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NATTIONATL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

A COMPARISON OF THE SPANWISE LOADING CALCULATED BY VARIOUS
METHODS WITH EXPERIMENTAL LOADINGS OBTAINED ON A 45°
SWEPTBACK WING OF ASPECT RATIO 8 AT A REYNOLDS
NUMBER OF 4.0 x 109

By William C. Schneider
SUMMARY

Experimental force and moment data obtained by pressure measure~
ments on a wing of aspect ratio 8.02, 45° sweepback of the quarter-chord
line, taper ratio of 0.45, and NACA 63IA012 airfoil sections have been

compared with the calculated loadings obtalined by the standard methods
proposed by Welssinger, Falkner, and Multhopp, as well as by several
variations of these methods. The most accurate shape of the span load
distribution was predicted by the standard Multhopp solution. The
standerd Falkner 6 X 3 solution falled to predict the experimental dip
in the span load distribution at the root stations. All methods that
predicted a fairly accurate loading shepe predicted the lift-curve slope
about 8 percent low. Since all of the methods of calculating are based
on thin-wing theory, the underestimation of the lift-curve slope is
probably -attributable to the finite thickness of the wing. On the basis
of the present calculations, the Weissinger method, when the number of
control points was increased from T (the number suggested by Welssinger)
to 15, or the Multhopp method, when using at least 15 control points,

is a good compromise between accuracy of the results and time required
for a solution.

INTRODUCTION

Verious methods exist for the calculatlion of aerodynamlc forces on
swept wings but only limited experimental corroboration of the different
approaches has been made. As early as 1947, a comparison with experiment
was made of the various methods availsble at that time (reference 1),
but the comparison was limited to experimental data obtained on wings of
low aspect ratlo; and, in addition, the experimental load shape was
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somewhat inadequately defined by the small number of.spanw1se stations
avallable. No comparisons have previcusly been made for wings having
both high aspect ratio and large sweéep angle.

Experimentel date have been obtasined in the lLangley 19-foot pres-
sure tunnel on a wing of aspect ratio 8.02, 45° sweepback of the quarter-
chord line, taper ratio of O.h5, and NACA 631A012 airfoil sections =~

parsllel to the plane of symmetry. Pressure data were available from

8 spanwise stations, including one at the plane of symmetry. The

present paper compareg the Ioadings computed by the second~order lifting-
line method of Weissinger (reference 2) and the lifting-surface methods
of Falkner (reference 3) and MUlthopp (reference 4) with the experi-
mentel loading. ;

The effects of the spanw1se npmber and distribution of control
points, the chordwise distribution of control points, the root-section

discontinuity, and the chordwise distribution of circulation on the -

spanwige loading, lift-curve slope, center of pressure, pitching moment,
and induced drag are examined and discussed. The applicebility of the
calculations at high 1lift coefficiente is also investigated. Also
presented are spanwise loadings predicted by the rapid approximate
methods of -Diederich (reference 5) and Jones (reference 6).

SYMBQLS
c,C - ) ; ’
—_ wing loading parameter
T
c,c : .
—_— unit wing loading parameter
CL'E' ' .
c, seetion 1ift coefficient
cos a (S - 1)d(§> ~ ain ab/q< )max Sp - Sf)dc_
Cr, . . wing lift coefficient . o . - =
L L an or —L—)
2 -1 [ - qu
Cm wing pltching-moment coefficient .
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Cp 1 induced-~-drag coefficient : ) : -

1 (o4 ZC

c local wing chord

< mean wing chord

b wing span

Sw wing area

S pressure coefficient (Eo:—-)

H free-stream total pressure

P local static pressure

L 1ift

q free-stream dynemic pressure (-32'- pV2>

N “free-stream velocity )

s} density of sir

X chordwise coordinate, positlve rearward

¥y ' spanwise coord.ilnate,. positive right

Z normel coordinete, posiftive up

1 nondimensional spanwise coordinate <€§E)

¥ longitudinal coordinate of center of pressure

X lateral coordinate of center of pressure along mean
aerodynamic chord

CLcr. l;ft-curve slope, per degree
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-1
8 sngular chordwise coordinate (cos (? - = })
i <, c72
Av
-2 ratio of increment of local velocity caused by additional
v type of load distribution to free«stream veloclty
80, 8y, - - - 812 coefficients of terms in Fourier representation of

chordwise leading

o geometric angle of attack

%y induced sangle of attack i
Subscripts:

u upper. surface

1 lover surface

il forward of maximum thickness

T rearward of meximum thickness

MODEL AND TESTS

The wing tested (reference T) had an aspect ratio of 8.02, 45° sweep-
back of the quarter-chord line, taper ratio of 0.45, NACA 63;A012 air-

foil sections, and no geometric twist (fig. 1). The wing was con-
structed with a solid steel core, and measurements of the twist due to
aerodynamic loading showed it to vary linearly with Yift coefficilent.
Under the test conditions of the subject wing, the twist amounted to
about 0.2° at Cp, = 1.0.

Pressure readings were obtalned at 225 pressure orifices distributed
among 8 stations located at the plane of &ymmetry and at 3, 10, 30, 55,
75, 90, and 96 percént of the semispan. A typical chordwise distribu-
tion of the orifices i1s shown in figure 1. Further details of the
orifice locations and the model can be found in reference T.

The tests were conducted 1n the Langley 19-foot pressure tunnel at

a Reynolds number of-'k.0 x 10°, based on the wing mean aerodynasmic chord,
which, for ‘the tunnel pressure (33 psia) used in these tests,

g
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corresponded to a Mach number of 0.19. Pressure d%stributions were
obtained through the angle-of-attack range from -1~ to 30°.

The wing was also tested with two full-chord fences located at
0.575b/2 and O.800b/2 and one partial-chord fence extending over the aft
65 percent of the chord at 0.890b/2. Similar pressure measurements
were made with this configuration except that no pressure data were
obtained &t 3 percent of the semispan.

REDUCTION AND CORRECTION OF DATA

The pressure coefficients were numerically integrated at each
station to obtain section date (1ift, drag, and pitching moment). The
span loadings indicated that a 1ift distribution existed at zero 1ift
which flow measurements showed was due mainly to a stream-angle varia-
tion in the reglon occupled by the model. TInasmuch as no satisfactory
method for correcting the individual pressure coefficients exists, the
experimental basic loading was subtracted from the integrated section
data. Further details may be found 1n reference 7. '

No correction was applied to take into account the spanwisé varia~
tion of the Jet-boundary-induced sngle since the varistion from root to
tip wae less than 0.2° at a 1lift coefficlent of 1.0. Measurements of
the twist of the wing due to deflection under load were found to be
roughly of the same magnitude and in the opposite direction. Thus, in
addition to being small, the two effects tended to cancel each other.
In computing forces and moments from the pressure-distribution data,
the following Jet-boundary corrections, from reference 8, were applied:

L = 0.387Cr,
Aoy = 0.00634C;2
MGy = 0.0035CT,

These same Jet-boundary corrections, and also tare and interference
corrections, have bBeen applied to the force-test data. Force-test
pitching-moment coefficients have also been corrected for the pitching
moment due to the basic losding. Spanwlse integretion of the section
force and moment distributlions obtalned from the pressure tests resulted
in total wing 1ift, drag, and pitching-moment coefficients.

An Indication of the accuracy of the data can be seen in figure 2,

where the total wing 1ift, drag, and pitching-moment coefficients, as
determined from both force-test measurements and pressure-distribution
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megsurements, are plotted. _The force-test zero-lift drag coefficient
has been added to the drag coefficients determined by pressure measure-
ments in an attempt to partially tzke intc account the friction forces.

The dagreement of the. coefficients determined by the two methods of -7

testing is quite good.

.

COMPARTSON OF EXPERIMENTAIL LOADING WITH CALCULATED LOADINGS

In the present sectilon, the experimental loading 1s compared with
loadings calculated by the standard methods proposed by Weissinger,
Falkner, and Multhopp, as well as by modifications of these methods.
These methods are summarized in table I.

System of Identifying Solutions

All of the methods of calculation fecognize the fact that the flow
through the wing must be zero, and this conditlon is fulfilled mathe-
matically at a discrete number of—points (called control points). The
number and distribution of these points then form & convenient means of—

identifying solutions. The identification system used in this paper : B

employs two numbers. The first number following the name refers to the
number of spanwise stations at which control points are located, while
the second number is the number of chordwise control polnts at—each
stetion. For example, Falkner 6. X.3 refers.to & Falkner solution
utilizing 3 chordwise control points at each of 6 spanwise stutions.

Spanwise Losd Distribution

As & basis for comiparison, the experimental loading at an angle of
attack of 4.7° was chosen. Section lift-curve data indicate that at
this angle the force chaAracterilstics are still linear, and tip separa-
tion has not occcurred. Practically ldentical loadings were found at
lower angles of attack. For most of the comparisons, data are presented

of the spanwise load distributions.

The calculated loadings are compared wlth the experimental lcading
in figure 3. These loddings were calculated by using the procedures
recomuended by the authors. In the Weissinger 7 X 1 solution it—is
assumed that the circulation 1s concentrated elong the gquarter-chord
line and that it varies continuously across the span. The downwash is
then calculated et T spaiiWise control points on the three-quarter~chord
line. No attempt is made to take into account—the discontinuity in
plan form at ‘the root. station. The loading calculated by this method is

R T
il

ih
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too high over the outboard portions, In the Falkner 6 X 3 solution a
particular form of a spanwise and a chordwise distribution of circu-
lation is assumed in order ta define the strength of a number (21) of :
discrete horseshoe vortices distributed over the span at each of 6 chord-
wise locations. The downwash condition is fulfilled at 3 chordwise
control points at each of 6 spanwise stations. No attempt is made to
take into account the root-station discontinuity. The agreement is

fair except at the root statlons, where the experimental dip in losding
is not predicted. The Multhopp 23 X 1 solution assumes a continuous
spanwise and dhordwise variation of circulation. The downwash condition
is fulfilled at 23 spanwise control points (approximately 3 X aspect
ratio). The discontinuity is treated by modifying the geometric charac-
teristics of the wing at the root. Good egreement with experiment is
obtained with this method. )

All of the calculated loadings differ from one another. The differ-
ences are, of course, attributed to the differences in the assumed
loading and the control points used to arrive at a solution. To check
the influence of the number and location of the spanwise and chordwise
control points and the root section discontinuity, the methods were
used to calculate the loadings, disregarding some of the authors'
recommendations.

Number and location of spanwise control points.- Welssinger states
in reference 2 that for straight wings of moderate aspect ratio,
T control points are all thet are necessary for an accurate prediction
of the load distribution. Schlichting and Kahlert (reference 9),
however, have iIndicated that 1f the aspect ratlo 1s Increased to infinity,
using any finite number of control points will result in a triangularly
sheped loading with the minimum at the root. Multhopp states In refer-
ence 4 that for accuracy the number of control points should be about
three times the aspect ratio. To examine more closely the effect of
the number of spanwise control points, several sclutions have been
carried out in which this parameter was varied. The Weissinger method
wag carried out using 15 control points and the Multhopp method was
carried out using T and 15 control points. For each solution, it was
necessary to calculate the constants embodied in the simultaneous equa-
tions. The number of equations to be solved was equal to the number
of control points in & semispan.

Figure 4(a) compares the Weissinger 7 X 1 and 15 X 1 solutions.
The T-point solution predicts too high a loeding toward the tip and too
low and broad & loading minimum near the root. This type of loading
results because the control points (at 7 = 0, 0.385, 0.707, and 0.923)
miss the essentisl variations in the loading, &s can be seen from the
experimental data. In addition, the lower-order approximation for the
assumed spanwise loading does not involve enough terms to describe
accursately the load distribution. Increasing the number of control points
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to 15 produces a more accurate loading, since now the spacing of the
control points is closer and more terms are used in the assumed loading. L

Figure 4(b) compares the experimental data with Multhopp's 7 X 1,
15 x 1, and 23 X 1 solutions. The same logic applies here: The accu-
raecy of the predicted load shape . increases as the number of_spanwise
control points increases.

Tt—was felt that to predict accurately the loading in the neighbor- )
hood of the root, it was necessary to locate control points in this ' -
region. Since Falkner suggests the opposite view in reference 10,
another Falkner solutlon was carried out, in which only the location of
the control points was varied. Figure 5(a) compares the experimental .
loading with the calculated loadings obtained with the Falkner 6 x 3 -
solution (control points at 71 = 0.2, 0.5, and 0.8) and the Falkner PR
5 X 3 solution (control points at 1 = 0, 0.5, and 0.8). Without the
control point at the center section, the~center minimum is not predicted.
With the control point at the center section, however, the drop in
loading 1s carried over too far outboard. As previously explained, the .
effectresults from too few control points. . - [

The methods used.on uhswept wings are such that a majority of the - - A
control points are located at the tip sections where the loading varies - =
rapidly. 8ince 8 drop in loading is also experienced over the central LTI
portions of swept winge, it _was-felt that a major portion of the increase ' o
in accuracy when the number of control points was increased was due ta’ S
the close spacing of the control points at the root stations. A pre-
liminary study was mede to investigate this point more fully by using = .
control points at the plane of symmetry and at 0.1 b/2 intervals out-
board along the span. The method of reference ll which was set—up to ~
calculate the-downwash resulting from a given lqading, was inverted so e
thet the loading réquired to induce & glven-downwash could be calculated. :
This method employs & simplified vortex representation similar to that
used by Falkner but does not use the same methematicsl techniques and
will be referred to as the modified Falkner 19 X 1 method. Twenty-one
horseshoe vortices were distributed over the span along the quarter- s
chord line, as in reference 11, and the downwash was calculated at 19 con- e
trol points on the three-quarter-chord line. Since the loading 1s sym-
metrical, only 10 independent equations, each with 11 unknown loadings,
are obtained. The strength of the tip vortex was assumed to be given 172

terms of the two adjacent vortices by a serlies of the type Axl/2 + Bx ’

where x ~is the distance inboard of-the tip. The resultling equation Voo

C
(C_l‘_i - 0.995( 12 - 0.7 28 -
CLe/n=0.9625 .. \CL®p=0.9 C1L8/9=0.8 = -
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was substituted into the 10 equations to eliminate one unknown. The

equations were then solved for the remalning 10 unknown loadings. No
attempt was made to take into account the root section discontinuity.
The resulting loading (fig. 5(b)) almost duplicates the experimental

loading. N

. For an accurate prediction of the span loading, 1t is apparently
necessary that the number and location of the control points be such
that no essential veriastion of the loading is missed and that the assumed
series for the spanwise loading be of high enough order to fit the
loading curve. : _

Chordwise distribution of control points.- Figure 6 provides a
comparison of the experimental loading with that calculated by the
Multhopp 15 X 1 and 15 X 2 solutions. It can be seen that the loading
is slightly more closely predicted by the Multhopp method when only one
chordwise control point is used. The Multhopp method of calculation
assumes the wing sections to be mean lines. For the 15 X 1 solution,
Multhopp assumes a Fflat-plate distribution of chordwise circulation,

ag cot 8. For the 15 x 2 solution, a clrcular-arc chorawise distribution

5°
of circulation, a, cot % +ag sin 6, is used. The wing investigated

was of finite thickness and had a flat mean line, but three-dimensional
effects might be expected to induce a camber. The chordwise loading
may be represented mathematically by a trigonometric series of the form
ag cot % +a; sin 0 + as sin 26 + ag gin 3¢ + . . . . In order to
ascertain the magnitude of the harmonics present in the experimental
chordwise loading due to angle of attack, a Fourier dnalysis was made
of each of the chordwise loadings. The analysis showed that the
constants for the first three terms (ag, a;, and a2) are significant
and of the same order of megnitude, while the coefficients of the
higher harmonics gre smaller.

A similer analysls, however, was also made for the theoretical
loading on a two-dimensional NACA 632A015 alrfoil section, as given in

the —vi tables of reference 12, in order to determine whether the

a; and &, terms might simply be due to the thickness. (The sections

of the present wing normel to the leading edge ere actually about
16.3 percent thick, but the tables did not give data for this thickness
ratioc.) The relative values of 8gs 845 85y - « . WETE found to be very

nearly the same as for the wing (except for the root and tip sectioms).
Hence, it is concluded that the relatively large values of aq and as

found for the wing do not necessarily prove that the 15 X 2 solution
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should be intrinsically more exact than the 15 x 1 solution. On the
other hand, there would seem tc be no very clear reason why the 15 X 2
solution should be less exact. A possible-explanation of the lower
accuracy of the 15 X 2 solution may be that the forward location of

half of the control points glves rise to slight inaccuracies in the
mechanics of solution. In reference 9, similar behavior ie noted when
using the Falkner method with control points located forward on the
chord. Effects of—viscosity and of finite wing thickness may, of course,
also be involved.

Root-section discontinuity.- Experimental investigations on swept
wings have shown that the pressure isobars at the root sectlons are
continuously curved rather than sharply bent so that there is no
discontinuity in flow. This curving of the pressure isobars at the root
produces a flatter chordwise distribution of load with a rearward center
of pressure. Both Multhopp (reference 4) and Schlichting and Kshlert
(reference 9) recommend that corrective measures be applied at the root—
Bections to take into account this phenomenon. Only the Multhopp method
wes available for comparison. For the standard solution, Multhopp
proposes the use of an.equivalent wing which has the same geometry as
the actual wing with the exception that the root chord is shortened and
shifted reurward in a specified manner so as to round off the apex of
the wing. A modified Multhopp solution may be found by neglecting this
proposal. In figure 7, the experimental loading 18 compared with two
Multhopp 15 X 1 solutions. The standserd solutlion shows good agreement
between theory and experiments As would be expected, the major effect
was at the root stations where the modified solution predicts a lower
loading than the standard solution. In general, it appears that the

Multhopp correction to take into account the bending of the isobars at = -

the rootstations has a small but beneficial effect on the span loading
for a wing of this aspect ratio. For wings of smaller aspect ratlo,
however, the correctlon may be of greater importance’.

Chordwise distribution of circulation.- When the Weissinger 15 X 1
solution 1s compared with the modified Multhopp 15 X 1 solution (fig. 8),
the effectof the chordwise distribution of circulation on the span load
distribution can be seen. As previously stated, the Welssinger method
agsumes the circulatlon concentrated at the quarter chord, while the

Multhopp method assumes a chordwise distribution of the form aq cot %.

Both methods compute the downwash at the three-quarter-chord line. The
effect of the assumed distribution chn be seen to be largest at the root
stations where the Multhopp lifting-surface theory predicts a lower
loading than the Weissinger second-order 1lifting-line theory. The total
effect appears to be of small importance, and quite possibly, some of
the difference may be due to the differences in the computational tech-
nlques rather than to differences 1n the basic methods. ’
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Repid approximate methods.- The load distributions obtained by two
rapid epproximate methods are shown in figure 9. The method of refer-
ence 5 predicts a load distribution which is in fair agreement with
experiment. About 10 minutes was required for a solution.

The loading predicted by the method of refereiice 6, which is based
upon the assumption that wings with similer spanwise centers of pressure
have similar load distributions, has been presented for two cases. The
first loading was obtained using the center-of-pressure location calcu-
lated by the method of reference 6, while the second was obtained using
the experimental center-of-pressure location. The first loading is in
rather poor agreement with experiment. The second loading is in some-
what better agreement with experiment. Since the method of reference 6
is based upon results obtained by the Weilssinger 7 X 1 solution which
haes been shown to be inadequate for this wing, it is not surprising
that corresponding inaccuracles exist. This method 1s extremely rapid,
however, and required less than 5 minutes for esch loading.

High 1ift coefficients.- A1l of the methods of calculation assume
that viscous effects are negligible, that is, that boundary layers are
very thin and, in particular, that the flow is unseparated. It is of
Interest to compare the calculated loadings with the measured loadings
at high angles of attack. Figure 10 presents experimental loadings
obtalned on the wing with fences at three angles of attack. This con-
figuration was used rather than the plain wing because separation
occurred at low values of Cp on the plain wing, and, obviously, once

the flow separates, the solutions are invalid. The calculated curve
presented is the modified Falkmer 19 X 1 sclution since it predicts the
best loading shape at low 1lift coefficients. At the moderate 1ift
coefficient (0.74), the agreement between the calcillated curve and
experimental values 1s still good. At the highest 1lift coefficient
(1.01), the agreement is reasonable although tip stell has begun. It
should be noted that the large irregularity at 0.55b/2 is due to the
fact that this station is Just inboard of a fence and is apparently in
& localized region of separation at both the moderate and high 1ift
coefficients. ' o i

Lift-Curve Slope.

The experimental 1lift-curve slope determined for both faorce and
Pressure measurements is 0.069 per degree through zero 1ift. This slope
is maintained up to an angle of attack of about 59, beyond which the
slope gradually decreases, as shown in figure 11.

The lift-curve slopes predicted by the various methods of calcula-

tion are also indicated In figure 11. The number of spanwise control
points utilized had a marked effect on the slope predicted by any one
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method. For the Weissinger and Falkner solutions, as the number of span-

wise control points is increased, the value of CLa is Increased.

However, the opposite is true of the Multhdbp'methed; where an increaeiné
number of control points causes a decrease in lift-curve slope. It

appears as if both the Weissinger and Multhopp solutions may be converging

toward a common value of CLm as the number of control points is

increased, slthough: there are not enough solutions to examine this point
further.

Schlichting and Kahlert, in an analysis of the Mutterperl (refer-
ence 13) and Weissinger (reference 2) methods, conclude that by not
locating a control point at the center section a higher lift-curve slope
will result. A comparison of the Falkner & X 3 and 5 x 3 solutions
appears to verify this conclusion. Bach solutlion uses 3 control points
in a semispan and an equal number of terms in the approximation for the
assumed span loading. A marked decrease in CLa results psrtially from

locating a control point at the plane Qf symmetry and partially from
decreasing the number of spanwise control points. It would seem, then,
that the close agreement between the Falkner. 6 X 3 solution and experi-
ment, with regard to CLa’ depends to a large extent upon the particular

choice of control-point location.

Reference 9 also points out-that—in order for ch to reach the

correct value when a control point is located at the center section,
specilal treatment must be given to the center section to take into
account the discontinuity in plan form. When the Multhopp 15 X 1

standard sclution, where the center section 1is rounded, is compared with

the Mhlthopp 15. X 1 modified solution, the Increase 1s evident. The
addition of a corrective term at the plane of symmetry increases CLa

In this instance the increase was only 1.3 percent of the experimental

value, which is of the same order of megnituwde as reported in reference 8.

All of the methods of celculation (which are based on thin-airfoil
theory) underestimate CL@’ end those methods which result in a falrly

accurate load shape underestimate CLm by about 8 percent. This

difference is presumebly due to the finite thickness of the airfoll and
is, in fact, equal to the difference found experimentally between the
two-dimensional lift=curve slope for NACA 63-series airfoil sections

of about this thickness ratio (about 16.2 percent normal to the leading
edge) and the slope given by two-dimensional thin-airfoil theory (see
reference 12). The theoretical value of CLa for these thick sections

exceeds that for thin airfoils by about 12 percent.

L
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Center of Pressure

. The spanwise position of the center of pressure (fig. 12) is pre-
dicted with the greatest accuracy by the methods that most accurately
predict the spanwise load distribution. Obviously, then, what has
previocusly been said about an accurate prediction of load shape applies
here: The number and location of the control points has the laergest
influence on the prediction of the spanwise center of pressure.

The chordwise position of the center of pressure 1s also shown in
figure 12. Ixcept for the Falkner solutlons and the Multhopp 15 x 2
solution, the chordwilse location of the center of pressure has been
assumed to be on the quarter-chord line for lack of anything better.
This assumption 1s equivalent to assuming that the section acts as a
flat plate and that the higher harmonics are zero. For the Falkner and
Multhopp 15 X 2 solutions, the wing center of pressure is not necessarilly
at the quarter-chord line of the wing. For this wing, however, the
calculations (neglecting the unknown second harmonic in the Multhopp
solution) showed the chordwise center of pressure to be essentially on
the quarter-chord line.

The spanwise varilations of the local center of pressure predicted
by the Falkner 6 X 3 and 5 X 3 solutions and the Multhopp 15 X 2
solution are shown in figure 13. For comparison, the experimental data
for four angles of attack for both the plain wing apd the wing with
fences are shown as unconnected symbols. The lower angle of attack
(2.7°) is representative of the low angle range. It can be seen that as
the angle of attack is increased for the plain wing, tip stall causes the
local centers of pressure to move rearward. With fences, this movement
is somewhat retarded until the wing stalls (o = 21.0°). It is inter-
esting to note that at a = 17.0° (Cp, =,l.Ol), the shape of the span-

wise loading curve for the fenced wing is still very similar to the
curves for the lower angles of attack as shown in figure 10, despite the
fact that a considerable rearward movement of the local centers of
pressure is shown In figure 13. The values calculaeted by the Multhopp
15 X 2 method are in good agreement with experiment, predicting the
rearward locations at the root and the forward locations at the tip.
The standard Falkner 6 X 3 solution is only in fair agreement with  °
experiment, and it can be seen that without special handling (such as
given in reference 9) at the root section, the rearward shift of the
centers of pressure 18 not predicted. The Falkmer 5 X 3 sclution pre-
dicts the center of pressure too far rearward over the inboard portions
of the wing and too far forward over the outboard portions of the span.
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Wing Pitching Moment

It is of interest to apply the previously mentioned parameters to
the prediction of the over-all wing characteristics. In Pigure 14 is
plotted the experimental pitching-moment coefficilent—against 1lift coef-
ficient for the plein wing and the wing with fences, as well as various
calculated curves. The pltching moment due to Lift is a function of .
the center-of-pressure location; thus good agreement is obtained for the
more accurate loading methods. It is interesting to note that the spread
of the curves represents a center-of-pressure variation of about 12 per-
cent mean aerodynamic chord. The Multhopp 15 X 2 solution practically
coincides with the experimental data obtained with fences on.

Induced Drag

The calculated varietion of induced-drag coefficient with 1ift
coefficlent is shown fn figure 15. Most of the calculated curves fall
in & nerrow band with about a 5-percent spread. These calculations are
dependent upon both the lift-curve slope and the--load distribution, and
it eppears as if any reasonable estimate of these characterlstics will ~
predict the induced drag fairly well. The load shape resulting from
the Falkner 5 X 3 solution combined with the low CL » however, predicts

an induced-drag coefficient-about 30 percent higher than those predicted

by the other. sclutions.
CONCLUDING REMARKS

Experimental force and moment data obtalned by pressure measure -
ments on a wing of._aspect ratio 8.02, 450 sweepback of the quarter-chord
line, taper. ratio of 0.45, and NACA 631A012 airfoil sections have been

compared with the calculated loadings obtained by the standard methods
of Weissinger, Falkner, and Multhopp. :

1. With regard to the shape of-the spanwise loading distribution,
the most accurate load shape was predicted by the Multhopp 23 X 1
solution. The standard Falkner 6 X 3 solution did not predict the
experimental drop in loading at the root stations.

2. All of the methods predicted similar load shapes provided that a
sufficientnumber of-spanwise control points were used in the solution.
At least 15 were necessary for this wing.
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3. It was found that a slight Improvement in lift-curve slope and
loading shape resulted when the Multhopp scheme of rounding the apex
of the wing was used.

4, Although the opposite .effect was expected, it was found that the
Multhopp method using 1 chordwise control point predicted a more accurate
loading than that using 2 chordwise control points.

5. Those methods which predicted the loading shape fairly accurately
predicted the lift~curve slope sbout 8 percent too low. The low estimate
is probably caused by the finite thickness of the wing.

6. The spanwise variation of the chordwise position of the center
of pressure was fairly accurately predicted by the Multhopp method with
2 chordwise control points.

T. It appears as if the Multhopp or the Weilssinger method will
result in the best over-all compromise between lift-curve slope and load
shape, provided enough control points are used in the solution. For an
extremely rapid estimate of the loasd shape, Dliederich's method predicted
a reasonably accurate loading for this wing.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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Orifice
spanwise stations

Pressure tube
transfer boom

MAC., 16.672

Saction A-A
fenlarged)

-
Typical chordwise orifice (ocations
Figure l.- Geometric characteristics of model. " Aspect ratio, 8.02;

taper ratio, 0.45; airfoil section, NACA 631A012. (Dimensions in
inches except as noted.)
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Figure 2.~ Variation of lift coefficient with angle of attack, drag
coefficient, and pitching-moment coefficient obtained by total-
force measurements and pressure measurements.
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Figure 3.- Experimental span load distribution compared with span load
distributions calculated by several standard procedures,
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the span load distribution, .
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Figure 7.~ Effect of the Multhopp bending at the root stations on the
span load distribution, ' .
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Figure 10.- Calculated and experimental span load distribution at
several values of Lift coefficients for the wing equipped with

fences,
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Figure 12,- Location of experimental and calculated center of pressure.
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Figure 13.~ Calculated and experimental chordwise location of the local
center of pressure across the span.
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Figure 1h,- Calculation and experimental variation of pitching-moment

coefficient with 1ift coefficient.
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Figure 15,~ Calculated.variation of induced-drag coéfficient with
1ift coefficiernt.
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