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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

AVERAGE OUTSIDE-SURFACE HEAT-TRANSFER COEFFICIENTS
AND VELOCITY DISTRIBUTIONS FOR HEATED AND COOLED

IMPULSE TURBINE -BLADES IN STATIC CASCADES

By James E. Hubbartt and Eugene F. Schum

SUMMARY

A heat-transfer investigation was conducted on cooled as well as
heated impﬁlse-type turbine blades in a static cascade to determine
the effect of direction of heat flow on convective heat-transfer coeffi-
cients. In addition to the heat-transfer data, velocity distributions
around the blade were experimenﬁally measured and compared with the
velocities calculated from a theory derived herein. The experimental
heat-transfer coefficients were compared with theoretically derived
coefficients that were dependent on the experimental velocity distri-
bution around the blade periphery. The investigations were conducted
over a range of air temperature from 60° to 600° F. The Reynolds
number ranged from 10,000 to 100,000 and the gas-to-blade temperature
ratio ranged from 0.9 to 1.1.

It was found that:

(a) The heated- and cooled-blade heat-transfer coefficients could
be correlated by use of a Nusselt, Prandtl, and Reynolds number relation
when the Reynolds number was multiplied by the ratio of effective gas
temperature to average blade temperature.

(b) The blade peripheral-velocity distributions calculated from
theory were approximately 20 percent lower than experimentally measured
velocities in the central portion of the blade.

(c) The theoretically predicted heat-transfer rates based on an
experimental velocity distribution were within 1 and 4 percent of the
experimental heated- and cooled-blade results, respectively, at a
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Reynolds number of 75,000; but at a Reynolds number of 15,000, these
differences were 10 and 23 percent, respectively. '

(d) The 23-percent error in gas-to-blade heat-transfer coeffi-
cient could cause an error in the calculation of blade temperatures
of the order of 50° F for a blade temperature of 1000° F, turblne-
inlet temperature of 1600° F, and a coolant temperature of 500° F.
This error is somewhat large. For many materials, a 50°-F change in
blade temperature at 1000° F appreciably affects blade life.

INTRODUCTION

Outside-surface heat-transfer coefficients for static cascades
of turbine blades ranging from impulse to high-percent reaction
blades have been experimentally obtained by several investigators
(references 1 to 5). In most cases, the blades were heated instead
of cooled and using the heated data for an application in a turbine
where the blade is cooled may not be justified, It is shown in
reference 6 that the heat-transfer coefficients obtained on a
cooled turbine under actual operating conditions agreed well with
results obtained with impulse blades of similar shape in static
cascade investigations, in which one set of blades was heated and
another set was cooled. It should be noted that the effects of
heating or cooling, rotation, and separation cited 1n reference 6
may have influenced this comparison.

A theory for predicting the convective heat-transfer coefficients
for turbine blades is presented in reference 7, in which the gas-to-
blade temperature ratio was assumed to be approximately 1. Good agree-
ment is shown in reference 7 between the theory and the results of
experimental static cascade investigations. Application of this heat-
transfer theory requires knowledge of the velocity distribution around
the blade periphery. Because these velocities were not experimentally
measured in the cascade investigations, velocity distributions were
calculated by means of the stream-filament theory, as described in
reference 8. Although good agreement between the velocity distribution
as calculated by this stream-filament theory and the experimental
results has been obtained for a limited number of reaction-type blades
(reference 8), the theory is dependent upon assumptions that may not
be applicable to all blade shapes. Assumptions that are more applic-
able to impulse-type blades have been incorporated into a modification
of the stream-filament theory that is derived herein.
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Little experimental heat-transfer data are available on cooled
blades and no comparison is available between the experimental and
theoretical heat-transfer correlations in which these correlations are
based on an experimental velocity distribution. An experimental inves-
tigation was therefore conducted at the NACA Lewis laboratory with a
cascade of impulse turbine blades to determine (1) heat-transfer coeffi-
cients with the heat flow from blade to gas and from gas to blade, and
(2) blade peripheral-velocity distributions. The velocity distribu-
tions around the blade periphery were measured and then compared with
those predicted by the aforementioned stream-filament theory as modified
herein for assumptions more applicable to the particular blade shape
investigated. Finally, an experimental velocity distribution was used
with the heat-transfer theory of reference 7 to obtain a theoretical
correlation. The theoretical correlation was then compared with the
experimental heat-transfer data.

THEORY

Convective gas-to-blade heat-transfer coefficients for turbine
blades can be correlated by the following equation:

Nu

;;173 =.C(Re)m | (1)

(The symbols are defined in appendix A.) It is shown in reference 7
that the constants C and m can be evaluated by means of boundary-
layer theory and the resulting equation applied to turbine blades if

the velocity distribution around the blade is known. Both C and m
are functions of the average Euler number Eu,, in the laminar boundary

layer and the transition ratio f. - Plots of these functions are given
in reference 7. The point of transition from laminar to turbulent
boundary layer is assumed to occur where the pressure gradient first
becomes zero (reference 7). Even though the Euler number is evaluated
only in the laminar boundary layer, the theoretical Nusselt number or
the gas-to-blade heat-transfer coefficient is an average value for the
entire blade surface, including the turbulent boundary-layer region.

Because the velocity distribution is required for the theoretical
evaluation of the constents C and m in equation (1), a method of
analytically determining the velocity distribution for cases where it
has not been or cannot be experimentally measured is necessary. For
several reaction-type turbine blades, the velocity distribution
predicted by the stream-filament theory of reference 8 agrees well with
experiments. Such comparisons with impulse-type blades have not been
made. The theory of reference 8 assumes that the curvature K of the
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flow lines along an orthogonal line (line normal to the flow lines and
connecting adjacent blade surfaces) varies according to the equation

K, -K
2 71
X = Kl+-_]—)_.f . (2)
For many impulse-type blades (especially the type investigated herein),
a better assumption would be to let the radius of curvature r of the
flow lines vary linearly with f. The curvatures of the flow lines are
therefore given by

EEL:EE (3)

The stream-filament theory of reference 8 has been revised using
equation (3) in the continuity equation, rather than equation (2).

The derivation and the resulting equations for computing the velocities
are given in appendix B. In order to predict the velocity distribution
for any particular cascade of blades, the theory corresponding to the
more accurate assumption (either equation (2) or equation (3)) should be
applied. From the velocity distribution and the specified conditions,
the average heat-transfer coefficient can be computed by equation (l)

in conjunction with the curves of reference 7.

APEFARATUS

The general arrangement of the apparatus is shown in figure 1 with
the blades prepared for root cooling by the circulation of cooling
water through a 3/8-inch water passage drilled in a bronze dummy-wheel
section. For the heated-blade investigations, the cooling-water leads
were removed and a small electric furnace was so located below the test
section that the root section of the cascade protruded down into the
furnace. Clean dry air at a pressure of 50 inches of mercury absolute
was supplied and passed successively through a 90-kilowatt heater, a
flat-plate orifice, a throttling valve, a large surge tank, the inlet
nozzle, the test section, a throttle valve, and into the exhaust system
where a pressure of 10 inches of mercury absolute was maintained. With
maximum air flow, the inlet-air temperature could be varied from 60° to
approximately 600° F.

Photographs of the blades and blade housings of the test section
are shown in figure 2. A cross-sectional view of the blades with
pertinent dimensions and instrumentation location is shown in figure 3.
The blades, which were of constant cross-sectional area along the
length, were shrouded at the tip to form a gas-flow passage 1 inch in
height. :
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The apparatus was insulated with 1% inches of asbestos to reduce

heat losses. For the cooled-blade investigations, additional loose-
asbestos insulation was applied at the test section by filling a large
box enclosing the test section. This additional insulation covered
the entire portion of the test section where measurements were made.
For the heated-blade investigations, use of additional insulation
around the test section was unnecessary because the air passing over
the blade surfaces was maintained at approximately room temperature.
This fact was verified by tests made with and without the added
insulation. Additional insulation, however, was applied between the
electric furnace and the test section with only the bronze dummy-
wheel section exposed to the electric furnace.

A radiation probe inside one blade was used to measure the
radial-temperature distribution down the blade center (reference 4).
The position of the probe was measured with an accuracy of approxi-
mately £0.001 inch. Three fixed thermocouples were installed along
the mean camber line in each of two blades (fig. 3) to check the
validity of assuming a one-dimensional (radial) temperature distri-
bution. In addition, two adjacent blades were drilled for eight
static-pressure measurements with the pressure taps located in the
center of the common flow channel. Five of these taps were located
on the suction surface and three on the pressure surface, as shown
in figure 3. These pressure taps provided an experimental method of
obtaining the velocity distribution.

Inlet total- and static-pressure measurements were made Jjust
upstream of the blades. The total pressure was measured by a cali-
brated probe and the static pressure was measured by a wall tap. The
outlet static pressure was determined by a fixed static-pressure probe.
The inlet and outlet total gas temperatures were measured in the 6-inch
ducts upstream and downstream of the test section where the velocity
head was negligible. The estimated accuracy of measured temperature
differences for use in equation (4) or (5) for the calculation of the
heat-transfer coefficient is +1° F.

PROCEDURE

The heat-transfer investigation was conducted over a range of
Reynolds number from 10,000 to 100,000, which was obtained by varying
the air flow from 0.04 to 0.40 pound per second. Most current '
turbines operate close to or above the upper 1limit of this range.

The range of Reynolds number was limited by the available services
and small blade dimensions. The ratio of the blade temperature to
the gas temperature was varied from 0.9 to 1.1. For each run, thermal
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equilibrium was assumed when the air temperature remained within

i approximately'ilp F for 5 minutes. After equilibrium was established
the data were obtained. Blade temperatures were measured for 16 dif-
ferent positions varying from root to tip. Pressure measurements
were made in the blade channel to determine the experimental-blade
peripheral-velocity distribution.

CALCULATION METHODS
Heat-Transfer Coefficient

If, for a turbine blade that is heated or cooled at one end, it
is assumed that (a) the blade is of constant cross-sectional area and
perimeter along its length, (b) the temperature gradients in any cross
section normal to the blade length are negligible, (c) the heat-
transfer coefficient is constant along the blade length, (d) radiation
can be neglected, and (e) at some position along the blade length the
heat flow becomes zero, the temperature distribution with a constant
blade-metal thermal conductivity can be given by (appendix C)

_ cosh o(Y -‘y)
6 =6y cosh o Y (4)

or for a first-order correction for‘a variable thermal conductivity by

‘ 2
0 A6, cosh 29 Y )
hn 7 - n = cosh Y - y) + Aenz cosh ZqéY y)
cosh @ 3 cosh® @Y 3 cosh® © Y

(5)

where

[1E : . '

The blade investigated was designed with a constant cross-sectional
area and perimeter along its length, and the investigation was made
under such conditions that the aforementioned assumptions were valid.
Equation (5) could therefore be used to compute the heat-transfer
coefficients. If the effect of a variable thermal conductivity is
small, the much simpler equation (4) could be used. For this reason,
equations (4) and (5) were compared by assuming values of H, k (as a
function of 6), Gn, and Y +typical of those for the experiments.

The temperature distributions predicted in this manner are. compared in
figure 4. The simpler equation (4) has been used for computing the
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heat-transfer coefficients because the difference in the coefficient
calculated by both equations is less than 2 percent.

Application of equation (4) for determining the heat-transfer
coefficients for the blades investigated is discussed in reference 4.
Briefly, this application consists in first determining 6 as the
difference between the effective gas and blade temperatures by the
equation

v.2 ’
= - = Pt - - o1 - 6
0=Tge-Tgy=['-Q-a 2edc, T8,y (6)

where the total gas temperature T' 1is evaluated as the average of
the inlet and exit total gas temperatures, the recovery factor o
is determined from the calibration curve of reference 4, and the
velocity V, 1s calculated by the equation

-1

Y
2 _ ' _{Zo_ ,
Vo = 28dc T' L (P'o) (7)

Then the values of ® and Y, which permit equation (4) to most closely
approximate the values of 6 for the’different positions of the blade
probe thermocouple, can be computed by the method of least squares
(reference 4). From @ the heat-transfer coefficient is calculated.

The specific definition of each of the parameters as used to
represent the heat-transfer results is given in appendix A. The inlet
Reynolds numbers Re; were evaluated with velocities and pressures

computed from conditions measured at the blade inlet. The average
Reynolds numbers Reav were evaluated with the integrated:average of

the experimental velocities and pressures around the blade periphery.

Velocity Distribution

The experimental velocities around the blade periphery were also
computed by use of equation (7) where velocity, temperature, and
pressure subscripts are gpplied to the local conditions. Because the
total temperature and pressure could not be measured in the blade
passage, the total pressure was assumed constant through the passage
and the local total temperature was defined as the average of the inlet
and exit total temperatures. This determination of total temperature
should be valid because the total-temperature change across. the blades
was an average of 50 F. The average velocity around the blade periphery
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as used in Re was obtained with a planimeter from a plot of the experi-
mental velocities in the center portion and the velocities on the leading
and trailing portions of the blade faired in using circulation checks,
This method gives an average velocity not sensitive to errors introduced
by fairing in the velocities on the leading and trailing edges. The
average pressure for use in Re was then computed by

v.2 \"
Pgy = P';3 {1 =
= . - —_—
av i ZchpT av
The theoretical velocities around the blade periphery, which were
desired for comparison with the experimental velocities, were deter-
mined by the compressible-flow theory described in appendix B.

RESULTS AND DISCUSSION
Experimental Heat-Transfer Results

A comparison of the heated- and cooled-blade heat-transfer results
is shown in figure 5(a) on the basis of the inlet Reynolds numbers. The
gas properties and the density are evaluated at the average blade tem-
perature and the characteristic dimension is the blade perimeter divided
by =n. Good correlation is obtained in reference 5 when the physical
properties of the gases are evaluated at this temperature. With the
exception of the cooled-blade data for Reynolds numbers over 60,000,
the data of figure 5(a) are represented within an accuracy of 4 per-
cent by the corresponding mean lines. At a Reynolds number of 60,000,

a definite change occurred in the relation between the cooled-blade
heat-transfer rate and the Reynolds number. A satisfactory explana-
tion of this change is unavailable at this time. For the remaining
figures and discussion, the cooled-blade data above this critical
region on the Nusselt plot will be deleted. The deviation between
the heated- and cooled-blade data on figure 5(a) varied from approxi-
mately 16 percent at the low Reynolds numbers to approximately 3 per-
cent at a Reynolds number of 60,000. The heated-blade data presented
in this investigation are within 5 percent of the line representing
the data presented in reference 4 and are well within the experimental
scatter of data given in this reference.

In reference 5, it is shown that for comparing different sets of
experimental heat-transfer results, better agreement is obtained when
the Reynolds number Re 1is evaluated by the average pressure and
average velocity around the blade periphery, instead of when the more

_convenient inlet Reynolds number Re; is used. A comparison of the
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heated- and cooled-blade data on the basis of equation (1), in which
the average Reynolds number is used, is shown in figure 5(b). The com-
parison between the heated- and cooled-blade results is approximately
the same as in figure 5(a); figure 5(b), however, presents the more
representative procedure for comparing these results with those from
other turbine blades.

A correlation in which the heated- and cooled-blade data fall on
a single line is shown on figure 6, which was obtained by introducing
the ratio of the effective gas temperature to the average blade tem-
perature as a product in the abscissa of figure 5(b). The maximum
deviation from the mean curve is %5 percent, which is considered a
good correlation. Even though good agreement does exist for these
data, the experimental variation in the gas-to-blade temperature ratio
ranged from 0.9 to 1.1 and caution should be employed for extrapolation
to temperature ratios beyond these values until additional data are
obtained. It is pointed out in reference 7 that a variation of the gas
properties in the boundary layer may affect the rate of heat transfer.
Temperature ratio and physical properties of the fluid enter into the
boundary-layer equations in a complicated manner and a more rigorous
theory is needed for the calculation of gas-to-blade heat-transfer
coefficients that will include the effect of temperature ratio.

Experimental and Theoretical Velocity Distributions

A dimensionless plot of the experimental velocities around the
cooled blade is shown in figure 7. Typical velocity distributions were
chosen for this plot with the inlet Mach number varying from 0.185 to
0.412. The rapid rise in the velocity on the suction surface occurs
near the region where the air enters the channeled portion of the blade,
and also where the blade profile has a transition from a straight line
to an arc. Both of these factors would contribute to an increasing
velocity. Although the blade is symmetrical, the velocities on the
suction surface are not symmetrical about the blade axis (about
x/L = 0.5) showing that separation may exist somewhere after the
midpoint of the surface.

A comparison of the heated- and cooled-blade velocity distribu-
tion is shown in figure 8. For both the low and high Mach numbers,
the velocity ratios Vx/vi are apparently independent of the direction

of heat flow. For this reason, the comparison between the heated- and
cooled-blade heat-transfer data in figure 5(a) was approximately the
same as that in figure 5(b).
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A comparison between the velocities predicted by the theory in
appendix B and those experimentally determined for a representative
run is shown in figure 9. The calculated velocities were approxi-
mately 20 percent lower than the experimental velocites in the central
portion of the blade. Additional experimental data apparently are re-
quired from other impulse-blade cascades of different blade design be-
fore any definite conclusions can be reached concerning the calculation
of the peripheral-velocity distributions.

Predicted Heat-Transfer Results

The heated- and cooled-blade results presented in figure 5(Db)

are compared in figure 10 with a theoretical correlation obtained by
the method previously described (reference 7). The experimentally
. determined blade peripheral velocities were used in obtaining a
theoretical heat-transfer correlation because it was believed that the
experimental velocities were more accurate than the calculated veloc-
ities. Only one. theoretical curve is obtained because the theory does
not include a heating or cooling effect on heat transfer. At a high
value of Reynolds number (75,000), the theoretical heat-transfer correla-
tion agreed within 1 and 4 percent of the curves representing the heated-
and cooled-blade data, respectively. -At low Reynolds number (15,000),
this agreement was approximately 10 and 23 percent for the heated and
cooled blade, respectlvely Because of the disagreement between the
theoretical and experimental results at the low values of Reynolds
number encountered in this investigation, it appears that additional
refinements may be needed in the theory. Reynolds numbers encountered
in current turbojet operations are usually above 100,000. For a small
water-cooled turbine (reference 6) with a Reynolds number range of
30,000 to 100,000, excellent agreement was obtained between the experi-

ental heat- transfer results and a theoretical correlation based on a
calculated velocity distribution. Such close agreement was probably
due to compensating errors, because the theoretical correlation did
not consider effects of rotation, cooling, or heating of the blades
and possible separation.

The calculated blade temperature is dependent upon the gas-to-blade
heat-transfer coefficient. For example, with use of an assumed turbine-
inlet gas temperature of 1600° F and a coolant temperature of 500° F, an
error in the gas-to-blade heat-transfer coefficient of 23 percent
(largest found in this investigation) could cause an error in calculated
blade temperatures of the order of 50° F for a blade temperature of
1000° F. Methods described in reference 9 were used to determine this
error. For many materials, a 50° F change in blade temperature at
1000° F appreciably affects the blade life; consequently, an error of
23 percent in the determination of the heat-transfer coefficient is
somewhat large.
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SUMMARY OF RESULTS

A heat-transfer investigation was conducted on cooled and heated
impulse-type turbine blades in a static cascade to determine the effect
of direction of heat flow on convective heat-transfer coefficients.
Velocity distributions around the blade periphery were experimentally
measured and were compared with velocities calculated from a theory
derived herein. The experimental velocity distribution was then used
to obtain a theoretical heat-transfer correlation.

' For a range of inlet Reynolds number of 10,000 to 100,000 and a
range of blade-to-gas temperature ratio of 0.9 to 1.1, the.following
results were obtained: '

1. The heated- and cooled-blade heat-transfer data could not be
_ represented by a common equation relating Nusselt, Prandtl, and average
Reynolds numbers.

2. The experimental data were correlated by introducing the ratio
of the effective gas temperature to the average blade temperature as
a multiplier of the average Reynolds number in the Nusselt, Reynolds,
Prandtl relation. Caution should be employed in the use of this corre-
lation for ratios of the effective gas temperature to average blade tem-
perature larger than those covered in this investigation.

3. The calculated veldcities in the central portion of the blade
were approximately 20 percent lower than the experimental velocities.

4. At high values of Reynolds number (75,000), the theoretical
heat-transfer correlation based on an experimental velocity distri-
bution over the blade periphery agreed within 1 and 4 percent, réspect-
ively, with the curve representing the heated- and cooled-blade data.
At lower values of Reynolds number (15,000), this agreement was 10
and 23 percent, respectively.

5. For an assumed turbine-inlet gas temperature of 1600o F and a
coolant temperature of 500° F, an error in the gas-to-blade heat-
transfer coefficient of 23 percent (largest found in this investigation)
could cause an error in calculated blade temperatures of the order of
50° F for a blade temperature of 1000° F.

Iewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio.
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APPENDIX A
SYMBOLS
The following symbols are used in this report:
A cross-sectional area of blade, sq ft

B parameter defined by equation (16)

C and Cr .
to C arbitrary constants

VI
cy specific heat of gas at constant pressure, Btu/(1b)(°F)
D length of orthogonal line, ft

av

Eu Euler number, %i EEE
Eug, integrated value of local Euler number, Eu
F parameter defined by equation (16)
f distance measured along orthogonal line, ft
G parameter defined by equation (16)
g acceleration due to gravity, ft/sec2
H average convective heat-transfer coefficient,

Btu/(hr) (sq f£t)(°F)

J  mechanical equivalent of heat, ft-1b/Btu
X curvature or 1/r, 1/£t
k thermal conductivity of blade unless otherwise indicated by

subscripts, Btu/(hr)(ft)(°F)

kB constant value of thermal conductivity of blade,
Btu/(hr) (£t) (°F)

L total surface length, ft
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1 blade perimeter, ft
M Mach number, V/velocity of sound
m exponent for use in equation (1)

Nu  average Nusselt number, (Hl/n)/kg (thermal conductivity
evaluated at blade temperature)

Pr Prandtl number of gas, 3600 gcpp./kg (properties evaluated at
blade temperature)

D static pressure of gas, 1b/sq ft

p' total pressure of gas, 1b/sq ft

Q heat-flow rate, Btu/hr

R specific gas constant, ft-1b/(1b)(°F)

Re average Reynolds number around blade, (pavVavZ/ﬁ)/RTBgu

(properties evaluated at blade temperature)

Re. inlet Reynolds number for blade, (iniZ/n)/RTBgu (properties
evaluated at blade temperature)

r radius of curvature, ft

Lr defined by Ar = ry; - 11, ft

s distance measured along flow lines, ft

T temperature, °R

T! total temperature of gas, OR

v velocity of gas, ft/sec

w  weight flow, 1lb/sec

X parameter defined by X2 = V2/2chPT'

b.¢ distance along surface from stagnation point, ft

Y value of y where de/dy = 0, ft
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y distance aléng blade axis measured frém root, ft
a recovery factor

v ratio of spécific heats

n  parameter defined by equation (16)

6 defined by 6 =Tg .-Tg, F
6, value of 6 at y =0

A  constant

p  viscosity of gas, slugs/ft-sec

¢ ‘ transition, ratio, ratio of length of laminar boundary layer on
chordwise blade surface to total chordwise surface length

p static density, 1b/cu ft
p' total density, 1b/cu ft

1H

. 2
¢¢ defined by @ = —
| , kBA

Subscripts:

1,2,3 surfaces or terms as indicated

av integrated average around blade

B at avérage blade temperature |

c b& convection

e effective value as applied to femperature
g gas . ' -
i inlet

n : value 6f 6 at y=0

(o} outlétl
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X

y
Ty

at local position x
at local position y

at local position y+Ay

15
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APPENDIX B
PROCEDURE FOR COMPUTING VELOCITY DISTRIBUTIONS

A sample flow channel is shown in figure 11 with f measured
along the orthogonal line from surface 1 and s. measured along the
flow.lines. The flow channel will be considered to be of unit depth.

For irrotational flow, the normal aéceleration force on a dif-
ferential mass at any point on the orthogonal line must be balanced
by the pressure force along the orthogonal line, that is,

2
Vo _{dp
o2 ds af = (—-—df d.f> ds (9)

By introducing Bernoulli's differential equation for compressible flow,
equation (9) becomes

%Y--——-de (10)

In order to solve equation (10), K must be expressed as a known
function of f. If the radius of curvature is expressed as a linear
function of f, the curvature is given by

rz- I‘l
+ A - °F 3
D (3)

=i

=I‘l

From equation (3), &f can be determined and substituted in equa-
tion (10), which can then be integrated. By integrating V between
the limits Vl and V, and K between the limits K1 and X, the

velocity can be -expressed by the equation

<3

where

Ar=r2-rl

In order to.determine the velocity from equation (11), Vl must be
known.
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In order to evaluate Vl’ the differential mass flow (per unit
passage depth) for a compressible fluid is expressed by

1
. Vg -1
—_ 1 - —
dw = p' {1 ZgdcyT" vV af (12)
For simplicity, let
2
2 Vv
X = 2€Jc,T" (13)

By introducing equations (3) and (11) in equation (12) and integrating
K between the limits Kl and K2 along the orthogonal line, the total

mass flow through the channel becomes

D

1
K, 2p| -1
. 2 (K ¥ p_
o' [283c,T" —flﬁ tth (Klﬂ E! <K1> i (1)

Because equation (14) cannot be directly integrated, it is convenient
to rewrite the bracketed term as

L1 1
2p| V-1 1 5 oD T-1

2 (KT 2\r-1 Xy X
1-% <§I)Ar =(1-x1> 1-:—;;—2-<K—l>m- (15)

Because
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is small compared with 1, the left expression of equation (15) can be
expanded by the binomial theorem and all terms except the first two may
be meglected. Equation (14) can then be integrated. When integrated
and simplied with .

B = D/Ar | ‘ N

F= Egi hﬁ;ij—l -1

[/ \3B-1
[V
G = 33T K, -1
-

..WKl
T‘l:
Gp‘hfngcpT' ~

the total mass flow is given by

; (16)

2=y
-1
(1-x5 (v-1) (1-%,2)
= %0 e SN (17)
Tl—‘;L‘ Y_l ’ 2 G’

X

For a particular flow channel with given flow conditions, the only
unknown in equation (17) is Xl‘ Therefore, if the flow network (flow
lines and orthogonal lines) is constructed, the value of X at surface 1
can be determined for any orthogonal line. From equation (13) the
corresponding velocity is computed. The velocity on the same orthogonal
line but at surface 2 is then computed by equation (11). v

Because equation (17) presents a trial-and-error sclution for
Xl’ it is more convenient to determine Xl graphically. For this
reason, equation (17) has been plotted for different values of y and
F/G in figure 12.
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APPENDIX C
DEVELOPMENT OF HEAT-TRANSFER-COEFFICIENT EQUATIONS
For a turbine blade of constant cross-sectional area heated or
cooled at the root and subjected to a cross flow of air, a simple heat
balance can be made across any increment of length Ay along the Y-
axis of the blade (y is measured from the root). This heat balance

(which expresses the heat flow at y minus the heat flow at y+Ay
equal to the heat added to Ay by convection) is given by

Q - Qny = % (18)

If Ay is made small, the heat flow at Yy and that at y+Ay are
related by

- 49
Yy =% " Y
The convective heat flow is
Q = H dy (Tg o - Tp,y)

drT.

Therefore for Q, = -kA ‘E?LX’ equation (18) becomes
2
4aT 4T
B,y dk B,y
.-—-z— — —-——-’—: - 1 -
Ay M HL(Tg, e - Tp,y) (29)

With the conductivity defined by
k = ky [1 - NM(Tg e - TB,y)]

(which expresseé the conductivity as a linear function of the blade
temperature, because the gas temperature remains constant for any
particular case) and the temperature difference defined by

0 =T, o - Tp

&, Y

equation (19) reduces to
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2 2
(1 - Ae) 272-7\ (%) -i—gk;e=o | (20)

A solution of equation (20) will give the one-dimensional temperature
distribution in the turbine blade. A solution can be made by assuming
A= 0 (constant k) or A # O (variable k). These two cases will be con-
sidered. : '

Constant Thermal Conductivity

If A is set equal to zero and k‘B is taken at the average blade
temperature, equation (20) reduces to

2
9;% -9 =0 . (21)
dy
where
2 1H
®

Akp

A well-known solution to this equation is

6 = C; cosh ®(Cpp - ) (22)

The boundary conditions applicable for the experimental investigations
are

— =0 at =Y
T y

(23)
6=6n at y =0

and equation (22) becomes

: cosh ®(Y - y)
o =0 cosh @Y (4)
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Variaﬁle Thermal Conductivity

If AN is not equal to zero, a solution of equation (20) can be
written in the form .

0 =6, + Ny + A 05+ . . . (24)

where 6; 1is the solution for A = 0 (k = kB), and Aez + A2 6z +

are corrections for a variable thermal conductivity. Therefore with

of = L
ks A
and
k=kB(l-7\6)
6, (similar to @ in equation (22)) becomes
6, = Cyyqp cosh Cp(CIV -y (25)

When equation (25) is substituted in equation (24), 6 1is

6 = Crpp cosh P(Cry - ¥) + A6, + Mo, . .. (26)

It

Taking the necessary derivatives of equation (26) and neglectlng powers
of A higher than 1 (u51ng only a first-order correction because A is
small), changes equation (20) to
2
. 2 2 _ 2 2
—dyz - ®% 63 = Cryp @ cosh 2cp(cIV -y (27)

Equation (27) has a solution of the form

2
CIII

= Cy cosh cp(cVI - y) + =—— cosh a$(cIV -y) (28)

From equations (25) and (28), the solution of equation (20) is there-
fore ’
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~ Crrr®
6 = Cryp cosh @(Cpy - ¥y) + ACy cosh ®(Cyr - ¥) + —5 — cosh 29(Cry - ¥)

(29)

For the boundary condifions stated by equation (23) and matching
#1 and O at y = 0, the constants in equation (29) can be determined

and final solution of equation (20) becomes

en >\6n cosh 20Y 2 cosh 2®(Y _ y)
O Y z cosh (Y - y) + A6, >
3cosh @Y 3 cosh"® ¥

(5)
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Inconel exit-
nozzle block

e e,

Cascade of
bla@ps

C- 14757

(a) Unassembled.

(b) Assembled.

Figure 2. - Special experimental rig for heat-transfer studies of symmetrical impulse
turbine blades.
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0.680"

Exit pres- 0.354"

sure tube—\\\

QO Fixed thermocouple
locations

O Pressure<tap

locations
Chord, in. 0.680
Perimeter, in. 1.785
Constant cross-sectional area, sq in. 0.0797
Pitch-line radius, in. - 5.50
Number of blades in 360° 84
Chord-~to-pitch ratio ) 1.92

Figure 3. - Cross sections of symmetrical impulse
turbine blades.
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Thermal
conductivity

Constant
Variable (first-order
correction)

.01 .02 .03 - .04 .05
Radial blade position from root, y, ft

.06

Figure 4. - Comparison of theoretical temperature distributions for

constant and variable thermal conductivity.
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(a) Reynolds number evaluated with inlet (b) Reynolds number evaluated with aver-
velocity and pressure. age velocity and average pressure around
blade periphery.
Figure 5. - Comparison of heat-transfer results from heated and cooled blades.
Gas propertles and density based on average blade temperature.
Blade
o Cooled
0 Heated
400
ar”
P
200 EJQ{(;
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) yg& N M < 0.322(Re ~B22)
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100 i
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Figure 6. - Correlation of heat-transfer results from both heated and cooled

blades.

blade periphery.

Gas properties and density based on average blade temperature;
Reynolds number evaluated with average velocity and average pressure around
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Surface 2\

s o
Flow \\“Surface 1 v %,
lines Ly
v 2e

“!ﬂi"”

'~ Figure 11. - Sample flow channel.
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1.1 l
Y F/G
1.40
1. '/1.38_2.75'
1.36
1.40 .
.9 1.3872.50
1.36
.8 1.40
2.25
.7 1.40
1.38 2.00
_1.36.
.6
_—11.40
1.38  i.75
n ———-——1.36
.5
p——]1.40
1.38 1.50
1.36
.4
.3
A — %
N //
.
0 .1 .2 .3 .4 .5

X
Figure 12. - Variation of 1 with X, for values of y and F/G. (A 10- by 18-in. print
’ of this fig. is attached.)
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