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AND ITS VARIOUS COMPONENTS AT MACH
NUMBERS OF 1.40 AND 1.59

By Norman F. Smith and Jack E. Marte
SUMMARY

A force investigation of a supersonic aircraft configuration and
various combinations of its components has been conducted in the Langley
L. by 4-foot supersonic tunnel. The tests were performed at Mach numbers
of 1.40 and 1.59 at a Reynolds number of approximately 0.6 X lO6 based
on the wing mean aerodynamic chord and are a part of an extensive investi-
gation of the force and pressure-distribution characteristics of this
- configuration.

The wing of the model was swept back 40° and had an aspect ratio
M of 4 with 10-percent-thick circular-arc sections normal to the quarter-
chord line. Although for the Mach numbers of the present investigation
the wing leading edge was supersonic, a detached shock wave existed at
the leading edge throughout the angle-of-attack range.

Longitudinal- and lateral-force characteristics of the various
configurations, along with longitudinal- and lateral-stability derivatives,
are presented. The data have been analyzed to obtain the aerodynamic
charscteristics of the components and such interference effects as can
be isolated. Comparisons with theory and with the results of the pressure
investigations are made.




2 NACA RM L50K1k
INTRODUCTION

An investigation has been conducted in the Langley 4- by L-foot
supersonic tunnel to determine the aerodynamic characteristics of a
relatively large size model of a swept-wing supersonic aircraft configu-
ration. Tests have been conducted on both a force and pressure model of
identical configuration at Mach gumbers of 1.40 and 1.59 at a Reynolds
number of approximately 0.6 X 10° based on wing mean aerodynamic chord.
References 1 to 8 present the results of various phases of this investi-
gation. Tests of a small-scale model of the same configuration in the
Langley 9-inch supersonic tunnel are reported in reference 9. An investi-
gation of a rocket-powered model of the same configuration is reported
in reference 10.

The present paper deals with the longitudinal- and lateral-force
characteristics of the complete aircraft configuration and of various
combinations of its components. The data have been analyzed insofar as
possible to show the aerodynamic characteristics of each component and
the interferences between components. Also included for comparison are
some of the integrated pressure results for the wing from reference 3.

The force-model configurations tested were built up by adding to
the basic sting-mounted body of revolution in various combinations the
canopies, wing, vertical tail, and horizontal tail. The effects of
wing-tip skids and stall-control vanes mounted on the wing were also
determined.

COEFFICIENTS AND SYMBOLS

The results of the tests are presented in terms of standard NACA
coefficients and are referenced to the stability axes shown in figure 1.
The reference center of gravity (fig. 2) is at the 25-percent point of
the mean aerodynamic chord.

The coefficients and symbols are defined as follows:

0. 1ift coefficient (L—lfs‘-t- where Lift = - >
q
Cy normal-force coefficient (Normal force/qsS)
CLF 1ift coefficient based on frontal area of body of revolution
(L1ft/qF)

Cp drag coefficient (Drag/qS)
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MV

N|

chord-force coefficient (Chord force/qS)

drag coefficient based on frontal area of body of revolution
(Drag/qF)

pitching-moment coefficient (M'/qSE)

pitching-moment coefficient based on frontal area of body
of revolution (M'/qFC)

lateral-force coefficient (Y/qS)

yawing-moment coefficient (N'/qSb)

rolling-moment coefficient (L'/qSb)

force along Z-axis, pounds

force along Y-axis, pounds

moment about Y-axis, pound-feet

moment about Z-axis, pound-feet

rolling moment gbout X-axis, pound-feet

free-stream dynamic pressure, pounds per square foot
Mach number

wing area, 1.158 square feet

frontal area of body of revolution, 0.0564 square foot
wing span, 2.155 feet

wing-section chord, feet

b/2
wing mean aerodynamic chord, 0.577 foot %L/W cedy
0

distance along wing span, from airplane center line
angle of attack of fuselage center line, degrees

angle of attack of wing-chord line, degrees
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iy incidence angle of stabilizer chord line with respect to
fuselage center line, degrees

¥ angle of yaw, degrees

CYW lateral-force parameter, rate of change of lateral-force
coefficient with angle of yaw, per degree (BCY/BW)

an directional-stability parameter, rate of change of yawi:
moment coefficient with angle of yaw, per degree (acn/u;/

CZW effective-dihedral parameter, rate of change of rolling-

; moment coefficient with angle of yaw, per degree (801/5$)

L/D ratio of 1ift to drag (Cr/Cp)

BCm/BG rate of change of pitching-moment coefficient with angle of
attack

CLq, 1ift-curve slope at trim (3Cr/da)

APPARATUS AND TESTS

Tunnel

The Langley 4- by 4-foot supersonic tunnel is a rectangular, closed-
“throat, single-return wind tunnel designed for a nominal Mach number
range of 1.2 to 2.2. The tunnel is described in reference 1. The present
series of tests were made at Mach numbers of 1.40 and 1.59 at a stagnation
pressure of 0.25 atmosphere.

Model and Support System

A dimensional three-view drawing of the model is shown in figure 2.
The geometric characteristics are given in table I; the fuselage and
canopy ordinates are given in reference 1. For the investigation reported
herein, the wing was equipped with flat-sided ailerons with a blunt
trailing edge having a thickness 0.5 of the thickness at the hinge line.
Measurements of the model wing showed that the right wing tip was twisted
0.2° with respect to the left wing tip. Both the ailerons and the rudder
were set at 0° for all tests reported herein. The angle of incidence of
the horizontal stabilizer was remotely controlled by means of an electric
motor housed within the model fuselage. An open slot of appreciable size
existed in the vertical tail to permit angular motion of the horizontal
stabilizer (fig. 2 or see fig. 4 of reference 7).
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The model was constructed largely of steel and was frequently
inspected and polished in an attempt to maintain an aerodynamically smooth
surface. The wing, horizontal tail, vertical tail, and canopies were
made detachable (fig. 3) in order to permit determination of the charac-
teristics of various combinations of component parts.

The model was sting-supported from the rear. The support system
(fig. 4) provides angle-of-attack changes in the horizontal plane in
such a manner that the model remains approximately in the center of the
test section. A photograph of the model installation (at a negative
angle of attack) is shown as figure 5. An angle of attack of 11° can
be obtained with the model on the tunnel center line, with the limiting
factor being the contact of the rear of the sting with the tunnel wall.
By traversing the model laterally about 10 inches from the vertical center
line, the maximum angle of attack may be increased to 16.3°. By employing
stings having fixed bends, this angle-of-attack range can be extended
still further. Tests over the range of angle of yaw were run by rotating
the model 90° (wing horizontal) on the sting. Also, the model and bent
stings could be oriented so that tests could be made in the angle-of-
attack plane at fixed yaw angles (wing vertical) or in the angle-of-yaw
plane at fixed angles of attack (wing horizontal).

Balance

The model was equipped with an intermnal six-component wire strain-
gage balance. The balance was temperature-compensated and interactions
between components were in most cases within the accuracy of the scale
reading and therefore were neglected. Forces and moments on the balance
were transmitted to a Brown self-balancing potentiometer from which
individual readings of the six components were visually recorded. A
selector switch was provided for each component which made possible
selection of one of four scale ranges appropriate to the load conditions

involved.

The balance was calibrated in the laboratory and in place in the
tunnel and was checked before, after, and during the series of tests.
A discussion of the accuracy of the balance and an analysis of the
over-all accuracy of the complete balance system is presented in the
appendix of reference 7.




TESTS

Conditions and Procedure
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The nominal tunnel and model conditions for all tests are listed
in the following table:

Stag- | Stag- | Stag- ;
nation |nation |nation|Dynemic Range of |Range of |Range of
M | pres- |temper-| dew- |PTESSure Reynolds a \' iy
sure ature |point (1b/sq | number (deg) (deg) (deg)
(stm) | (oF) | (°F) | T%)
IR0l 0,25 1. 110 -30 229 |600,000 |-4 to 16|-6 to 10|k to -10
1.59 .25 1, 110 =35 223  [575,000 |-4 to 16|-6 to 10|4 to -10
The Tollowing configurations were tested at each Mach number:
1. Body of revolution
2, Fuselage (body of revolution plus canopies)
3. Fuselage plus wing
i, Fuselage plus vertical tail
5. Fuselage plus vertical and horizontal tails
6. Fuselage plus wing plus vertical tail
7. Complete model (fuselage plus wing plus vertical and horizontal
tails)
8. Complete model plus stall vanes
9. Complete model plus stall vanes plus wing-tip gkids
10. Complete model with %-inch-wide strip of carborundum grains at
10-percent chord on wing and tails and at 10 percent of length
from nose of body.
11. Complete model with slot in the vertical tail filled

Calibration data for the M = 1.40 nozzle is presented in reference 2

Corrections and Accuracy

and for the M = 1.59 nozzle in reference 1.
number variation, flow angle, and pressure gradients in the vicinity of

the model are shown to be small, and no corrections have been applied to

the data.

through the region occupied by the model is
angularity in the horizontal plane is withi

The magnitude of the Mach

The maximum variation in Mach number at either Mach number

about +0.01.
n about +0.2° and in the vertical

The flow
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plane gbout 0.30o to -0.11°, Tests made at angles of attack in both
planes (reference 6) were in good agreement except for a slight roll

asymmetry.

Sting deflection under load was negligible and no angle-of-attack
correction was necessary. The angle of attack 1s accurate to t0.05°,
while the tail incidence is accurate to 10.1°. Optical measurements
made during the tests showed that wing twist under load was small and
amounted to less than 0.05° for all angles of attack.

The interference forces caused by the sting support have not been
measured and no corrections for these forces have been applied to the
data. It i1s indicated in reference 11 for a similar sting-body combination
that the interference forces due to the sting are small; however, the
exact magnitude is not known.

As mentioned in a previous section, s%ings having initial bends
of 0°, 39, and 6° were used to obtain high angles of attack and to obtain
combinations of angle of attack and yaw. The effect of the different
stings on 1ift, drag, and pitching moment was found to be insignificant.

Pressure measurements were made at the base of the fuselage for the
complete model at M = 1.59. These data indicate that the base pressure
can be considered to be stream static within the accuracy of the test
results, except for the angle-of-attack range from 4° to 10° where a
correction decreasing the measured drag by approximately 1 percent would
be necessary.

The maximum probable uncertainities in the aerodynamic coefficients
(due to the balance system) are as follows:

PIEEER R OIENT . . « o s o « ¢ o s o ¢ o s o s o s o & o s e ¢ FOO005
(IR RIS o of s iler o' ol o & ol ol o el el ol sl sl ‘e e ah 6l oheh bt L GSOOTI0)
e BRI ool o) et e e e e e eSO e e e e R R QS 00 025
EEERENIMEEGECERE ol o el o' 0 o o o ‘s o o @ o e sl e e e e siielletde e OTOBTO
RO . . o « o o o v 5 5 s e v v s e s @ % eislEs b e #0,0006

NaWHBE NGO o o o o o o o o s 5 o 5 o o o 6 o o o @4 e 6l e e £0.00011
RESULTS AND DISCUSSION

The results of the investigation are presented in two sections.
In the first are presented the basic data, which include the aerodynamic
characteristics in pitch and yaw of the various configurations as tested.
In the second section is presented the analysis of these data, including
stability derivatives, characteristics of component parts which can be
determined, and such significant interference effects between various
components as can be isolated.
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Since tests were not made on isolated components (except for the
body of revolution) most of the characteristics of component parts
include some interference effects. TFurther, the interference effects
which can be determined from the data are usually the net result of mutual
interference of several components. Hence, only the interference effects
which are of major interest and which can be isolated to a reasonable
degree have been presented. Others may be obtained through use of the
basic data.

Pressure distributions over wing and fuselage of a configuration
identical with the present configuration have been published in refer-
ences 1 to 3. No pressure data except for forces on the wing obtained
by integration of pressure data are shown in the present paper. The
analyses of these references are utilized wherever necessary, however,
to aid in defining the phenomena indicated by the force results. Also,
the discussion of the force characteristics of the various configurations
includes some repetition of the results of the detailed investigations of
longitudinal and lateral stability reported in references k, 5, and 6.

For the test Mach numbers of 1.40 and 1.59 the ratios of the
cotangent of the sweep angle to the tangent of the Mach angle are 1.05
and 1.34, respectively. Although the component of the free-stream Mach
number normal to the wing leading edge is thus supersonic in the usual
sense, the combination of sweep angle, Mach number, and leading-edge
angle of the wing section results in a detached shock at the wing leading
edge for all angles of attack at both Mach numbers. This detached shock
leads to a small region of the subsonic flow at the wing leading edge
which violates a fundamental assumption of the linear theory. These
effects will be evident from the data and from comparisons between experi-
mental and theoretical results. For the Reynolds number of these tests,
the boundary lsyer over the wing and over the fuselage (alone) is basically
laminar, according to unpublished results of tests of a body of revolution
and the results of reference 3.

Basic Data

Longitudinal.- The variation of 1ift coefficient (based on wing area)
with angle of attack for the various configurations for Mach numbers
of 1.4C and 1.59 is shown in figure 6. The curves are nearly linear
except at high angles of attack. For configurations which include the
wing, the lift-curve slope decreases at the higher angles of attack.
This decrease in CLa is a consequence of laminar separstion over the

trailing edge and outboard sections of the wing. This loss of 1ift is
to be expected for swept wings and is discussed in detail for this
particular wing in reference 3. The value of Cfa at M= 1.40 1is

greater than at M = 1.59 as is predicted by theory.
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A slight increase in lift-curve slope with increasing angle of
attack is noted for configurations which do not include the wing. This
increase is a result of flow separation on the fuselage which in this
case tends to increase the 1lift. This phenomenon is discussed in refer-
ence 12 where it is shown that due to separation of cross-flow components
at angle of attack, the 1ift on a body of revolution is greater than that
calculated by potential theory, in both subsonic and supersonic flow.

The drag characteristics of the various configurations are presented
in figure 7. The largest increment in drag results from addition of the
wing. A minimum drag coefficient for the complete model of about 0.055
was measured near the zero angle of attack for the wing (a ~ -3°). The
drag coefficient for the complete configuration is slightly less
an M ="1.59 than at M = 1.40.

The variation of pitching-moment coefficient with angle of attack
(fig. 8) for each configuration is essentially linear. The body of
revolution and fuselage configurations by themselves are unstable, but
the addition of either the horizontal tall or the wing produces a highly
stable combination. The static margin for the complete configuration
is about 35 percent of the mean aerodynamic chord.

This high degree of stability is due in part to the rearward position
of the wing center of pressure. Pressure measurements indicated that the
wing-alone configuration would be quite stable at supersonic speeds,
although tests at low-subsonic speeds (reference 13) have shown it to be
unstable in this low speed range. Also contributing to the high degree
of stability of the complete model is the rearward position of the 1ift
carry-over on the fuselage. This rearward position of the 1lift carry-
over has been shown theoretically by Ferrari (reference 1L4) and others
and has been shown by as yet unpublished results of the pressure-
distribution tests of this configuration. Reference to figure 6 shows
that the maximum trim 1lift coefficient for the complete model which can
be reached with the available stabilizer deflection (it = -10°) is approxi-
mately 0.38 at M = 1.40.

Figure 9 presents the longitudinal forces for the complete model up
to an angle of attack of 220, The 1lift coefficient increased continuously
through this range and reached a value of about 0.96 at a = 22°, which
angle corresponds to a wing angle of attack of 250, The slope of the
1ift curve at a = 22° was slightly more than half that at a = 0°.

The curves of normal-force coefficient and chord-force coefficient
for the complete model are also shown in figure 9 for illustrative
purposes, since normal and chord forces are the forces directly measured
by the internal strain-gage balance. It is interesting to note that the
chord force remains nearly constant as the angle of attack is increased.
The large increase in drag which occurs is due entirely to the streamwise
component of the normal force.
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Lateral,- The variation of lateral-force coefficient with yaw angle
is shown in figure 10. As would be expected, the largest increment of
side force is that due to the vertical tail. The lateral force measured
for the fuselage at moderate and high angles of yaw is twice that measured
for the streamline body, although the canopies increase the lateral area
of the streamline body by only 24 percent.

The yswing-moment characteristics (fig. 11) show that the configu-
rations without the vertical tail are directionally unstable. The
canopies increase the degree of instgbility of the body of revolution
because of the lateral area presented by the canopies on the forward
portion of the body. Addition of the wing moves the curve in a stable
direction. A smaller stabilizing increment is measured at M = 1.59 +than
at M = 1.40, although the lateral-force increments at these Mach numbers
are gpproximately equal. Reference 15 shows that the directional
stability of the wing alone may be decreasing with Mach number in this
range and may even change sign.

The vertical tail introduces a high degree of directional stability.
The horizontal tail, by increasing the effective aspect ratio of the
vertical tail, still further increases the directional staebility to the
relatively high value shown for the complete model. The directional
stability is shown to decrease as the Mach number is increased (see
section entitled "Stability derivatives").

Figure 12 presents rolling-moment characteristics for an angle-of-
yaw range from -6° to 10°. The wing-fuselage combination exhibits
negative effective dihedral, due to the low wing position and to the
fact that the wing alone probably has very low or possibly negative
effective dihedral at these Mach numbers (see reference 16). The positive
effective dihedral measured for the complete airplame is due to the
contribution of the vertical tail. The small rolling moment shown
at ¢ = 0° for the configurations which include the wing is due to &
glight amount of wing or flow asymmetry.

The drag characteristics of the various configurations in yaw are
shown in figure 13. The drag rise in yaw is small and comes mainly from
the addition of the vertical tail. There appears to be little change with
Mach number.

The effects of angle of attack upon the lateral characteristics of
three configurations are shown in figure 14 for M = 1.59. In general,
increasing the angle of attack reduced slightly the slopes of all curves.
The slight variation in the slope of the rolling-moment curve with angle
of attack is in contrast with the increase usually obtained at low =peeds
for similar configurations and is apparently due to compensating effecis
which cannot be completely isolated. A detailed discussion of this pu~4t
is presented in reference 6.
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Analysis

Stability derivatives.- Numerical values of the basic static-lateral-
stability derivatives are given for the complete-airplane configuration
at trim conditions in the following table:

Derivative M= 1.40 M= 1.59
CZ¢ 0.00075 0.00090
Cry -.00255 -.00184
Cyy L0147 0132

The derivatives an and CYw decrease by an appreciable amount

when the Mach number is increased from 1.40 to 1.59. This decrease is

a consequence of the decrease in lift-curve slope which occurs for these
particular airfoil surfaces when the Mach number is increased in this
range. The decrease in an with Mach number which occurs for this

configuration has been observed in other investigations (references 6
and 9) which indicate that at a relatively high Mach number the configu-
ration may become directionally unstaeble. A comparison of the data of
the present paper with other supersonic data is shown in figure 13

of reference 10.

Although the contribution of the vertical tail to the effective
dihedral similarly decreases, a small net increase in the value of C-L\lf

occurs as a consequence of the change of the effective dihedral of the
wing in a positive direction (fig. 10) as the Mach number is increased.

The variations of Cr, and Cmg (et trim) with angle of attack are

presented in figure 15 for two Mach numbers. The maximum available
gtabilizer angle (-10°) was inadequate to produce trim above a = 6°. The
decrease in lift-curve slope (CLQ) which occurs as the Mach number is

increased is expected from theoretical considerations for the particular
wing involved (reference 3). The decrease in slope of the pitching-
moment curve is a result of the decrease in lift-curve slope of the tail.
It should be noted that while a decrease in both CLOL and CmOL is

encountered at the higher Mach number, only a small change in Cm/CL
occurs (reference 5).

Lift-drag ratios.- The variations of lift-drag ratios with angle of
attack for five configurations are shown in figure 16. The complete model
was trimmed longitudinally only for angles of attack of -2° to 6°.
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The lower L/D exhibited by the complete model, compared with the
configuration without horizontal tail, is a consequence of the down load
on the horizontal tail required for trim. The highest value of L/D
obtained for the complete configuration was approximately 3.3 at « = 6°
and M = 1.40 and slightly lower at M = 1.59. This low value of L/D
is due to the fact that the wing has a relatively high thickness ratio
(8 percent in the streamwise direction) and inadequate sweep for the
Mach numbers involved.

Model breakdown.- The 1ift, drag, and pitching-moment characteristics
of the fuselage with and without canopies are shown in figure 17. Coef-
ficients are based upon the frontal area of the body of revolution. The
characteristics of the body of revolution calculated by the linear theory
and by the method of reference 12 are also shown in each plot. The linear
theory considerably underestimates the 1ift and pitching moments, while
the theory of reference 12, which considers the cross-flow components,
indicates good agreement with the experimental results.

Addition of the canopies to the body of revolution results in an
increase in drag of 30 to 50 percent at low angles of attack, although
the canopies increase the frontal area by only 11 percent. The increment
in drag decreases somewhat at high angles of attack. The lift-curve slope
for both configurations is low, with the body of revolution exhibitin
higher 1lifts and a higher slope. No significant differences between the
moment curves for the two configurations are noted.

The increments in 1ift and drag coefficients produced by the canopies
are larger at M = 1.0 than at M = 1.59. Approximate calculations show
that the shock from the canopy leading edge may be detached at M = 1.40
and attached at M = 1.59.

Lift-drag ratios for the body of revolution are compared in figure 18
with those for the fuselage in normal orientation and rotated 90° (about
its own axis), the latter data being taken from yaw tests of the fuselage.
The body of revolution has a higher L/D than the normal fuselage, while
the L/D for the fuselage rotated through 90° is higher than that for the
normal fuselage at low angles of attack and higher than that for both
other configurations at high angles of attack. Basic data show that the
rotated fuselage has assumed considerably more 1ift than the other
configurations. Although the rotated fuselage is thus shown to be the
most efficient 1ifting body of the three tested at high angles of attack,
in the practical case account must be taken of the fact that it may be
desirable to carry as much 1lift as possible on the wings and as little as
possible on the less-efficient fuselage.

The wing characteristics obtained by subtracting the force charac-
teristics of the fuselage alone from those measured from the wing-fuselage
combination are compared in figure 19 with the wing characteristics
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obtained from the pressure data of reference 3 and with wing character-
istics calculated by means of the linear theory. The force character-
istics thus obtained of course include mutual interference of fuselage
and wing. The experimental pressure data, on the other hand, have been
reduced (reference 3) in an effort to obtain wing-alone characteristics
by extrapolating spanwise data to the fuselage center line. Of necessity
the interference of the fuselage on the wing is, in part, included. The
theoretical characteristics were calculated for an isolated wing and do
not include effects of shock detachment, separatiom, skin friction, or
interference.

The 1ift and drag obtained by either force or pressure measurements
are lower than predicted by linear theory. This difference is primarily
a result of laminar separation at the trailing-edge and at outboard
stations (see reference 3). The drag measured in the force tests is
slightly higher than that obtained from the pressure-distribution tests.
This difference is greater than that which would be expected for skin
friction alone, since the laminar and turbulent skin-friction drag
coefficients for the wing are 0.002 and 0.005, respectively. The differ-
ence is evidently due in part to unfavorable wing-fuselage interference,
probably in the form of juncture separation.

The measured effect of Mach number on the 1ift and drag curves is
less than the linear theory predicts. This effect is due to the fact
that the theory overpredicts the variations which occur (with Mach number)
in the Mach number range where the Mach line is in the vicinity of the
leading edge of the wing.

Laminar separation at the trailing edge and a region of subsonic
flow at the leading edge are shown in reference 3 to result in a lower
degree of stability from the pressure tests than is indicated by theory
(fig. 19). 1In the case of the force data, these same destabilizing effects
are compensated by the stabilizing effect of the rearward carry-over of
the wing 1ift on the fuselage. The apparent agreement between the
pitching moments obtained from force data and those obtained by means of
the theory 1s therefore coincidental.

Interference.- The effect of the wing on the effectiveness of the
horizontal stabilizer 1s shown in figure 20. The slope of the curves
(de/dit) is slightly lower for the stabilizer operating in the presence
of the wing. This effect is believed due to a change in flow conditions
at the tail. These changes are most probably due to such factors as
shock and wing-fuselage-juncture boundary layer, since for the angle-of-
attack range of these tests, the horizontal tail is appreciably above the
wing wake.

The effects of the wing and horizontal stabilizer upon the increments
of side force, rolling moment, and yawing moment produced by the vertical
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tail are shown in figures 21 and 22, respectively. The effect of the
wing is small, the largest effect being to increase slightly the slope
of the yawing-moment curve.

The horizontal tail (fig. 22) has a small favorable influence upon
the vertical tail, due probably to the end-plate effect which increases
the effective aspect ratio of the vertical tail. Little change is
found in these effects between the two test Mach numbers.

Boundary-layer transition effects.- In an attempt to determine the

effects of fixing boundary-layer transition, a %—inch-wide strip of

no. 60 carborundum grains was located at 10 percent of the chord from
the leading edge of the wing and talils and at the 10-percent-length
station on the fuselage. The results of tests of the complete model at
M= 1.59 with fixed and natural transition are shown in figure 23.

The only significant result of fixing transition is an increase 1n drag
coefficient of the order of 0.006. This value is approximately the same
magnitude as the increase in skin-friction drag to be expected if tran-
sition from laminar to turbulent flow occurred at the carborundum strip.
From the results of reference 17, however, it appears that an increment
of the same magnitude or larger should result from the wave drag of the
transition strip itself.

The measured drag increment, therefore, appears to be too small to
indicate with certainty that transition was actually fixed on the model
by the carborundum strip. The low Reynolds number of the flow along
with the favorable pressure gradient in the vicinity of the strip may
have precluded transition.

Miscellaneous.- The slot in the vertical tail (required by the
controllable horizontal stabilizer and illustrated in figure 4 of refer-
ence 7) is shown in figure 24 to have a small effect upon the aerodynamic
characteristics of the complete model. A slight increase in the lateral
force and yawing moment is measured when the slot is filled. No effect
upon the 1ift and drag is shown, although a slight increase in drag too
small to be seen in figure 24 was actually measured. The absolute
values of pitching-moment coefficient were slightly more positive, which
indicates that an effect of sealing the opening might be to shift the
tail center of pressure forward.

Figure 25 shows the effect upon the longitudinal and lateral charac-
teristics of the addition of stall-control venes and wing-tip skids
(fig. 2(b)) to the complete model. The effects upon all components are
seen to be small or negligible, the largest effects being a slight shift
in angle of attack for trim and in the slope of the rolling-moment curve.
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CONCLUDING REMARKS

A force investigation of a supersonic aircraft configuration and
various combinations of its components has been conducted in the Langley
L- by k-foot supersonic tunnel at Mach numbers of 1.40 and 1.59 and a
Reynolds number of 0.6 x 106, The model employed a tapered 40O swept-
back wing with 10-percent-thick circular-arc sections normal to the
quarter chord.

The 1ift and pitching-moment variations for the complete model were
essentially linear in the low angle-of-attack range. At the higher
angles of attack, however, there was a progressive decrease in 1lift-
curve slope which at angle of attack of 22° was approximately one-half
that of 0°. A 1ift coefficient of 0.96 was attained at a wing angle of
attack of 25°., The measured chord force for the complete model remained
essentially constant; the drag rise with angle of attack thus resulted
entirely from the component of the normal force in the drag direction.

The effects of Mach number within the limited test Mach number
range were small but in accordance with linear theory. For the body
of revolution (fuselage without canopies) the slopes of the 1lift and
moment curves were greater than those predicted by nonviscous theory
but were in accordance with a flow analysis based on fuselage cross-
flow components. Addition of the canopies increased both the drag and
gide force over that of the body of revolution by an amount considerably
greater than the proportionate increase in frontal or lateral area.

For the particular center-of-gravity location used (chosen from
consideration of low-speed stability) the wing alone was longitudinally
stable, while the fuselage alone was unstable. Addition of the wing to
the fuselage resulted in a configuration of high longitudinal staebility
which was produced in part by a stabilizing interference effect of the
wing upon the fuselage.

Langley Aeronautical Laborstory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I.- GEOMETRIC CHARACTERISTICS OF MODEL

Wing:

Lo ol | R e -
S RS S O T I A T R S A 26155
Repect ratio L. . . . s T bl e adre i, BV S ST
Sweepback of quarter- chord line, deg e i e s el e e e SR BO
Taper ratio Bl T AR AR R R s 6 o o o oo B
Mean aerodynamic chord ft 506 0 0 o000 00000006 0 0T
Airfoil section normal to

quarter-chord line . . . . . . . . lO-percent-thick, circular-arc
PEIEE, G@E o kb o o o o 4 o o & 6 s o s o o 5w s s e s 0 4 0 s 0
Dihedral, deg G e OB O G0 0O 00 DG 6B O g D a0 0L 3

Horizontal tail:

Area, sq o e | R R T A T e -
S I P R e

Agpect ratio . . . 5 o 06 o6 o dioea oo Sl
Sweepback of quarter-chord 1ine, deg o @ @ w e et | e et b o}
Taper ratio B L e e B B e e e s Lo o B SR 0.5

BT P08] BECELOH = » . « 4 o s s o s 6 s s = s o o o o o NACA 65-008

Vertical taill:

Area (exposed), sq ft . . . . « o e Dl el e o KOS ET2
Aspect ratio (based on exposed area and span) o L TS S S e LT
Sweepback of leading edge, deg S AL 5 s o e s A e o= 40.6
Taper ratio SN . 5 e e e R L R 0337
Airfoil section, root 5 5 6 8 oo oD 0G0 0o o0g.C NACA 27-010
Airfodl gection, BIP . L - « ¢ o o o « v v o 0 o 0 o o» NACA 27-008
Fuselage:
Fineness ratio (neglecting canopies) . . . « « « « « « o « « . 9.k
Frontal area (body of revolution), sq ft . . . . . . . . . . 0.0564
Miscellaneous:
Tgil length from &/4 wing to S¢/4% tail, ££ . . . . . . . . . 0.917
Tail height, wing semispans above fuselage center llne o, OfIH3
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Figure 1l.- System of stability axes. Arrows indicate positive values.




25860

- 1836

Figure 2.- Details of model of supersonic aircraft configuration.
Dimensions are in inches unless otherwise noted.
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