailing-edge flaps 
and having sharp leading-edge airfoil sections with a 0.08 thickness­
chord ratio bas been made at Mach numbers from about 0.50 to 0. 95 ~nd 
from 1.09 to 1.29 with corresponding Reynolds numbers varying from about 
0.94 X loS to 1.27 X 106 . From the results of this investigation the 
following have been concluded: 

1. At the supersonic Mach numbers the increments of lift coeffi­
cient provided by the various combinations of leading- and trailing­
edge-flap deflections were, in general, approximately equal to the sum 
of the increments produced by the corresponding deflections of each flap 
alone. At the subsonic Mach numbers this result was apparent only for 
the smaller flap deflections at a Mach number of 0.50. 

2. Because of the large differences between the effects of Mach 
number on the rates of change of hinge-moment coefficient with angle of 
attack for the leading- and trailing-edge flaps, the degree of balance 
of the control forces of one by those of the other, effected by inter­
linking the flaps, would vary over the ranges of test Mach number. 
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3. In contrast to the results of higher Reynolds number investi~ 
tions of similar low-aspect-ratio wings, the lift-drag ratios of the 
wing for a given trailing-edge-flap deflection were not increased for 
the most part by deflections of the leading-edge flap. The disagreement 
was believed to have resulted from separation of the flow over the wing 
of the present investigation due to the effects of the low test Reynolds 
numbers on the particular wing section employed and of the relatively 
large flap--'Wing gaps. 

Ames Aeronautical laboratory, 
National Advisory Committee for Aeronautics, 

~offett Field, Calif. 
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M a, CL CD Cm Chn Chr 

0.51 -3.0 0.008 0.029 -0.025 0.075 -0.072 
.72 -3.0 -.038 .041 -.005 .075 -.064 
.82 -3.0 -.oBo .046 .006 .076 -.049 
.88 -3.1 -.118 .053 .015 .087 -.040 
.91 -3.1 -.166 .059 .038 .090 -.023 
.95 -3.1 -.127 - -- .031 .087 -.020 

1.09 -3.0 -.069 .087 .003 .097 -.oBo 
1.20 -3.0 -.033 .093 .015 .163 -.096 
1.29 -3.0 -.004 .080 .002 .051 -.095 

.51 .1 .126 .038 -.030 .277 -.059 

.72 .1 .118 .047 -.009 .323 -.063 

.82 .1 .091 .045 -.005 .315 -.058 

.91 0 .057 .050 .020 .340 -.052 

.95 0 .052 .068 .014 .343 -.039 
1.09 0 .100 .087 -.015 .306 -.088 
1.20 0 .130 .090 -.011 .314 -.138 
1.29 0 .143 .079 -.023 .192 -.163 

.51 3.1 .281 .049 -.032 .541 -.073 

.72 3.2 .300 .048 -.010 .549 -.076 

.82 3.1 .283 .051 -.006 .602 -.072 

.88 3.2 .296 .053 -.004 .574 -.071 
1.09 3.0 .300 .088 -.028 .440 -.127 
1.20 3.0 .302 .100 -.021 .402 -.163 
1.29 3.0 .304 .096 -.036 .269 -.206 

.51 6.2 .439 .091 -.082 .381 -.078 

.72 6.3 .490 .088 -.067 .575 -.080 

.82 6.3 .509 .095 -.027 .668 -.081 

.88 6.3 .540 .093 -.024 .746 -.082 
1.09 6.0 .514 .145 -.059 .572 -.191 
1.20 6.0 .449 .132 -.047 .482 -.192 
1.29 6.0 .438 .128 -.063 .333 -.234 

.51 9.3 .479 .152 -.070 .530 -.094 

.72 9.3 .520 .145 -.055 .548 -.101 

.82 9.3 .561 .151 -.046 .577 -.115 

.88 9.3 .572 .158 -.058 .589 -.134 

.92 9.3 .659 .181 -.062 .807 -.153 
1.20 9.0 .607 .179 -.077 .553 -.273 
1.29 9.0 .576 .176 -.084 .400 -.280 

.51 12.3 .530 .211 -.074 .530 -.106 

.72 12.3 .520 .203 -.055 .506 -.117 

.82 12.3 .585 .215 -.066 .543 -.145 

.88 12.3 .634 .230 -.067 .559 -.181 

.92 12.4 .756 .287 -.121 .646 -.258 
1.20 12.0 .754 .247 -.118 .570 -.289 
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M a. CL en Cm Chn Chf 

0.51 -3.0 0.044 0.051 0.027 0.335 -0.099 
.72 -3.0 .031 .053 .052 .395 -.085 
.82 -3.0 .015 .053 .066 .422 -.074 
.88 -3.0 -.008 .056 .083 .457 -.057 
.91 -3.0 -.024 .064 .083 .478 -.068 
.95 -3.0 -.010 .078 .088 .468 -.120 

1.09 -3.0 .060 .110 .003 - -- - --
1.20 -3.0 .080 - -- .001 .322 -.209 
l.29 -3.0 .138 .115 -.017 .308 -.259 

.51 .1 .245 .064 -.030 .267 -.131 

.72 .1 .261 .073 -.021 .472 -.135 

.82 .1 .248 .075 -.010 .570 -.137 

.88 .1 .235 .080 .015 .683 -.126 

.92 .1 .241 .089 .027 .674 -.140 
l.09 0 .291 .132 -.032 .546 -.240 
1.20 0 .268 .153 -.006 .406 -.272 
1.29 0 .296 .127 -.042 .418 -.322 

.51 3.2 .487 .096 -.098 .429 -.116 

.72 3.3 .516 .115 -.084 .593 -.158 

.83 3.3 .527 .122 -.062 .653 -.171 

.88 3.3 .513 .128 -.055 .794 -.181 
1.09 3.0 .534 .181 -.084 .667 -.321 
l.20 3.0 .436 .190 -.038 .485 -.355 
1.29 3.0 .440 .153 -.085 .442 -.407 

.52 6.3 .590 .167 -.131 .592 -.166 

.71 6.3 .653 .176 -.112 .659 -.187 

.83 6.3 .655 .187 -.107 .662 -.209 
l.20 6.0 .613 .241 -.075 .653 -.420 
l.29 6.0 .585 .217 -.111 .510 -.469 

.51 9.3 .595 .229 -.124 .653 -.189 

.72 9.4 .680 .236 -.115 .621 -.210 

.82 9.4 .690 .251 -.121 .633 -.241 

.90 9.4 .745 .308 -.135 .994 -.305 

.93 9.5 .890 .375 -.161 .886 -.239 
1.20 9.0 .790 .263 -.149 .630 -.436 
l.29 9.0 .704 .278 -.119 .560 -.496 

.52 12.3 .608 .271 -.137 .462 -.221 

.72 12.4 .719 .292 -.138 .614 -.226 

.83 12.4 .803 .326 -.135 .625 -.311 

.89 12.5 .887 .368 -.198 .680 -.389 
1.20 12.0 .866 .332 -.192 .563 -.450 
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M CL CL CD Cm ~n Chr 

0.51 -3.0 ~.035 0.043 ~.061 ~.468 ~.052 
.71- -3.0 -.068 .043 -.060 -.531 -.057 
.82 -3.0 -.086 .044 -.063 -.563 -.058 
.87 -3.0 -.106 .044 -.063 -.575 -.057 
.91 -3.1 -.112 .045 -.058 -.583 -.055 
.94 -3.0 -.088 .048 -. 132 -.563 -.056 

1.09 -3.0 -.101 .078 -.072 -.468 -.127 
1.20 -3.0 -.146 .088 -.063 -.474 -.113 
1.29 -3.0 -.095 .081 -.070 -.375 -.104 

.51 .1 .094 .041 -.069 -.199 -.158 

.71- .1 .091 .041 -.074 -.248 -.062 

.82 0 .085 .042 -.073 -.274 -.064 

.87 0 .083 .043 -.070 -.303 -.060 

.90 0 .086 .043 -.072 -.302 -.059 

.93 0 .075 .046 .075 -.345 -.061 
1.09 0 .087 .088 -.104 -.294 -.158 
1.20 0 .046 .076 -.112 -.401 -.168 
1.29 0 .058 .074 -.092 -.340 -.172 

.51 3.1 .257 .053 -.076 .043 -.071 

.71 3.1 .258 .054 -.077 .029 -.070 

.82 3.1 .255 .054 -.070 .016 -.071-

.88 3.1 .280 .057 -.075 -.005 -.070 
91 3.1 .285 062 -.081 -.021 -.077 

.94 3.1 .273 .067 1 -.087 -.031 -.091 
1.09 3.0 .278 .075 1 -.127 -.098 -.183 
1.20 3.0 .211 .0~8 -.115 -.220 -.201 
1.29 3.0 .210 .088 -.107 -.226 -.220 

.51 6.2 .385 .081 -.071- .245 -.077 

.71- 6.2 .388 .081 -.067 .220 -.081 

.82 6.2 .385 .084 -.066 .183 -.084 

.88 6.2 .420 .090 -.074 .151 -.088 

.91 6.2 .440 .099 -.081 .144 -.104 

.94 6.2 .450 .112 -.098 .123 -.139 
1.09 6.0 .440 .138 -.133 .081 -.219 
1.20 6.0 .369 .115 -.134 -.07~ -.241 
1.29 6.0 .351 .112 -.113 -.107 -.259 

.51 9.2 .466 .116 -.072 .389 -.097 

.72 9.2 .469 .118 -.061 .368 -.095 

.82 9.3 .489 .121 -.060 .374 -.105 

.88 9.3 .544 .122 -.062 . 357 -.115 

.92 9.3 . 608 .155 -.090 .338 -.158 

.95 9.3 .624 .187 -.137 .313 -.248 
1.20 9.0 .507 .148 -.119 .078 -.265 
1.29 9.0 .497 .147 -.126 .058 -.293 

. 51 12.3 .512 .171- -.075 .446 -.126 

.72 12.3 .508 .174 -.069 .398 -.121 

.82 12.3 .541 .180 -.068 .408 -.137 

.88 12.3 .601 .191 -.072 .435 -.157 

.92 12.4 .709 .212 -.108 .498 -.196 
1.20 12.0 .670 .191 -.144 .214 -.289 
1.29 12.0 .646 .199 -.139 .161 -.326 
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M a, CL Cn Cm Chu Chf 

0.51 -3.0 0.004 0.030 -0.083 -0.658 -0.118 
.72 -3.0 -.025 .047 -.073 -.645 -.118 
.82 -3.0 -.052 .055 -.070 -.658 -.122 

1.09 -3.0 -.016 .138 -.176 -.760 -.271-
1.20 -3.0 -.065 --- -.146 -.648 -.273 
1.29 -3.0 -.053 .134 -.160 -.549 -.286 

.51 .1 -.175 .082 -.175 -.414 -.102 

.72 .1 -.176 .087 -.176 -.436 -.179 

.82 .1 -.182 .090 -.182 -.495 -.197 

.88 .1 -.196 .105 -.196 -.611 -.223 
1.09 0 .214 .124 -.206 -.666 -.301 
1.20 0 .118 .131 -.193 -.677 -.367 
1.29 0 .145 .129 -.167 -.540 -.375 

.51 3.2 .331 .091 -.140 -.212 -.156 

.72 3.2 .318 .097 -.135 -.304 -.166 

.82 3.2 .329 .105 -.147 -.363 -.187 
1.09 3.0 .407 .142 -.227 -.502 -.334 
1.20 3.0 .316 .148 -.227 -.604 -.395 
1.29 3.0 .277 .146 -.234 -.465 -.414 

.51 6.2 .387 .132 -.143 -.031 -.181 

.71 6.2 .410 .141 -.151 -.077 -.190 

.82 6.2 .441 .149 -.169 -.108 -.210 
1.20 6.0 .489 .174 -.195 -.385 -.407 
1.29 6.0 .440 .179 -.247 -.311 -.425 

.51 9.2 .444 .162 -.133 .138 -.183 

.72 9.2 .467 .176 -.137 .082 -.196 

.82 9.3 .502 .185 -.198 .052 -.224 
1.20 9.0 .618 .218 -.197 -.196 -.431 
1.29 9.0 .579 .222 -.225 -.119 -.447 

.51 12.3 .492 .203 -.141 .285 -.190 

.72 12.3 .521 .216 -.142 .229 -.203 

.82 12.3 .579 .229 -.157 .203 -.238 
1.20 12.0 .723 .280 -.209 -.017 -.452 
1.29 12.0 .700 .277 -.209 .042 -.477 
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o 0 
TABLE V.- BASIC AERODYNAMIC DATA; on' -20 and of, 60 

M a, CL CD em ~n ~f 

0.51 -2.9 0.212 0.204 -D.173 ~.597 -D. 358 
.72 -2.9 .190 .226 -.173 -.666 -.374 
.82 -2·9 .153 .291 -.168 -.723 -.376 
.89 -2.9 .138 .277 -.173 -.764 -.412 
.93 ~.9 .138 .354 -.191 -.824 -.525 

.51 .3 .479 .238 -.207 -.536 -.444 

.72 .2 .428 .252 -.208 -.537 -.454 

.83 .2 .393 .269 -.200 -.571 -.466 

.89 .2 .375 .299 -.212 -.597 -.501 

.91 .2 .377 .386 -.237 -.611 -.636 

.51 3.4 .701 .287 -.256 -.540 -.503 

.72 3.3 .662 .302 -.257 -.543 -.527 

.83 3.3 .607 .315 -.251 -.545 -.534 

.89 3.3 .626 .340 -.264 -.579 -.583 

.92 3.3 .630 .4)n -.288 -.597 -.715 

.51 6.4 .713 • 3J~2 -.303 -.458 -.522 

.72 6.4 .732 .362 -.315 -.459 -.555 

.83 6.4 .742 .383 -.321 -.476 -.584 
.89 6.4 .836 .455 -.361 -.524 -.692 
·91 6.4 .890 .530 -.383 -.537 -.778 

.52 9.4 .701 .376 -.243 -.322 -.534 

.72 9.4 .752 .416 -.259 -.344 -.581 

.83 9.4 .775 .436 -.279 -.382 -.615 

.90 9.5 .973 .622 -.347 -.449 -.830 

.51 12.4 .748 .416 -.222 -.201 -.545 

.72 l2.4 .791 .457 -.244 -.174 -.586 

.83 12.4 .831 .498 -.268 -.216 -.634 

.89 12.5 1.039 .682 -.374 -.287 -.816 
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TABLE VI.- BASIC HINGE-MOMENT COEFFICIENTS OF UNDE]'LECTED LEADING­
EDGE FLAP FOR VARIOUS DEFLECTIONS OF TRAILING-EDGE FLAP 

5:f = - 10° 5:f = 10° 5:f - 20° 

M (L Chn M (L Chn M (L Chn 

0.51 - 3.1 -0.141 0 .51 - 3 ·0 -0.094 0 .51 - 3·0 -0.063 
.72 - 3·1 -.156 . 72 - 3.0 -.118 .72 - 3·0 -.086 
.82 - 3.1 -.158 .81 - 3·0 -.144 .82 - 3 ·0 -.120 
.86 - 3.2 -.140 .87 - 3.l -.140 .88 - 3·0 -.149 
.91 - 3 .2 -.135 ·91 - 3.l -.131 · 91 - 3.0 -.165 
.93 - 3.1 -.123 .94 - 3.1 -.117 .94 - 3.0 -.173 
. 98 - 3·2 -.114 1.09 - 3·0 -.151 1.09 - 3·0 -. 154 

1.09 - 3·0 -. 134 1.20 - 3.0 -.214 1.20 - 3·0 -. 236 
1.20 - 3.0 - .164 1.29 - 3.0 -.158 1.29 - 3.0 -.230 
1.29 - 3.0 - . 109 

.51 -.1 .025 .51 .l . 100 .51 .1 .098 

.72 -.1 .024 .72 .l .098 .72 .1 .107 

.81 0 .029 . 81 0 .092 .82 .1 .112 

.86 0 .028 . 88 0 .093 .88 .1 .101 
· 91 0 .034 .91 0 .092 ·91 .1 .094 
.94 0 .023 .94 0 .088 .94 .1 .087 
.98 -.1 .036 1.09 0 .110 1.09 0 .043 

1.09 0 .036 }.20 0 -.064 1.20 0 -.090 
1.20 0 0 1.29 0 -.050 1.29 0 -.113 
1.29 0 .026 

.51 3.0 .191 .51 3.1 . 324 .51 3 .2 .345 

.72 3·0 . 229 . 72 3 ·1 · 375 .72 3·2 · 375 

.81 3·0 .226 .81 3.1 . 366 . 82 3.2 .348 

.86 3.1 .224 .88 3 .2 . 355 .88 3.2 . 326 

.91 3. 1 .216 . 90 3.2 .342 .91 3.2 . 310 

. 96 3·1 . 201 .94 3·1 · 327 . 95 3·3 .293 
1.09 3 ·0 . 216 1.09 3·0 .198 1.09 3·0 .213 
.1.20 3 ·0 .115 1.20 3·0 .074 1.20 3·0 . 057 
1.29 3.0 .139 1.29 3·0 .096 1.29 3·0 .029 

.51 6 .1 . 326 .51 6 .2 .278 .51 6 .3 . 387 

.72 6.1 . 344 . 72 6 .2 · 350 . 72 6.3 .423 

.82 6.2 .361 . 81 6 .2 .369 . 83 6. 3 .520 

.88 6 .2 . 361 . 88 6 ·3 . 357 .88 6.4 .486 

. 92 6 .2 · 339 · 91 6 .3 .348 . 92 6 .4 .450 
· 97 6 .2 . 318 · 95 6 .3 . 306 .95 6 .4 .428 

1.09 6 .0 . 394 1.09 6 .0 . 380 1.20 6.0 .205 
1.20 6 .0 .263 1.20 6.0 .220 1.29 6.0 .168 
1.29 6 .0 . 242 1. 29 6. 0 .241 

.51 9.1 .478 .52 9·3 .262 .51 9 .3 . 380 

.72 9 .2 .542 . 72 9 ·3 . 357 . 73 9·3 ·399 

.82 9 .2 .596 .82 9 ·3 .420 .81 9.4 .436 

.88 9.3 .661 .88 9.3 .521 .88 9.4 .512 

.91 9.3 .619 .91 9·3 .488 · 93 9 ·5 .557 

.95 9.3 .595 .94 9.4 .457 .94 9·5 .537 
1.20 9.0 .342 .96 9 .4 .444 1.20 9.0 ·313 
1.29 9.0 . 318 1.20 9.0 .312 1.29 9.0 .246 

1.29 9.0 . 313 
.51 12.1 .343 .51 12.3 .489 .53 12. 3 . 388 
.72 12.2 . 341 .72 12.3 .460 .72 12.4 . 389 
.82 12.2 .400 . 82 12·3 .484 .82 12 .4 .413 
.89 12.2 .423 .89 12· 3 .499 .88 12 .4 .449 
. 92 12.2 .464 .92 12.4 .550 .92 12.5 .483 

1.20 12.0 .413 1.20 12 .0 .380 1.20 12.0 · 372 
1.29 12.0 . 374 1. 29 12 .0 . 361 1.29 12.0 .298 

-

17 
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TABLE VI.- CONCLUDED 

Of = 40° Of = 60° 

M CL Chn M CL Chn 

0.51 -2.8 ~.070 0.51 -2.7 0 
.72 -2.8 -.074 .72 -2.8 0 
.82 -2.8 -.094 .82 -2.8 -.010 
.88 -2.9 -.113 .89 -2.8 -.033 

.51 ·3 .126 .51 .3 .164 

.72 .3 .112 .72 .3 .186 

.82 -3 .099 .82 ·3 .160 

.88 .3 .083 

.92 .3 .062 

.51 3.3 .312 .51 3.4 .333 

.72 3.3 ·332 .72 3.4 .338 

.83 3.4 .303 .82 3.4 ·333 

.89 3.4 .269 .88 3.4 .314 
·93 3.4 .244 

.51 6.4 .395 .51 6.5 .471 

.72 6.4 .393 .72 6.5 .448 

.83 6.5 .426 .82 6.5 .425 

.89 6.5 .475 .89 6.5 .407 

.93 6.5 .447 

.51 9·5 .477 .51 9·5 .543 

.72 9·5 .465 .72 9·5 .537 

.82 9.5 .451 .83 9·5 .493 

.89 9·5 .447 ·90 9.6 .473 

.51 12.5 .495 .51 12.5 .. 594 

.72 12.5 .491 .72 12.5 .532 

.83 12.5 .519 .83 12.5 .556 
·90 12.6 .507 
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TABLE VII. - BASIC HINGE-MOMENT COEFFICIENTS OF UNDEFLECTED TRAILING­
EDGE FIAP FOR VARIOUS DEFLECTIONS OF LEADING-EDGE FIAP 

On = 5° 8n = 10° ~ = _5° 

M ex. Chf M ex. Chf M ex. Chf 

0. 51 - 3.1 0.006 0.51 - 3.0 -0.008 0· 51 - 3.1 -0.014 
·72 - 3·0 -.001 ·72 -3.0 -.OoB ·72 - 3.1 -.018 
.82 -3·0 -.Oll .82 -2 .9 -.0l2 .82 - 3·1 -.017 
.88 - 3·1 -.034 1.09 -3.0 -.047 .87 -3·1 -.035 
· 91 - 3·0 -.076 1.20 - 3.0 .019 . 91 - 3·1 -.039 
. 94 -3·0 -.085 1.29 -3.0 .043 . 95 -3.1 -.071 

1.09 - 3·0 0 1.09 - 3.0 -.021 
l.20 - 3· 0 . 016 .51 0 -. 007 l.20 - 3 ·0 . 015 
1.29 -3·0 .036 · 72 0 -.Oll 1.29 - 3 ·0 . 025 

.82 .1 -.012 
.51 0 -. 012 1.09 0 -.053 . 51 0 . 020 
. 72 0 -.004 l. 20 0 -. 006 . 72 0 . 031 
.82 0 -.005 1.29 0 . 007 .82 0 .044 
.87 0 -.012 .88 0 .034 
. 91 0 -.035 .51 3·1 0 .91 0 .046 
. 95 0 -. 068 · 72 3.1 .001 . 94 0 . 086 

l.09 0 -.005 .82 3.1 . 002 1.09 0 .004 
1.20 0 -.009 1.09 3 .0 -. 037 1.20 0 -.007 
l.29 0 .005 1.20 3.0 -. 014 l.29 0 -.001 

1.29 3.0 -.022 
.51 3.1 .003 . 51 3·0 -.012 
·72 3.1 .002 . 51 6.2 .004 . 72 3·0 -.008 
.82 3· 1 .002 ·72 6. 2 .005 .B2 3·0 .007 
.B7 3·1 -.004 .B2 6. 2 .0l6 .88 3·1 -.003 
. 91 3 ·1 -.006 1.20 6 .0 -.004 . 91 3·1 .003 
.95 3.1 -.015 1.29 6.0 -.oBl . 94 3·1 .017 

l.09 3·0 -.004 l. 09 3·0 .033 
1.20 3. 0 -.009 . 51 9.2 -.009 1.20 3.0 -.022 
1.29 3·0 -.023 ·72 9.2 -.001 1.29 3. 0 -.036 

.B3 9.1 .049 
. 51 6.2 .002 l.20 9.0 -.005 . 51 6 .1 -.olB 
. 72 6.2 .005 1.29 9.0 -.125 ·71 6 .1 -.001 
.83 6.2 .004 .Bl 6.1 .015 
.B9 6. 2 .017 . 51 12. 2 -. 020 .88 6.1 .082 
. 91 6.2 .022 .72 12.2 -.006 . 90 6.1 .082 
. 95 6.2 .045 .B2 12.2 . 065 . 95 6.1 .054 

1.09 6.0 .030 1.29 12.0 -rl 77 . 96 6 .2 •013 
1.20 6.0 -.013 1.09 6 .0 .026 
1.29 6.0 -.058 1.20 6.0 -.044 

1.29 6.0 -.074 
·51 9.2 .002 
.72 9.2 .006 . 51 9.2 0 
.B2 9.2 .042 .72 9.2 .006 
.88 9.2 .075 . 82 9.1 .044 
. 91 9. 3 .074 .88 9.1 .105 
. 95 9· 3 .033 .92 9.2 .090 

1.20 9.0 -.020 . 95 9. 2 . 021 
1.29 9.0 -.089 1.20 9.0 -.045 

1.29 9.0 -.090 

1.20 12.0 -.033 1.20 12.0 -.044 
1.29 12.0 -.ll6 1.29 12.0 -. 107 

19 
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TABLE VII.- CONCLUDED. 

5n = -10 ° 5n = -20° 

M ex, Chf 
M ex, Chf 

0.51 -3.1 0.005 0·51 -3. 1 -0.025 
·72 -3·1 .002 ·72 -3·1 -.016 
.82 -3·1 .002 .82 -3.1 -. 013 

1.09 -3·0 .021 .87 -3.1 -.013 
1.20 -3.0 .010 ·90 -3·1 -.016 
1.29 -3. 0 .011 .94 -3·2 -.084 

.51 0 .006 .51 -.1 -.027 
·72 0 .009 .71 -.1 -.016 
.82 .1 .014 .82 -.1 -.013 

1.09 0 .024 .87 -.1 -.016 
1.20 0 .003 .91 -.1 -.006 
1.29 0 .005 .94 -.1 .018 

.51 3.0 .010 ·51 3·0 .005 
·72 3.0 .015 ·72 3·0 .009 
.82 3.0 .033 .82 2.9 .027 

1.09 3.0 .024 .88 2.9 .040 
1.20 3.0 -.018 .91 2·9 .066 
1.29 3·0 -.036 .95 2.9 .073 

·51 6.1 -.006 .51 6.1 -.025 
·72 6.1 .001 ·72 6.0 -. 017 
.82 6.0 .042 .82 6.0 -.013 

1.09 6.0 .032 .88 6.0 .007 
1.20 6.0 -.030 .91 6.0 •017 
1.29 6.0 -.069 ·95 6.1 -.008 

.51 9.1 -.028 .51 9.1 -.047 

.72 9·1 -.012 .71 9.1 -.025 

.82 9.1 -.071 .82 9.0 .009 
1.20 9.0 -.048 .87 9.0 .062 
1.29 9.0 -.097 .91 9.0 .048 

·95 9.1 -.011 
.51 12.1 -.043 
·72 12.1 -.023 .51 12.1 -.051 
.82 12.1 -.016 .71 12.1 -.024 

1.20 12.0 -.050 .82 12.1 .048 
1.29 12.0 -.124 .88 12.1 .065 

·90 12.1 .044 
.94 12.2 -.029 
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Location of 
hinge-moment 
strain-gages ___ 

25 percent 
chord lines 

NACA RM A50K27b 

~oo ----------~ 

Section at c 

All dimensions 
in inches 

Note: Leading- and 
trailing-edge radii' 
are about 0. 002. 

Figure 2. - Sketch of the semispan wing model with leading- and 
trailing-edge flaps. 
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Figure 3.- Photograph of the model, with the leading- and trailing­
edge flaps deflected, mounted on the semispan balance in the Ames 
1- by 3-1/2-foot high-speed wind tunnel. 
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