RESEARCH MEMORANDUM
 回

THE FORCES AND PRESSURE DISTRIBUTION AT SUBSONIC SPEEDS
ON A PLANE WING HAVING 45° OF SWEEPBACK, AN ASPECT
\therefore RATIO OF 3, AND A TAPER RATIO OF 0.5
By Carl D. Kolbe and Frederick W Boltz FY C
Ames Aeronautical 'Laboratory Moffett Field, Calif.

12
LANGEY RESEASCH CEATERT LIBKASY. NASA HAMPTON, VRGINLA

NATIONAL ADVISORY COMMITTEHE FOR AEROITAUTICS

RESEARCH MHMORANDCM

THE FORCES AND PRESSURE DISTRIBUTION AT SUBSONIC SPEEES

ON A PLANE WING HAVITG 45° OF SWEFPBACK, AN ASPECT
RATIO OF 3, AND A TAPER RATIO OF 0.5
By Carl D. Kolbe and Frederick W. Boltz

SUMMARY

An investigetion was conducted to determine the effects of scale and compressibility on the forces, moments, and pressure distribution on a wing having an aspect ratio of 3 and a taper ratio of 0.5 . The line joining the quarter-chord points of the airfoil sections was swept back 45° and the airfoil sections perpendicular to this line were the NACA $24 A O 10$.

Ifft, drag, and pitching-moment data and the chordwise distribution of static pressure at seven spanwise stations are presented for Reynolds numbers up to $18,000,000$ at a constant Mach number of 0.25 ; for Mach numbers ranging from 0.08 to 0.96 at a constant Reynolds number of $4,000,000$; and for Mach numbers of $0.08,0.25$, and 0.60 at a constant Reynolds number of $8,000,000$.

It was indicated from the force and moment data that, for all Mach numbers and Reynolds numbers in the test renge, no apparant flow separation existed near the leading edge of the wing for lift coefficients less than 0.3. At higher lift coefficients, the initiation of flow separation and reattachment near the leading edge of the outer sections of the wing was generally accompanied by ai increase in the lift-curve slope, a rearward movement of the aerodynamic center, and an increase in the rate of drag rise.

The effect of increasing the Reynolds mumber was to delay to higher Ifft coefficients the onset of leading-edge flow separation and the concomitant effecta on the lift, drag, and pitching moment.

Increasing the Mach number to approximately that for drag divergence at a Reynolds number of $4,000,000$ resulted in a rearward movement of
the wing aerodynamic center of about 6 percent at the mean aerodynamic chord at zero lift.

The effecte of compressibility on the force and mament characterIstics up to a Mach number of 0.60 were influenced by an increase in Reynolds number from 4,000,000 to 8,000,000. At the lower Reynolds number, the angle-of-ittack range for which the lift and pitching-moment curves were nearly linear was reduced by the increase in Mach number, whereas this angle-of-attack range was increased at the higher Regnolds number.

An investigation of several types of Juncture arrangements between the model and the turntable indicated that varying the type of aeal caused but ifttie change in the forces, moments, and pressure distribution on the model.

INTRODUCIION

Wings having moderately high degrees of sweepback offer the possibility of flight at transonic speeds without serious compressibility effects. Studies of the pressure distributions on such wings have shown that simple sweep theory does not offer an adequate method of predicting the chordwise distribution of pressure near the roota or the tips of the wings. For swept-back wings of low aspect ratio, a subatantial part of the wing surface is subjected to flow characteristics which result from the so-called root and tip effects. Frperimental determination of the pressure distribution on such wings will provide not only detailed information concerning the aerodynamic characteriatice, but also will furnish data for evaluating and extending the theoretical methods for computing surfece pressures.

An investigation has been conducted in the Ames 12-foot pressure wind tunnel throughout a wide range of Reynolds numbers and subsonic Mach numbers to obtain experimentally the pressure diatribution and the total iift, drag, and pitching moment on a wing having 45° of sweepback and an aspect ratio of 3. To determine the effects of both Mach number and Reynolds number, the wing was tested at constant Reynolds numbers over a range of Mach numbers and at a constant Mach number over a range of Reynolds numbers. The force data and a representative portion of the pressure data are presented in graphic form along with a limited analysia of the data. The complete pressure data for the wing are pre sented in tabular form.

NOTATION

$$
\begin{aligned}
& \text { a speed of sound in Pree stream, feet per second } \\
& \frac{6}{2} \text { semispan, measured perpendicular to plane of symmetry, feet } \\
& \sigma_{D} \quad \text { drag coefficient }\left(\frac{\partial_{\text {mg }}}{q_{0} 5}\right) \\
& \mathrm{C}_{\mathrm{D}_{\mathrm{t}}} \quad \text { tare drag coefficient }\left(\frac{\operatorname{tare} \mathrm{drag}}{q_{0} S}\right) \\
& \sigma_{I} \quad \text { Iff coefficient }\left(\frac{\text { ifft }}{q_{0} S}\right)
\end{aligned}
$$

C_{m}. pitching-moment coefficient about the querter point of the
A

$$
\text { wing mean aerodynamic ahord }\left(\frac{p 1 t c h i n g ~ m o m e n t ~}{q_{0} S \bar{c}}\right)
$$

$C_{N} \quad$ normal-force coefficient $\left(\frac{1}{5} \int_{0}^{b / 2} c_{n} c d y\right)$
c local wing chord parallel to plane of aymetry, feet
$C_{a v}$ average wing chord parallel to plane of symmetry, feet c_{n} section normal-force coefficient $\left(\frac{\text { section normal force }}{q_{0} c}\right)$ $\overline{\mathrm{C}} \quad \begin{array}{r}\text { mean aerodynamic wing } \\ \text { theoretioal tip ohord }\end{array}$
$\frac{I}{\bar{D}} \quad$ ratio of lift to drag
$\left(\frac{L}{D}\right)_{\text {max }} \quad$ maximum lift-to-drag ratio
M_{D} drag-divergence Mach number (free-atream Mach number at which $\left.\left(\frac{\partial C_{D}}{\partial M_{0}}\right)_{C_{L}}=0.10\right)$
$M_{0} \quad$ free-stream Mach number $\left(\frac{V_{0}}{a_{0}}\right)$
P
local pressure coefficient $\left(\frac{p-p_{0}}{q_{0}}\right)$
p local static pressure, pounds per equare foot
$p_{0} \quad$ free-stream static pressure, pounds per square foot
$q_{0} \quad$ Preestream dynamic pressure $\left(\frac{1}{2} \rho_{0} V_{0}^{2}\right)$, pounds per square foot
R Reynolds number $\left(\frac{\rho_{0} \nabla_{0} \bar{c}}{\mu_{0}}\right)$
S semispan wing area, aquare feet (using theoretical tip chora)
$\nabla_{0} \quad$ freestreall velocity, feet per second
I lateral distance perpendicular to the plane of eymetry, feet
$\alpha \quad$ angle of attack, degrees
α_{1} angle of attack unoorrected for tunnel-wall interference and angle-of-attack counter correction, degree日
η. fraction of eemispan $\left(\frac{y}{b / 2}\right)$
$\mu_{0} \quad$ coefficient of Viscosity of air, slugs per foot-second
ρ_{0} free-atream mass density of air, slugs per cubic foot

MODEI AND APPARATUS

The model wing used in this investigation had the leading edge swept back 48.540, an aspect ratio of 3.0, and a taper ratio of 0.5 . The wing had no twist and the sections were the KACA 64AOl0 in planes inclined 45° to the plane of gymmetry. The locus of the quarter-chord points of these sections was swept back 45°. This line was at 29.63 percent of the chord parallel to the plane of symmetry. The tip of the wing was formed by a half body having a radius equal to the corresponding half thickness of the tip section. Coordinates of the NACA 64AOLO section and of the sections parallel to the plane of symmetry are presented in tables I and II, respectively.

The model, which had a semispan of 46.67 inches, was constructed of a tin-bismath allof bonded to a laminated steel spar. Pressure orifices were installed in seven rows in planes parallel to the plane of symmetry. The orifices were distributed along the chord on bath the upper and lower surfaces from the leading edge to the 91-percent-chord point and were staggered $1 / 4$ inch on either side of the station planes. A sketch of the plan form of the wing showing the locations of the seven orifice rows and the manner in which the orifices were staggered is given in figure 1. The locations of the orifices along the chord at each station are given with the tabulated pressure-coefficient data (tables III through XXII).

Figure 2 shows the model mounted in the wind-tunnel test section. The test-section floor served as a reflection plane. The forces and moments were transmitted directily to the balance system through the turntable upon which the model was mounted. Pressures were measured by means of multiple-tube manometers and were recoried photographically.

Twenty-aix flush orifices were installed in the wind-tunnel test section for the purpose of investigating the onset and the extent of supersonic flow along the tunnel wall opposite the upper surface of the model. The location of these orifices with respect to the model is illustrated in figure 3.

Cross-sectional views of the juncture arrangemente between the molel and the turntable that were used in the investigation of various seals are shown in figure 4. It is to be noted that the configurationa shown in figure 4 extended completely around the root section of the model.

The chordwise đistributions of prossure at seven sparmise stations on the wing were measured aimulaneously with the total lift, drag, ard
pitching moment at Reynolds numbers of $4,000,000,6,000,000,8,000,000$, $12,000,000$, and $18,000,000$ for a Mach number of 0.25 . Similar measurements were made at a Reynolds number of 4,000,000 for Mach numbers rangIng from 0.08 to 0.96 and at a Reynolds number of $8,000,000$ for Mach numbers of 0.08 and 0.60 . The angle of attack was varied from -2° to 30° during the low-speed tests, but this range was reduced at the higher Mach numbers where wind-tumel power limitations prevented teating at the higher angles of attack. At Reynolds numbers of 12,000,000 and 18,000,000, the capacity of the wind-tunnel balance system limited the force measurements to angles of attack of 28° and 16°, respectively.

Surface pressures on the tunnel wall were measured in the vicinity of the model to ascertain the test conditions at which the data may have been affected by wind-tumel choking.

As an adjunct to the basic teste, an investigation was made to determine the effect of various seals at the model-turntable juncture on the measured forces, moments, and pressures on the model. For each of the six arrangemente shown in ifgure 4, measurementa of the lift, drag, pitching moment, and static pressures on the wing were obtained for Mach numbers of 0.25 and 0.80 at a constant Reynolds number of 4,000,000. The seal arrangement denoted as "original" was used throughout the general investigation of the wing aerodynamic characteristics.

Corrections to the data for tunnel-wall interference resulting from lift on the model were evaluated by the method of reference 1 using the theoretical span loading derived from the charte of reference 2. The following increments were added to the angle of attack and drag coefficient:

$$
\begin{aligned}
& \Delta a=0.769 C_{L}, \text { degrees } \\
& \Delta C_{D}=0.0109 C_{L}{ }^{2}
\end{aligned}
$$

No corrections were applied to the pitching-moment data.
The pressure data and the coefficients derived therefrom are presented in this report for values of uncorrected angle of attack our. The relation between the corrected and uncorrected angles of attack is as follows:

$$
\alpha=0.99 \alpha_{i I}+\Delta \alpha
$$

Corrections for the effecte of constriction were evaluated by the method of reference 3. This method, while not accounting for sweepback and belng strictly applicable only to full-span models centrally located in the tunnel, has been used as the best available estimate of the constriction effects. The magnitude of the corrections applied to the freestream Mach number and to the dynamio pressure is 11justrated in the following table:

| Corrected
 Mech number | Uncorreoted
 Mhach number | |
| :---: | :---: | :---: | | Correoted q_{0} |
:---:	\quad	Uncorreoted q_{0}

The following corrections were subtracted from the drag coefficients to compensate for the forces on the exposed surface of the turntable:

$\underline{R} \times 10^{-8}$	M_{0}	$\mathrm{C}_{\mathrm{D}_{t}}$
4.0	0.08	0.0027
1	. 25	. 0028
	. 60	. 0030
	. 80	. 0033
	. 90	. 0036
	. 92	. 0037
	. 94	. 0038
\downarrow	. 96	. 0040
6.0	. 25	. 0026
8.0	. 08	. 0023
\downarrow	. 25	. 0024
\downarrow	. 60	. 0025
12.0	. 25	. 0023
18.0	. 25	. 0022

No attempt wes made to evaluete the tares due to possible interference between the model and the turntable or to compensate for the tunnelfloor boundary layer which, at the models had a displacement thickness of $I / 2$ inch. The magnitude of these effects is belfeved to be small.

Through consideration of the resulte of the static loading tests on a model of moderate aspect ratio presented in reference 4 and the greater
structural rigidity of the subject model, it was assumed that the effectg of aeroelasticity on the aerodynamic characteriatice of the model were negligible.

RESUUTS AND DISCUSSION

Abstract

The aurface preasures on the model, measured for the complete range of Mach numbers and Reynolds numbers at gelected anglea of attack, are presented as pressure coefficients in tabular form immediately following the figures. Table III ia an index to these data which are presented in tables IV through XXII. A representative portion of the pressurediatribution data has been presented graphically in the figures of this report to facilitate the analyais of the force and moment characteriatics of the model. Due to the staggering of the orificea (as explained. in the section "Model and Apparatus"), a slight "saw-tooth" variation is present in the plotted values of the chordwise preseure distributions, particularly in regions where the apanwise presaure gradients were large. A mean fairing through the plotted values of pressure coefficient was therefore used to represent the pressure diatribution at the apanwise atations indicated in figure 1.

The reaults of an investigation that was made to ascertain the effect of model-turntable functure seals are presented in the appendix. These data indicate that the various alterations to the seal, in the model-turntable functure, produced no significant ohanges in the aerodynamic characteristics of the wing.

The lift, drag, and pitching-moment characteristics of the model are presented in figure 5 for Reynolds numbers of $4,000,000,8,000,000$, 12,000,000, and 18,000,000. Figure 6 presents the chordwise diatributions of pressure coefficient at the seven spanwise stations for several angles of attack at Reynolds numbers of 4,000,000, 8,000,000, and 18,000,000. Inspection of figure $5(a)$ reveala that at low to moderate values of lift coefficient the variation of lift coefficient with angle of attack was linear and the lift-curve alope was little affected by the increase in Reynolds nimber. At a Reynoide mumber of 4,000,000 the IIftcurve slope increased beyond a lift coefficient of about 0.4 and decreased at lift coefficients greater than about 0.75. A comparison of these data with the pre日sure data in figure 6 indicater that the increase in lift-curve slope was due to separation and reattachment of the flow near the leading edge of the outer sections (indicated by a reduction in the peak pressure coefficients). Further comparison of the

Effecte of Reynolds Number at a Mach Number of 0.25

 data shows that the reduction in the Ifft-curve slope occurred when the.separated flow failed to reattach over the outer sections (indicated by a chordwise distribution of nearly constant pressure). Increasing the Reynolds number above 4,000,000 resulted in an increase in the lift coefficient at which the lift-curve slope increased and an increase in the lift ocefficient at which complete flow separation over the outer sections resulted in a decrease in the lift-curve slope. The maximum lift coefficient increased only slightly as the Reynolds number was increased from 4,000,000 to 12,000,000.

The increase in lift-curve slope at moderate angles of attack was accompanied by a rearward movement of the wing center of pressure (fig. 5(b)) which was followed by a forward movement as the lift-curve slope decreased. Beyond maximum lift the wing center of pressure moved rearward. With increasing Reynolds number the initiation of flow separation over the outer sections had a more pronounced effect on the rearward movement of the wing center of pressure.

Inspection of the drag data in figure 5(c) In conjunction with the lift and moment data in figures $5(a)$ and $5(b)$ shows that an additional increase in the rate of change of drag coefficient with lift coefficient occurred simultaneously with the increase in Ifft-curve siope and longitudinal stability.

In figure 7 the section normal-force coefficients, derived from integration of the pressure data, are presented as functions of the uncorrected angle of attack. With increasing Reynolds number there was an increase in the maximum section normal-force coelficients at the outer sections. A comparison of the data of figure 7 with that preaented in ifgure 5 indicates that the increase in the lift-curve slope, the increase in longitudinal stability, and the more rapid rate of drag rise of the wing coincided with the increase in the section normal-force curve slope of thie tip sections. Attendant upon this increase in the section normal-force-curve slope at the higher Reynolds number was a rapid expension of the chordwise extent of the region of flow separation starting Prom just behind the leading edge. The resultant redistribution of pressure caused a rearward movement of the centers of pressure of the outer sections as shown in figure 8.

Effects of Reynolds Number at a Mach Number of 0.60

The Ifft, drag, and pitching-moment characteristics of the wing are compared in figure 9 for Reynolds numbers of 4,000,000 and 8,000,000. The corresponding chordwise distributions of static pressure coefficient at the seven spanfise stations are presented in figure 10 for several angles of attack. From figure 9 it is evident that increasing the Reynolds number from $4,000,000$ to $8,000,000$ extended the Ifnear portion of the lift curve, caused a more nearly linear variation of the pitchingmoment coefficient with the lift coefficient, and resulted in a reduction

In the drag coefficients for lift coefficients greater than about 0.2. The pressure data in Iigure 10 reveal thet at the higher Reynolde number there was an increase in the angle of attack at which the reduction in the peok pressure coefficients began at the outer eections. These data also show that at the higher Reynolds inumer there was a more gradual reduction in the peak pressure coefficients near the leading edge of the wing with increasing angle of attack, probably the result of a more gradual growth of the chordwise extent of the region of.separation.

In figure II the section normal-force coefficients at the two Reynolds numbers are presented as functions of the uncorrected angle of attack. The effect of increasing the Reynolds number was to delay to higher angles of attack the rapid increase in section normal-force coefficient and also to increase the meximum values of section normalforce coefficient at the outer sections. A comparison of figures 10 and Il reveals that at a Reynolde number of 4,000,000 the large increase in slope of the section normal-force curves was the result of the region of separation extending a considerable distance rearward from the leading edge.. At a Reynolds number of $8,000,000$ the onset of separation and reattachment of the flow near the leading edge was, for most sections, at first accompenied by a decrease in the slope of the section normal-force curves followed by an increase in the slope as the region of separation extended rearward from the leading edge.

In adition to the changes in the section normal-force coefficients With the increuse in Reynolde number, the positions of the section centers of pressure were also changed. The variations of the locations of the section centers of pressure and of the pitching-moment coefficient of the wing with angle of attack at Reynolds numbers of 4,000,000 and $8,000,000$ are shown in figure 12. It is to be noted that the rearward movement of the section centers of pressure was considerably more abrupt and of greater magnitude at a Reynolde number of 4,000,000 than at a Reynolds number of $8,000,000$. Thus, it appears that changes in the section centers of pressure as well as changes in the spanwise distribution of the section normal-force coefficient were responsible for the differences noted in the pitching-moment characteristics at these two Reynolde numbers.

Effecte of Mack Number at a Reynolds Number of 4,000,000

Iimitations of the data due to wind-tunnel choking. - Before the effecte of Mach number on the aerodynamic characteristice are discussed, It is necessary to explain the possible limitations of portions of the data obtained at Mach numbers near those at which choking occurred in the wind tunnel. In order to ascertain the degree of wind-tumel choking, static pressures were measiured along the wind-tunnel wall
opposite the upper surface of the model. From these pressure surveys the approximate extent of supereonic flow on the tunnel wall was determined.

As an illustration of the results of the gurveys, figure i3 is presented. This figure shows the development of a region of supersonic flow on the upper surfesce of the model and on the tunnel well with increasing angle of attack at a Mach number of 0.92 . It is apparent that, at angles of attack of 40 or less, the extent of supersonic flow on the tunnel wall was small and, consequently, any alteration to the supersonic flow field about the model due to the presence of the tunnel walls was probably slight. However, as the angle of attack was increased to 6° and beyond, the region of aupersonic flow on the tunnel wall increased, resulting in a "partially chokea" condition. The data obtained under these conditions are represented by the dotted portions of the curves in the figures.

Force and moment oharacteristics. - In figure 14 the aerodynamic characteristics of the wing at Macil numers ranging from 0.08 to 0.96 are presented for a constant Reynolds number of 4,000,000. Included in this figure are the data obtained at Mach numbers of $0.08,0.25$, and 0.60 for a constant Reynolds number of 8,000,000. These data will be discussed under the heading "Influence of Reynolds Fumber on the Effects of Compressibility." The effects of Mach number on the lift, drag, and pitching-moment coefficients at a Reynolds number of 4,000,000 are summarized in figures 15 and 16 wherein the coefficients are plotted as functions of Mach number. The variation with Mach number of the liftcurve slope and the locations of the aerodynamic center for several angles of attack are shown in figures 17 and 18, respectively. The maximum lift-arag ratio and the lift coefficient for marimum lift-arag ratio are presented in figure 19.

With reference to figure 14 (a), it may be seen that the lift-curve slope increased at lift coefficienta of 0.6 ana 0.4 for Mach numbers of 0.08 and 0.25 , respectively, whereas the increase in lift-curve slope began at a lift coefficient of about 0.3 for Mach mabers from 0.40 to 0.90. In figure 17 the theoretical velue of lift-curve slope computed by the method of reference 2 is shown in comparison with the experimental values for lift coefficients of 0, 0.2, and 0.4. The agreement between the experimental and theoretical values is good for lift coefficients of 0 and 0.2 . The mariked increase in the experimental values at a lift coefficient of 0.4 is believed to have resulted from separation and reattachment of the flow near the leading edge of the tip of the wing.

In figure 15, the pitching-moment coefficients for constant values of lift coefficient at a Reynolds number of 4;000,000, obtained from figure 14(b), are shown to have gradually become more negative with increasing Mach number. At Mach numbers slightly below those where the
tunnel became partially ahoked the pitching-moment coefficients increased rapialy in absolute value.

The effect of Mach number on the location of the aerodynamio center at angles of attack of $0^{\circ}, 2^{\circ}, 4^{\circ}$, and 6°, is shown in figure 18. The aerodynamic center at an angle of attack of 0° moved rearward approximately 6 percent of the mean aerodynamic chord as the Mach number was increased from 0.08 to 0.92 and then moved rapidiy rearward as the Mach number was further increased. At anglee of attack of 2° and 4°, the poaition of the aerodynamic center varied only allightly up to Mach numbers of 0.91 and 0.90 , respectively, beyond which it moved rapidiy rearward. At an angle of attack of 6°, the aerodynamic center moved aft approximately 9 percent of the mean aerodynamic chord as the Mach number was increased from 0.08 to 0.85 and then contimed rearward more rapidly with increasing Mach number.

In figure 24(c), the familiar low-drag range is discernible at low lift coefficients at Mach numbers up to 0.83 . The loss of this low-drag region is reflected in the lower two curves shown in figure 16 wherein the drag coefficient is presented as a function of Mach number for constant values of lift coefficient. At a Mach number of 0.83 the drag coefficient may be seen to have increased only slightly over its low-epeed value for lift coefficients of 0 and 0.1 . Between a Mach number of 0.83 and that for drag divergence the drag incieased roughly 50 percent. A similar variation of the drag coefficient with Mach number may be noted for a lift coefficient of 0.2 although this was outside the low-drag range. At higher lift coefficients the gradual drag rise commenced at considerably lower Mach mumbers. The Mach mumber for drag divergence, defined as the point at which ($\left.\partial C_{D} / \partial M_{0}\right)_{C_{L}}=0.10$, decreased from about 0.94 at a lift coefficient of 0 to 0.875 at a lift coefficient of 0.5 . The suden reduction in drag coefficient just prior to drag divergence for lift coepficients of 0.4 and 0.5 may be due to a reduction in the region of separated flow over the forward part of the airfoil as explained in reference 5.

In figure 19 the maximm lift-drag ratio is ehown to have been about 19 between Mach numbers of 0.08 and 0.45 , thereafter decreasing gradually to about 16 at a Mach mumber of 0.92 . Further increase in Mach number up to 0.96 resulted in a decrease in the maximum lift-drag ratio to about 9. The lift coefficient for maximum lift-drag ratio deriated only slightly from 0.2 throughout the Mach number range.

Pressure-diatribution characteriatice:- The chordwise diatribution of pressure coefficient at the seven spanwise atations is presented in figure 20 for angles of attack of $2^{\circ}, 4^{\circ}$, and 6° at several selected Mach numbers. The pressure distributions for an angle of attack of 2° were used in locating the isobars, or lines of constant pressure coefficient, on the upper and lower aurfaces of the model as shown in figure 21. It can be seen that, in general, the isobars curve rearward near the root of the wing so as to approach the plane of symmetry
perpendicularly. Conversely, the isobars at the tip of the wing tend to curve forward. From the isobar plots it may be seen that the points of minimum pressure, exclusive of those at or near the leading edge, were displaced rearward at seotions near the root and forward at sections near the tip. The crest lines (Ifnes defining the locus of points at which the surfece of the wing is tangent to the undiaturbed free stream) are indicated in figure 21 to provide a reference from which to gage the variance in the isobars. A discussion of an interpretation of isobars is given in reference 4.

The spanwise distributions of section normal-force coefficient at several Mach numbers are presented in figure 22 for angles of attack of $2^{\circ}, 4^{\circ}$, and 6°. As previously noted, the dotted curves represent data obtained with the supersonic flow field of the model extending to the tunnel wall. It may be observed that the maximum value of section normal-force coefficient occurred at about 70 percent of the semispan. As the Mach number was increased from 0.60 to 0.90 at an angle of attack of 6°, the section normal-force coefficient showed a greater increase at the tip stations than at stations nearer the root. This greater increase in the section normal-force coefficient of the tip sections was accompanied by an increase in the Iift-curve siope, an increase in stability, and an increase in the rate of drag rise. (See iig. 14.)

In figure 23 the spanwise distribution of loading coefficient $c_{n} c / C_{N} c_{a v}$ at several Mach numbers is presented in comparison with the theoretical distribution. The theoretical distribution is practically invariant throughout the range of Mach numbers for which experimental data are presented. Similarly, the experimental values of loading coefficient show only small variations with Mach number and are in good agreement with the theoretical values. The experimentel loading coefficients are based upon the slopes of the section normal-force curves measured through an angle of attack of 0°.

The effects of compressibility on the lacstions of the section centers of preseure at the seven spanwise stations for angles of attack of $2^{\circ}, 4^{\circ}$, and 6° are shown in figure 24. The effect of increasing Mach number was, generally, to cause a rearward movement of the section centers of pressure near the root and a forward movement near the tip up to approrimately the Mach number for drag divergence. An exception to this variation with Mach number is shown for an angle of attack of 6° at 0.924 semispan where the center of pressure moved reerward with increasing Mach number. The over-all effect of the movementa of the section centers of pressure, together with the changes in the spanwise distribution of load (fig. 22), on the location of the wing aerodynamic center at angles of attack of $2^{\circ}, 4^{\circ}$, and 6° may be seen by reference to figure 18.

Influence of Reynolds Number on the Effecte of Compreasibility

In figure 14, the data obtained at several Mach numbers for a Reynolds number of $8,000,000$ have been included with the data for a Reynolds number of $4,000,000$ to show, insofar as is possible, the influence of Reynolds number on the compreseibility effects encountered up to a Mach number of 0.60 .

With an increase in Mach number to 0.60 , the linear portion of the lift curve (fig. 14(a)) was extended to higher lift coefficients at a Reynolds number of $8,000,000$, whereas at a Reynolds number of 4,000,000 it was reduced. This same trend may be seen in the pitching-moment characteristics (fig. 14(b)) where changes in stability with an Increase in Mach number to 0.60 were delayed to higher lift coefficients at a Reynolds number of $8,000,000$, whereas at a Reynolds number of $4,000,000$ increasing the Mach number to 0.60 reduced the lift coefficient at which changes in stability occurred. Thus, the offect of increasing Mach number on the lift coefficient at which tip stalling occurred was apparently reversed by Increasing the Reynolds number from 4,000,000 to 8,000,000. The drag data (fig. I4(c)) indicate, however, that an increase in the rate of ohange of drag coefficient with lift coefficient occurred at about the same lift coefficient for Reynolds numbers of 4,000,000 and 8,000,000 at a Mach number of 0.60 . The explanation of this effect of Reynolds number is provided in the pressure data of figure 10. These data show that at a Reynolde number of $8,000,000$, leading-edge flow separation with reattachment near the tip of the wing actually began at an angle of attack between 6° and 8° although the flow did not separate completely over the outer sections until the angle of attack was increased beyond 12°. At a Reynolda mumber of $4,000,000$ the flow had separated completely over the outer sections at an angle of attack of 8 . Thus, due to the more gradual spreading of the stall near the tip at a Reynolds number of $8,000,000$, there was no sudden change in the slope of elther the lift curve or the pitching-moment curve although the drag rise was similar to that at a Rejnolde number of $4,000,000$.

It is important to note that the favorable effects of increasing the Reynolds number may persist at still higher. Mach numbers. In this event, the effect of Increasing Mach number at higher Reynolds numbers would differ from that shown at a Reynolds number of 4,000,000.

CONCLUSIONS

An investigation has been made of the effecta of scale and compreasibility on the aerodynamic characteristics of a wing having the quarter-chord line swept back 45° and an aspect ratio of 3.0. Force, moment, and surface pressuree were masaured for Reynolds numbers up
to 18,000,000 at a constant Mach number of 0.25 ; for Mach numbers up to 0.96 at a constant Reynolds number of 4,000,000; and for Mach numbers up to 0.60 at a constant Reynolds number of $8,000,000$. The results of the tests indicate the following conclusions:

1. For all Mach numbers and Reynolds numbers in the test range, no flow separation appeared to exist near the leading edge of the wing for lift coefficients less than 0.3. At higher lift coefficients the initiation of leading-edge flow separation with reattachment, over the outer portions of the wing, was accompanied in nearly every case by an increase in the lift-curve slope, an increase in static longitudinal stability, and an increase in the rate of drag rise.
2. The effect of increasing the Reynolds number at Mach numbers of 0.25 and 0.60 was to delay to higher lift coefficients the onset of flow separation near the leading edge and the concomitent effects on the lift, drag, and pitching moment.
3. Increasing the Mach number to approximately that for drag divergence at a Reynolds number of 4,000,000 resulted in a rearward movement of the wing aerodynamic center of about 6 percent of the mean aerodyamic ohord at zero lift. (The Mach number for drag divergence was found to vary from about 0.94 at a lift coofficient of 0 to abuut 0.875 at a lift coefficient of 0.5.) Further increase in Mach number resulted in a rapid rearward movement of the eerodynamic center.
4. The spanmise distribution of loading coefficient at low lift coefficients showed good agreement with theory, being practically unsffected by compressibility. The increase in lift-curve slope with Mach number also was in good agreement with that predicted by theory.
5. The effects of compressibility on the force and moment characteristics up to a Mach number of 0.60 were influenced by an increase In Reynolds number from 4,000,000 to 8,000,000. At the lower Regnolds number the angle-of-attack range for which the lift and pitching-moment curves were nearly linear was reduced by the increase in Mach number, whereas this angle-of-attack renge wes increesed at the higher Reynolds number.
6. Various alterations to the seal at the model-turntable juncture produced no sienificant changes in the aerodynamic characteristics of the wing.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics Moffett Field, Calif.

APPERDIX

MODET-MURNTABLE SFAL IMVESTIGATICN

In wind-tunnel teating with semispan models it would be deairable to isolate the reflection-plane turntable from the force-measuring apparatus. Such an arrangement poaes the problem of minimizing air flow through the model-turntable juncture in such a manner that the flow over the model is not disturbed and the turntable acts as a true reflection plane. To ascertain the effects of various model-tumatable-juncture seal arrangements on the measured forces, moments, and pressuree, six seals were tested. These seal arrangements are illustrated in figure 4.

In ilgure 25 the lift, drag, and pitching-moment data for each of the five modified seal arrangementa have been superimposed on the corresponding data for the original seel arrangement. Data are shown for Mach numbers of 0.25 and 0.80 at a constant Reynolds number of 4,000,000.

From the nature of the different configurations, it might be expected that the greatest difference in the force characteristics of the model would appear in changing from seal A to seal B. (See ifg. 4). However, the data presented in figure 25 indicate that only small changes In the forces and moments resulted in changing from any one arrangement to any other. The slight differenoes which do exist in the force and moment data could be attributable to experimental scatter rather than to changes in the flow at the root of the wing.

Further evidence of the negligible effect of the various seal modifications is indicated in figure 26 wherein is shown a comparison of the chordwise diatribution of pressure coefficient for an angle of attack of 16° at 0.086 semispan for seals A and B. The data for a rerun with seal A are inciuded to indicate the variation in pressures which might be expected from the experimental variations. From the data in figure 26, it was found that in changing from eeal A to seal B the section normal-foroe coefficient at 0.086 semfspan decreased about 1 percent at a Mach number of 0.25 and about 3 percent at a Mach number of 0.80 . The decrease in section normal-force coefficient was smaller at the remaining semfapan stations so that the over-all effect was considered negligible.

RHEFRPRHNCES

I. Sivells, James C., and Deters, Owen J.: Jet-Boundary and Plan-Frorm Corrections for Partial-Span Models with Reflection Plane, End Plate, or No End Plate in a Closed Ciroular Wind Tunnel. NACA Rep. 843, 1946. (Formerly INACA TN 1077)
2. DeYoung, John, and Harper, Charles W.: Theoretical Symmetric Span Loading at Subsonic Speeds for Wings Having Arbitrary Plan Form. NACA Rep. 921, 1948. (Formerly TN's 1476, 1491, and 1772)
3. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed-Mhroat Wind Tunnels, with Consideration of the Hffect of Compressibility. NACA Rep. 995, 1950. (Formerly INACA FM ATB28)
4. Eiwards, George G., and Boltz, Frederick W.: An Analysis of the Forces and Pressure Distribution on a Wing with the Leading Edge Swept Back 37.25. NACA RM A9KO1, 1950.
5. Iindsey, W. F., Daley, Bermard N_{A}, and Humphreys, Milton D.: The Flow and Force Characteriatics of Supersonic Airioils at High : Subsonic Speede. NACA TN 1211, 1947.

TABLIF I. COORDINATES FOR THE NACA 64A010 AIRFOIL SECTION
[All dimensions in percent of chord]

Upper and Lower Surfaces	
Station	Ordinate
0	0
.50	.804
.75	.969
1.25	1.225
2.50	1.688
5	2.327
7.50	2.805
10	3.199
15	3.813
20	4.272
25	4.606
30	4.837
35	4.968
40	4.995
45	4.894
50	4.684
55	4.388
60	4.021
65	3.597
70	3.127
75	2.623
80	2.103
85	$1 . .582$
90	1.062
95	. .041
IO0	.021
I. F. radius,	0.687
T. E. radius, 0.023	

TABTH II. - COORDINATPS FOR SECTIONS PARAT工BL
TO THPE FLANE OF SYMMETRY
[All aimensions in percent of chord]

TABLE III. - INDEX OF TABULATED PRESSURE COEFFICIENSS

Table No.	$\mathrm{R} \times 10^{-8}$	M_{0}	$\alpha_{u 1}$ Range
IV	4.0	0.25	0° to 24°
V		.40	1
VI		. 60	
VII		. 80	0° to 16°
VIII		. 83	0° to 14°
IX		. 86	0° to 12°
X		. 88	0° to 12°
XI		.90	$0^{\circ} 0^{\circ}$ to $12^{\circ}\left(10^{\circ} \& 12^{\circ}\right)$
XII		. 92	0° to $10^{\circ}\left(6^{\circ}, 8^{\circ}, \& 10^{\circ}\right)$
XIIII		-93	0° to $8^{\circ}\left(4^{\circ}, 6^{\circ}, \& 8^{\circ}\right)$
XIV		.94	0° to $6^{\circ}\left(3^{\circ}, 4^{\circ}, \& 6^{\circ}\right)$
XV		-95	0° to $6^{\circ}\left(2^{0}, 3^{\circ}, 4^{\circ}, \& 6^{\circ}\right)$
XVI	\downarrow	-96	0° to $4^{\circ}\left(1^{\circ}, 2^{\circ}, 3^{\circ}, \& 4^{\circ}\right)$
XVII	6.0	. 25	0° to 24°
XVIII	8.0	. 08	+
XIX	1	. 25	\downarrow
XX	\downarrow	. 60	0° to 14°
XXI	12.0	. 25	0° to 24° - Mach
XXII	18.0	.25	0° to 20°

${ }^{\text {E Parentheses }}$ indicate angles of attack for which the pressure data may have been affected by wind-tunnel choking.
table iv.- phessure ccerficients at seven semispan stations of the uimg. $H_{0}, 0.25 ; 1,4,000,000$.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$.

Seniepan Bta.	Percent chord	UPPER SURFICE				LOTER SURFACE			
		sugle of attack				Angle of attack			
		0°	$1{ }^{\circ}$	$2{ }^{\circ}$	3^{0}	0°	$1{ }^{\circ}$	20	30
$0.086 \mathrm{~b} / 2$	${ }^{\circ}$	0.479	0.476	0.444	0.407				
	1. 5	. 026	-. 065	-. 190	-. 313	0.004	0.079	0.170	0.225
		-. 035	-.082	-. 140	-. 198	-. 037	. 006	. 0.06	. 103
	6. ${ }^{11}$	-. 054	-. 101	-. 152	-. 213	-. 060	.. 01.0	. 038	. 074
	11.0	-. 080	-. 102	-. 148	-. 189	-. 067	-. 036	.007	.037
	21. 2	=.076	-. 113	-. 150	-. 1.181	-. 0.092	-.049	-. 01.935	-.017
	24.5	-. 0.096	-. 124	-. 157	-. 189	-. 109	-. 0.084	-. 0.04	-. 0.024
	31.6	-. 098	-. 123	-. 152	-. 180	-. 112	-. 097	-. 060	-. 0.042
	34.5	-. 117	-. 141	-. 169	-. 198	-. 134	-. 106	-. 077	-. 060
	47.6	-. 140	-. 161	-. 188	-. 215	-. 236	-. 119	-. 092	-. 075
	44.5 51.6	-.150 -.150	-. 178	-	-. 221 -.217	-. 25	$-.130$	-. -111	-. 0.092
	59.5	-. 13	-. 173	-. 189	-. 2172	-. 132	-. 130	-. -.096	-.098
	71.0	-. 098	-. 115	-. 125	-. 143	-. 102	-. 0.05		
	79.5	-.056	-. 0668 $=.011$	-. $\mathrm{-}$	-.088 -.024	-. 0.056	-. 051	-.037	$\begin{aligned} & -.033 \\ & -.004 \end{aligned}$
$0.195 \mathrm{~b} / 2$	0	0.427	0.417	0.34	0.				
	1.5	-. 005	-. 123	-. 286	-. 434	0.025	0.238	0.249	0.319
	$5 \cdot 5$	-. 078	-. 126	-. 209	-. 279	-. 0.06	-. 0.17	. 059	. 114
		-. 085	-. 143	-. 212	-. 279	-. 088	-. 014	. 023	. 07%
	11.0	-. 098	-. 141	-. 196	-. 248	-. 102	-. 062	-. 01014	. 030
	$\underline{14.5}$	-. 111	-. 150	-. 192	-. 233	-. -112	-. 080	-. 035 $=.056$	-.004
	24.5	-. -127	- $=154$	-. 190	-. 2217	-. 0.125	-. 201	-. 0.073	-. 0.029
	31.0	-. 130	-. 156	-. 188	-. 215	-. 142	-. 121	-. 0.09	-. 0.056
		-. 138	-. 178	-. 194	-. 215	-. 150	-. 125	-. 095	-. 075
	41.0	-. 153	-	-. 205	-. 230	-. 153	-. 137	-. 123	-. 084
	44.5 51.8	-. 157 $=.140$	- $=.285$	- 209	-. 232	-. 150 -.152	-. 136	-. 113	-. 08.086
	59.5	-. 127	-. -150	=. 252	-. 178	-. 13.12	-. 104	-. 0.09	-. 0.086
	¢1.0	-. 082	-. 095	-. 113	-. 123	-. 083	-. 069	-. 0.065	-.059
	79.5 91.0	-.035	-.049	-. 0.011	-. 0606	-.035 .013	-. 031	-.019	-.020
$0.382 \mathrm{~b} / 2$									
	0	0.408	0.390						
	1.5	-. 035	-. 1187	$\begin{aligned} & =.362 \\ & =-266 \end{aligned}$	$-.565$	-0.056 -.104 -.17	0.050 -.037	0.153 .040	0.236 .100
	8.5	-. 113	-. 198	=. 2666	-. 353	-. 117	-. 0.049	. 017	. .1076
	11.6	-. 121	-. 178	-. 226	-. 260	-. 129	-. 079	-.019	. 024
	$14 \cdot 5$	-. 129	- 1778	-. 226	-. 270	-. 134	-. 091	-. 040	-. 003
	${ }^{21} \times$	-. 1336	-. 2788	-. 213 $=.205$	-. 265	- 140	-. 106	-. 073	-. 0331
	24.5 31.0	-. 1440	$=-178$ -.178	-. 209	$=.254$	-. 140	-. 113	-. 077	-. 0.039
	34.5	-. 140	-. 176	-. 296	-. 233	-. 165	-. 139	-. 111	-. 0.077
	41.0	-. 163	-. 2192	-. 209	-. 239	-. 155	-. 137	-. 1113	-. 0.08
	44.5	-. 165	-. 191	-. 209	-. 233	-. 153	-. 137	-. 113	-. 086
	51.0	-. 1480	-. 176	- 286	$=-211$	-. 150	-. 117	-. 113	-. 090
	71.0	-. 0.33	$=.1446$	- -15	-. 178	-. 1273	=-119	-. 095	-. 0804
	79.5	-. 033	-. 038	-. 044	-. 059	-. 033	-. 027	-. 017	-. 0102
	91.0	. 025	. 0.24	. 019	. 015	. 023	. 026	. 029	. 035
$0.555 \mathrm{~b} / 2$									
	1.5	$\begin{aligned} & =.023 \\ & =.098 \end{aligned}$	$\begin{array}{r} -.207 \\ -198 \end{array}$	$\begin{aligned} & =.595 \\ & =.286 \end{aligned}$	-629	-0.065 -.098	0.059 -.025	0.165	0.260 .120
	S.5	-. 111	-: 208	-. 286	二. 386	-. 109	-. 0.05	. 032	. 120
	11.0	-. 115	-. 185	-. 244	-. 307	-. 129	-. 0.06	-. 012	. 041
	14.5	-. 121	-. 181	-. 232	-. 289	-. 129	-. 0.079	-. 0.03	.017
	21.0	-. 134	-. 180	- 2224	-. 270	-. 136	-. 099	-. 05	-. 918
	24.5 37.0	-. 129	- -178	-. 217 $=-201$	-. 252	- 1.144	-. 106	-. 069	-. 027
	37.0	-. 1314	-. 178	$=.201$ $=.205$	=. 243	-. 148	-. 121	-. 090	-. 0517
	41.5	-. 2153	-. 1189	-. 205	-. 239	-. 153	-. 13	-. 0.96	-. 0.075
	47.5	-. 15	-. 285	-. 198	-. 232	-. 148	-. -134	-.102	-.061
	51.0	-. 114	-. 172	-. 176	-. 208	-. 144	-. 130	-. 106	-. 084
	59.5	=. 117	-. 126	-. 134	-. 160	- 2129	-. 117	-. 090	-. 079
	71.0	-. 0.060	-. 084	-. -.092	-. 0.099	-.054	-. 0.017	-. 04008	-. 0.033
	91.6	. 038	-. 032	-. 0.029	-.024	-. 038	-:041	-.0064	. 0.043

TABLE IV.- CONTINUED.
(a) $a_{u}, 0^{\circ}, 2^{\circ}, 2^{\circ}, 3^{\circ}$ - Concluded.

IABLE IV．－CONTIMUED．
（b）$a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ ．

Seri－ sta．	Peragntohord ohord	upper sugraot				Lower surame				
		angle of attaok				Angle or attack				
		4°	6°	8°	10°	4°	6°	8°	10°	
$0.086 \mathrm{~b} / 2$	－	0.328	0.073	－0．295	－0．784					
	1.5	－． 453	－． 786	－-.1507	－	0.293	0.400	0.465	0.500	
	6．5	－：246	－： 376	二：-595	－：645	－ 125	：246	． 385	－ 394	
	17．0．	－ 227	－． 312	－ 396	－： 498	：051	－151	． 236	． 35	
	21．5	－． 225	－： 378	－： 377	－$=145$	．058	．128	． 134	． 2156	
	24.5 31.0	－． 215	－：． 276	二． 335	－． 397	． 012	－071	． 13	． 184	
	31．0	－． 206	－－258	－． 310	－ 3 －362	－． 012	－040	－108	． 153	
	41.8	－．-227	－：274	－． 309	－． 360	－． 045	：018	：059	－103	
	51.6	－．235	－： 274	－． 3121	－-336	－064	－024	－． 020	－071	
	599．6	－$=128$	－：218	$=-24$ $=-286$ $=186$	－： 720	－：094	－：024	－．020	：077	
	71.5 91.5	－． 218 $=093$ -.0023	－． 172	－． 186	－． 209	＝．045	－．022	－．022	． 051	
			－． 0.035	－：034	－． 0.040	－． 0202	．032	－：047	． 057	
$0.195 \mathrm{~b} / 2$	0	0.083	－0．370	1.017	－2． 651					
	1．5	－．6088	－1． 637	－1． 710	－2．186	0． 385	0.442	0.425	0.345	
	5	二． 332	－：-187	－：-645	－： F 807	． 173	：269	． 305	－425	
	11.8		－． 404	－． 435	－． 626	． 077	． 157	：23	－308	
	14.5	－． 268	－． 366	－． 465	－． 554	：041	－117	． 192	． 366	
	24.5	－： 246	$=-329$	－$=.488$	－．477	． 012	． 078	－127	． 212	
	32.6	＝：236	－－314	－：${ }^{\text {－}}$	－． 401	－003	－065	． 128	． 189	
	34.5	－．244	－． 295	－． 349	－． 398	－．045	． 007	． 068	． 126	
	4.	－：242	－ 291	－：338	－． 36	－057	－．006	． 041	． 097	
	51.8	－：213	－． 25	－． 291	－－ 324	$\therefore \mathrm{Z}$	－．025	：0두	．063	
	79	－． 177	－． 214	－． 236	－． 263	－．070	－． 035	：07	－0．0	
	79.5	－：064	－$=.075$	\because	－：－096	$=-.037$	－． 015	．014	：053	
	91.0	－．003	${ }_{0}$	－． 005	－．002	－．026	：040	：c51	：074	
$0.382 \mathrm{~b} / 2$	\bigcirc	－0．074	－0．756	－ 7.720	－2．960	－				
	1．5	－． 75		－2．810	－2．240	0.303	0.400	0.438	0.438	
	6．5	－． 234	－＝ 641	－． 808	－1．096	． 156	${ }^{2} 261$	－ 341	． 410	
	11.6	－． 34	－： 4179	－． 618	－1．-.76	－ 073	－ 128	－306	． 383	
	14.5	－：323	－： 439	－． 555	－． 673	：049	：126	：280	－ 172	
	24.5	－． 298	－． 365	－$=4.4$	－． 515	． 087	． 078	． 150	．214	
	31.6	－． 263	－： 369	－-3.39	－．${ }^{-58}$	．003	：029	． 129	． 193	
	等． 5	－． 250	－． 314	－． 372	－－424	－． 045	：013	．066	．128	
	41.8	－． 24.4	－． 310	－． 35	－． 4016	－． 055	－． 004	． 049	：097	
	51.0	－． 219	－： 25		－． 324	二－062	－． 085	：012	－064	
	59.5	－．187	－． 214	－ $\begin{aligned} & \text {－．} 236 \\ & -144\end{aligned}$	－ 257	－． 057	－． 024	． 017	．051	
	71.5	－．055	－：064	－． 01079	－．003	－0．032	－017	：034	．053	
	91.0	． 018	．013	－．．916	006	\％61	．051	：058	：069	
$0.555 \mathrm{~b} / 2$	0	－0．089	－0． 885					－		
	1.5	－ 632	－1．605	－3．514	－2．638	0.345	－ 421	0.440	0.396	
	6．5	－： 4.48	－． 670	－． 25	－1．3 3	． 175	． 286	－366	－425	
	11.0	－ C 永5		－． 660	－． 849	$: 067$	． 190	： 268	－ 347	
	17．5	－ 3 － 325	二．472	－ 6061 $=-477$	－．742	：064	． 151	． 230	－ 62	
	24.5	－． 280	－． 368	－：－750	－． 550	：012	．064	．143	． 23	
	37.6	－． 267	－ 33	－． 402	－${ }^{\text {d }}$	－．015	． 046	． 106	． 157	
	4200	－．257	－． 3 208	－． 381	－． 4.404	－．036	．028	．081	． 178	
	44.5	－240	－： 291	－-33	－． 375	－．051	－002	－049	． 099	
	51.0	－． 217	－． 252	－ $\mathrm{-}$－ 2096	－ 3 － 30	－．05	－018	－088	－071	
	71.0	－ 102	－－115	－ 135	－． 150	－：018	． 000	：030	：046	
	79．5	－． 0.047	－．050	－．056	－． 073	：010	．026	－039	－053	
－										
1										

TABLE IV.- CONTINUED.
(b) $\alpha_{11}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Semispan sta.	Percent chord	UPPER SUEPACE				LONER SURPACE			
		Angle of attaok				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & -0.248 \\ & =.906 \\ & =.514 \\ & -.497 \\ & -.372 \\ & -.351 \\ & =.311 \\ & =.294 \\ & =.275 \\ & -.265 \\ & =.250 \\ & =.242 \\ & =.210 \\ & =.162 \\ & =.093 \\ & -.037 \\ & .037 \end{aligned}$	$\begin{array}{r} -1.195 \\ -1.762 \\ -.764 \\ -.733 \\ -.539 \\ -.489 \\ -.410 \\ -.383 \\ -.343 \\ -.329 \\ -.301 \\ -.283 \\ -.241 \\ -.185 \\ -.108 \\ -.041 \\ .036 \end{array}$	$\begin{aligned} & -2.539 \\ & -2.813 \\ & -1.040 \\ & -.981 \\ & =.692 \\ & -.629 \\ & -.509 \\ & =.473 \\ & -.414 \\ & -.391 \\ & -.352 \\ & -.324 \\ & -.276 \\ & =.205 \\ & -.114 \\ & -.049 \\ & . .030 \end{aligned}$	-4.1 .86 -2.801 -1.335 -1.251 -.895 -.797 -.646 $=.590$ -.476 -.408 -.383 -.320 -.238 -.138 -.071 .004	0.370 .192 .169 .095 .070 .030 -.010 -.028 -.047 -.051 -.064 -.057 -.018 .009 .053	. .428 0.305 .276 .190 .157 .107 .084 .046 .032 . .004 -.024 -.024 -.002 .026 .055	$\begin{array}{r} 0.391 \\ .383 \\ .360 \\ .274 \\ .240 \\ .175 \\ .152 \\ .104 \\ .083 \\ .052 \\ .039 \\ .020 \\ .007 \\ .030 \\ .058 \end{array}$	0.264 .431 .417 .311 .312 .217 .159 .140 .099 .0853 .0038 .034 .053 .053
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{array}{r} -0.041 \\ -.889 \\ -.510 \\ -.479 \\ -.365 \\ -.347 \\ -.300 \\ -.282 \\ -.250 \\ -.242 \\ -.236 \\ -.210 \\ -.192 \\ -.137 \\ -.078 \\ -.020 \\ .045 \end{array}$	$\begin{array}{r} -0.906 \\ -1.714 \\ -.762 \\ -.716 \\ -.526 \\ -.483 \\ -.416 \\ -.368 \\ -.320 \\ -.301 \\ -.285 \\ -.262 \\ -.229 \\ =.160 \\ =.093 \\ -.031 \\ .034 \end{array}$	$\begin{aligned} & -1.852 \\ & -1.942 \\ & -1.107 \\ & -.962 \\ & -.713 \\ & -.633 \\ & -.498 \\ & -.456 \\ & =.353 \\ & =.354 \\ & =.322 \\ & =.297 \\ & -.849 \\ & -.179 \\ & =.102 \\ & =.043 \\ & .028 \end{aligned}$	$\begin{aligned} & -2.148 \\ & -1.929 \\ & -1.502 \\ & -1.240 \\ & -1.000 \\ & -.843 \\ & -.648 \\ & -.585 \\ & -.400 \\ & -.443 \\ & -.378 \\ & -.347 \\ & -.286 \\ & -.217 \\ & -.132 \\ & =.081 \\ & -.010 \end{aligned}$	$\begin{array}{r} 0.764 \\ 0.177 \\ .106 \\ .083 \\ . .010 \\ -.003 \\ -.034 \\ -.045 \\ -.066 \\ -.068 \\ -.060 \\ -.032 \\ -.0065 \\ .045 \end{array}$	$-.0-$ 0.417 .276 .263 .173 . .078 .057 .021 . .003 -.027 $=.043$ $=.050$ -.025 -.002 .036	$\begin{array}{r} .-.779 \\ .352 \\ .341 \\ .251 \\ .144 \\ .119 \\ .072 \\ .051 \\ .018 \\ .001 \\ . .012 \\ -.035 \\ -.016 \\ .031 \end{array}$	$\begin{array}{r} 0.308 \\ .412 \\ .402 \\ .316 \\ . .207 \\ .178 \\ .124 \\ .097 \\ .063 \\ .038 \\ . .0004 \\ .002 \\ .011 \\ .025 \end{array}$
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & -0.455 \\ & -.902 \\ & -.501 \\ & =.464 \\ & -.347 \\ & -.315 \\ & -.269 \\ & -.242 \\ & -.213 \\ & -.200 \\ & -.198 \\ & -.185 \\ & =.154 \\ & -.108 \\ & =.051 \\ & -.009 \end{aligned}$	$\begin{array}{r} -1.526 \\ -1.558 \\ -.737 \\ -.695 \\ -.487 \\ -.429 \\ -.349 \\ -.310 \\ -.272 \\ -.251 \\ -.239 \\ -.2493 \\ -.193 \\ -.1357 \\ -.035 \\ -.015 \end{array}$	$\begin{aligned} & -2.721 \\ & -2.664 \\ & -.994 \\ & -.794 \\ & -.633 \\ & -.542 \\ & -.455 \\ & -.373 \\ & -.325 \\ & -.297 \\ & -.274 \\ & -.259 \\ & -.217 \\ & -.169 \\ & -.066 \\ & -.074 \\ & -.030 \end{aligned}$	$\begin{aligned} & -1.820 \\ & -2.111 \\ & -1.192 \\ & -1.044 \\ & -.924 \\ & -.780 \\ & -.608 \\ & -.550 \\ & -.429 \\ & -.412 \\ & =.347 \\ & -.347 \\ & -.314 \\ & -.282 \\ & -.211 \\ & -.232 \\ & -.248 \end{aligned}$	$\begin{array}{r} 0.332 \\ .1150 \\ .064 \\ .024 \\ -.028 \\ . .047 \\ -.064 \\ -.0747 \\ -.0899 \\ -.091 \\ -.073 \\ -.005 \\ .039 \end{array}$	0.400 .246 .140 .090 .023 -.006 . .031 -.050 -.064 -.077 -.077 $=.079$ -.068 $=.041$ $.017$	$\begin{array}{r} 0.375 \\ .327 \\ .314 \\ .309 \\ .152 \\ .073 \\ .031 \\ .003 \\ -.024 \\ -.056 \\ -.060 \\ -.060 \\ =.041 \\ -.035 \\ .003 \end{array}$	

TABLE IV.- CORTIKUED.
(c) $\alpha_{12}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

TABLE IV.- CONCIUDED.
(0) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluaed.

Sem1span sta.	Percent chord	UPPER gURFACE				LOWER SUAPACE			
		Angle of attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	0	-1.679	-1.089	-0. 551	-0.847				
	1.5	-1.455	-1.020	-. 8.81	-. 813	0.264	0.267	0.240	0.152
	5.5	-1.285	-1.036	-. 526	-. 809	. 447	. 491	. 495	. 493
	6. ${ }^{12} 5$	-1.208	-1.994	-.786 -.786	-. 792	.436	. 4490	. 493	. 499
	24.5	-1.078	-1.946	-.786	-. 768	-340	. 408	. 431	463
	21.0	--. 922	-. 933	-. 756	-. 752	-275	- 339	.371	. 408
	24.5	-. 788	-. 888	-. 731	-. 733	. 245	-309	-337	- 370
	37.0	-. 689	-. 880 -.830	-. 737 -.714	-. 7306	. 195	. 250	. 278	- 312
	41.0	$=.604$ $=.512$	-. $\mathrm{-}$ - 523	-: 714	-.706	. 1370	. 170	.241	. 282
	44.5	-. 470	-. 777	-. 695	-. 695	. 111	. 147	.160	. 283
	51.0	-. 394	-. 750	-. 701	-. 704	. 076	.101	.107	. 124
	59.5	-. 310	-. 678	-. 6681	-. 676	. 048	. 053	-. 038	. 050
	79.5	-. 251	-. -.556	-. 621	-. 6627	. 036	..023	-. 076	-.076
	91.0	-. 0.071	-. 495	-. 592	-. 584	. 034	-. 112	-. 190	-. 194
$0.831 \mathrm{~b} / \mathrm{c}$	0	-1.851	-0.948	-0.714	-0.662	$0.2 \overline{2} 2$	- $-3 \overline{2} 2$	0.276	0.2006
		- -2.325	-. 725	-. -638	-. 6.68	0.262		0.263	. .467
	6.5	-1.111	-. 697	-. 619	-. 609	. 415	. 446	.457	. 461
	11.0	-1.128	-. 685	-. 619	-. 609	. 348	. 383	.420	.436
	14.5 21.0	-. 933	-. 653	-.600 -.586	-. 590	. 24	-274		- 337
	24.5	-: 283	-:. 605	-. 5867	-: 567	.214	. 246	- 272	. 337
	$31 . \mathrm{c}$	-. 627	-. 592	-. 565	-. 567	. 157	. 185	. 210	-250
	34.5	-. 535	-. 563	-. 543	-. 552	. 128	. 154	. 175	- 202
	41.8	-. 459	-. 565	-. 554	-. 565	. 090	. 105	. 122	. 114
	51.0	-. 346	-. 5333	-. 543	-. 562	. 042	. 042	. 048	. 067
	59.5	-. 283	-. 495	-. 512	-. 543	. 004	-. 015	-. 019	. 105
	71.0 79.5	-. 212	-. 48.482	-. 510 -.476	-. 229	. 002	-. 0.051	-.066 -.105	. 1286
	$91 . \mathrm{C}$	-. 115	-. 432	-. -455	-. 2.466	-.012	-.158	-. 181	-.186
$0.924 \mathrm{~b} / 2$		-1.6888	-.583 -.54	-. 546	-. 533	0.321			
	1.5	-1.749	-. 5.544	-. 523 -.520	-. 514	0.321	0.335 .402	0.286 .406	$\begin{array}{r}0.229 \\ .408 \\ \hline\end{array}$
	6.5	-1. 222	-. 5.525	-. 504	-. -499	. 386	. 383	. 387	. 391
	11.0	-1.545	-. 516	-. 504	-. 501	. 302	. 312	. 333	. 354
	14.5	-1.296	-. 493	-. 485	-. 485	. 233	. 253	. 276	. 295
	21.6	-. 862	-. 484	-. 482	-. 485	. 153	. 177	. 200	. 231
	24.5 31.5	-. 815	-. 448	-. 459	-. 470	. 103	. 126	. 152	. 175
	31.5	-. 5153	-. 438	-. $\mathrm{-} 425$	-. 476	. 071	. 046	. 1067	. 086
	41.0	-. 398	-. 405	-. 428	-. 466	.009	. 019	.029	. 042
	bll 5	-. 436	-. 379	-. 409	-. 453	-. 012	-. 007	. 004	. 010
	51.0	-. 354	-. 377	-. 409	-. 457	-. 017	-. 027	-. 019	-. 013
	71.0	-. 293	-. 339	-. 371	-. 428	-. 035	-. 076	-. 086	-. 095
	79.5	-. 283	-. 315	-. 339	-. 400	-. 035	-. 095	-. 105	-. 124
	91.6	-. 207	-. 316	-. 335	-. 381	-. 040	-. 239	-. 148	-. 1.57

TARLE V.- PRESSURE COEFFICIENTS AT SIYEN SEKISPAN SEATIONS OF THE WINQ. MO; 0.40; R, 4,000,000.
(a) $\pi_{u}, 0^{0}, I^{0}, 2^{0}, 3^{0}$.

Berispan star	Percent chord	UPPER SURFACE				LOMER SURFACE			
		Angle of attack				angle of attack			
		0°	$1{ }^{\circ}$	2^{0}	3°	0^{0}	$1{ }^{\circ}$	2°	3°
$0.086 \mathrm{~b} / 2$		0.473 -.030 -.069 $=.075$ $=.092$ $=.104$ $=.114$ $=.117$ $=.136$ -.156 $=.161$ -.166 -.148 $=.118$ $=.069$ -.016	0.478 -.066 -.087 $=.107$ $=.111$ $=.123$ $=.125$ $=.138$ $=.136$ $=.152$ $=.172$ $=.176$ $=.178$ $=.156$ $=.075$ -.014					$\begin{array}{r} -.763 \\ 0.062 \\ .03 I \\ . .0054 \\ =.034 \\ -.056 \\ =.068 \\ =.090 \\ -.104 \\ -.127 \\ =.106 \\ -.086 \\ -.044 \\ .003 \end{array}$	
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.426 $=.015$ $=.079$ $=.096$ $=.111$ $=.120$ $=.138$ $=.173$ $=.157$ $=.173$ $=.1765$ $=.143$ $=.104$ $=.049$.011	0.414 $=.139$ $=.140$ $=.155$ $=.165$ $=.165$ $=.168$ $=.172$ $=.187$ $=.202$ $=.180$ $=.156$ $=.1155$.008	0.352 $=.251$ $=-.214$ $=-203$ $=.203$ $=.201$ $=.201$ $=.201$ $=.212$ $=.214$ $=.2191$ $=.159$ $=.117$ $=.057$.005	$\begin{aligned} & 0.251 \\ & . .443 \\ & =.285 \\ & . .285 \\ & . .249 \\ & . .236 \\ & . .288 \\ & . .224 \\ & . .224 \\ & . .229 \\ & . .236 \\ & =.238 \\ & . .212 \\ & =.178 \\ & . .128 \\ & -.066 \\ & .006 \end{aligned}$	-.020 0.020 $=.100$ $=.114$ $=.128$ $=.139$ $=.144$ $=.162$ $=.172$ $=.175$ $=.175$ $=.172$ $=.062$ $=.047$.008			
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 24.5 41.0 41.5 51.0 59.5 71.0 79.5 91.0		$\begin{aligned} & 0.389 \\ & =.191 \\ & =.189 \\ & =.1989 \\ & =.189 \\ & =.189 \\ & =.198 \\ & =.188 \\ & -.203 \\ & =.203 \\ & =.186 \\ & =.162 \\ & =.1017 \\ & \hline .047 \end{aligned}$	$\begin{aligned} & 0.300 \\ & -.370 \\ & =.275 \\ & =. .240 \\ & =.238 \\ & =.227 \\ & =.226 \\ & . .216 \\ & . .2125 \\ & =.216 \\ & . .199 \\ & -.769 \\ & -. .056 \end{aligned}$	0.152 $=.566$ $=.358$ $=.397$ $=.244$ $=.266$ $=.261$ $=.249$ $=.238$ $=.247$ $=.213$ $=.282$ $=.115$ -.055 .017	$\begin{array}{r} -0.072 \\ -.117 \\ -.170 \\ =.141 \\ -.151 \\ -.162 \\ -.165 \\ =.176 \\ -.181 \\ -.175 \\ -.175 \\ -.173 \\ -.144 \\ -.085 \\ -.046 \end{array}$	0.042 -.043 -.060 $-.086$ $-.103$ $-.124$ -.140 -.150 -.147 $=-152$ -. 1.152 $=.127$ -. 0292	$\begin{array}{r} 0.148 \\ .029 \\ .008 \\ . .031 \\ =.074 \\ =.083 \\ -.106 \\ =.115 \\ -.115 \\ =.117 \\ -.098 \\ =.061 \\ -.019 \end{array}$	
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 61.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 21.6 \\ 31.5 \\ 41.0 \\ 61.0 \\ 51.5 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$				0.163 $=.629$ $=.396$ $=.385$ $=-311$ $=.299$ $=.262$ $=.250$ $=.247$ $=.246$ $=-238$ $=.211$ $=.165$ $=.105$ $=.044$.028	$\begin{array}{r} -0.079 \\ -.114 \\ -.124 \\ -.143 \\ -.146 \\ -.156 \\ -.160 \\ -.167 \\ -.171 \\ -.167 \\ -.160 \\ -.143 \\ -.069 \\ -.029 \\ .032 \end{array}$	$\begin{aligned} & 0.052 \\ & =.052 \\ & =.047 \\ & =.081 \\ & -.092 \\ & =.111 \\ & =.118 \\ & =.234 \\ & =.141 \\ & =.141 \\ & =.141 \\ & =.140 \\ & =.124 \\ & =.056 \\ & -.019 \end{aligned}$	$\begin{array}{r} 0.163 \\ .045 \\ .027 \\ =.026 \\ -.069 \\ =.076 \\ =.095 \\ =.106 \\ =.107 \\ =.105 \\ -.109 \\ -.096 \\ -.047 \\ -.039 \end{array}$	$\begin{array}{r} 0.256 \\ .115 \\ .094 \\ .035 \\ .015 \\ -.025 \\ =.032 \\ =.055 \\ =.070 \\ =.089 \\ =.090 \\ =.081 \\ =.040 \\ -.006 \end{array}$

TABLE Y.- CONTINUED.
(a) $\alpha_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - Concluded.

Bem1--apan sta.	Percent chord	UPPSR BURPAOE				LOWER SURPACE			
		Angle of attack				Angla of ettack			
		0°	$1{ }^{0}$	2^{0}	3°	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.418 $-.048$ -127 -.133 $-.130$ $-.144$ -.155 -.155 $-.161$ -164 -.173 $-.172$ -.159 -.135 . .069 -.027 .034	$\begin{aligned} & 0.368 \\ & -.228 \\ & =.221 \\ & =.225 \\ & =.193 \\ & =.203 \\ & =.197 \\ & =.194 \\ & =.193 \\ & =.192 \\ & =.197 \\ & =.194 \\ & =.178 \\ & -.151 \\ & =.080 \\ & =.030 \\ & .031 \end{aligned}$	0.269 $-.448$ -324 -.320 -.259 $-.258$ $-.241$ -.231 -.218 $-.216$ -.216 -.210 $-.186$ $-.154$ -.089 -.034 .033	$\begin{aligned} & 0.055 \\ & =.668 \\ & =.433 \\ & =.422 \\ & =.322 \\ & =.311 \\ & =.254 \\ & =.273 \\ & =.256 \\ & =.250 \\ & =.246 \\ & =.236 \\ & =.204 \\ & =.165 \\ & =.092 \\ & =.037 \\ & .033 \end{aligned}$	$\begin{array}{r} -0.065 \\ =.120 \\ =.130 \\ -.148 \\ =.149 \\ =.155 \\ =.160 \\ =.166 \\ =.166 \\ =.164 \\ =.161 \\ =.159 \\ =.134 \\ =.059 \\ =.019 \\ .042 \end{array}$	0.064 $-.032$ -.045 -.052 -. 092 -. 108 -.117 -.129 $=.133$ $=.140$ $-.141$ -.119 $=.055$.053 .043	0.010 .051 .033 $=.023$ $=.034$. .062 . .073 $=.092$ $=.095$ $=.107$ $=.113$ $=.095$ $=.046$ -.009 .042	0.304 .103 .018 -. 018 .033 -.055 $-.061$ $-.076$ -. 081 -. 092 -. 079 $-.039$.042
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.394 \\ & =.048 \\ & =.122 \\ & =.125 \\ & =.128 \\ & =.138 \\ & =.146 \\ & =.148 \\ & =.148 \\ & =.151 \\ & =.168 \\ & =.159 \\ & =.150 \\ & =.113 \\ & =.054 \\ & =.008 \\ & .052 \end{aligned}$	$\begin{aligned} & 0.424 \\ & =.229 \\ & =.218 \\ & =.217 \\ & =.191 \\ & =.192 \\ & =.182 \\ & =.181 \\ & =.177 \\ & =.189 \\ & =.178 \\ & =.167 \\ & =.124 \\ & =.061 \\ & =.011 \\ & .050 \end{aligned}$	0.358 $=.447$ -327 -.322 -. 263 -.259 -.236 $-.227$ -208 -.206 $-.213$ -. 199 $=.178$ -.129 -. 080 -.019 .042	$\begin{aligned} & 0.202 \\ & =.647 \\ & =.433 \\ & =.419 \\ & =.322 \\ & =.310 \\ & =.274 \\ & =.261 \\ & =.239 \\ & =.235 \\ & =.235 \\ & =.217 \\ & =.190 \\ & =.139 \\ & =.078 \\ & =.022 \\ & .044 \end{aligned}$	$\begin{array}{r} -0.059 \\ -.127 \\ -.132 \\ -.143 \\ -.154 \\ -.155 \\ -.157 \\ . .157 \\ . .156 \\ . .155 \\ -.143 \\ . .119 \\ -.044 \\ .003 \\ .054 \end{array}$	$\begin{aligned} & =.091 \\ & 0.093 \\ & =.047 \\ & =.080 \\ & =.107 \\ & =.113 \\ & =.129 \\ & =.130 \\ & =.136 \\ & =.138 \\ & =.128 \\ & =.107 \\ & -.043 \\ & .004 \\ & .054 \end{aligned}$	$\begin{array}{r} 0.201 \\ .157 \\ .028 \\ -.025 \\ =.074 \\ =.081 \\ =.103 \\ =.107 \\ =.115 \\ -.117 \\ =.111 \\ =.098 \\ =.048 \\ =.006 \\ .044 \end{array}$	0.299 $\begin{array}{r}.095 \\ .030 \\ \hline\end{array}$. .032 $-.045$ $-.074$ -. 090 . . 096 $-.093$ $-.090$ $-.044$ $-.005$.044
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 39.5 \\ 71.0 \\ 79.0 \\ 91.0 \end{gathered}$	$\begin{aligned} & 0.412 \\ & =.007 \\ & . .139 \\ & . .145 \\ & =.139 \\ & =.146 \\ & . .150 \\ & . .144 \\ & =.144 \\ & =.136 \\ & =.152 \\ & . .144 \\ & . .125 \\ & =.085 \\ & -.033 \\ & .008 \\ & .054 \end{aligned}$	$\begin{aligned} & 0.343 \\ & =.186 \\ & =.226 \\ & =.228 \\ & =.192 \\ & -.192 \\ & =.180 \\ & =.167 \\ & =.161 \\ & =.154 \\ & =.166 \\ & =.156 \\ & -.143 \\ & -.081 \\ & -.033 \\ & .068 \\ & .058 \end{aligned}$	$\begin{aligned} & 0.159 \\ & =.421 \\ & =.330 \\ & =.324 \\ & -.262 \\ & =.248 \\ & =.218 \\ & =.202 \\ & =.180 \\ & =.176 \\ & =.176 \\ & =.167 \\ & =.246 \\ & =.100 \\ & -.045 \\ & .003 \\ & .053 \end{aligned}$	$\begin{aligned} & -0.115 \\ & =.676 \\ & =.433 \\ & =.419 \\ & =.306 \\ & =.250 \\ & =.225 \\ & =.206 \\ & =.194 \\ & =.200 \\ & =.180 \\ & =.757 \\ & =.050 \\ & =.005 \\ & .046 \end{aligned}$	$\begin{array}{r} -0.079 \\ -.132 \\ =.133 \\ -.145 \\ =.151 \\ =.156 \\ =.154 \\ =.149 \\ =.144 \\ =.144 \\ -.136 \\ =.136 \\ =.095 \\ =.245 \\ .016 \\ .066 \end{array}$		$\begin{aligned} & . .176 \\ & 0.028 \\ & .017 \\ & -.044 \\ & =.067 \\ & =.096 \\ & =.104 \\ & =.111 \\ & =.114 \\ & =.117 \\ & =.117 \\ & =.117 \\ & =.087 \\ & =.031 \\ & .064 \\ & .049 \end{aligned}$	$\begin{array}{r} 0.270 \\ .101 \\ .086 \\ .008 \\ =.022 \\ =.066 \\ =.078 \\ =.092 \\ =.098 \\ =.105 \\ =.106 \\ =.066 \\ .0 .042 \\ -.005 \\ .044 \end{array}$

TABLE V.- COMTIMUED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

$\begin{aligned} & \text { Bean- } \\ & \text { epan } \\ & \text { sta. } \end{aligned}$	Percent	UPPER SURFACE				LokEs surnice			
		Angle of sttaok				angle of attack			
		4°	6°	$8{ }^{\text {a }}$	10°	$4{ }^{\circ}$	6°	8°	10°
$0.086 \mathrm{~b} / 2$								$\begin{gathered} 0.467 \\ 0.317 \\ .279 \\ .220 \\ .190 \\ .146 \\ .124 \\ .092 \\ .072 \\ .045 \\ .014 \\ .009 \\ .011 \\ .026 \\ .039 \end{gathered}$	
$0.195 \mathrm{~b} / 2$									
$0.382 \mathrm{~b} / 2$									
$0.555 \mathrm{~g} / 2$	0 1.5 56.5 61.5 11								

TABLE V.- CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Bem span sta.	Percent chord.	UPPER SURFACE				LONER SURFAOE			
		Angle of attack				Angle of attack			
		4°	6°	$8{ }^{\circ}$	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	0	-0.249	-1.148	-1.402	-1.626				
	1.5	-. 955	-1.832	-1. 295	-1.601	0.368	0.062	0.418	0.380
	5.5	-. 541	-. 797	-1.234	-1.257	. 191	. 299	. 367	. 420
	6.5	-. 525	-. 761	-1. 138	-1.163	. 167	. 274	. 342	. 398
	$\frac{11.0}{14.5}$	-.398 -.376	-. 556 $=.516$	-1.032 -.814	-1.139	.089	. 184	. 256	- 320
	24.5 21.0	-.376 -.332	-. 51.46	-.814 -.632	-. 2.983	. 063	. 1.093	. 224	. 284
	24.5	- -315 -.35	-. 406	-. 538	-. 755	.002	. 078	. 137	. 191
	31.0	-. 291	-. 363	-. 451	-. 635	-.026	.038	. 090	. 142
	34.5	-. 284	-. 346	-. 419	- 5 ¢5I	-. 035	.025	. 073	. 122
	41.0	-. 273	-. 327	-. 367	-. 444	-. 054	-. 005	. 039	. 084
	44.5	-. 266	-. 302	-. 347	-. 406	. .061	-. 017	.146	. 062
	51.0	-. 223	-. 260	-. 292	-. 322	-. 0.72	-. 029	-. 001	. 038
	59.5	-. 177	-. 200	-. 228	-. 252	-. 067	-. 040	-. 013	. 012
	71.0	-.100 -.041	-. 3144	-. 1440 -.080	=.148	-. 031	-. 015	.002	.014
	93.0	-. .033	-. 0.032	-. .004	-. 0.010	. 045	. 044	. 042	. 038
$0.831 \mathrm{~b} / 2$	0	-0.050	-0.903	-1.069	-1.387				
	2.5	$-.943$	-1.810	-1.349	-2.377		0.412	0.416	0.141
	5.5	-. 547	-. 747	-1.230	-1.247	. 174	. 275	- 340	. 395
	17.5	-. 517	-. 747	- 1.1 .119	-1.149	. 163	. 261	-313	- 386
	11.6	-. 396	-. 552	-1.116	-1.145	.081	.167	. 239	. 296
	14.5	-. 371	-. 419	-. 9745	-. 999	-007	072	-73	- 7 \%
	24.5	-: 295	-. 4186	- $=.645$	-: 953	-.007	. 072	-137	.188
	31.0	-. 270	-. 336	-. 439	-. 689	-. 0.041	. 013	. 060	. 108
	34.5	-. 259	-. 320	-. 269	-. 606	-. 052	-. 005	. 034	. 080
	41.0	-. 251	-. 297	-. 313	-. 473		-. 029	. 009	. 044
	44.5	-. 236	-. 273	-. 295	-. 438	-. 078	-. 044	-. 012	. 022
	51.0	-. 203	-. 236	-. 245	-. 3288	-. 078	-. 056	-.026 -.042	-.008
	79.5	-. -147	-.	-. 1197	-.270 -.172	-. 0.075	-. 063	-. 0.022	-. 017
	79.5	-. 0.024	-. 034	-. 073	-. $\mathrm{-} .130$	-.005	..005	-.,002	-.002
	91.0	244	. 034	-.002	-. 064	. 044	. 032	. 023	
$0.924 \mathrm{~b} / 2$									
	1.5	$\begin{aligned} & =.960 \\ & =.533 \end{aligned}$	$\begin{array}{r} -1.756 \\ -.772 \end{array}$	$\begin{array}{r} -1.067 \\ -.963 \end{array}$	-1.184 -.969	0.337	0.395	0.399	0.378
	5.5	-. 495	-.723	-:965	-..969	. 150	. 238	. 290	- 35
	21.0	-. 371	-. 525	-. 850	-. 8175	. 058	. 237	. 192	- 245
	14.5	-. 336	-. 454	-. 779	-. 764	. 018	. 080	. 131	. 182
	21.2	-. 286	-. 364	-. 674	-. 692	-. 032	. 017	. 059	. 105
	24.5	-. 254	-. 321	-. 571	-. 599	-.054	-. 017	. 022	.058
	31.0	-. 225	-. 285	-. 472	-. 529	-. 072	-. 041	-. 007	. 030
	34.5 47	-. 213	- 260	-. 415	=.474	-. 080	-. 060	-. 032	-. 004
	47.0	-. 2194	-. 249	$=.343$	=. 4100	-. 0909	-. 076	-. 0.061	-. 022
	51.0	-. 165	-. 202	-. 262	-. 352	-. 099	.. 089	-. 066	-. 046
	59.5	-. 214	-. 141	-. 257	-. 337	-. 078	-. 078	-. 0.04	-. 053
	71.0	-. 054	-.078	-. 1975	-. 280	-. 041	-. 057	-. 040	-. 039
	79.5 91.0	-. 0.041	-.038	-. 077	$=.274$ $=.208$	-. 0.039	-.031	-.026 -.003	-.034

TABLE F. - CONTIMUED. $^{\text {COM }}$
(c) $c_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Seni8 Es.	(Percent	UPPER SURFACE				Lower surfice			
		Angle of attack				angle of attack			
		12°	16°	20°	24°	12°	15°	20°	24°
$0.086 \mathrm{~b} / 2$		-1.256	-2.628	-3.345	-2.				
	1.5	-2.384	-3.543		- 2.551	. 518	0.483	. 6.438	
	6.5	-. 89	-1.093	-3.037	-2.469	. 416		. 621	:692
	11.0	- 6827	--886	-. 801	- 2.125	. 33	- 45	. 567	. 638
	14.5	-. 321	-. 719	-. 7.75	-1.823	. 318	. 4376	: 467	-688
	24.5	-. 505	-. 679	-. 747	-1.155	:239	. 34	- 441	- 569
	33.0.	- -.463	- -606	-.705	-: 920	-202	- 306	. 392	-455
	41.5	-.454	- -578	-. -768	-. 815	.1149	:240	. 321	. 376
	告. 5	- $=.439$	--547	-.677	-. 862	- 104	-180	25	--
	59.5	-. 415	-. 2126	-. 0.568	-. $\mathrm{}$. \% 85	. 086	.159	. 215	- 35
	71.0	-. 275	-:333	-. -778	- -7.807	:077	. 2135	. 178	. 1446
	99.5	-. 28.76	-. -131	-: 215	-. 80.428	:073	:1294	. 094	
$0.195 \mathrm{~b} / 2$	0	-2.247	-2.776	-2.522	-1.677				
	1.5	-2.666	-2.751	-2.445	-1:603	-0.250	0.015	. 669	. 136
	6.5	-2. 269	-2. 307	-2.471	-1.539	. 47	- 577	-604	-646
	11.0	-. 874	-2.150	-2.672	-1.569	. 376	-447	-573	. 631
	$\underline{12.5}$	-. 635	-1.653	- 2.350	-1:564	- 62	- 352	: 475	:376
	24.5	-.578	-.57	-1.527	-1. 386	:249	- 351	. 437	
	31.0	-.522	-. 59	-:.963	-1. 204	. 1724	-369	- 384	. 400
	41.8	-. 478	-.50\%	-. 710	-1.161	-138	-230	-305	${ }^{5}$
	4.5	-. 405	-. 482	-. $\mathrm{C}_{27} 21$	-1.125	. 135	- 116	-282	77
	59:5	-. 332	-. 361	-. -625	--. 966	.078	- 146	:188	-217
	71.8	-	-. 274	-. 8.450	-. 845	:072	. 121	. 1146	. 149
	91.0	-. 0.054	-. 046	-.:196	-. 578	:075	:086	:066	-.015
$0.382 \mathrm{~b} / 2$	\bigcirc	-1.701	-1.965	- -1.384	-1.749	-	-20]		
	1.5	-1. ${ }^{1} 29$	-1.718	- $=1.348$	-1.126	: 417	. 519	. 575	
	6.5	-1.287	-1.720	-1. 345	-1.106	- 1423	- 07	: 51	. 573
	11.0	-1.178	-1.740	-1.354	-1.105	. 363	- 439	- 517	- 55
	14.5 21.5	-1.021	-1.694	-1.300	-1.076	- 368	: 363	. 437	. 578
	24.5	- 800	-1.674	-1. 28	-1.053	-240	- 336	-400	:442
	31.2	-. 704	-1.526	-1.281	-1.053	- 191	- 278	- 342	- 386
	34.5	- -.635	-1.382	-1.232	-1.033	. 1268	-254	- 312	- 356
	41.5	-:50\%	-1.022	-1.148	-1:009	. 137	.192	. 263	- ${ }^{2} 1$
	51.0	-. 416	-. 500	-1.097	-. 998	. 090	-15	- 196	. 219
	59.5	-. 35	-. 2129	-: 973	-:958	-061	. 296	. 143	:157
	79.5 91.0	-.152	-. 19.94	- 7.73	-: $15{ }^{5}$:065	:081	-044	- 0.266
$0.555 \mathrm{~b} / 2$									
	0	-2. 330	-1.500	-1.052	-0.980				
	5.5	-2.28	-1.386	-1.022	-. 945	-. 3 多	0.388	-. 35	0.299 .525
	6.5	-1.509	-1. ${ }^{1}$	--.986	-. 933	- 412	- 502	-523	- ${ }^{2}$
	11.8	-1.472	-	-.988	- $=.9312$.381	-459	. 491	- 220
	21.2	- -.529	-1.236	-. 933	-:908	- 579	- 35	.400	-435
	24.5	-. 732	-1.158	-.914	-.888	. 249	- 319	- 380	. 406
	34.5	-. 53	-1.071	-1.915	-:869	-173	: 235	: 276	- 312
	42.0	- $=143$	-1.028	-1.917	- 864	- $12{ }^{2}$	-192	. 227	. 256
	51.6	-. 383	-.912	-1.875	-:845	. 086	. 131	. 145	. 169
	59.5	-. 295	-. 793	-1.826	-. 813	. 056	-079	-081	-086
	79.5	-. 215	-. -610	-1.735	-. 757	-05	.051	. 014	O6\%
	91.0	-. 082	-. 485	-1.655	-. 705	. 029	-.057	-. 125	-. 222

TABLE Y. - CONCLUDED.
(c) $\alpha_{u}, 12^{\circ}, 26^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluced.

Bem1span sta.	Percent ohord	UPPER SURFACE				LOWER SURFAOE			
		Angle of attack				Angle of attaok			
		12^{0}	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -1.647 \\ & -1.453 \\ & -1.376 \\ & -1.302 \\ & -1.297 \\ & -1.177 \\ & -1.141 \\ & -1.023 \\ & -.911 \\ & -.822 \\ & -.632 \\ & -.588 \\ & -.423 \\ & =.323 \\ & =.202 \\ & -.154 \\ & -.082 \end{aligned}$	$\begin{array}{r} -0.850 \\ =.796 \\ -.800 \\ =.778 \\ =.784 \\ =.755 \\ =.749 \\ =.719 \\ -.724 \\ -.687 \\ -.663 \\ -.664 \\ =.625 \\ =.597 \\ =.553 \\ -.519 \end{array}$	$\begin{array}{r} -0.809 \\ -.788 \\ -.789 \\ -.768 \\ -.766 \\ =.741 \\ =.736 \\ -.716 \\ -.711 \\ -.695 \\ -.695 \\ -.678 \\ -.678 \\ -.655 \\ =.647 \\ =.614 \\ =.580 \end{array}$	$\begin{array}{r} -0.827 \\ -.802 \\ =.800 \\ =.781 \\ -.780 \\ =.756 \\ =.750 \\ =.726 \\ -.724 \\ -.709 \\ -.710 \\ -.693 \\ =.697 \\ =.667 \\ =.651 \\ -.611 \end{array}$	0.330 .435 .358 .267 .264 .164 .097 . 062 . 019 .004	0.340 .484 .472 .419 .316 .227 .197 .117 .015 -.027 -.075 $-.167$	$\begin{array}{r} 0.262 \\ .488 \\ .487 \\ .453 \\ .423 \\ .359 \\ .364 \\ .234 \\ .177 \\ .142 \\ .090 \\ .018 \\ =.044 \\ =.099 \\ =.208 \end{array}$	0.181 .490 .495 .478 .453 .395 .300 .205 .272 .033 -.036 -.100 -.210 $-.210$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 92.0 \end{array}$	$\begin{aligned} & -1.346 \\ & -1.136 \\ & -1.145 \\ & -1.082 \\ & -1.112 \\ & -1.040 \\ & -2.000 \\ & -.919 \\ & -.811 \\ & -.751 \\ & =.644 \\ & =.607 \\ & =.516 \\ & =.438 \\ & -.332 \\ & -.293 \\ & -.210 \end{aligned}$	$\begin{array}{r} -0.796 \\ =.628 \\ =.618 \\ =.604 \\ -.606 \\ =.583 \\ =.579 \\ =.550 \\ =.550 \\ =.532 \\ =.532 \\ =.515 \\ =.511 \\ =.472 \\ =.442 \\ =.425 \end{array}$	$\begin{array}{r} -0.690 \\ -.627 \\ -.625 \\ -.609 \\ -.606 \\ -.591 \\ -.579 \\ -.565 \\ -.556 \\ -.544 \\ -.548 \\ =.531 \\ =.532 \\ =.508 \\ =.505 \\ =.471 \end{array}$	$\begin{array}{r} -0.662 \\ =.634 \\ =.630 \\ -.619 \\ -.619 \\ . .596 \\ . .595 \\ =.577 \\ -.577 \\ . .564 \\ . .577 \\ =.564 \\ =.571 \\ =.547 \\ . .534 \\ =.500 \\ =.476 \end{array}$	$\begin{array}{r} 0.365 \\ .428 \\ .425 \\ .335 \\ . .223 \\ .193 \\ .138 \\ .104 \\ .067 \\ .043 \\ .019 \\ -.018 \\ -.020 \\ -.027 \\ .016 \end{array}$	$\begin{array}{r} 0.349 \\ .441 \\ .422 \\ .360 \\ .251 \\ .216 \\ .159 \\ .1276 \\ .0744 \\ .008 \\ =.052 \\ -.087 \\ =.116 \\ -.185 \end{array}$	$\begin{array}{r} -.29 \\ 0.290 \\ .457 \\ .448 \\ .400 \\ .299 \\ .264 \\ .298 \\ .161 \\ .170 \\ .074 \\ .030 \\ -.026 \\ =.081 \\ =.117 \\ =.196 \end{array}$	$\begin{aligned} & . .250 \\ & 0.461 \\ & .459 \\ & .428 \\ & .43 \\ & .322 \\ & .236 \\ & .195 \\ & .140 \\ & .102 \\ & .053 \\ & =.025 \\ & =.075 \\ & =.120 \\ & -.203 \end{aligned}$
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.0 \\ 91.0 \end{array}$	$\begin{array}{r} -0.837 \\ -.775 \\ -.776 \\ -.749 \\ -.740 \\ -.685 \\ -.661 \\ =.601 \\ =.582 \\ =.522 \\ -.520 \\ -.474 \\ =.463 \\ =.372 \\ =.320 \\ =.291 \end{array}$	$\begin{array}{r} -0.544 \\ =.523 \\ -.520 \\ =.508 \\ =.507 \\ =.489 \\ =.464 \\ =.455 \\ =.436 \\ =.428 \\ =.407 \\ =.400 \\ =.364 \\ =.352 \\ =.316 \\ -.310 \end{array}$	$\begin{aligned} & =.534 \\ & =.539 \\ & =.517 \\ & =.501 \\ & =.501 \\ & =.483 \\ & =.482 \\ & =.463 \\ & =.459 \\ & =.437 \\ & =.436 \\ & =.413 \\ & =.382 \\ & =.376 \\ & =.348 \\ & =.340 \end{aligned}$	$\begin{array}{r} -0.541 \\ -.525 \\ -.524 \\ -.513 \\ -.517 \\ =.501 \\ =.506 \\ =.494 \\ =.500 \\ =.488 \\ -.492 \\ -.483 \\ =.486 \\ =.464 \\ =.447 \\ -.398 \end{array}$	$\begin{array}{r} -.379 \\ 0.379 \\ .356 \\ .271 \\ .209 \\ .128 \\ .081 \\ .045 \\ .012 \\ =.009 \\ =.030 \\ -.042 \\ =.059 \\ =.053 \\ =.063 \\ =.053 \end{array}$	$\begin{array}{r} -.370 \\ 0.3481 \\ .359 \\ .292 \\ .227 \\ .150 \\ .099 \\ .056 \\ .011 \\ =.015 \\ =.040 \\ =.064 \\ =.085 \\ =.108 \\ =.122 \\ =.151 \end{array}$ 2	$\begin{array}{r} 0.293 \\ .400 \\ .383 \\ .328 \\ .269 \\ .194 \\ .137 \\ .092 \\ .048 \\ .014 \\ . .018 \\ =.042 \\ =.079 \\ =.103 \\ =.125 \\ -.162 \end{array}$	

table vi. - pressure coefficiznts af seven semispan stattons of the ving. $K_{0}, 0.60 ; \mathrm{R}, 4,000,000$. (a) $a_{u}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Semispan sta.	Percent chord	UPPRR GUREAGE				LOKER SURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{0}$	2°	3°	0°	$1{ }^{\circ}$	20	3°
$0.086 \mathrm{~b} / 2$	0	0.500	0.505	0.456	0.446				
	1.5	. 059	-. 0.40	-. 152	-. 283	0.013	0.099	0.174	0.240
		-. 019	-. 068	-. 124	-. 187	-. 035	. 023	. 070	. 112
	6.5	-. 041	-. 088	-. 143	-. 200	-. 0.05	-.004	. 040	0.082
	11.0	-. 060	-. 097	=.140	-. 183	-.071	=.026	-.013	-045
	14.5 21.6	-. 0.081 -.092	-. 113	-. $=.154$	-.195 $=.190$	-. 086 $=.097$	-. 0.044	-.008 -.027	.027
	21.5	-. 0.107	-. 213	-. 1.15	-. 2000	-. 0.112	$=.057$	-.027	-. 020
	31.6	-. 213	-. .139	-. 169	-. 197	-. 125	-.088	-. 060	-. .038
	34.5	-. 138	-. 160	-. 190	-. 218	-. 143	-. 109	-. 082	-. 058
	41.0	-. 158	-. 178	-. 206	-. 232	-. 155	-. 123	-. 099	-. 072
	44.5	-. 170 -.173	-	-. 216 $=.212$	-. 241 -.235	-. .177	-. -145	-. -126	-. -104
	59.5	-. $=.150$	$=.164$	-. 180	-. 205	-. 159	-. 131	-. -1215	-. 100
	71.0	-. 120	-. 128	-. 147	-. 160	-. 127	-. 0.05	-.083	-. 077
	79.5	-. 0666	-. 070	-. 0.052	-. 096	-. 070	-. 052	-. 0.44	-. 036
$0.195 \mathrm{~b} / 2$									
	0	0.445	0.736	0.356	0.294				
	1.5	. 010		-. 254	$-.420$	0.027	0.152	0.247	0.324
		-. 0.086	-. 129	- 201	-. 280	-. 070	-. 001	. 061	- 116
	11.0	-. 102	-. 1146	-. 200	-. 285	-. 107	-. 0.054	-0\%5	. 031
	14.5	-.116	-. 153	-. 200	-. 249	-. 124	-. 0.04	-.031	.ac6
	21.0	-. 132	-. 154	-. 202	-. 234	-. 138	-. 0.93	-. 0.05	-. 024
	24.5	-. 145	-. 170		-. 234	-. 145		-. 068	-. 0.034
	31.8	-. 151	-. 175	-. 208	-. 234	-. 176	-. 126	-. 095	
	44.5	-.162 -.182	-. 2868 $=-204$	-. 219 $=.230$	$=.249$ -.257	-. 176	-. 141	- -110 -218	-. 0.082
	44.5	-. 185	=-208	-. 231	-. 257	-. $\mathrm{-}$. 182	-. 151	-. -120	-. 100
	51.0	-. 176	-. 190	-. 215	-. 237	-. 185	-. 160	-. 133	-. 115
			-. 170			-. 160	-. 137		-. 0.095
	71.0	-. 101	-. 111	-. 127	-. 145	-. 0.09	-. 079	-. 075	-. 0.046
	99.5	.049 .015	-.054	-.06\%	-. 0.078	-.049	-.037	-. 0.024	-..026
$0.382 \mathrm{~b} / 2$	${ }^{\circ}$	0.422	0.404						
	1.5	-. 037	-. 185	$\begin{aligned} & =.365 \end{aligned}$	$-.577$	-0.061	0.057	0.155	0.235
	5.5	-. 107	-. 186	-. 276	=. 373	-. 2111	-. 033	. 038	. 079
	12.0	-. 120	- $=198$	-. 284	=. 3709	-. 125	-. 0.078	-.015	. 072
	14.5	-. 143	-. 190	-.245	-. 294	-. 149	-. 094	-.045	-. 004
	27.0	-. 15	-. 197	-. 238	-. 287	-. 160	-. 114	-. 074	-. 033
	24.5	-. 164	-. 198	-. 237	-. 280	-. 167	-. 123	-.082	-. 042
	31.0					-. 181	-. 141	-. 104	
	214.5	-. 170	-. 197	-. 225	-. 264	-. 186	-. 149	-. 113	-. 086
	41.0	-. 190	-. 212	-. 233	-272 -.264 -8.23	-.181 -.182	-. 1477	$=113$ $=-122$	-.093 $=-100$
	51.0	-. 174	-. 2191	-.234	-. 264	-. 182	-. -153	-. -122	=.100
	59.5	-. 1156	-. 367	-. 178	-. 205	-. 152	-. 116	-. 107	-. 087
	71.0	-. 076	-. 0.04	-. 211	-. 123	-. 056	-. 077	-. 060	-. 0.052
	79.5 91.0	.037 -.039	-. 0.028	- -.052 .053	-. 057 .019	-. -.031 .030	-.021	-.	-. 0.017
$0.555 \mathrm{~b} / 2$									
		0.428	0.423	0.341	0.183				
	1.5	-. 0.116	-.214	- $=.428$	-. 9.412	-0.067	0.065	-0.172	0.261
	6.5	-. 131	-.214	-. 313	-. 412	-. 124	-. 0.039	. 030	. .0 .98
	11.0	-. 243	-. 198	-. 274	-. 338	-. 146	-. 071	-.020	.035
	14.5	-150	-. 200	-. 267	-. 324	-. 150	-. 0.01	-. 037	.020
	23.0	- -168	-. 203	-233	-. 301	-. 168	-. 110	-. 0.087	-. 023
	31.8	-. 165	-. 196	-. 230	-.271	-. 176	-. 136	-. 102	-. 0.063
	34.5	-. 169	-. 126	-. 230	-. 265	-. 180	-. 241	-. 104	-. 077
	47.0 44.5	-. 184	-. 209 -.204	-. 277	-.266 -.257	-.276 -.173	-.141 -.142	-. -112	-. 085 -.092
	44. 51.8	-. 186	$=.204$ -.189	-. 212	-. 251	-. 2.169	-.142 -.139	-. 1117	-. 0.096
	59.5	-. 243	-. 151	-. 159	-. 175	-. 150	-. 123	-. 104	-.091
	71.0	-. 076	-. 085	-.104	-. 112	-. 057	-. 055	-. 052	-.043
	79.5	-. 0236	-. 032	-. 044	-. 047	-. 023	-. 013	-. 017	-. 005
	91.6	. 038	. 039	. 030	. 029	. 038	. 046	. 045	. 043

nNGCA

TABLE VI. - CONTENUED.
(a) $a_{u}, 0^{\circ}, 2^{\circ}, 2^{\circ}, 3^{\circ}$ - concluded.

Semispan sta.	Percent chord	UPPER SURFAOE				LONER SURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{0}$	2^{0}	3°	0°	$1{ }^{\circ}$	2°	3°
$0.707 \mathrm{~b} / 2$	0	0.424	0.400	0.282	0.079				
	1.5	-. 049	-. 235	-. 471	-. 732	-0.056	0.100	0.222	0.310
	5.5	-. 131	- 228	-. 342	-. 442	-. 120	-. 024	. 060	. 131
	6.5	-. 139	-. 233	-. 341	-. 444	-. 128	-. 039	. 038	. 109
	11.0	-. 131	-. 197	-. 276	-. 345	-. 150	-. 077	-. 017	. 041
	14.5	-. 150	-. 207	-. 274	-. 338	-. 154	-. 085	-. 034	. 020
	21.0	-. 158	-. 203	-. 253	-. 308	-. 158	-. 106	-. 065	-. 0231
	24.5	0.166	-. 201	-. 251	-. 294	-. 168	-. 116	-. 075	-. 036
	37.0	- -169	- 200 -2000	-. 2337	-. 277	-. 1173	-. 139	-. 0.097	-. 0.06
	41.5	-. 184	-. 204	-. 237	-. 264	-. 169	-. 136	-. 104	-. 0.083
		-. 180	-. 199	-. 230	-. 260	-. 169	-. 137	-. 112	-. 092
	51.0	-. 161	-. 182	-. 200	-. 219	-. 165	-. 138	-. 118	-. 100
	59.5 71.5	- -136	-.151 -.074	-.163 -.086	-. 1789	-. .1356	-. 118	-. 104	-. 0.042
	79.5	-. 0.019	-:.021	-.,030	-. 0.034	-.,011	-.002	-.007	-.,004
	91.0	. 045	. 049	. 044	. 042	. 053	.05\%	. 052	. 049
$0.331 \mathrm{~b} / 2$	\bigcirc	0.399	0.436	0.373	0.222				
	1.5			-. 475					
		-. 138	-. 233	-. 347	=. 4438	-. -133	. 037	. 043	. 112
	6.5	-. 139	-. 232	-. 337	-. 442	-. 137	-. 045	. 033	. 101
	11.0	-. 140	-. 203	-. 280	-. 350	-. 250	-. 077	-. 020	.033
	14.5	-. 150	-. 206	-. 274	-. 337	-76	-17	-072	-024
					-. 301		-. 112		
	24.5 31.0	-.164 -.166	-. 197	-. 244	-. 271	-. 1.173	-. 119	-. 081	-. 0.047
	34.5	-. 170	-. 192	-. 214	-. 252	-. 173	-. 136	-. 110	-. 0.084
	41.0	-. 182	-. 197	-. 219	-. 248	-. 170	-. 142	-. 218	-. 0.096
	44.5	-. 175	-. 188	-. 207	-. 232	-. 169	-. 143	-. 122	-. 108
	51.0					-. 155		-. 115	-. 106
	59.5	-.125 -.057	-. -.128	-. 132	-. 143	-.132 -.045	-. 113	-.101	-. 0.094
	79.5	-..008	-.007	-. 0.015	-.018	-.001	. 012	-. 0	-.004
	91.0	. 056	. 060	. 055	. 052	060	. 056	. 057	. 050
$0.924 \mathrm{~b} / 2$	0	0.418	0.343	0.165	-0.105				
	1.5	$\begin{aligned} & =013 \\ & =151 \end{aligned}$	-. 203	- 455 -.355	$\begin{aligned} & -.746 \\ & =.480 \end{aligned}$	-0.080 -140	0.073		
	5.5	-. 151	-. 244	--. 345	-.480 -.458	-.140 -.143	-. 045	. 036	. 104
	13.0	-. 155	-. 212	-. 288	-. 3.336	-. 148	-.092	-.037	.013
	14.5	-. 166	- 209	-. 262	-. 307	-. 166	-. 111	-. 067	-. 025
	22.0	-. 169	-. 196		-. 272			-. 098	-. 071
	24.5	-. 162	-. 181	-. 214	-. 242	-. 166	-. 132	- 1178	-. 088
		-. 157				-.162	-. 135	-. 118	
	34.5 41.0	-. 1751	$=.184$	-. 176 $=.189$	-:207	-. 155	-. 1.130.	-.118	-. 1187
	44.5	-. -156	-. 1.165	-. 175	-. 193	-. 147	-. 128	-. 121	-. 217
	51.0	-. 135	-. 137	-. 152	-. 164	-. 140	-. 122	-. 1188	-. 114
	59.5	-. 080	-. 077	-. 0.096	-. 107	-. 091	-. 085	-. 084	-. 084
	71.0	-. 025	-. 031	-. 038	-. 046	-. 024	-. 015	-. 016	-. 033
	91.0	.062	.071	.064	.055	.072	. 073	.061	-. 049

TABLE YI.- COMTINURD.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Bentapan sta.	Percent chord	UPPER STRFACE				LOMER BURPACE			
		Angle of attack				ancle of attack			
		$4{ }^{0}$	6°	$8{ }^{\circ}$	10°	4^{0}	6°	$8{ }^{\circ}$	10°
0,086 b/2	0 2.5 5.5 6.5 11.5 14.0 21.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 $99^{\circ} .5$			-0.067 -1.097 -.499 -490 -.412 $-.400$ $=.370$ -.369 $=.350$ -.366 $=.366$ $=-366$ $=-346$ $=-366$ $=346$ $=-295$ $=.292$ $=.227$ -.145 -.050	$=0.403$ -1.764 $=.660$ $=.643$ $=.535$ $=.710$ $=.465$ $=.450$ $=.482$ $=.433$ $=.436$ $=.405$ $=.343$ $=.174$ -.070		-.401 0.445 .210 .157 .130 .097 .045 .045 .003 -.037 -.040 -.027 -.001 -.024	$\begin{array}{r} -.182 \\ 0.331 \\ .394 \\ .233 \\ .203 \\ .162 \\ .140 \\ .107 \\ .082 \\ .059 \\ .020 \\ .012 \\ .018 \\ .035 \end{array}$	$\begin{array}{r} -.531 \\ .403 \\ .365 \\ .300 \\ .268 \\ .220 \\ .195 \\ .159 \\ .135 \\ .107 \\ .060 \\ .050 \\ .046 \\ .054 \\ .059 \end{array}$
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 21.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0			$\begin{aligned} & -0.615 \\ & -1.549 \\ & =.702 \\ & -.656 \\ & =.543 \\ & =.500 \\ & =.448 \\ & =.433 \\ & =.406 \\ & =.403 \\ & -.392 \\ & -.363 \\ & -.345 \\ & =.263 \\ & =.275 \\ & =.119 \\ & =.015 \end{aligned}$	$=0.991$ $=-1.717$ -1.403 -1.177 $=.667$ $=.579$ $=.505$ $=.505$ $=.476$ $=.451$ $=.451$ $=.396$ $=.321$ $=.232$ $=.135$ $=.027$	$\begin{array}{r} 0.386 \\ .174 \\ .135 \\ .082 \\ .052 \\ .015 \\ . .021 \\ -.028 \\ =.066 \\ =.072 \\ =.087 \\ =.078 \\ =.049 \\ -.013 \\ .032 \end{array}$	0.452 .263 .223 .157 .119 .076 .060 .022 .001 -.027 $=.027$ -.049 $=.043$ -.026 .002 .036	$\begin{array}{r} -.465 \\ 0.355 \\ .312 \\ .230 \\ .200 \\ .120 \\ .086 \\ .067 \\ .0642 \\ .061 \\ .007 \\ .004 \\ .012 \\ .033 \\ .055 \end{array}$	
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 31.5 11.0 14.5 21.0 24.5 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{array}{r} -0.005 \\ -.798 \\ =.462 \\ =.452 \\ =.375 \\ =.353 \\ =.330 \\ =.319 \\ =.391 \\ =.292 \\ =.284 \\ =.250 \\ =.208 \\ =.130 \\ =.061 \end{array}$		$\begin{aligned} & -0.915 \\ & -1.574 \\ & -1.073 \\ & -.896 \\ & -.774 \\ & -.652 \\ & -.558 \\ & =.522 \\ & -.469 \\ & -.442 \\ & -.411 \\ & -.387 \\ & -.339 \\ & -.266 \\ & -.151 \\ & -.091 \\ & .002 \end{aligned}$	$\begin{aligned} & -1.192 \\ & -1.510 \\ & -1.141 \\ & -1.057 \\ & -1.028 \\ & -.861 \\ & -.813 \\ & -.706 \\ & -.829 \\ & -.555 \\ & -.497 \\ & -.453 \\ & -.389 \\ & -.306 \\ & -.303 \\ & -.127 \\ & -.027 \end{aligned}$		$\begin{array}{r} 0.394 \\ 0.254 \\ .224 \\ .158 \\ .124 \\ .078 \\ .059 \\ .017 \\ .002 \\ =.015 \\ =.041 \\ -.048 \\ =.090 \\ -.010 \\ .044 \end{array}$	0.448 0.340 .313 .243 .214 .155 .136 .057 .069 .045 .029 .005 .014 .034 .055	-.77 0.470 .393 .375 .368 .219 .185 .145 .118 .097 .047 .038 .044 .048 .061
$0.555 \mathrm{k} / 2$	0 1.5 56.5 61.5 11.0 14.5 21.0 24.5 31.6 34.5 41.6 44.5 51.0 59.5 71.0 79.5			-0.960 -1.317 -1.346 -1.319 -1.390 -1.207 -.765 $=.619$ $=.357$ $=.327$ $=.306$ $=.283$ $=.203$ $=.131$ -.057 .026	$\begin{aligned} & -1.368 \\ & -1.526 \\ & -1.406 \\ & -1.389 \\ & -1.559 \\ & -1.321 \\ & -1.227 \\ & -1.088 \\ & -.807 \\ & -.694 \\ & -.412 \\ & -.375 \\ & -.260 \\ & -.188 \\ & -.117 \\ & -.056 \\ & .068 \end{aligned}$			- 0.459 .358 .339 .263 .225 .164 .1540 .094 .075 .048 .035 .015 -.001 .015 .032 .058	0.460 .415 -367 . 219 -1.195 .c9i .074 .026 $\begin{array}{r}058 \\ .04 \mathrm{a} \\ \hline\end{array}$

TABLE VI. - CONTINUED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Semiepan ote.	Percent chord	UPPER SURFACE				LOWER SURFACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / \mathrm{c}$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 24.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.188 \\ -1.024 \\ -.572 \\ -.557 \\ =.425 \\ -.403 \\ -.353 \\ =.337 \\ =.311 \\ =.299 \\ =.286 \\ =.272 \\ =.234 \\ =.181 \\ =.300 \\ =.034 \\ .045 \end{array}$	$\begin{array}{r} -0.773 \\ -1.430 \\ -1.084 \\ -.923 \\ =.619 \\ -.542 \\ -.462 \\ =.432 \\ =.388 \\ -.367 \\ -.336 \\ =.316 \\ =.270 \\ =.218 \\ =.114 \\ =.048 \\ .024 \end{array}$	$\begin{aligned} & -0.979 \\ & -1.091 \\ & -1.089 \\ & -1.074 \\ & -1.089 \\ & -1.077 \\ & -1.055 \\ & -1.016 \\ & -.856 \\ & -.797 \\ & -.511 \\ & -.467 \\ & -.246 \\ & -.158 \\ & -.084 \\ & -.030 \\ & .034 \end{aligned}$	$\begin{aligned} & -1.256 \\ & -1.163 \\ & -1.140 \\ & -1.117 \\ & -1.124 \\ & -1.091 \\ & -1.102 \\ & -1.056 \\ & -1.027 \\ & =.977 \\ & =.888 \\ & -.839 \\ & =.686 \\ & =.528 \\ & =.260 \\ & =.173 \\ & =.030 \end{aligned}$	$\begin{array}{r} .0-379 \\ .201 \\ .172 \\ .097 \\ .069 \\ .024 \\ .004 \\ . .021 \\ =.034 \\ =.055 \\ -.063 \\ =.075 \\ =.071 \\ =.034 \\ .0053 \\ .052 \end{array}$	0.432 $\begin{array}{r} 297 \\ -270 \end{array}$.270 .183 .152 .095 .076 .033 .019 $-.011$ $-.025$ -.041 -.049 -.022 .003	$\begin{array}{r} 0.254 \\ .369 \\ .345 \\ .259 \\ .227 \\ .164 \\ .141 \\ .093 \\ .076 \\ .043 \\ .025 \\ .001 \\ -.012 \\ =.004 \\ .025 \\ .061 \end{array}$	$\begin{array}{r} 0.426 \\ .420 \\ .398 \\ .319 \\ .283 \\ .215 \\ .186 \\ .136 \\ .177 \\ .079 \\ .039 \\ .064 \\ .012 \\ .019 \\ .037 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} 0.004 \\ -1.024 \\ -.576 \\ =.547 \\ =.422 \\ -.399 \\ -.340 \\ -.319 \\ -.286 \\ -.272 \\ -.261 \\ =.241 \\ -.207 \\ -.245 \\ =.075 \\ -.013 \\ .057 \end{array}$	$\begin{array}{r} -0.496 \\ -1.310 \\ -1.086 \\ -.979 \\ -.719 \\ -.575 \\ -.444 \\ =.401 \\ -.349 \\ -.326 \\ =.298 \\ =.275 \\ -.239 \\ -.157 \\ =.092 \\ =.038 \end{array}$	$\begin{array}{r} -0.587 \\ -.858 \\ -.857 \\ -.826 \\ =.826 \\ -.789 \\ -.796 \\ =.761 \\ =.760 \\ =.710 \\ =.672 \\ =.627 \\ -.540 \\ -.440 \\ =.293 \\ -.228 \\ -.096 \end{array}$	$\begin{array}{r} -0.816 \\ -.844 \\ -.842 \\ -.809 \\ -.804 \\ -.765 \\ . .747 \\ -.705 \\ -.697 \\ . .655 \\ . .654 \\ =.611 \\ -.592 \\ -.523 \\ -.167 \\ -.403 \\ -.313 \end{array}$	$\begin{array}{r} . .37 \\ 0.375 \\ .172 \\ .092 \\ .07 \\ .013 \\ . .002 \\ . .034 \\ =.051 \\ =.068 \\ =.050 \\ =.081 \\ . .078 \\ -.034 \\ .003 \\ .053 \end{array}$	0.423 .274 .262 .271 .077 .057 .011 . .009 $-.038$. .053 -.053 -. .069 $-.034$ -.002 .036	0.443 $\cdot 325$.238 .139 .113 .062 .038 .006 $-.013$ $-.025$ $-.045$ $-.018$.002 .026	$\begin{aligned} & -.473 \\ & .384 \\ & .371 \\ & .290 \\ & .180 \\ & .149 \\ & .096 \\ & .068 \\ & .031 \\ & .010 \\ & -.010 \\ & =.040 \\ & =.031 \\ & =.032 \\ & -.053 \end{aligned}$
$0.924 \mathrm{~b} / 2$	$\begin{aligned} & 10 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.5 \\ & 24.5 \\ & 31.5 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.5 \end{aligned}$	$\begin{array}{r} -0.459 \\ -1.055 \\ -.577 \\ -.546 \\ -.400 \\ -.361 \\ -.301 \\ -.267 \\ -.238 \\ -.221 \\ -.220 \\ -.200 \\ =.170 \\ =.171 \\ =.046 \\ -.001 \\ .050 \end{array}$	$\begin{array}{r} -1.012 \\ -1.167 \\ -1.024 \\ =.959 \\ . .726 \\ =.593 \\ =.408 \\ =.350 \\ =.292 \\ =.274 \\ =.239 \\ =.239 \\ =.204 \\ =.161 \\ =.097 \\ =.072 \\ .012 \end{array}$	$\begin{array}{r} -0.762 \\ -.649 \\ -.632 \\ -.608 \\ -.596 \\ -.561 \\ -.535 \\ -.491 \\ =.466 \\ =.422 \\ -.410 \\ -.370 \\ =.370 \\ =.315 \\ -.309 \\ =.276 \\ -.257 \end{array}$	$\begin{array}{r} -0.792 \\ =.651 \\ =.636 \\ =.513 \\ =.605 \\ =.567 \\ =.541 \\ =.497 \\ =.471 \\ =.429 \\ =.411 \\ =.377 \\ =.373 \\ =.325 \\ =.329 \\ =.293 \\ -.304 \end{array}$	$\begin{array}{r} 0.350 \\ .173 \\ .161 \\ .069 \\ .021 \\ =.031 \\ -.057 \\ =.075 \\ =.084 \\ -.094 \\ =.098 \\ =.097 \\ =.070 \\ =.031 \\ -.002 \\ .045 \end{array}$	0.402 .257 .137 .082 .013 . .017 $-.049$ -. 069 -.078 -.090 $-.091$. .077 -.040 .019 . .022	$\begin{array}{r} -.415 \\ 0.307 \\ .289 \\ .193 \\ .130 \\ .059 \\ .018 \\ -.011 \\ =.035 \\ =.052 \\ =.064 \\ =.070 \\ =.064 \\ -.043 \\ =.038 \\ -.047 \end{array}$.071 0.411 .345 .234 .170 .093 .046 .011 $=.020$ $=.042$ $=.056$ $=.067$ $=.069$ $=.077$ -.115

sable vi. - comtinued.
(c) $\mathrm{a}_{\mathrm{u}}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Serlspan Bta.	Percent chord	UPPER GURFACE				LONER SURFACE			
		Angle or attack				Angle of atteot			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.086 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 47.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 91.5 \end{gathered}$		-1.311 -2.198 -2.157 -2.167 -.660 -.640 -.681 $=.648$ -.615 -.607 -.590 $=.572$ -.748 $=.475$ -.374 $=.270$ -.147		-1.973 -1.771 -1.840 -1.726 -1.660 -1.503 -1.256 -1.178 $=.960$ -.962 $=.857$ $=.855$ $=.780$ $=.740$ $=.890$ -.556	$\begin{array}{r} 0.566 \\ .473 \\ .435 \\ .338 \\ .356 \\ .254 \\ .215 \\ .190 \\ .158 \\ .110 \\ .094 \\ .067 \\ .080 \\ .074 \end{array}$	$\begin{array}{r} 0.590 \\ .590 \\ .547 \\ .478 \\ .440 \\ .379 \\ .354 \\ .309 \\ .280 \\ =.245 \\ .185 \\ .157 \\ .130 \\ .114 \\ .080 \end{array}$	0.588 .641 - 575 .475 .443 .356 - 318 . 249 - 208 .165 .126 .061	$\begin{aligned} & 0.596 \\ & 0.733 \\ & .753 \\ & .651 \\ & .558 \\ & .517 \\ & .460 \\ & .430 \\ & .380 \\ & .30 \\ & .350 \\ & .192 \\ & .198 \\ & .013 \end{aligned}$
$0.195 \mathrm{~b} / 2$	$0-$ 3.5 5.5 21.5 214.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	-7.363 -1.848 -1.849 -1.876 -1.422 -.752 $=.511$ $=.499$ $=.512$ $=.503$ $=.497$ $=.452$ $=.438$ $=.353$ $=.146$ $=.029$	-1.977 -2.028 -2.121 -2.142 -2.307 -2.399 -1.066 -.530 $=.415$ -.426 $=.514$ $=.540$ $=.534$ $=.453$ $=.349$ $=.103$	-1.846 -1.740 -1.799 -1.757 -1.842 -1.722 -1.517 -1.504 -1.335 -1.241 -1.042 -1.020 -.842 -.742 -.600 -.519 -.355	-1.341 -1.280 -1.266 -1.231 -2.233 -1.199 -1.192 -1.151 -1.113 -1.070 -1.031 -1.002 -.961 $=.919$ -.876 $=.838$ -.731	0.395 .2484 - 370 .329 .241 .196 .156 .138 .154 .093 .102 .106 .106	0.266 .567 .535 .481 .437 .373 .34 .293 .263 .222 .202 .166 .132 .105 .092 .067	$\begin{aligned} & . .77 \\ & 0.171 \\ & .628 \\ & .609 \\ & .568 \\ & .463 \\ & .427 \\ & .371 \\ & .336 \\ & .292 \\ & .267 \\ & .1771 \\ & .1722 \\ & .082 \\ & .016 \end{aligned}$	$\begin{aligned} & . .727 \\ & 0.677 \\ & .662 \\ & .636 \\ & .555 \\ & .559 \\ & .440 \\ & .404 \\ & .353 \\ & .324 \\ & .277 \\ & .133 \\ & .061 \\ & . .071 \end{aligned}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 61.5 12.0 24.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 79.0 79.5 91.0	-1.590 -1.617 -1.442 -1.433 -1.445 -1.406 -1.443 -1.327 -1.129 $=.974$ $=.623$ $=.525$ $=.300$ $=.229$ $=.154$ $=.086$ -.002	-1.560 -1.415 -1.402 -1.367 -1.422 -1.446 -1.513 -1.445 -1.402 -1.317 -1.210 -1.134 -1.016 -.872 $=.603$ -.465 -.240	-1.190 -1.154 -1.153 -1.124 -1.127 -1.097 -1.096 -1.067 -1.071 -1.045 -1.038 -1.000 -.978 -.919 -.859 -.799 -.707	$\begin{array}{r} -0.996 \\ -.981 \\ -.980 \\ -.968 \\ -.967 \\ -.949 \\ -.946 \\ -.931 \\ -.927 \\ -.915 \\ -.914 \\ -.902 \\ -.899 \\ -.879 \\ -.860 \\ -.836 \\ -.834 \end{array}$	$\begin{array}{r} 0.478 \\ .453 \\ .487 \\ .365 \\ .367 \\ .234 \\ .189 \\ .165 \\ .135 \\ .085 \\ .068 \\ .058 \\ .0664 \end{array}$	$\begin{array}{r} 0.466 \\ .526 \\ .506 \\ .454 \\ .418 \\ .357 \\ .324 \\ .271 \\ .204 \\ .178 \\ .138 \\ .107 \\ .073 \\ .056 \end{array}$	$0.4 \overline{4} 6$ 0.54 .564 .552 .514 .478 .420 .367 .329 .298 .251 .220 .174 .115 .057 0 -.121	
$0.555 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 37.0 34.5 41.0 44.5 51.0 59.5 71.5 79.5	-1.402 -1.311 -1.210 -1.222 -1.204 -1.192 -1.189 -1.153 -1.139 -1.035 -1.044 -.992 -.906 $=.736$ -.468 $=.340$ -.127	-1.131 -1.026 -1.014 -.992 -1.001 -.971 $=.963$ $=.935$ $=.944$ $=.920$ -.927 $=.898$ -.891 $=.826$ $=.768$ $=.699$ -.617	$\begin{array}{r} -0.945 \\ -.910 \\ =.910 \\ =.885 \\ =.691 \\ =.871 \\ =.862 \\ =.845 \\ =.840 \\ =.824 \\ =.819 \\ =.805 \\ =.504 \\ =.774 \\ =.755 \\ =.721 \\ -.690 \end{array}$	-0.894 -.866 -.867 $=.859$ -.866 $=.859$ -.853 $=.845$ $=.840$ -.826 -.816 $=.811$ $=.788$ $=.769$ $=.740$ -.721	$\begin{array}{r} 0.466 \\ .455 \\ .447 \\ .376 \\ .365 \\ .241 \\ .189 \\ .165 \\ .130 \\ .151 \\ .082 \\ .051 \\ .049 \\ .046 \end{array}$	$\begin{array}{r} 0.444 \\ .503 \\ .492 \\ .4423 \\ .337 \\ .307 \\ .250 \\ .227 \\ .176 \\ .151 \\ .110 \\ .058 \\ .020 \\ \hline . .127 \end{array}$	0.402 $\begin{aligned} & .522 \\ & .516 \\ & .481 \\ & .448 \\ & .354 \\ & .351 \\ & .254 \\ & .258 \\ & .174 \\ & .124 \\ & .052 \\ & -.017 \\ & -.992 \\ & -.226 \end{aligned}$	0.354 .532 .532 .516 .500 .430 .396 .337 .301 .245 .212 .061 -.915 -.094 -.242

TABLE VI. - CONCLUDED.
(c) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Semispan ata.	Percent chord	UPPER SURFACE				LOWER BURFACE			
		Angle of attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -1.095 \\ -.914 \\ -.909 \\ =.884 \\ =.885 \\ =.849 \\ -.837 \\ =.803 \\ =.792 \\ =.756 \\ =.756 \\ -.716 \\ =.705 \\ =.636 \\ =.562 \\ =.518 \\ -.445 \end{array}$	$\begin{aligned} & -0.864 \\ & =.794 \\ & =.798 \\ & =.771 \\ & =.770 \\ & =.739 \\ & =.703 \\ & =.697 \\ & =.676 \\ & =.676 \\ & =.658 \\ & =.661 \\ & =.635 \\ & =.591 \\ & =.560 \end{aligned}$	$\begin{aligned} & -0.789 \\ & =.761 \\ & =.763 \\ & =.753 \\ & =.752 \\ & =.733 \\ & =.727 \\ & =.710 \\ & =.705 \\ & =.690 \\ & =.679 \\ & =.675 \\ & =.647 \\ & =.635 \\ & =.598 \\ & =. \end{aligned}$	$\begin{array}{r} -0.752 \\ =.775 \\ =.776 \\ -.774 \\ -.760 \\ =.754 \\ =.739 \\ =.737 \\ =.755 \\ =.721 \\ =.710 \\ =.707 \\ =.683 \\ =.635 \\ =.608 \end{array}$.0 .367 .476 .467 .409 .373 .304 .273 .214 .185 .130 .101 .052 .012 .059 .2120	0.302 .487 .482 .443 .409 .345 .309 .248 .216 .156 .122 .066 $-.012$ $=.133$ -.233	
$0.832 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.803 \\ =.701 \\ =.696 \\ -.678 \\ =.671 \\ =.636 \\ =.621 \\ =.586 \\ =.535 \\ -.528 \\ =.499 \\ =.492 \\ =.451 \\ =.438 \\ =.412 \\ =.395 \end{array}$		$\begin{aligned} & -0.705 \\ & =.636 \\ & =.639 \\ & =.626 \\ & =.607 \\ & =.600 \\ & =.584 \\ & =.581 \\ & =.563 \\ & =.565 \\ & =.551 \\ & =.551 \\ & =.525 \\ & =.474 \\ & =.457 \end{aligned}$	$\begin{array}{r} -0.697 \\ =.670 \\ =.672 \\ =.661 \\ =.661 \\ =.643 \\ =.636 \\ =.631 \\ =.620 \\ =.626 \\ =.615 \\ =.517 \\ =.579 \\ =.548 \\ =.520 \end{array}$		0.406 .425 -358 .248 .212 .212 .148 .126 .057 .020 -. 018 $-.080$ -.117 -.144 -.205		$0.2 \overline{2} 9$.489 .483 .421 .322 .288 -2.20 .178 .116 .073 $-.062$ $-.123$ -.168 -.252
0.924 b/2	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 61.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & -0.600 \\ & -.527 \\ & -.520 \\ & -.498 \\ & -.491 \\ & -.459 \\ & -.445 \\ & =.411 \\ & -.394 \\ & =.361 \\ & =.355 \\ & =.326 \\ & =.396 \\ & =.303 \\ & =.279 \\ & -.295 \end{aligned}$	-0.537 $-.520$ -518 -504 -484 $=.479$ $=.461$ $=.453$ $=.432$ $-.422$ $-.398$ -.363 -.361 $=.335$ -.335 -.339	$\begin{aligned} & -0.550 \\ & =.536 \\ & -.535 \\ & -.529 \\ & -.530 \\ & -.504 \\ & -.505 \\ & -.490 \\ & -.489 \\ & -.477 \\ & =.472 \\ & -.457 \\ & -.429 \\ & =.419 \\ & =.390 \\ & -.372 \end{aligned}$	$\begin{array}{r} -0.603 \\ -.591 \\ -.591 \\ -.582 \\ =.582 \\ -.570 \\ -.573 \\ -.566 \\ =.574 \\ =.569 \\ =.570 \\ =.563 \\ =.562 \\ =.541 \\ =.518 \\ =.485 \\ =.455 \end{array}$	$\begin{array}{r} . .407 \\ .403 \\ .365 \\ .3459 \\ .195 \\ .114 \\ .066 \\ .028 \\ . .010 \\ =.037 \\ =.0597 \\ =.097 \\ -.105 \\ =.117 \\ -.146 \end{array}$	0.351 .383 .397 .297 .227 .143 .089 .040 . .037 . .068 . .092 . .119 . .133 . .148 . .183	. .07 0.299 .394 .378 .323 .261 .178 .118 .066 .012 -.025 $=.059$ $=.087$ $=.129$ $=.149$ $=.271$ -.206	$\begin{array}{r} . .222 \\ 0.229 \\ .3977 \\ .374 \\ .346 \\ .2866 \\ .141 \\ .088 \\ .024 \\ =.016 \\ =.060 \\ =.089 \\ =.146 \\ =.189 \\ =.201 \\ -.240 \end{array}$

TABLE VII. - PROSSURE CCEFPICIENTS AT SEVEA SEKISPAN STATIONS OF THE WIMG. $\mathrm{K}_{0}, 0.60 ; \mathrm{A}, 4,000,000$.
(a) $a_{u}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Semiepar sta.	Fercent ohord	UPPER SURIACE				LOWEA BURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{0}$	2^{0}	3^{0}	0°	1°	2^{0}	3^{0}
c.086 b/2	$\begin{gathered} 0 \\ 3.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 31.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.530 .088 -.004 $=.056$ $=.075$ -.091 $=.106$ $=.1180$ $=.175$ -.195 $=.206$ $=.190$ $=.155$ $=.090$ -.022	0.539 .0 .040 -.065 -.080 $=.109$.120 $=.135$ $=.181$ $=.200$ -.219 -.229 $=.204$ -.168 -.095	0.524 $=.101$ $=.095$ $=.120$ $=.129$ $=.150$ $=.160$ $=.171$ $=.179$ $=.210$ $=.232$ $=.251$ $=.230$ $=.230$ $=.111$ -.031	0.496 $=.220$ $=.152$ $=.1776$ $=.179$ $=.194$ $=.209$ $=.210$ $=.2465$ $=.280$ $=.289$ $=.250$ $=.202$ $=.126$ $=.040$	$\begin{aligned} & 0.050 \\ & =.010 \\ & =.036 \\ & =.054 \\ & -.072 \\ & =.089 \\ & -.110 \\ & =.130 \\ & -.153 \\ & -.184 \\ & -.205 \\ & =.191 \\ & =.160 \\ & -.095 \\ & -.022 \end{aligned}$	0.129 0.045 .019 $=.010$ $=.030$ $=.070$ $=.090$ $=.218$ -.140 -.171 $=.163$ $=.132$ -.071 -.010	-.192 .089 .060 .027 .004 -.020 -.040 -.090 -.111 -.150 -.142 -.115 $=.062$ -.008	-.259 .133 .106 .061 .040 .013 .010 -.032 -.060 -.081 -.120 $=.120$ $=.097$.050 .0
$0.195 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.0 \\ & 21.5 \\ & 24.5 \\ & 31.0 \\ & 31.0 \\ & 41.5 \\ & 41.0 \\ & 41.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \end{aligned}$	0.467 -.025 -.055 $=.100$ $=.115$ $=.140$ $=.152$ -.168 $=.185$ $=.220$ $=.203$ $=.1148$ $=. .060$ -.012	0.453 $=.089$ $=.180$ $=.141$ $=.160$ $=.180$ $=.193$ $=.203$ $=.244$ -.256 -.238 $=.210$ $=.152$ -.072 .007	0.416 -.223 $=.290$ $=.206$ $=.200$ $=.220$ $=.230$ $=.240$ $=.256$ $=.278$ $=.285$ $=.265$ $=.237$ $=.1545$ -.001	0.357 $=.3763$ $=.275$ $=.250$ $=.255$ $=.259$ $=.266$ $=.262$ $=.2800$ $=.310$ $=.283$ $=.241$ $=$.	$\begin{aligned} & 0.005 \\ & 0.060 \\ & =.083 \\ & =.100 \\ & =.121 \\ & =.141 \\ & =.157 \\ & =.180 \\ & =.200 \\ & =.210 \\ & =.213 \\ & =.229 \\ & =.190 \\ & =.065 \\ & .010 \end{aligned}$	$\begin{aligned} & -.160 \\ & 0.007 \\ & =.023 \\ & =.052 \\ & =.050 \\ & =.105 \\ & -.120 \\ & =.150 \\ & =.170 \\ & =.185 \\ & -.290 \\ & =.200 \\ & =.170 \\ & -.057 \\ & -.012 \end{aligned}$	-.253 0.065 .035 $=.005$ $=.035$ $=.062$ -.080 $=.110$ $=.137$ $=.144$ $=.150$ $=.167$ $=.1400$ $=.045$.020	0.330 .153 .089 .042 .010 -.020 -.039 -.070 $=.093$ -.110 $=.139$ $=.137$ $=.080$ $=.030$ -.027
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 61.5 14.0 21.5 24.0 31.5 31.0 31.6 44.5 51.0 59.0 71.6 79.5 91.0	0.425 $=.033$ $=.1175$ $=.253$ $=.182$ $=.182$ $=.204$ $=.203$ $=.227$ $=.230$ $=.210$ $=.283$ $=.091$ -.032	0.410 -.186 $=.203$ $=.219$ -.220 $=.232$ -.247 $=.244$ $=.240$ -.262 $=.261$ $=.210$ $=.112$ -.052 .028	0.350 $=.365$ $=.295$ $=.306$ $=.280$ $=.278$ $=.284$ $=.278$ $=.273$ $=.291$ $=.289$ $=.258$ $=.215$ $=.236$ -.060 .021	0.241 $=.573$ $=.393$ $=.336$ $=.322$ $=.320$ $=.322$ $=.315$ $=.309$ $=.314$ $=.280$ $=.231$ $=.143$ -.065 .025	-0.060 $=.121$ $=.151$ $=.170$ -.170 -.185 -.192 -.211 -.220 $-.217$.220 -.180 -. 0961 -. 037 -.035	$\begin{aligned} & 0.050 \\ & =.046 \\ & =.063 \\ & =.095 \\ & =.115 \\ & =.140 \\ & =.175 \\ & =.187 \\ & =.183 \\ & =.189 \\ & =.193 \\ & =.150 \\ & =.051 \\ & -.030 \end{aligned}$	$\begin{array}{r} 0.145 \\ .025 \\ . .005 \\ =.062 \\ -.092 \\ -.105 \\ =.130 \\ =.145 \\ -.145 \\ =.155 \\ -.164 \\ =.127 \\ =.075 \\ -.020 \\ .042 \end{array}$	0.230 .095 .069 .019 $=.010$ $=.046$ $=.057$ -.103 $=.110$ $=.120$ $=.135$ $=.106$ $=.063$ -.017 .042
$0.555 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.0 31.0 34.0 41.0 44.5 51.0 79.5 71.0 79.5 91.0		$\begin{aligned} & 0.430 \\ & -.225 \\ & -.231 \\ & -.249 \\ & -.232 \\ & -.237 \\ & -.247 \\ & -.236 \\ & -.235 \\ & -.239 \\ & -.248 \\ & -.225 \\ & -.160 \\ & -.999 \\ & -.345 \end{aligned}$	$\begin{aligned} & 0.361 \\ & =.450 \\ & =.349 \\ & =.354 \\ & =.312 \\ & =.309 \\ & -.301 \\ & =.290 \\ & -.280 \\ & =.280 \\ & =.286 \\ & =.271 \\ & =.246 \\ & =.185 \\ & =.115 \\ & -.242 \end{aligned}$	0.240 $=.708$ $=.462$ $=.460$ $=.379$ $=.371$ $=.350$ $=.330$ $=.330$ $=.311$ $=.300$ $=.270$ $=.2011$ $=.120$ -.044	$\begin{aligned} & -0.080 \\ & -.130 \\ & -.143 \\ & -.170 \\ & -.177 \\ & =.190 \\ & =.200 \\ & =.210 \\ & -.214 \\ & =.211 \\ & =.207 \\ & -.199 \\ & -.171 \\ & =.075 \\ & -.024 \end{aligned}$	0.057 $=.011$ $=.060$ $=.101$ $=.113$ $=.139$ $=.156$ $=.175$ $=.173$ $=.173$ $=.171$ $=.349$ -.071 -.017 .052	$\begin{array}{r} -.769 \\ 0.040 \\ .020 \\ -.033 \\ -.053 \\ -.008 \\ -.102 \\ =.122 \\ -.129 \\ -.136 \\ -.146 \\ -.140 \\ -.126 \\ -.060 \\ -.010 \\ .953 \end{array}$	$\begin{array}{r} -.250 \\ 0.110 \\ .089 \\ .027 \\ 0.040 \\ -.051 \\ -.051 \\ -.090 \\ -.103 \\ -.110 \\ =.115 \\ -.1050 \\ -.050 \\ -.010 \\ .050 \end{array}$

TABLE VII.- CONTINUED.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{0}, 3^{\circ}$ - Conoluded.

Sem1epan pta.	Percent chord	UPPER SURFACE				LOMER surface			
		Angle of attack				Angle of attack			
		0°	$1{ }^{\circ}$	2°	3°	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	0	0.429	0.408	0.306	0.141				
	1.5	-. 0.159	-. 259	-. 516	-. 801	-0.067	0.091	0.219	0.309
	5.5	-. 152	-. 264	-. 3,90	-. 486	-. 141	-. 041	. 051	. 128
	6.5	- 1160	-. 270	-. 389 -.319	$=.510$ $=.390$	-. 151	$\begin{array}{r}-.059 \\ -802 \\ \hline .81\end{array}$.030 -030	. 103
	$11 . c$ 14.5	-.159 -.178	-.231 -.243	-.319 -.320	-. 390	-. 180	-. -102	-.030 -.049	. 030
	21.0	-. 1190	-. 243	-. 200	-. 356	-. 1190	-. .136	-.080	-.032
	24.5	-. 191	-. 242	-. 292	-. 342	-. 199	-. 148	-. 094	-. 050
	31.0	-. 200	-. 241	-. 280	-. 321	-. 206	-. 161	-. 114	-. 072
	34.5	-. 202	-. 241	-. 271	-. 315	-. 208	-. 168	-. 119	-. 082
	41.0	-. 213	-. 248	-. 279	-. 307	-. 201	-. 170	-. 129	-. 100
	44.5	-. 212	-. 240	-267 -.231	- 290 $=.250$	-. 201	-. 1711	r -.138 -.241	-. 1120
	51.0	-. 192	-. 219	-.231 -.187	-. 250	-. 198	-.171 -.149	-. 1241	- $\mathrm{-} .1120$
	71.0	-. 0.070	-. 080	-. 095	-. 095	-. 060	-. .061	-.058	-. 050
	79.5	-. 0188	-. 020	-. 0258	-. 0222	-. 017	-. 008	-.003	-. 009
	91.0	. 058	. 059	. 059	. 059	. 061	. 063	. 060	. 057
$2.831 \mathrm{~b} / 2$	0	0.409	0.448	0.390	0.266	\bigcirc			
	1.5	-. 064	-. 268	-. 530		-. 072	. 0902	. 220	. 310
	5.5	-. 159		-. 403	-. 484	-. 154		. 040	. 114
	12.5	-.161 -.164	-. 2688	-.394 -.331	-.500 -.400	.156 -.185	-.058 -.095	. 030	.104
	13.0	-. 164	-.237 -.243	-.331 -.325	-.400 -.390	$-.185$	-. 09	-.030	\bigcirc
	21.0	-. 190	-. 242	-. 297	-. 350	-. 192	-. 139	-. 086	-. 037
	24.5	-. 199	-. 240	-. 290	-. 330	-. 295	-. 149	-. 100	-. 050
	31.0	-. 200	-. 233	-. 265	-. 300	-. 205	-. 165	-. 1288	-. 090
		-. 202		-. 253	-. 280	-. 207	-. 173	-. 240	-. 102
	41.0	-. 209	-. 230	-. 256	-. 270	-. 200	-. 177	-. 146	-. 120
	44.5	-. 202	-. 218	-. 236	-. 246	-. 197	-. 177	-. 153	. 132
	51.0	-. 182	-. 200	-. 208	-. 215	-. 178	-. 159	-. 140	-. 127
	59.5	-. 141	-. 145	-. 139	-. 139	-. 147	-. 134	-. 115	-. 106
		-. 0.004	-.055	-. 0.67	. .063 .003	-. 0.015	-.041	-. 0.008	-. 045
	91.0	. 075	. 075	. 075	. 077	. 080	-.880	.072	. 058
$0.924 \mathrm{~b} / 2$	0	0.428	0.352	0.182	-0.059				
	1.5	-. 0172	-. 230	- 508	-. 856	-0.090	0.070	0.200	0.289
		-.175 -.189	-. 287 -.294	-. 4149		- .164		. 030	. 108
	11.5	-. 189	-.294 -.258	-. 413	-. 500	-. 1790	-. 0.117	-.020	.097
	24.5	-. 204	-. 260	-. 324	-. 361	-. 205	-. 145	-. -.089	-.039
	21.0	-. 204	-. 241	-. 273	-. 303	-. 212	-. 170	-. 132	-. 096
	24.5 31.0	-. 190	-.220 -.203	-. 240 -.219	-. 270 -247	-. 200	. .174 -.169	-. 1445 -.148	-. 118
	34.5	-. 172	-. 290	-. 206	-. 227	-. 180	-. 160	-. 146	$\rightarrow \square 130$
	41.0	-. 385	-. 200	-. 215	-. 227	-. 172	-. 159	-. 249	-. 135
	44.5	-. 270	-. 187	-. 194	-. 203	-. 162	-. 152	-. 145	-. 135
	51.0	-. 150	-. 160	-. 162	- 170	-. 15	-. 142	-. 136 -.090	-. 130
	71.0	-. 022	-. 0.025	-. 030	-. .030	-. 012	-. 0.017	-..008	-.028
	79.0	. 025	. 031	. 027	. 021	. 034	. 030	. 021	. 011
	91.0	. 080	. 085	. 081	. 075	. 092	. 089	. 079	. 068

table Vif. - CONTIMUED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Senispan sta.	Fercent chord	UPPER SURFACE				LOWER SURFMES			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.5 \\ 59.5 \\ 71.5 \\ 79.5 \\ 91.0 \end{array}$	0.459 $=.210$ -.210 -.226 -.210 $=.230$ -.2239 $=.241$ $=.278$ -.259 $=.315$ -.320 $=.280$ -.140 -.245	0.339 $=.309$ $=.219$ $=.330$ $=.318$ $=.309$ $=.330$ $=.319$ $=.371$ $=.376$ $=.386$ $=.337$ $=.360$ -.167	0.179 $=.946$ $=.445$ $=.449$ $=.396$ $=.411$ $=.390$ $=.498$ $=$.	$\begin{array}{r} 0.910 \\ -1.720 \\ =.580 \\ =.547 \\ -.197 \\ =.510 \\ -.550 \\ =.497 \\ =.485 \\ =.530 \\ =.552 \\ -.560 \\ -.555 \\ =.40 \\ =.344 \\ =.220 \\ =.299 \end{array}$	$\begin{array}{r} -.77 \\ 0.3170 \\ .140 \\ .100 \\ .069 \\ .046 \\ .025 \\ -.001 \\ -.030 \\ -.054 \\ -.095 \\ -.100 \\ =.0030 \\ -.039 \end{array}$	$\begin{array}{r} -.70 \\ 0.410 \\ .259 \\ .270 \\ .170 \\ .177 \\ .082 \\ .051 \\ .025 \\ .0 \\ -.041 \\ -.052 \\ =.040 \\ -.010 \\ .020 \end{array}$	$\begin{array}{r} -.492 \\ 0.340 \\ .301 \\ .5014 \\ .211 \\ .170 \\ .146 \\ .210 \\ .085 \\ . .958 \\ .00 \\ .012 \\ .001 \\ .020 \\ .038 \end{array}$	$\begin{array}{r} 0.557 \\ .411 \\ .371 \\ .310 \\ .278 \\ .230 \\ .201 \\ .167 \\ .140 \\ . .069 \\ .069 \\ .039 \\ .045 \\ .049 \end{array}$
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.5 24.5 31.2 34.5 41.0 44.5 53.5 59.5 71.0 79.5 91.0	0.259 $=.545$ $=.349$ $=.350$ $=-3000$ $=.303$ $=.310$ $=.312$ $=.329$ $=.345$ $=.319$ $=.366$ $=.198$ $=.1066$ -.007	0.038 $=.927$ $=.478$ $=.491$ $=.423$ $=.409$ $=.395$ $=.398$ $=.389$ $=.417$ $=.418$ $=.379$ $=.310$ $=.223$ $=.223$ $=.013$	$\begin{array}{r} -0.201 \\ -1.247 \\ -.820 \\ =.652 \\ -.567 \\ =.543 \\ =.509 \\ =.513 \\ -.491 \\ -.502 \\ -.513 \\ -.509 \\ -.453 \\ -.369 \\ -.265 \\ -.257 \\ -.033 \end{array}$	$\begin{array}{r} 0.397 \\ -1.345 \\ -1.230 \\ -1.150 \\ -.700 \\ -.757 \\ -.617 \\ -.577 \\ -.597 \\ -.608 \\ -.510 \\ -.518 \\ -.403 \\ -.275 \\ -.163 \\ -.037 \end{array}$	$\begin{array}{r} -.383 \\ 0.173 \\ .140 \\ .080 \\ .043 \\ . .010 \\ =.044 \\ -.770 \\ -.088 \\ -.097 \\ -.100 \\ -.070 \\ -.070 \\ .020 \end{array}$	-.762 0.4669 .226 .163 .125 .062 .021 . .002 -.028 -.039 . .052 -.053 .001 .034	.--7 0.497 .342 .302 .237 .101 .146 .121 .077 .051 .025 -012 -.012 -.014 -.007 .016 .041	$\begin{array}{r} 0.509 \\ .317 \\ .374 \\ .365 \\ .210 \\ .182 \\ .150 \\ .109 \\ .059 \\ .0676 \\ .036 \\ .022 \\ .378 \\ .079 \end{array}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.5 41.5 51.0 59.5 71.0 79.5 91.0	0.099 $=.816$ $=.479$ $=.418$ $=.4022$ $=.388$ $=.360$ $=.354$ $=.361$ $=.350$ -.309 $=.356$ $=.1577$.025		-0.468 -1.360 -1.320 -1.077 $=.933$ $=.752$ $=.695$ $=.638$ $=.550$ $=.517$ $=.482$ -.429 -.385 -.207 $=.112$ -.010	-0.713 -1.390 -1.288 -1.763 -1.257 -1.254 -1.156 -1.061 -.856 -.750 -.580 -.502 -.399 -.305 -.192 -.120 -.010	$\begin{array}{r} 0.289 \\ .142 \\ .120 \\ .060 \\ . .0009 \\ -.023 \\ -.063 \\ -.080 \\ -.090 \\ -.1102 \\ -.091 \\ =.059 \\ -.012 \\ .039 \end{array}$	-.38 0.35 .245 .115 .118 .075 .049 . .008 $=.028$ $=.041$ -.008 -.050 -.027 .010 .047	-.471 0.320 .299 .223 .187 .146 .151 .044 .044 .022 .044 -.020 -.019 -.019 .019 .043	0.479 .365 .358 .29 .252 -200 -125 .132 - 277 .529 .735
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 56.5 \\ 61.5 \\ 31.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$			-0.309 -1.321 -1.340 -1.318 -1.269 -1.230 -1.091 -1.016 -.740 -.621 -.390 -.345 -.300 -.270 -.139 -.052 .028	-0.747 -2.291 -1.297 -1.270 -1.285 -1.256 $-1.26 I$ -1.223 -1.193 -1.150 -1.024 -.960 -.710 -.479 -.253 -.145 -.040	$\begin{array}{r} 0.320 \\ .169 \\ .150 \\ .079 \\ .050 \\ . .001 \\ -.016 \\ -.050 \\ -.062 \\ -.087 \\ -.083 \\ -.093 \\ -.090 \\ -.041 \\ -.002 \\ .049 \end{array}$	-.100 0.1069 .246 .171 .178 .082 .060 .018 .001 -.020 -.036 -.051 -.000 -.010 .050		$\begin{array}{r} -.450 \\ : 4=9 \\ .752 \\ .211 \\ .251 \\ .215 \\ .152 \\ .112 \\ .080 \\ .061 \\ .075 \\ .015 \\ .020 \\ .056 \\ .055 \end{array}$

TABLE VII.- CONTINUED.
(b) $\alpha_{L 1}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$. Concluded.

table vit.- continued.
(c) $a_{11}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

$\begin{aligned} & \text { Beana } \\ & \text { sempan } \\ & \text { sta, } \end{aligned}$	Pereent	UPPER SUREICL				Lover surace			
		Angle of attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.086 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.0 24.5 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0								
$0.195 \mathrm{~b} / 2$						0.506 .480 .439 .370 .368 .238 .191 .168 .130 .112 .0780 .050 .050 .05 .043	$\begin{array}{r} -.471 \\ 0.778 \\ : 541 \\ : 480 \\ : 436 \\ : 344 \\ : 392 \\ : 259 \\ : 219 \\ : 196 \\ : 152 \\ : 016 \\ : 080 \\ .850 \end{array}$		
$0.382 \mathrm{~b} / 2$						0.504 			
$0.555 \mathrm{~b} / 2$									

TABLE VII. - CONCLUDED.
(c) $a_{1}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Sem1врал sta.	Percent ohord	UPPER SURFACE				LOHER BURTACE			
		Angle or attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.0 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$		$\begin{aligned} & -0.871 \\ & -.76 I \\ & -.759 \\ & =.745 \\ & -.750 \\ & -.730 \\ & -.730 \\ & -.711 \\ & -.708 \\ & =.680 \\ & -.668 \\ & -.665 \\ & -.640 \\ & -.629 \\ & =.599 \\ & -.559 \end{aligned}$			$\begin{array}{r} . .452 \\ 0.452 \\ .418 \\ .341 \\ .308 \\ .239 \\ .206 \\ .151 \\ .1078 \\ .0791 \\ .012 \\ -.040 \\ \hline .070 \\ \hline .110 \\ \hline .181 \end{array}$	$\begin{array}{r} -.407 \\ 0.464 \\ .450 \\ .388 \\ .350 \\ .281 \\ .249 \\ .183 \\ .159 \\ .1060 \\ .013 \\ -.061 \\ -.119 \\ -.173 \\ -.260 \end{array}$		
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.641 \\ -.665 \\ -.660 \\ -.641 \\ -.639 \\ -.615 \\ -.605 \\ -.576 \\ -.57 \\ =.548 \\ -.544 \\ =.521 \\ -.519 \\ -.483 \\ -.470 \\ -.419 \end{array}$	-0.761 $-.651$ $-.622$ -.606 -.600 $-.580$ -.560 -.560 $-.560$ $-: 549$ -. 526 -. 780			$\begin{array}{r} -.435 \\ 0.399 \\ .388 \\ .310 \\ . .195 \\ .170 \\ .099 \\ .060 \\ . .010 \\ -.065 \\ -.121 \\ =.142 \\ =.159 \\ -.210 \end{array}$	$\begin{array}{r} -.796 \\ .422 \\ .412 \\ .343 \\ -.230 \\ .188 \\ .126 \\ .081 \\ .021 \\ -.021 \\ -.071 \\ -.149 \\ -.189 \\ -.216 \\ -.274 \end{array}$		
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & -0.612 \\ & -.528 \\ & -.525 \\ & -.510 \\ & -.507 \\ & =.482 \\ & =.476 \\ & =.455 \\ & =.445 \\ & =.415 \\ & -.391 \\ & =.390 \\ & =.350 \\ & -.355 \\ & =.331 \\ & -.341 \end{aligned}$				$\begin{array}{r} -.407 \\ 0.357 \\ .340 \\ .184 \\ .091 \\ .030 \\ -.020 \\ . .067 \\ =.100 \\ =.129 \\ =.149 \\ -.160 \\ =.164 \\ -.193 \end{array}$	$\begin{array}{r} -.360 \\ 0.373 \\ .359 \\ .282 \\ .219 \\ .122 \\ .058 \\ -.001 \\ -.062 \\ -.104 \\ -.145 \\ -.270 \\ -.204 \\ -.219 \\ -.231 \\ -.260 \end{array}$		

(a) $c_{u}, 0^{0}, 2^{0}, 2^{0}, 3^{0}$.

	(Percent	UPPER SURFACE				LCTEA SURFACE			
		Angle of ettack				Angle of attaok			
		0°	I°	2°	3°	0°	1°	2°	3°
$0.086 \mathrm{~b} / 2$									
$0.195 \mathrm{~b} / 2$									
$0.382 \mathrm{~b} / 2$						-0.072 -.133 -.148 -.159 -. 1.169 -. 203 $-: 235$ -23 $=-234$ $=: 246$ $=239$ $=.240$ -242 $=242$ $=: 104$ $=: 047$ -.29 -029			
$0.555 \mathrm{~b} / 2$									

TABLE VIII.- CONTINUED.
(a) $\alpha_{u}, 0^{\circ}, 1^{\circ}, 2^{0}, 3^{\circ}$ - Concluded.

Sem1- span sta.	Percent ohord	UPPER SUETACE				LOWER SURFAOE			
		Angle of attack				Angle of attack			
		0°	1°	2^{0}	3°	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.427 \\ & =.062 \\ & =.161 \\ & =.271 \\ & =.165 \\ & =.189 \\ & =.202 \\ & =.204 \\ & =.212 \\ & =.215 \\ & =.229 \\ & =.222 \\ & =.201 \\ & =.171 \\ & =.071 \\ & =.015 \\ & .060 \end{aligned}$		0.301 $-.530$ -. 408 $-.409$ $-.330$ -. 337 $-.318$ -. 309 $-.290$ -. 288 $-.291$ $-.278$ $-.241$ $-.190$ -. 098 -. 026 .057	$\begin{aligned} & 0.150 \\ & =.828 \\ & =.530 \\ & =.531 \\ & =.409 \\ & =.411 \\ & =.378 \\ & =.361 \\ & =.345 \\ & =.321 \\ & =.324 \\ & =.308 \\ & =.260 \\ & =.200 \\ & =.098 \\ & =.082 \\ & .060 \end{aligned}$	$\begin{array}{r} -0.072 \\ -.151 \\ =.162 \\ -.190 \\ -.193 \\ -.200 \\ -.809 \\ =.218 \\ =.218 \\ -.211 \\ -.211 \\ -.208 \\ =.173 \\ =.060 \\ =.010 \\ .067 \end{array}$		$\begin{array}{r} 0.214 \\ .049 \\ .028 \\ -.036 \\ -.051 \\ -.085 \\ -.100 \\ =.120 \\ =.123 \\ =.132 \\ =.141 \\ -.149 \\ =.124 \\ =.059 \\ -.005 \\ .063 \end{array}$	$\begin{array}{r} 0.301 \\ .121 \\ .097 \\ .027 \\ .001 \\ -.040 \\ =.059 \\ =.081 \\ =.091 \\ -.110 \\ -.120 \\ -.129 \\ =.115 \\ =.057 \\ -.010 \\ .057 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.406 \\ & =.065 \\ & =.163 \\ & =.166 \\ & =.170 \\ & =.186 \\ & =.199 \\ & =.207 \\ & =.209 \\ & =.215 \\ & =.223 \\ & -.192 \\ & =.149 \\ & =.050 \\ & .028 \\ & .078 \end{aligned}$		$\begin{aligned} & 0.386 \\ & =.549 \\ & =.420 \\ & =.406 \\ & =.345 \\ & =.338 \\ & =.310 \\ & =.307 \\ & =.276 \\ & =.265 \\ & =.240 \\ & =.211 \\ & =.140 \\ & =.064 \\ & .003 \end{aligned}$	0.27° $-.844$ $=.571$ $=.525$ $-.429$ $-.412$ -.373 $=.352$ -.317 -.295 $-.280$ -256 $=.219$ $-.143$ -.064 .003 .084	$\begin{array}{r} -0.077 \\ -.165 \\ =.167 \\ =.181 \\ =.193 \\ =.200 \\ =.207 \\ =.217 \\ =.219 \\ =.211 \\ =.203 \\ =.183 \\ =.151 \\ -.038 \\ .015 \\ .056 \end{array}$.0 .218 .037 .029 -.032 -.090 $=.102$ $=.131$ $=.142$ $=.150$ $=.158$ $=.119$ -.048 .010 .076	$\begin{array}{r} -0.307 \\ .217 \\ .102 \\ .030 \\ =.043 \\ =.057 \\ =.097 \\ =.112 \\ =.131 \\ =.142 \\ =.132 \\ =.112 \\ =.047 \\ .005 \\ .067 \end{array}$
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.425 \\ & =.018 \\ & =.183 \\ & =.197 \\ & =.199 \\ & =.220 \\ & =.219 \\ & =.207 \\ & =.193 \\ & =.180 \\ & -.191 \\ & =.180 \\ & =.155 \\ & =.080 \\ & -.022 \\ & .030 \\ & .083 \end{aligned}$		$\begin{aligned} & 0.379 \\ & -.525 \\ & =.438 \\ & =.433 \\ & =.360 \\ & =.344 \\ & =.282 \\ & =.239 \\ & =.2127 \\ & -.220 \\ & =.198 \\ & =.162 \\ & -.099 \\ & =.026 \\ & .030 \\ & .089 \end{aligned}$	$\begin{array}{r} -0.056 \\ -.891 \\ -.627 \\ =.584 \\ . .433 \\ . .383 \\ -.318 \\ =.278 \\ . .252 \\ =.232 \\ . .233 \\ . .209 \\ -.170 \\ =.101 \\ =.030 \\ .027 \\ . .079 \end{array}$	$\begin{array}{r} -0.100 \\ -.172 \\ =.178 \\ =.200 \\ =.221 \\ =.225 \\ =.214 \\ =.201 \\ =.187 \\ =.180 \\ =.170 \\ =.160 \\ =.097 \\ =.012 \\ .034 \\ .095 \end{array}$		$\begin{array}{r} -.199 \\ .032 \\ .022 \\ -.051 \\ =.093 \\ =.140 \\ =.153 \\ =.158 \\ =.150 \\ -.153 \\ =.148 \\ =.138 \\ =.092 \\ =.003 \\ .025 \\ .081 \end{array}$	$\begin{array}{r} -.077 \\ 0.107 \\ .096 \\ .006 \\ -.036 \\ =.163 \\ =.130 \\ =.137 \\ =.139 \\ -.147 \\ =.144 \\ =.137 \\ =.090 \\ =.029 \\ .018 \\ .070 \end{array}$

table vili.- CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

$\begin{aligned} & \text { semi- } \\ & \text { span } \\ & p a n \end{aligned}$ete.	Percent chord	UPPER surimag				LOYER SURFAOE			
		Angle of attack				Angie of attack			
		6	8°	10°	12°	6	8°	10°	12°
$0.086 \mathrm{~b} / 2$	0	0.360	0.213	0.067	-0.081				
	1.5	-. 598	-. 912	-1.269	-1.342	0.414	0.494	0.559	
	6:5	-. 3 ¢22	-: -140	-: 221	-:.734	-264	. 34	- 375	:449
	11.0	-.293	-. 387	-. 462	-. 550	. 173	. 247	- 313	. 372
	$\frac{14}{21.5}$	- 306	-. 397	-. 4.459	-. -.550	. 1140	. 2172	. 279	: 377
	24.5	-. 316	-. 397	-. 46	-:.544	:088	. 145	. 205	:257
	31.0	-. 318	-. 3 ,	- 0.471	--540	.055	. 110	. 167	. 215
	34.5	-. 363	-: 478	-. 5 564	-:603	.006	.886	. 1140	. 187
	41.5	-: 410	-. 498	- 795	-.668	--142	-	-	
	51.8	-. 317	-. 512	-. 6000	-. -667	-. -.042	. 087	. 05	. 0976
	73.	-. 279	-. 3 36	-- 380	-:400	-. 045	0	:037	-059
	79.5 91.6	-. 1778	- 2068	-. 227 -.100	- -.253	-. 018	.018	:043	-0.07
$0.195 \mathrm{~b} / 2$									
	. 5	-. 970	-2.139	- 0.3190	-0.494	0.465	0.506	$0.52 \overline{3}$	0.522
	5.5	-. 455	-. 803	-1.152	-		- 350	. 4180	.483
	${ }_{13} 6$	-: 4 415	-. 7502	-1.068	-1.350	. 2172	- 312	. 380	. 3472
	$\frac{14.5}{14.5}$	-. 4105	-: 5 52	-. 721	-1.160	-130	. 198	- 265	- 327
		-=. 493	--.500	-: 817	-. -695	.086	-153	. 112	. 240
	31.0	-. 398	-. 500	-. 580	-:620	-034	:085	. 140	. 191
	34.5	-.4.450	-. 5.55	-. 6.649	-. 575	-.002	:026	. 1115	. 129
	44.5	-. 458	-. 570	-. 670	-.750	-.039	:018	:063	. 110
	51.6	-. 427	-. 510	-. 548	-. 714	-. 0 -065	-. 017	-035	-075
	73.5	-: 23	-. 265	-. 265	-. 295	-. 0.03	-:002	-023	:045
	79.5	-:. 2213	-:. 152	-. 1639	-. -219	.039	:020	.037	:043
$0.382 \mathrm{~b} / 2$									
	1.5	-1.273	-0.390	- 0.613	-1.419	0.38	- 0.44	0.484	
	5.5	-. 655	-1.059	- 1.240	-1.334	. 248	- 322	. 255	. 438
	6.5	-. 645	-1.093	- -1.332	- 1.300 -1.34	. 2167	:297	- 351	. 443
	$\frac{14.5}{24}$	-:562	-:767	-1. 127	-1. 385	.120	- 188	:251	- 310
	21.6 24.5	-. 531	-. 7861	-1.090	-1.370	. 977	- 1140	. 170	. 251
	<1.0	-. 485	-. 544	-. 293	-1.220	:008	:070	. 126	. 270
	34.5	- 45	-. 610	-. 85	-1.140	-. 017	. 050	. 191	. 145
	44.5	-:439	-:499	-. 75	- 990	- $\because 045$: 010	:774	:1095
	51.0	-. 372	-. 425	-. 440	-.709	-. 062	-. 015	. 025	. 056
	71.6	-. 2878	-. 320	-. 33	-. 524	-:031	$\because: 002$:017	.038
	79	-. 0821	-. 0.105	-. 1235	-. 5 K18	:015	:023	:030	:028
$0.555 \mathrm{~b} / 2$	0	-0.179							
	1.5	-1.411	-1.353	- 1.373	-1.156	0.455	0.450	0.474	
	5.5	1:069	-1.306	-1. ${ }^{1}$. 38	-1.145	.245	-326	- 397	. 433
	11.0	-. 740	-1.288	-1.080	-1.110	. 164	-242	:299	. 347
		-. 634	-1.235	- -1.380	-1.072	-133	$\cdot \underline{204}$. 2600	- 307
	24.5	-.535	-1.001	-1.209	-1:016	.060	:131	.170	. 110
	37.0	-. 4.456	-. 75	-1.149	-. 9830	-019	. 075	${ }^{1} 122$. 158
	41.0	-:4P9	- 4 4 4	-1.968	-	-. 020	:057	. 069	-1099
	44.5	--398	-- 382	-. 8127	=-860	-. 030	-015	- 051	-075
	59.5	-. 239	-:230	-. 5.57	-. 762	-.056	-:024	-003	0
	71.0	-. 140	-. 147	-. 242	- 690	-.ceso	-. 002	. 002	. 013
	91.8	-.033	-. 023	-. $=.065$	-.50\%	:049	:040	.012	-:060

TABLE VIII.- CONCLUDED.
(b)* $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Semispan cta.	Percent chord	UPPER SURFACE				LOFER SURFACE			
		Angle of attack				Angle or attack			
		6°	8°	10°	12^{0}	6°	$8{ }^{\circ}$	10°	12^{0}
$0.707 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.0 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$	$\begin{array}{r} -0.334 \\ -1.249 \\ -1.205 \\ -1.200 \\ -1.003 \\ -.901 \\ -.700 \\ -.611 \\ -.481 \\ -.439 \\ -.377 \\ -.346 \\ -.289 \\ =.211 \\ -.110 \\ -.038 \\ .046 \end{array}$	$\begin{aligned} & -0.601 \\ & -1.150 \\ & -1.163 \\ & -1.120 \\ & -1.128 \\ & -1.077 \\ & -1.064 \\ & -1.021 \\ & -.963 \\ & -.918 \\ & -.807 \\ & -.771 \\ & -.621 \\ & -.490 \\ & -.249 \\ & -.167 \\ & -.011 \end{aligned}$	$\begin{array}{r} -0.818 \\ -.983 \\ -.990 \\ -.952 \\ -.947 \\ -.891 \\ -.880 \\ -.832 \\ =.820 \\ -.781 \\ -.766 \\ =.731 \\ =.721 \\ =.655 \\ =.597 \\ =.532 \\ -.425 \end{array}$	$\begin{aligned} & -0.907 \\ & =.825 \\ & -.820 \\ & -.798 \\ & -.797 \\ & -.773 \\ & -.765 \\ & -.749 \\ & -.739 \\ & -.717 \\ & -.704 \\ & -.681 \\ & -.670 \\ & -.630 \\ & -.607 \\ & -.567 \\ & -.524 \end{aligned}$	$\begin{array}{r} 0.431 \\ .285 \\ .260 \\ .177 \\ .144 \\ .090 \\ .070 \\ .023 \\ .010 \\ .021 \\ . .040 \\ =.060 \\ . .070 \\ =.035 \\ -.001 \\ .050 \end{array}$		$0.4 \overrightarrow{56}$.398 . 297 .260 .198 .160 .119 .094 .094 .052 .028 -.007 $-.045$ $-.048$ -.058 -.083 $-.083$	0.448 .424 .403 .330 .223 .192 .112 .067 .038 $=.007$ $=.063$ $-.192$ -.136 -.208 $-.208$
$0.831 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.159 \\ -1.110 \\ -1.117 \\ -1.057 \\ -1.013 \\ -.960 \\ -.815 \\ -.743 \\ -.570 \\ -.506 \\ -.357 \\ -.324 \\ =.240 \\ =.165 \\ -.079 \\ -.021 \\ . .049 \end{array}$	$\begin{array}{r} -0.345 \\ -.810 \\ -.810 \\ -.785 \\ -.776 \\ =.743 \\ -.722 \\ -.689 \\ -.670 \\ -.630 \\ =.615 \\ =.579 \\ =.559 \\ =.492 \\ =.430 \\ -.368 \\ -.277 \end{array}$	$\begin{array}{r} -0.485 \\ -.675 \\ -.680 \\ =.660 \\ -.659 \\ -.635 \\ -.622 \\ -.594 \\ -.581 \\ -.557 \\ -.550 \\ =.527 \\ =.520 \\ =.487 \\ -.475 \\ -.418 \end{array}$	$\begin{array}{r} -0.614 \\ =.653 \\ -.650 \\ -.634 \\ -.634 \\ =.609 \\ -.580 \\ -.569 \\ -.548 \\ -.545 \\ -.525 \\ -.521 \\ -.495 \\ -.488 \\ -.467 \\ -.446 \end{array}$	$\begin{array}{r} 0.424 \\ .267 \\ .027 \\ .169 \\ .072 \\ .051 \\ -.002 \\ =.029 \\ -.062 \\ -.081 \\ -.092 \\ =.095 \\ =.042 \\ .049 \end{array}$	$0.4 \overline{4} 6$.325 .315 .230 . .2 .1093 .040 .008 $-.027$ $=.060$ -.074 -. 090 $-.110$ $=.040$ -.048 $-.048$	$\begin{array}{r} 0.447 \\ .370 \\ .360 \\ .378 \\ .170 \\ .140 \\ .080 \\ .043 \\ =.005 \\ -.037 \\ -.064 \\ =.108 \\ =.110 \\ =.125 \\ =.172 \end{array}$	$\begin{array}{r} . .430 \\ .390 \\ .380 \\ .301 \\ .189 \\ .154 \\ .090 \\ .050 \\ -.004 \\ -.044 \\ =.083 \\ =.146 \\ =.170 \\ -.187 \\ -.235 \end{array}$
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 44.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.601 \\ -.854 \\ -.843 \\ -.801 \\ =.778 \\ -.720 \\ -.695 \\ =.628 \\ -.571 \\ =.504 \\ -.425 \\ -.380 \\ -.308 \\ -.250 \\ -.158 \\ . .150 \\ -.077 \end{array}$	$\begin{array}{r} -0.693 \\ -.639 \\ -.645 \\ -.625 \\ =.633 \\ =.580 \\ =.564 \\ =.530 \\ =.505 \\ =.472 \\ =.453 \\ =.418 \\ =.406 \\ -.355 \\ =.338 \\ -.305 \\ -.303 \end{array}$	$\begin{array}{r} -0.670 \\ =.549 \\ -.550 \\ =.530 \\ =.527 \\ =.503 \\ =.495 \\ =.474 \\ =.460 \\ =.440 \\ -.430 \\ =.400 \\ =.355 \\ =.348 \\ =.317 \\ =.330 \end{array}$	$\begin{array}{r} -0.616 \\ -.528 \\ -.523 \\ -.511 \\ -.506 \\ -.487 \\ -.481 \\ -.462 \\ =.459 \\ -.435 \\ -.410 \\ -.410 \\ -.379 \\ -.382 \\ -.362 \\ -.365 \end{array}$	0.402 .255 .240 .136 $-.013$ $-.063$ $-.090$ -.107 -.120 $-.125$ $-.122$ $-.085$ -.040 -.007 .030		$\begin{aligned} & -.420 \\ & .339 \\ & .322 \\ & .228 \\ & .162 \\ & .073 \\ & .013 \\ & =.033 \\ & =.077 \\ & =.104 \\ & -.131 \\ & =.143 \\ & =.152 \\ & =.141 \\ & -.144 \\ & -.168 \end{aligned}$.40 .442 .332 .243 .175 .065 .017 $=.039$ $=.086$ $=.125$ $=.154$ $=.171$ -.190 $=.198$ -.221

(d) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$.

Serilapan eta.	Percent chord	UPPEA SURTAOE				LCIER SURFAGE			
		magle of nttack				Angle of attack			
		0^{0}	$1{ }^{0}$	2^{0}	3°	0^{0}	1°	2°	3^{0}
$0.056 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 105 \\ 5.5 \\ 5.5 \\ 11: 0 \\ 14.0 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.0 \\ 51.5 \\ 79.0 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$		0.550 .015 -.032 -.080 -.075 -.105 -.118 $=.135$ -.145 -.182 -.214 -.240 -.254 $=.240$ $=.197$ -.117 -.036			-.069 0.007 -.020 -.039 $=.061$ -.078 -.099 -.122 -.150 -.173 -.208 -.220 -.185 -.109 -.029	-.740 0.055 .022 -.005 -.027 -.046 -.070 $=.094$ -.120 -.145 -.180 -.198 $=.166$ -.093 -.023	-.006 0.206 .1070 .035 .011 -.011 $=.085$ $=.060$ $=.089$ -.112 -.154 $=.170$ -.139 -.078 -.016	.--72 0.261 .1409 .070 .045 .0199 -.004 $=.037$ -.081 -.81 -.126 -.146 -.1067 -.0611
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0		$\begin{aligned} & 0.464 \\ & =.072 \\ & =.106 \\ & =.129 \\ & =.152 \\ & =.173 \\ & =.192 \\ & =.203 \\ & =.2282 \\ & =.2626 \\ & =.261 \\ & =.235 \\ & =.179 \\ & =.081 \end{aligned}$	0.433 -.200 $=.175$ $=.193$ $=.187$ -.203 $=.217$ $=.234$ $=.246$ -.270 $=.301$ $=.314$ -.296 $=.266$ -.179 -.090 .001	0.373 -.347 $=.250$ $=.264$ -.246 $=.253$ -.262 -.279 -.285 $=.310$ $=.340$ $=.351$ -.350 $=.289$ $=.199$ $=$.	$\begin{array}{r} 0.074 \\ -.048 \\ -.070 \\ =.090 \\ -.1112 \\ =.132 \\ -.151 \\ -.206 \\ -.200 \\ -.224 \\ -.242 \\ -.1170 \\ -.068 \\ -.012 \end{array}$	-.174 0.015 -.013 -.045 $=.072$ -.094 $=.116$ -.148 $=.270$ -.190 $=.217$ -.217 $=.189$ -.063 -.013	-.079 0.259 .045 .042 -.029 -.059 -.085 -.110 -.132 -.151 -.162 -.185 -.159 -.110 -.052 .018	
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.5 59.5 71.6 79.5 91.0	0.437 $=.0029$ $=.110$ $=.137$ $=.155$ $=.190$ $=.203$ -.214 -.220 -.247 $=.250$ $=.229$ $=.097$ $=.029$ $=.041$			$\begin{aligned} & 0.266 \\ & =.5661 \\ & =.395 \\ & =.398 \\ & =-.3698 \\ & =.546 \\ & =.3449 \\ & =.355 \\ & =.350 \\ & =-.367 \\ & =.320 \\ & =.363 \\ & =.160 \\ & =.075 \\ & . .923 \end{aligned}$	$\begin{array}{r} -0.056 \\ -.120 \\ -.132 \\ -.155 \\ =.172 \\ -.191 \\ -.202 \\ -.230 \\ -.241 \\ -.236 \\ . .279 \\ -.240 \\ . .196 \\ -.092 \\ -.074 \\ .043 \end{array}$			0.224 0.087 .006 .014 $=.018$ $=.054$ $=.067$ $=.132$ $=.120$ -.127 $=.238$ $=.153$ $=.119$ $=.071$ -.015 .044
$0.555 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.0 24.5 31.5 34.5 41.0 44.5 51.0 59.5 79.0 79.5 91.0				$\begin{aligned} & 0.260 \\ & =.573 \\ & =.494 \\ & =.498 \\ & -.405 \\ & =.405 \\ & -.389 \\ & =.378 \\ & -.358 \\ & =.359 \\ & =.355 \\ & =.359 \\ & =.320 \\ & =.128 \\ & -.041 \\ & .049 \end{aligned}$	$\begin{array}{r} -0.077 \\ -.133 \\ -.150 \\ -.175 \\ -.165 \\ -.200 \\ -.210 \\ -.222 \\ -.230 \\ -.220 \\ -.215 \\ -.203 \\ -.179 \\ -.070 \\ -.012 \\ .066 \end{array}$	0.050 -.052 $=.070$ $=.114$ $=.129$ $=.153$ $=.168$ -.192 -.193 $=.191$ $=.154$ $=.080$ -.020 .060		$\begin{array}{r} 0.248 \\ .101 \\ .079 \\ .017 \\ -.010 \\ =.067 \\ =.097 \\ =.119 \\ -.120 \\ =.124 \\ =.130 \\ -.116 \\ -.058 \\ -.012 \\ .053 \end{array}$

TABLE IX. - CONTINUED.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{0}, 3^{\circ}$ - Concluded.

Semi--pan eta.	Percent chord	UPPER SURTACE				LOWSR SUREAOE			
		Angle of attack				Angle of attack			
		0°	1°	$2^{\mathbf{o}}$	3^{6}	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & 0.432 \\ & =.055 \\ & =.156 \\ & -.160 \\ & =.160 \\ & =.180 \\ & =.199 \\ & =.200 \\ & =.209 \\ & =.225 \\ & =.220 \\ & -.195 \\ & =.1760 \\ & =.060 \\ & .077 \end{aligned}$	0.406 -.271 -.286 -.290 -.251 $=.270$ -.276 $=.265$ -.267 -.270 $=.268$ $=.239$ $=.200$ $=.080$ -.018 .067	$\begin{aligned} & 0.310 \\ & =.340 \\ & =.419 \\ & =.421 \\ & =.345 \\ & =.349 \\ & =.330 \\ & =.321 \\ & =.310 \\ & =.303 \\ & =.300 \\ & =.286 \\ & =.250 \\ & =.193 \\ & =.092 \\ & =.018 \\ & .067 \end{aligned}$	0.161 -.853 -.574 $-.554$ $=.434$ $=.423$ $-.394$ $=.363$ -.368 -.353 $=.340$ -. 320 $=.269$ -.199 -. 092 -.020 .068	$\begin{array}{r} -0.065 \\ -.144 \\ -.156 \\ =.185 \\ =.196 \\ -.195 \\ -.203 \\ . .209 \\ -.209 \\ . .205 \\ -.205 \\ -.200 \\ =.178 \\ -.053 \\ .007 \\ .080 \end{array}$	0.090 $-.050$. .065 $=.115$ $=.125$ $-.150$ $=.161$ $-.179$ -.181 -.189 $-.187$ -159 -.069 $-.002$.071	$\begin{array}{r} . .013 \\ 0.045 \\ .027 \\ =.038 \\ =.053 \\ =.090 \\ =.103 \\ =.125 \\ =.186 \\ =.137 \\ =.149 \\ =.152 \\ =.130 \\ =.060 \\ =.001 \\ .070 \end{array}$	0.300 .120 .021 $-.041$ $-.060$ -. 085 $-.091$ $-.112$ -124 $-.122$ -.058 -.005 .060
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.8 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.413 \\ & =.060 \\ & =.162 \\ & =.164 \\ & =.170 \\ & =.182 \\ & =.201 \\ & =.210 \\ & =.212 \\ & =.217 \\ & =.222 \\ & =.209 \\ & =.189 \\ & =.140 \\ & -.038 \\ & .054 \\ & .090 \end{aligned}$	$\begin{aligned} & 0.447 \\ & -.279 \\ & =.287 \\ & =.280 \\ & -.255 \\ & =.261 \\ & -.262 \\ & =.260 \\ & =.251 \\ & =.250 \\ & =.240 \\ & =.229 \\ & =.210 \\ & =.132 \\ & -.048 \\ & .016 \\ & .090 \end{aligned}$	$\begin{aligned} & 0.390 \\ & =.361 \\ & =.437 \\ & =.422 \\ & =.360 \\ & =.350 \\ & =.329 \\ & =.390 \\ & =.284 \\ & =.265 \\ & =.245 \\ & =.214 \\ & =.137 \\ & =.060 \\ & .010 \\ & .090 \end{aligned}$	$\begin{aligned} & 0.279 \\ & -.872 \\ & =.616 \\ & =.570 \\ & =.441 \\ & =.433 \\ & =.385 \\ & =.378 \\ & =.337 \\ & =.380 \\ & =.255 \\ & =.280 \\ & =.140 \\ & =.058 \\ & .012 \\ & .087 \end{aligned}$	$\begin{array}{r} -0.070 \\ -.162 \\ =.262 \\ -.181 \\ -.200 \\ -.205 \\ =.218 \\ =.220 \\ -.211 \\ -.200 \\ . .180 \\ . .143 \\ -.025 \\ .030 \\ .098 \end{array}$	0.094 .051 -.059 -.059 -.101 -2.148 $-.151$ $-.175$ -.185 -.187 $-.285$ -.164 -.130 $-.032$.030 .092	$\begin{array}{r} 0.221 \\ .037 \\ .030 \\ -.030 \\ -.093 \\ -.103 \\ =.139 \\ -.150 \\ -.160 \\ =.165 \\ -.150 \\ -.115 \\ -.040 \\ .020 \\ .085 \end{array}$	$\begin{array}{r} 0.307 \\ .110 \\ .101 \\ .030 \\ =.045 \\ =.060 \\ =.103 \\ =.123 \\ =.140 \\ =.153 \\ =.141 \\ =.055 \\ .010 \\ .075 \end{array}$
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.434 \\ & =.006 \\ & =.179 \\ & =.192 \\ & =.197 \\ & =.223 \\ & =.223 \\ & =.204 \\ & =.191 \\ & =.187 \\ & =.173 \\ & =.1461 \\ & =.0699 \\ & .043 \\ & .099 \end{aligned}$	$\begin{aligned} & 0.352 \\ & =.236 \\ & =.303 \\ & =.312 \\ & =.279 \\ & =.295 \\ & =.260 \\ & =.230 \\ & =.214 \\ & =.195 \\ & =.201 \\ & =.186 \\ & =.349 \\ & =.077 \\ & =.013 \\ & .046 \\ & .102 \end{aligned}$	0.183 $-.545$ $-.460$ $-.454$ $-.383$ $-.380$ $-.303$ $-.236$ $-.230$ $-.217$ $-.224$ $-.200$ -. 160 $-.090$ -. 018 .042 .098	-0.037 -.927 $=.658$ -.635 -.460 $=.453$ $=.297$ -.278 $=.256$ $=.236$ $=.237$ $=.172$ $=.100$ -.025 .031 .085	-.097 0.171 .179 -.200 $=.225$ $=.230$ $=.194$ $=.182$ $=.176$ $=.265$ $=.151$ $=.072$.003 .049 .111	$\begin{aligned} & =.077 \\ & 0.078 \\ & =.068 \\ & =.120 \\ & =.157 \\ & =.189 \\ & =.189 \\ & =.178 \\ & =.165 \\ & =.152 \\ & =.140 \\ & =.095 \\ & .001 \\ & .042 \\ & .101 \end{aligned}$	$\begin{array}{r} -.207 \\ 0.075 \\ .054 \\ . .010 \\ =.095 \\ =.150 \\ =.167 \\ =.165 \\ =.160 \\ =.160 \\ =.155 \\ -.142 \\ =.097 \\ -.005 \\ .030 \\ .090 \end{array}$	$\begin{array}{r} 0.290 \\ .107 \\ .097 \\ .0049 \\ =.048 \\ =.113 \\ =.146 \\ =.146 \\ =.149 \\ =.148 \\ =.140 \\ =.090 \\ -.025 \\ .020 \\ .076 \end{array}$

thele ix.- contikued.
(b) $a_{1}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Serispan ata.	Percent chord	UPPER SURFAGE				LOWER SURTACE			
		Angle or attaok				Angle or attack			
		4°	6°	8°	10°	4°	6^{6}	8°	10°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.452 $=.309$ $=.210$ $=.297$ $=.280$ $=.221$ $=.237$ $=.239$ $=.288$ $=.318$ $=.360$ $=.335$ $=.260$ $=.163$ $=.062$	0.385 -.560 $=.291$ $=.278$ $=-296$ -. 269 -.310 $-.309$ $=.369$ $=.423$ $=.450$ $-.425$ -.195 -.078		$\begin{array}{r} 0.120 \\ -1.220 \\ =.493 \\ =.503 \\ -.460 \\ =.472 \\ =.453 \\ =.453 \\ =.510 \\ =.550 \\ =.584 \\ =.601 \\ -.617 \\ =.602 \\ =.295 \\ -.123 \end{array}$	$\begin{array}{r} -. \\ 0.318 \\ .180 \\ .150 \\ .109 \\ .080 \\ .051 \\ .028 \\ -.002 \\ -.030 \\ -.054 \\ -.101 \\ -.120 \\ -.100 \\ =.050 \\ -.007 \end{array}$	$0.42 \overline{16}$.266 .230 .250 .150 .089 .059 .059 .03 $-.076$ $-.069$ $=.052$ $=.019$.009		$\begin{array}{r} 0.560 \\ .577 \\ .374 \\ .280 \\ .230 \\ .201 \\ .166 \\ .136 \\ .051 \\ .049 \\ .035 \\ .006 \\ .031 \\ .050 \end{array}$
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 5.5 11.0 14.5 21.0 21.5 31.0 34.5 41.0 41.5 51.0 59.5 71.0 79.5 91.0	0.295 -.510 - $=328$ -. 339 -.293 -.255 $=.305$ -. 321 =. 319 - 353 $=.398$ $=-370$ $=-306$ $=-523$ $=.225$ $=-1222$ -.012	0.106 $=.872$ -.455 $=.478$ $=.4187$ $=.410$ $=.393$ $=.418$ $=.470$ $=.470$ $=.484$ $=.390$ $=.854$ $=.139$ -.056	-0.083 -1.167 $=.746$ $=.860$ $=.720$ $=.497$ $=.590$ $=.512$ $=.527$ $=.570$ $=.800$ $=.606$ $=.573$ -.291 $=.160$ -.030	$\begin{aligned} & -0.245 \\ & -1.296 \\ & -1.078 \\ & -.975 \\ & -.780 \\ & -.680 \\ & =.550 \\ & -.588 \\ & =.773 \\ & =.607 \\ & -.639 \\ & =.675 \\ & =.673 \\ & =.760 \\ & -.362 \\ & =.166 \\ & -.050 \end{aligned}$	$\begin{array}{r} 0.357 \\ .175 \\ .136 \\ .084 \\ .049 \\ .012 \\ -.006 \\ =.043 \\ -.069 \\ -.093 \\ =.105 \\ =.129 \\ -.015 \\ -.087 \\ -.017 \end{array}$	$\begin{array}{r} 0.465 \\ .270 \\ .225 \\ .165 \\ .1285 \\ .0660 \\ .017 \\ =.012 \\ =.039 \\ =.050 \\ =.078 \\ =.069 \\ =.047 \\ -.012 \end{array}$	-.57 0.551 .307 .240 .197 .150 .125 .080 .050 .000 .020 $=.022$ -.010 .010 .040	$\begin{array}{r} 0.535 \\ .380 \\ .310 \\ .365 \\ .211 \\ .1186 \\ .110 \\ .050 \\ .060 \\ .028 \\ .0000 \\ .014 \\ .0088 \\ .040 \end{array}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.6 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0		$\begin{aligned} & -0.100 \\ & -1.204 \\ & -.825 \\ & -.560 \\ & =.600 \\ & =.572 \\ & =.532 \\ & =.545 \\ & =.555 \\ & =.550 \\ & =.571 \\ & =.522 \\ & =.410 \\ & =.300 \\ & =.175 \\ & =.020 \end{aligned}$		-0.524 -1.322 -1.180 -1.300 -1.093 -1.050 -1.020 -.950 -.915 -.861 -.845 -.820 -.770 $=.355$ -.237 -.270 -.050	$\begin{array}{r} 0.287 \\ .142 \\ .117 \\ .060 \\ .029 \\ -.010 \\ -.030 \\ -.070 \\ =.087 \\ -.099 \\ =.115 \\ -.128 \\ -.100 \\ -.067 \\ -.012 \end{array}$	$\begin{array}{r} 0.382 \\ .540 \\ -210 \\ -.148 \\ .110 \\ .069 \\ -.043 \\ =.020 \\ =.040 \\ =.055 \\ -.073 \\ =.062 \\ -.033 \\ .006 \\ .042 \end{array}$	-.17 0.443 .315 .290 .220 .182 .132 .165 .060 .040 .015 -.002 $=.030$ -.030 -.011 .012 .039	$\begin{array}{r} 0.485 \\ .378 \\ .355 \\ .248 \\ .192 \\ .185 \\ .117 \\ .096 \\ .045 \\ .014 \\ .003 \\ .007 \\ .020 \\ .033 \end{array}$
$0.555 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 24.5 \\ 41.0 \\ 44.5 \\ 51.5 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$		$\begin{aligned} & -0.122 \\ & -1.452 \\ & -1.263 \\ & -1.258 \\ & -.713 \\ & -.637 \\ & -.647 \\ & -.623 \\ & -.556 \\ & =.574 \\ & -.437 \\ & -.347 \\ & -.340 \\ & =.232 \\ & -.133 \\ & -.050 \\ & .034 \end{aligned}$		-0.554 -1.395 -1.400 -1.380 -1.380 -1.320 -1.277 -1.219 -1.158 -1.080 -.967 -.908 -.787 -.624 -.350 -.239 -.074	$\begin{array}{r} -.310 \\ 0.160 \\ .139 \\ .0070 \\ . .099 \\ . .006 \\ =.061 \\ . .072 \\ .089 \\ . .094 \\ =.094 \\ . .099 \\ =.0000 \\ -.0079 \end{array}$	$\begin{array}{r} -.396 \\ 0.252 \\ .230 \\ -158 \\ .1270 \\ .040 \\ .005 \\ -.010 \\ -.010 \\ -.043 \\ -.060 \\ -.068 \\ -.030 \\ .043 \end{array}$	0.449 .329 .307 .232 .157 .197 .140 .111 .067 .047 .019 .005 -.018 $=.034$ -.012 .008 .030	$\begin{array}{r} -.879 \\ 0.478 \\ .366 \\ .396 \\ .256 \\ .198 \\ .168 \\ .119 \\ .096 \\ .067 \\ .049 \\ .019 \\ -.004 \\ .004 \\ .004 \end{array}$

TABLE IX. - CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Sem1span sta.	Percent chord	UPPER SURFACE				LOWER SURFACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.707 \mathrm{~b} / 2$	0	0.007	-0. 270	-0. 524	-0.740				
	1.5	-1.175	-1.517	-1.631	-1.100	0.360	0.422	0.449	0.458
	5.5	-. 880	-1.413	-1.570	-1.104	. 181	. 270	. 340	- 390
	6.5 11.0	-. 850	-1.417	-1.570 -1.500	-1.069	. 157	. 247	. 316	-369
	14.5	-. 504	-1.133	-1.323	-. .995	. 051	.133	. 200	. 254
	21.0	-. 463	-. 582	-1.151	-. 968	0	. 081	. 142	. 191
	84.5	- 45	-. 490	-1.115	-. 918	-. 017	. 056	. 112	. 162
	37.0	-. 4.408	-.429 $=.390$	-. 950	$=.875$ -.834	-. 0.050	${ }^{-013}$. 050	. 090
	41.0	-. 366	-. 362	-. 642	-. 793	-. 0.082	-. 031	.013	. 049
	44.5	-. 343	-. 340	-. 616	-. 750	-. 0.09	-. 050	-. 008	. 023
	51.0	-. 279	-. 291	-. 393	-. 718	-. 112	-. 070	-. 036 -.060	-. 012
	59.5	-. 2000	-.215 -.106	-. 297	-. 660 .590	. .109 -.052	-.080 -.040	-. 0660 -.039	. .050 -.053
	79.5	-. 010	-. 208	-. 082	-. 529	-. 010	-. 010	-. 018	-. 065
	91.0	. 067	. 053	. 010	-. 425	. 052	. 044	. 022	-. 093
$0.831 \mathrm{~b} / 2$	0	0.142	-0.125	-0.360	-0. 501				
	1.5	-1.211	-1.492	-1.069	-. 749	0.363	0.416 .260	0.432	0.439
	5.5	-. 945	-1.394	-1.036	-. 725	. 162	.250	. 318	-352
	11.0	-. 536	-1.281	-1.010	-. 719	. 080	. 160	. 221	. 270
	14.5	-. 495	-1.067	-. 920	- -680	- $-\frac{0}{4}$	-070	- 121	- 263
	27.0	-.451 $=.430$	-. 7440	-. 884 -.822	-. 672	-.004 $=.023$. 076	. 121	. 163
	31.0	-. 363	-. 371	-:776	-. -637	-. 0.063	-.007	. 035	. 071
	34.5	-. 322	-. 346	-. 736	-. 598	-.090	-. 038	.004	. 036
	41.0	-. 282	-. 305	-. 695	-. 596	-. 214	-. 070	-. 037	-. 012
	44.5	-. 259	-. 280	-. 657	-. 579	-. 130	-. 296	-. 067	-. 048
	51.0	- 2220	-. 235	- 6097	-. 569	-.127 -.106	-. 105	-. 085	. 079
	79.5	. .143 -.058	-. 147	-. 527	-. 538	-. 105	-.105 -.047	-.104 -.067	-. 124
	79.5	. 010	-. 003	-. 333	-. 4788	. .006	0	-. 031	. 140
	91.0	. 080	. 065	-. 194	-. 443	. 063	. 055	-. 009	. 187
$0.924 \mathrm{~b} / 2$		-0.247	$=0.510$ -1.083	-0.790	-0.694 -.567				
	$\frac{1}{5} \cdot 5$	-1.173 -.936	-1.083 -1.060	$=.730$ -.735	-.567 -.570	0.343 .165	$\begin{array}{r}0.395 \\ .250 \\ \hline\end{array}$	0.411 .302	0.417 .34
	6.5	-. 968	-1.960	-. 7.75	-. 575	. 155	. 240	- 270	-320
	11.0	-. 576	-. 905	-. 703	-. 548	. 055	. 133	-190	. 225
	14.5	-. 490	-. 828	. .675	-. 517	-. 003	. 275	. 103	. 160
	21.6	-. 343	-. 750	-. 657	-. 512	-. 085	-. 017	-. 030	. 068
	31.5	-. 286	-. 689	-. 629	-. 478	-. 125	-. 0107	-. 030 $=.070$. 002
	34.5	-. 247	-. 520	-. 560	-. 458	-. 140	-. 229	-. 106	..090
	41.0	-. 244	-. 415	-. 540	-. 450	-. 1446	$=.132$	-. 125	-. 120
	54.6	-. 2.283	-. 382	-=58	-. 423	-. 1136	-. 139	-. 140 -.140	-. 146
	59.5	-. 212	-. 230	-. 429	-. 380	-. 087	-. 089	-. 114	. .165
	71.0	-. 037	-.135 -.140	-.406 -.373	-. 383 $=.358$	-. 035	-. 040	-. 076 -.067	.156 .160
	91.0	. 060	-. 056	-. 342	-. 371	. 064	. 044	-..079	. 190

TABLE IX.- GGNIINUED.
(c) $a_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

$\begin{aligned} & \text { Seri- } \\ & \text { Bpani- } \\ & \text { sta. } \end{aligned}$	Parcent ohora	UPPER SUAFACE				LOHER Streace			
		Angile of attack				Anfle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.086 \mathrm{~b} / 2$		-0.014 -1.347 -.601 $=$. =. 530 $=: 555$ $=.535$ $=$. -. 657 - 655 $=-65$ $-.177$				0.615 			
$0.195 \mathrm{~b} / 2$									
$0.382 \mathrm{~b} / 2$									
$0.555 \mathrm{~b} / 2$						0.459 .421 .405 .339 .297 .231 .200 .149 .122 .084 .004 .029 -.015 -.030 $=.053$ -.118 -. 110			

TABLE IX. - CONCLJDED.
(c) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Semispan sta.	Fercent ohord	UPPER SURFACE				LOWER SURFACE			
		Angle of attaok				Angle of attack			
		12°	26°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 414.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -0.862 \\ & -.847 \\ & -.837 \\ & -.812 \\ & -.810 \\ & -.785 \\ & -.780 \\ & -.761 \\ & -.754 \\ & -.739 \\ & -.709 \\ & -.699 \\ & -.657 \\ & -.630 \\ & -.593 \\ & -.538 \end{aligned}$				$\begin{array}{r} -.147 \\ 0.417 \\ .415 \\ .318 \\ .381 \\ .212 \\ .181 \\ .129 \\ .101 \\ .051 \\ .024 \\ -.080 \\ -.080 \\ -.114 \\ =.160 \\ \hline .231 \end{array}$			
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11: 0 \\ 14: 0 \\ 21: 5 \\ 24: 5 \\ 31: 0 \\ 34: 5 \\ 41: 0 \\ 44: 5 \\ 51: 0 \\ 59 \\ \hline 1: 5 \\ 79.5 \\ 91: 8 \end{array}$	$\begin{aligned} & -0.610 \\ & -.677 \\ & -.673 \\ & -.658 \\ & -.658 \\ & =.638 \\ & -.630 \\ & =.608 \\ & =.681 \\ & =.578 \\ & =.557 \\ & -.552 \\ & =.525 \\ & -.522 \\ & -.501 \end{aligned}$							
$0.924 \mathrm{~b} / 2$	0 3.5 5.5 61.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5	$\begin{aligned} & -0.641 \\ & -.552 \\ & -.547 \\ & -.533 \\ & -.555 \\ & -.512 \\ & -.505 \\ & -.483 \\ & -.480 \\ & =.460 \\ & . .456 \\ & . .436 \\ & . .436 \\ & . .420 \\ & =.406 \\ & -.402 \end{aligned}$				$\begin{array}{r} -.395 \\ 0.335 \\ .334 \\ .230 \\ .1668 \\ .069 \\ -.059 \\ =.110 \\ =.151 \\ =. .283 \\ -.218 \\ -.2218 \\ -.230 \\ -.258 \end{array}$			

(a) $a_{u}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Serispan sta.	Percent chard	UPPER SURFACE				LOKIR SURFMOE			
		Angle of attaok				Angle or attack			
		0°	$1{ }^{\circ}$	2°	3°	0°	1^{0}	2^{0}	3°
$0.086 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.557 .111 .026 $=.002$ $=.028$ $=.055$ $=.073$ $=.091$ $=.105$ $=.145$ $=.178$ $=.205$ $=.224$ $=.217$ $=.180$ $=.105$ -.029	0.561 .029 .021 .045 .062 .090 .106 .125 . .337 . .178 . .239 . .235 . .245 . .200 . .119 . .034	0.540 $=.072$ $=.079$ $=.201$ $=.110$ $=.134$ $=.145$ $=.163$ $=.172$ $=.213$ $=.247$ $=.278$ $=.294$ $=.2828$ $=.141$ $=.049$	0.528 $=.172$ $=.122$ $=.147$ $=.149$ $=.178$ $=.196$ $=.202$ $=.249$ $=.280$ $=.312$ $=.318$ $=.352$ $=.151$ $=.053$	$\begin{aligned} & 0.078 \\ & .018 \\ & =.012 \\ & =.030 \\ & -.052 \\ & -.069 \\ & =.092 \\ & =.118 \\ & =.147 \\ & -.172 \\ & -.270 \\ & =.231 \\ & =.157 \\ & =.175 \\ & -.030 \end{aligned}$	$\begin{array}{r} -.150 \\ 0.065 \\ .035 \\ .0055 \\ -.018 \\ -.037 \\ =.060 \\ =.087 \\ -.113 \\ -.140 \\ -.180 \\ -.202 \\ -.169 \\ -.097 \\ -.021 \end{array}$	$.0-$ 0.208 .0717 .040 .015 $=.006$ $=.032$ $=.058$ $=.055$ $=.111$ $=.154$ $=.177$ $=.145$ $=.082$	-.73 0.273 .118 .079 .052 .027 .001 $=.024$ $=.052$ -.080 -.126 $=.148$ $=.326$ $=.066$ -.010
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 3.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.8 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.463 -.044 -.037 -.067 -.089 -.110 -.137 -.156 -.173 -.200 $=.238$ -.252 -.242 $=.820$ -.279 -.011	0.472 $=.062$ $=.102$ $=.127$ $=.136$ $=.173$ $=.154$ $=.209$ $=.230$ $=.250$ $=.278$ $=.250$ $=.2035$ $=.005$	0.440 $=.191$ $=.170$ $=.190$ -.286 $=.202$ $=.220$ $=.238$ $=.250$ $=.279$ -.316 $=.334$ -.319 $=.285$ -.207 $=.100$ -.003	0.383 $=-344$ $=.243$ $=.258$ $=.235$ $=.250$ $=.261$ $=.280$ $=.285$ $=.360$ $=.361$ $=.367$ $=.366$ $=.301$ $=.180$ $=.010$	-0.050 0.041 $=.068$ $=.090$ $=.115$ $=.135$ $=.156$ $=.215$ -.210 -.240 -.261 $=.230$ $=.185$ $=.071$.009	$\begin{aligned} & -. .179 \\ & 0.020 \\ & -.010 \\ & =.040 \\ & -.070 \\ & -.096 \\ & =.115 \\ & =.150 \\ & =.175 \\ & =.298 \\ & -.206 \\ & =.230 \\ & =.200 \\ & =.140 \\ & =.069 \end{aligned}$		-.730 0.130 .098 .047 .013 $=.021$ $=.070$ $=.105$ $=.129$ $=.147$ $=.169$ $=.1486$ $=.1061$.016
$0.382 \mathrm{~b} / 2$		0.437 $=.028$ $=.118$ $=.1400$ $=.160$ $=.1700$ $=.200$ $=.229$ $=.231$ $=.260$ $=.265$ $=.241$ $=.2103$ $=.0455$.040	0.421 -.170 -.200 -.217 $=.227$ $=.232$ $=.264$ $=.271$ $=.271$ $=.300$ $=.301$ $=.274$ $=.240$ $=.118$ $=.052$.035	0.368 $=.347$ -.391 $=.302$ $=.291$ $=.300$ $=.304$ $=.323$ $=-327$ $=.321$ $=-3450$ $=.350$ $=.376$ $=.340$ $=.066$.028		$\begin{array}{r} -0.056 \\ =.120 \\ -.136 \\ -.159 \\ -.179 \\ -.200 \\ -.211 \\ -.240 \\ -.255 \\ -.250 \\ -.251 \\ =.254 \\ =.210 \\ -.100 \\ -.035 \end{array}$	$\begin{array}{r} 0.052 \\ -.048 \\ =.066 \\ -.100 \\ =.122 \\ -.150 \\ =.166 \\ =.197 \\ =.211 \\ =.210 \\ =.223 \\ =.173 \\ =.100 \\ .031 \end{array}$	-.146 0.022 .001 $=.042$ $=.070$ $=.101$ $=.120$ $=.151$ $=.169$ $=.178$ $=.189$ -.150 $=.090$ -.026 .050	-.07 0.220 .087 .067 .009 $=.021$ $=.060$ -.077 $=.109$ -.130 $=.159$ $=.150$ $=.367$ -.130 $=.005$ -.027 .047
$0.555 \mathrm{~b} / 2$			0.431 $=.222$ $=.245$ $=.267$ $=.247$ $=-260$ $=.270$ $=.266$ $=.266$ $=.267$ $=.287$ $=.273$ $=.251$ $=.095$ $=.029$ $=.058$	0.371 $=.357$ $=.367$ $=.340$ $=.343$ $=.340$ $=.337$ $=-324$ $=.331$ $=.354$ $=.292$ $=.180$ $=$.		$\begin{array}{r} -0.087 \\ =.140 \\ -.155 \\ -.189 \\ -.197 \\ -.213 \\ -.225 \\ -.235 \\ -.245 \\ =.237 \\ -.230 \\ -.220 \\ -.386 \\ -.077 \\ -.020 \\ .063 \end{array}$		$\begin{array}{r} -.155 \\ 0.027 \\ .006 \\ . .049 \\ -.070 \\ -.104 \\ -.120 \\ -.143 \\ -.145 \\ -.153 \\ -.153 \\ -.158 \\ -.137 \\ -.018 \\ -.061 \end{array}$	-.079 0.039 .077 .017 -.017 -.057 $=.070$ $=.101$ $=.126$ $=.129$ $=.134$ $=.119$ $=.059$ -.010 .052

TABLE X. - CONTINUED.

$$
\text { (a) } a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ} \text { - Concluded. }
$$

Senispan sta.	Percent chard	UPPER SURFACE				LONER SURFAGE			
		Angle of attack				Angle of attack			
		0^{0}	$1{ }^{0}$	20	3°	5°	2^{0}	2°	3^{0}
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 11.0 \\ 44.5 \\ 51.0 \\ 79.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.427 \\ & -.060 \\ & -.120 \\ & -.179 \\ & -.173 \\ & -.195 \\ & -.212 \\ & -.215 \\ & -.223 \\ & -.225 \\ & -.239 \\ & -.235 \\ & -.209 \\ & -.180 \\ & =.067 \\ & -.002 \\ & .075 \end{aligned}$	0.407 $-.263$ -.285 -.291 -.250 -.259 $-.270$ $-.269$ $-.268$ -.273 -.265 $-.238$ -.193 -.772 .006 . .075	0.313 -.541 -.430 $=.436$ $=.354$ $=.360$ $=.346$ $=.340$ $=.327$ -.317 -.306 $=.293$ -.253 $=.095$ $=.020$.069	$\begin{aligned} & 0.171 \\ & -.866 \\ & -.607 \\ & -.563 \\ & -.450 \\ & -.452 \\ & -.387 \\ & -.398 \\ & -.386 \\ & -.376 \\ & -.350 \\ & -.325 \\ & -.272 \\ & -.195 \\ & -.088 \\ & -.012 \\ & .070 \end{aligned}$	$\begin{array}{r} -. .072 \\ -. .160 \\ -.170 \\ -.200 \\ -.203 \\ -.214 \\ -.220 \\ -.225 \\ -.225 \\ -.222 \\ -.222 \\ -.214 \\ -.180 \\ -.056 \\ 0 \\ .080 \end{array}$	$\begin{aligned} & -.090 \\ & 0.049 \\ & =.067 \\ & =.113 \\ & -.126 \\ & =.148 \\ & -.158 \\ & -.173 \\ & -.176 \\ & -.180 \\ & =.186 \\ & =.187 \\ & =.157 \\ & -.061 \\ & .001 \\ & .079 \end{aligned}$	0.210 .037 $-.041$ $-.060$ $-.093$ $-.306$ $-.128$ $-.140$ -.152 -.157 .133 -.060 $-.001$	$\begin{array}{r} 0.296 \\ .113 \\ .090 \\ .019 \\ -.004 \\ -.047 \\ -.062 \\ -.087 \\ -.096 \\ -.115 \\ -.228 \\ -.139 \\ -.226 \\ -.058 \\ -.008 \\ .060 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.411 \\ & -.070 \\ & =.171 \\ & =.173 \\ & -.179 \\ & -.190 \\ & -.213 \\ & -.220 \\ & =.224 \\ & =.233 \\ & -.237 \\ & -.221 \\ & =.198 \\ & =.144 \\ & -.040 \\ & .020 \\ & .096 \end{aligned}$	0.448 -. 280 -. 290 $-.266$ - 270 $-.271$ $-.265$ $-.269$ $-.260$ -. 240 -.217 -.122 $-.043$.095	$\begin{aligned} & 0.389 \\ & -.377 \\ & -.450 \\ & -.435 \\ & -.361 \\ & -.368 \\ & -.338 \\ & -.390 \\ & =.300 \\ & -.299 \\ & -.269 \\ & -.240 \\ & =.210 \\ & -.133 \\ & -.055 \\ & .015 \\ & .094 \end{aligned}$	0.282 -. 909 -.690 -.611 $-.454$ $-.469$ $-.413$ -.393 -.350 -.333 -.277 -. 250 $-.214$ -.132 -.053 .017	$\begin{array}{r} -.07 \\ -0.078 \\ -.170 \\ -.171 \\ -.191 \\ -.212 \\ -.217 \\ -.230 \\ -.238 \\ -.229 \\ -.214 \\ -.190 \\ -.150 \\ -.029 \\ .032 \\ .101 \end{array}$	$\begin{aligned} & -.091 \\ & -.061 \\ & -.064 \\ & -.109 \\ & -.151 \\ & =.151 \\ & =.186 \\ & =.199 \\ & =.200 \\ & -.194 \\ & =.170 \\ & =.135 \\ & -.032 \\ & .030 \\ & .099 \end{aligned}$	0.221 .039 .030 -.032 $-.091$ $-.109$ -.140 -.157 $-.165$ $-.170$ -.151 -.220 $-.040$.025 .090	$\begin{array}{r} -.307 \\ .110 \\ .102 \\ .029 \\ -.047 \\ -.058 \\ -.101 \\ =.125 \\ -.145 \\ -.156 \\ =.141 \\ =.118 \\ -.044 \\ .012 \\ .081 \end{array}$
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.436 \\ & -.011 \\ & =.188 \\ & -.201 \\ & -.210 \\ & -.243 \\ & =.244 \\ & . .222 \\ & -.201 \\ & -.188 \\ & -.394 \\ & -.182 \\ & =.155 \\ & -.060 \\ & -.011 \\ & .042 \\ & .105 \end{aligned}$	0.358 $-.232$ -311 -.319 -.288 $-.314$ $-.281$ -. 248 -. 220 -.199 -.205 -.205 -.189 -.147 -.079 -.010 .049 .108	$\begin{aligned} & 0.185 \\ & =.350 \\ & =.474 \\ & -.165 \\ & =.398 \\ & =.396 \\ & =.339 \\ & =.222 \\ & -.232 \\ & =.212 \\ & =.225 \\ & -.196 \\ & -.260 \\ & =.087 \\ & =.012 \\ & .047 \\ & .101 \end{aligned}$	$\begin{array}{r} -0.028 \\ -.959 \\ -.719 \\ -.697 \\ -.177 \\ -.474 \\ =.363 \\ =.246 \\ -.250 \\ -.230 \\ -.234 \\ -.209 \\ -.168 \\ . .093 \\ -.019 \\ .039 \\ .091 \end{array}$	-.09 -0.099 -.177 -.182 -.210 -.240 -.254 -.230 -.210 -.190 -.184 -.170 -.159 -.065 .001 .053 .116	-.071 0.063 -.071 -.129 -.169 $=.205$ $=.200$ $=.187$ $=.174$ -.169 $=.159$ $=.145$ -.092 .008 .049 .110	$\begin{array}{r} 0.207 \\ .038 \\ .029 \\ -.051 \\ -.101 \\ -.160 \\ -.175 \\ -.167 \\ -.160 \\ -.159 \\ -.150 \\ -.137 \\ -.091 \\ .039 \\ .096 \end{array}$	$\begin{array}{r} 0.292 \\ .110 \\ .099 \\ .009 \\ -.050 \\ -.122 \\ -.155 \\ -.155 \\ -.150 \\ -.152 \\ -.149 \\ -.139 \\ -.086 \\ -.019 \\ .022 \\ .082 \end{array}$

TABLE X．－OONTINUED．
（b）$\pi_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ ．

$\begin{aligned} & \text { Sent1- } \\ & \text { spana } \\ & \text { sta. } \end{aligned}$	Percent chord	UPPER Strrace				LONER SURFIGE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.086 \mathrm{~b} / 2$		0.495	0.405	0.283					
	1.5	－：． 287	－． 231	－－． 817	－1． 172 -.459	0.324 .190	0.422	0．500	
	6．5	－． 195	－． 285	－-36	－：469	． 157	－274	－ 307	－ 377
	17．0	－－． 281	－． 2579	－． 346	＝－439	． 113	． 2154	： 348	：312
	21.0	－． 210	－． 272	－． 351	－． H ＋49	－057	－119	． 180	． 230
	24.5 31.0	－． 228	－． 2982	－－352	－． 4.425	． 033	． 096	． 1112	． 201
		－． 277	－． 355	－． 417	－－482	－．021	． 037	－088	． 135
	${ }_{41} 4.0$	－． 313	－． $\mathrm{Hex}^{\text {¢ }}$	－－460	－． 52	－．050	．$\times 8$	． 056	.100
	51．${ }^{44}$	－： 365	－． 413	－． 593	－． 5851	－．099	－． 0.045	－001	－． 042
	59．05	－． 357	. .456 -.393	－．53］	－ F － 6896	－． 121	－-.069	－．018	．027
	71.5 91.5	－280 $=-170$ -.064	－：320	－．-349 $=-130$ -130	＝－472 $=-191$	$=-100$ $=.005$ -.05	－$=.054$	－．017	－．015
$0.195 \mathrm{~b} / 2$									
	0	0.312	0.138	－0．039	－0．190				
	5：5	－． 314	－： 420	－1．705	－1．895	． 185	． 273	． 35	－． 416
	${ }^{6} 5$	－． 325	－． 437	－． 520	－． 920	． 149	． 230	－ 313	． 377
	11.5	－． 278	－： 380	－：-775	－： 810	． 055	． 130	－200	： 261
	21.0		－． 278	－ 4.45	－ 545	． 020	． 035	－ 156	－ 217
	24.5 31.6	－． 319	－． 3888	－．-486	－． 559	$\stackrel{0}{-.041}$	． 063	． 125	． 176
	御． 5	－． 342	－． 428	－． 514	－－	－． 070	$\therefore 009$	． 53	． 102
	41.8	＝－401	－． 480	－．560	－． 625	－． 092	$=.035$ -0.052	． 020	－072
	51.0	－． 403	－． 514	－． 600	－． 667	－． 136	－．083	－．025	－917
	59．5	－$=3.345$	－． 503	－． 620	－． 667 -.670	－． 1200	－．-071	－．-.018	． 005
	79.5	－．-123	－． 150	－．-172	－． 252	－． 040	－． 220	－0 0	－cos
	91.0	－．011	－． 021	－． 046	－． 278	． 016	． 320	． 023	
$0.382 \mathrm{~b} / \mathrm{z}$	${ }^{0}$	0．170	－0．050	－0．265	－0．455			0.4444	
	5.5	－． 493	－．803	－1．067	－1． 150	． 143	0.337	． 316	． 375
	6.5	－ 4.45	－． 651	－1．023	－1．277	－119	－ 210	． 288	－${ }^{166}$
	$\xrightarrow{12 .} 14.8$	－：．421	－． 595	－： 8720	-1.035	． 0261	． 1145	． 2180	． 2799
	21.0	－． 4145	－： 530	－． 65	－1．962	－．012	－ 65	－132	． 115
	24.5	－． 427	－． 535	－． 66	－． 897	－． 080	． 040	． 105	． 157
	31.5	こ：450	－． 575	－． 6.68	－．880	－．-990	－．827	－ 63	． 080
	42.8	－－465	－． 62	－． 700	－． 8 53	－． 103	－．chis	． 015	． 253
	44．5	－． 4.47	－． 620	－． 7177	－-805	－．116	－．960	－-.220	－0\％
	59.5	－． 280	－． 315	－． 496	－－640	－． 111	－．069	－．035	－． 015
	71.0	－－． 1670	－－． 167	－． 1193	－． 200	－． 0.018	－． 0.002	－． 0.017	． 0188
	91.0	． 030	：．928	－． 315	－． 396	． 041	． 042	：200	：066
$0.555 \mathrm{~b} / \mathrm{c}$									
	1.5	－1．007	－1．365	－1．4928	－1．373	0.303	0.292	0.4450	0.473
	6.5	－：552	－1．201	－1．402	－1．354	：1317	：227	－300	－ 372
	$11 .{ }^{17}$	－． 515	－646	－1．389	－1．285	－062	－156	． 266	－250
	21．5	－．521	－． 68	－1． 329	－1．256	－：912	． 1275	． 139	．189
	$24: 5$ 31.0	－．489	－ 595	－． 710	－1．124	二－972	－050	－105	． 151
	31．5	－．428	－． 699	－． 701	－1．037	－．c78	－011	－0\％	－078
	41.0 44.5	－． 3.367	－． 681	－．739	－97\％	－： 20	－$=0.0{ }^{\text {za }}$	． 012	－ 342
	52.0	－． 330	－． 520	－． 473	－${ }^{2} 24$	－． 113	－． 0.06	－．028	－．001
	79：5	－． 236	－． 201	－． 2170	－． 7 \％ 4 ？	－． 105	－．066	－．047	－． 0.032
	79.5	－．040	－．032	－．087	－-4.4	－． 0.079	．002	－．00x	－ 0.029 $=-053$

TABLE X.- CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Conoluded.

Serispan ata.	Percent ohord	UPPER BURFACE				LONTR GURFACE			
		angle of sttack				Angle of attack			
		4°	6°	$8{ }^{\circ}$	10°	4^{0}	6°	$8{ }^{\circ}$	10°
$0.707 \mathrm{~b} / 2$	0	0.029	-0.215	-0.450	-0.660				
	1.5	-1.187	-1.414	-1.445	-1.013	0.352	0.421	0.446	0.450
	5.5	-1.001	-1.309	-1.444	-1.015	. 173	. 273	- 330	. 372
	11.0	-. 563	-1.280	-1.246	-1.010	. 071	. 161	- 222	. 271
	14.5	-. 544	-1.223	-1.186	-. 991	. 045	. 132	- 192	. 236
	21.0	-. 473	-. 645	-1.134	-.973 -.930	-. 0.003	. 073	. 133	. 174
	24.5 31.0	-. 412	-. 6.669	-1.078	-. 894	-. 0.052	. 013	. 062	. 095
	34.5	-. 414	-. 585	-. 908	-. 847	-.064	. 002	. 044	. 072
	41.0	-. 381	-. 305	-. 818	-. 805	-. 058	-. 034	. 006	. 029
	44.5	-. 355	-. 2621	-. 751	$=.761$ $=.720$	-. 1018	-. 052	-. 01014	. 002
	59.5	-. 2194	-. 2188	-. 5.533	-. 6.653	-. $\mathrm{-} .112$	-. 083	-..068	-. 0.078
	71.0	-. 087	-. 090	-. 293	-. 580	-. 060	-. 045	-. 050	-. 084
	79.5	-. 014	-. 020	-. 198	-. 520	-. 012	-. 009	-. 0288	-. 100
	91.0	. 068	. 058	-. 020	-. 433	. 053	. 047	. 013	-. 135
0.83 Ib b	5	0.155	-0.081	-0.294	$\begin{array}{\|c} -0.461 \\ -767 \end{array}$				
	1.5	-1.217	-1.420	-. 938	$\begin{aligned} & -.787 \\ & -790 \end{aligned}$	0.359	0.412	0.431	0.431 .349
	6.5	-1.062	-1.374	-. 965	-. 788	.158	. 244	. 3122	. 338
	11.0	. 532	-1.281	-. 958	-. 789	. 079	. 156	. 218	. 253
	14.5	-. 460	-1.260	-. 928	-. 762	-		-	
	21.0	-. 465	-1.118	-. 887	-. 745	-. .003	. 065	. 116	. 148
	24.5	-. 447	-. 769	-. 821	-. 707	-. 027	-. 010	. 090	. 250
	31.0	--393	-. 203	-.770 -.705	-. -665	-. 0.096	-. 041	-.001	. 17
	41.0	-. 276	-. 262	-. 660	-. 657	-. 123	-. 077	-. 043	-. 031
	44.5	-. 246	-. 240	-. 617	.630 -.656	-. 141	-. 102	-. 076	-. 0.103
	51.0 59.5	-. 212 -.139	-. 218 -.133	-. 5796	-.626 -.571	-.132 -.113	-. 109	-. 0.94	-. 103
	71.0	-. 0.063	-. 0.052	-. 404	-.531	-. 048	-. 0479	-..075	-. 157
	79.5	.011	. 010	-. 2359	-. 491	. 009	. 060	-. 0.049	-.160 -.3 .95
$2.924 \mathrm{~b} / \mathrm{c}$									
	0	-0.227	-0.550	-0.762	-0.752				
	1.5	- 3.151	-1. 211	-. 743	-. 622	0.341	0.390	0.408	0.405
	5.5	-1.011	- -1.234		-. 632	. 165	- 247	. 2973	. 322
	6.5 11.6	-1.020	-1.199	-.739 -.730	-. 612	. 155	. 232	. 283	- 212
	14.5	-. 533	-1.024	-. 688	-. 569	-.c04	. 068	. 119	. 149
	21.0	-. 390	-. 795	-. 671	-. 561	-.c90	-. 023	. 025	. 050
	24.5	-. 260	-. 710	-. 627	-. 533	-. 140	-. 088	-. 040	-. 018
	31.0	-. 247	-. 593	-. 607	-. 531	-. 148	-. 120	-. 073	-. 0.118
	$4{ }^{34} 4.5$	-.232 $=.240$	-. 533	-. 571	-. 508	-. 1444	-. 139	-. 123	-.1150
	44.5	-. 220	-. 362	-. 510	-. 480	-. 147	-. 142	-. 152	-. 174
	51.0	-. 179	-. 250	-. 483	-. 481	-. 136	-. 231	-. 349	-. 187
	59.5	-. 110	-. 203	-. 429	-. 428	-. 088	-. 085	-. 122	-. 181
	71.0	-.036 .009	-. 100	-.387 -.352	-.425 -.390	-. 0.012	-. 0.085	-. 0.070	-. 178
	91.0	. 061	-. 036	-. 322	-. 391	. 070	. 055	-. 092	-. 399

TABLE $X_{.}$- CONTIMUED.
(o) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

$\begin{aligned} & \text { Seni- } \\ & \text { spant } \end{aligned}$Eta.	(Percent	upper eurice				LOUTR SURPACE			
		Angle of atteck				Angle or attack			
		12^{0}	16°	20°	24°	12°	16°	20°	24°
0.086 \%/2	0 1.5 5.5 5.5 11.5 14.5 21.0 24.0 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0					-679 0.619 $: 451$.375 .340 $: 288$.258 .215 .155 -148 -090 $: 069$.046 .032 .005			
$0.195 \mathrm{~b} / 2$						$\begin{array}{r} -.547 \\ 0.479 \\ .477 \\ .370 \\ .320 \\ .366 \\ .132 \\ .155 \\ .155 \\ .157 \\ .097 \\ .050 \\ .050 \\ .009 \\ \hline .009 \end{array}$			
$0.382 \mathrm{~b} / 2$						$\begin{array}{r} -.751 \\ 0.429 \\ .403 \\ .337 \\ .298 \\ .239 \\ .159 \\ .128 \\ .094 \\ .069 \\ .030 \\ .005 \\ -.017 \\ \hline-.017 \end{array}$			
$0.555 \mathrm{~b} / 2$									

TABLE X.- CONCLUDED.
(0) $a_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Semispan sta.	Percent chord	UPPER SURTMACE				LOVER SORTACE			
		Angle of attaok				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.0 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.0 \\ 41.0 \\ 44.0 \\ 51.0 \\ 59.0 \\ 71.0 \\ 79.0 \\ 91.6 \end{array}$	$\begin{aligned} & -0.810 \\ & -.923 \\ & -.910 \\ & -.887 \\ & -.882 \\ & -.855 \\ & -.845 \\ & -.819 \\ & -.708 \\ & -.779 \\ & -.757 \\ & -.745 \\ & -.707 \\ & -.672 \\ & -.630 \\ & -.585 \end{aligned}$				-.470 0.440 .380 .304 .369 .200 .169 .115 .090 .010 -.030 -.099 -.135 -.183 -.259			
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{array}{r} -0.610 \\ =.730 \\ =.728 \\ =.716 \\ -.716 \\ -.696 \\ -.690 \\ -.675 \\ -.648 \\ -.645 \\ -.625 \\ -.622 \\ -.593 \\ =.575 \\ =.546 \\ -.520 \end{array}$				-.411 0.362 .353 $\because-280$ -.160 .128 .059 .016 -.042 -.082 -.215 -.247 -.260 -.305			
$0.924 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 5.5 \\ & 11.0 \\ & 14.5 \\ & 21.5 \\ & 24.5 \\ & 32.5 \\ & 34.0 \\ & 41.5 \\ & 44.5 \\ & 51.5 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 92.0 \end{aligned}$	$\begin{aligned} & -0.715 \\ & =.613 \\ & =.610 \\ & -.593 \\ & -.598 \\ & =.580 \\ & -.555 \\ & -.555 \\ & =.552 \\ & =.532 \\ & =.50 \\ & =.508 \\ & =.475 \\ & -.478 \\ & =.458 \\ & -.447 \end{aligned}$				$\begin{array}{r} 0.350 \\ .328 \\ .312 \\ .155 \\ .053 \\ -.021 \\ -.085 \\ -.146 \\ -.190 \\ -.231 \\ -.252 \\ -.268 \\ -.262 \\ -.270 \\ -.298 \end{array}$			

TABLE XI.- PRESSURE CCEFFIGIENTS AT SEVER SEXTBPAK STATICNS OF THE WIMG. $K_{0}, 0.90 ; R, 4,000,000$.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{0}, 3^{\circ}$.

Semista.	Percent chord	UPPER BURFACE				IONITR SORIPres			
		angle or attack				Angle of attack			
		0°	$1{ }^{\circ}$	2°	3°	0°	1°	${ }^{0}$	3°
0.086 b/2	5	0.565	0.565	0.559	0.537				
	$\frac{1}{5} .5$	\bigcirc	-.036	-. 0.050	-. 115	0.0828	0.150	0.222	
	11	-007	-:041	-:c81	- $=1314$	-0.0.0	:065	.0866	. 122
	14	-. 0.50	-.08	-.121	-. 16	-. -.049	-.011	:030	.059
	21	-. 0.689	-	-. 130	- 1169	-. 0.04	-. 0.037	.006	.032
	31.5	-. 101	-.136	-. 160	-. 193	-. 113	-. 089	-. 0.05	-0.07
	34.5	-. 140	-. 176	-. 202	-. 240	-. 114	-. 118	-. 077	-.0.50
	$4{ }^{4} 4.8$	- -209	-.249	-. 269	- -379	$\because 172$	- 146	105	-.
	51.0	-. 219	-. 269	-. 292	-. 3 行	-. 215	-. 189	-. 150	-. 125
	59	-. 2195	-271	-. 297	-. 394	-.240	- 221	-. -179	-.157
	79.5 91.5	- $=.111$	$=-146$ $=-.045$	$=-151$ $=-049$	-. 271 -.060	-. $=-.121$ -.030	- $=.1090$	-	$=.07 \mathrm{C}$ $=016$
0.195 b/2	0	0.455	0.477	0.450	0.394				
	1.5	. 055	-. 0.056	-. 173	- 315	0.090	0.185	0.279	0.337
	6. ${ }^{5}$	-:055	-. 112	-. 1746	-. 245	-. -.056	-.007	:051	. 100
	12.0	- 077	- 1127	-. 173	- 223	-. 0.77	-. 037	-010	.051
	14.5 21.0	-. 126	-. $\mathrm{-}$ - 170	-. 207	-. 251	-. -.124	-..092	-. 0.51	-018
	24.5	-. 147	-. 190	-. 225	-. 273	-. 147	-. 117	-. 075	-. 039
	33.8	--. 164	-.205	-:239	=. 3058	-. 2804	-. 175	-.134	-. 1075
	41.6	-. 234	-. 280	-. 311	-. 362	-. 227	-. 203	-. 155	-. 128
	44.5 51.6	-. 225	-. 302	-: 337	-. 390	- F - 24.240	- -2243	- -178	-. 172
						-. 240	-. 214	-. 173	-. 152
	71.0	- $=1.150$	-. 21090	-. 327	- -174	-	- $\quad .075$	-. 124	-. 111
	91.0	-. 010	-. 0	-.0\%	-.009	-. 011	.006	-. 012	.0i3
$0.382 \mathrm{~b} / 2$	0	0.440	0.422	0.375	0.289				
	1.5	--. 109	-. 1.153	-: 3275	-. 385	-0.052	- 2.054		
	6.5	-. 131	-. 213	-. 287	-. 379	-. 132	-.065	.006	. 050
	11.0	--. 153	-.221	-. 230	-. 346	- -175	-. 298	-. 0.067	-088
	21.6	-. 197	-. 253	-. 291	-. 357	-.200	-. 153	-. 102	-. 066
	24.5	-. 212	- -275	-. 322	- -377	-.210	-- 2170	- 115	-. 079
	34.5	-.232	-. 287	-. 34	--. ${ }^{\text {¢ }}$	-269	-. 220	-. 1170	-. 134
	41.0	- 2628	- -317	-. 350	-	-. 25	-.220	-. 267	- $=124$
	44.5	-.:245	-. 292	-. 3 30	-:400	-.262	-. 234	-.179	- 120
	59.5	- $=125$	-. 235	-. 387	- -1270	-. 215	-. 180	- -149	- $=135$
	79.5	-.049	-: 053	-.055	-.074	-.033	-. 032	-. 020	-. 0.02
	92.0	. 043	. 35	. 033	.025	-.647	. 047	. 055	. 049
0.555 b/2		-0.433		-0. 375	- 2.279				
	1.5	- -145	-. 235	$\because \mathrm{CH}$	-. 689	-0. 184	-0.041	0.153	
	5.5	--16	-. 275	-. 375	-. 500	-. 160	-.0.0	.005	. 070
	11.0	-. 175	-. 260	-. 346	-. 456	- -1974	-. 122	-. 050	. 005
	21.5	-. 2125	-. 2.25	\because	-. 4 +175	-.220	-. 167	-. 107	-.060
	24.5	--222	-.299	- -251	- 420	- -231	- -180	- $=145$	- 0.70
	31.0	-. 232	-.285	-. 337	-. 425	-: 2.25	-.210	-. -152	-. 120
	41.0	-.253	-. 304	-. 343	-. 415	-. 247	-. 210	-. 157	-. 132
	44.5 51.0	-. 2227	-. 29.275	-. 3 35	-. 3 - 307	-. 237	-. 203	-. -15	-. 135
	59.5	-. 188	-. 218	-. 186	-. 224	-. 197	-. 159	$-.137$	-. 124
	$71 .{ }^{\text {7 }}$	-.084	-.:032	--. 118	-. -123	--.075	-.082	--.007	61
	79	-.089	-. 053	-. 0.05	-. 0.53	-. 0.065	-. 050	-. 070	. 015

table xi.- Continued.
(a) $a_{u}, 0^{\circ}, 1^{0}, 2^{0}, 3^{0}$ - Concluded.

Seansta.	Percent chord	UPPER StRFACE				Lowir surface			
		Angle of attaok				Angle of attack			
		0°	1°	${ }^{\circ}$	3°	0°	1°	20	3°
$0.707 \mathrm{~b} / 2$	0	0.429	0.402	0.315	0.180				
	1.5	-.	-. 2744	-: 3346	-. 880	-0.075	-0.080	0.205	
		-.170	-. 309	-. 44	-. 603	-. 170	\bigcirc	.020	. 086
	11.10	-.174	- 2.267	-:367	$=.481$ $=.482$	- 202 -206	- 123	- -.042	-012
	21.8	-. 215	-.289	-. 352	-. 478	-:217	-. 137	-.095	-:046
	24.5	-. 212	-. 289	- 3 30	-. 437	-. 225	-. $17{ }^{\circ}$	-. 110	-. 068
	31.8	-.225	-.284	-: 343	-. 363	-:.237	-.189	- 1130	-. 102
	41.8	-. 240	-. 284	-. 320	-. 35	-. 223	-. 192	-. 143	- 2120
	44.5	-. 238	-. 280	-: 297	-. 2458	-. 2225	-. 3194	--. 150	-. 1141
	59, ${ }^{5}$	-.183	- 20098	-. 185	- $\mathrm{-} .1985$	-. 185	- $=1650$	- -135	- $\mathrm{-}$ - 130
	719	-:002	-:007	-:.007	-:007	-065	-O\%02	-.003	-:008
	91.6	. 080	. 076	. 077	. 077	. 086	. 080	.080	
$0.831 \mathrm{~b} / 2$	0	0.410	0.443	0.391	0.284				
	1.5	-. 0.15	-. 310	-. 2657	-:928	-0.081	-0.086	-. 2.235	0.305
	$5 \cdot 5$	-.163	-. 302	-. 476	- 690	- -173	-	-030	-099
	114:0	-.174	-. 214	-: 379	-. 4.479	-. ${ }^{-91}$	-. 110	-0	\bigcirc
	21:8	-.207	-. 279	-. 34	-.405	-. 211	-. 15	-. 090	. 050
	34.5	-:216	-:285	-: 309	-: -736	-:.216	-. 164	-.132	-:.062
	34.5	-. 233	-. 284	-. 310	-. 368	-. 239	--204	-. 157	-. 130
	41.0	-.238	- 275	- 287	-. 3202	-. 230	- 209	-. 2173	- -1.15
	${ }_{51}{ }^{4.5}$	-:	-.250	-:201	-:202	-:.187	- -175	- -175	-. 145
	59:5	-. 132	-. 107	-. 126	--129	-. 140	-. 134	-. 112	-. 118
	71.0	-. 030	-. 047			-. 027	-. 032	-. 032	-. 043
	79.5	. 1031	. 0292	: 027	.022	. 0411	.034	. 100	. 01085
$0.924 \mathrm{~b} / 2$									
				0.					
	5.5	-:171	-. 320	-. 475	-. 764	-. 185	-. 066	. 040	. 110
		-. 186	-. 328	-. 470	-. 740	-. 188	-. 071	. 037	. 100
	11.0	- O .195	- O - 375	-. 394	- -.443	-. 2122	- -1.127	-:.046	- 010
	${ }^{14.5}$	-:253	-. 32	-. 380	-. 46	-. 271	-. 212	-. 163	-:132
	24.5	-. 219	-. 269	-. 230	-. 223	-. 233	-. 213	-. 180	-. 177
	31.0	-. 197	-. 218	-:207	-:220	-. -184	- -176	- $\because 156$	-. 156
	41.6	-.184	-. 202	-. 218	-: 232	-. -175	-. 168	-. 155	-. 215
	44.5	- 172	-. 180	- 180	-. 206	-. 166	--158	-. 145	- -159
	51.5	-. 050	-. 0.076	-. 078	-.688	-. 0.05	- -.076	-:084	-. 0.79
	71.0	. 002	-.006	-. 002	-. 012	. 016	. 07	. 006	-. 016
	91.0.	:113	.150	:109	.093	. 126	:112	. 104	. 087

fable Xi.- continued.
(b) $\mathrm{a}_{\mathrm{u}}, 4^{\circ}, 6^{\circ}, \varepsilon^{\circ}, 10^{\circ}$.

Soniepan te.	Percent cbord	UPPER SURTACE				LOWER SURFACE			
		Angie of attack				Argio of attack			
		4°	6°	8°	10°	$4{ }^{\circ}$	6°	8°	10°
$0.086 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.5 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.5 \\ & 34.5 \\ & 41.0 \\ & 44.0 \\ & 51.5 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$		$\begin{aligned} & 0.418 \\ & =.516 \\ & =.262 \\ & =.281 \\ & =.271 \\ & =.270 \\ & =.285 \\ & -.288 \\ & =.343 \\ & -.382 \\ & =.411 \\ & =.459 \\ & -.465 \\ & .-.290 \\ & -.114 \end{aligned}$	$\begin{aligned} & 0.307 \\ & =.760 \\ & =.355 \\ & =.323 \\ & =.350 \\ & =.332 \\ & =.340 \\ & =.3797 \\ & =. .440 \\ & =.499 \\ & =.514 \\ & =.760 \\ & =.422 \end{aligned}$.0 .332 0.000 .161 .1200 .092 .061 .040 .008 -.050 -.050 -.097 -.130 . .056 -.012	$\begin{array}{r} -.420 \\ 0.278 \\ .23 I \\ .190 \\ .148 \\ .121 \\ .095 \\ .061 \\ .034 \\ .006 \\ -.050 \\ =.075 \\ =.064 \\ -.027 \\ -.001 \end{array}$	$\begin{array}{r} -.50 \\ 0.501 \\ .354 \\ .359 \\ .223 \\ .182 \\ .154 \\ .118 \\ .090 \\ .050 \\ .002 \\ .021 \\ -.025 \\ -.002 \\ .001 \end{array}$	0.570 . .385 .321 .286 .240 .210 $.170^{\circ}$.104 .044 .0218 .0099 .0011 . .007
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 5.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.5 \\ 44.5 \\ 51.6 \\ 59.5 \\ 71.5 \\ 79.5 \\ 91.0 \end{array}$		0.159 -.755 $-.410$ -.449 -.374 $=.375$ $=380$ -398 -38 -.421 $=.467$ -.499 -.505 -528 $=.408$ $=. .180$ -.033	$\begin{aligned} & -0.003 \\ & -1.076 \\ & -.651 \\ & -.579 \\ & =.489 \\ & -.457 \\ & -.438 \\ & -.457 \\ & -.472 \\ & -.493 \\ & -.538 \\ & -.569 \\ & -.575 \\ & -.581 \\ & -.267 \\ & -.075 \end{aligned}$	$\begin{aligned} & -0.150 \\ & -1.208 \\ & -.941 \\ & -.752 \\ & -.678 \\ & =.584 \\ & -.537 \\ & -.536 \\ & -.576 \\ & -.560 \\ & -.601 \\ & -.635 \\ & -.640 \\ & =.661 \\ & =.687 \\ & =.400 \\ & -.132 \end{aligned}$	$\begin{array}{r} -.0 \\ 0.393 \\ .185 \\ .149 \\ .094 \\ .058 \\ .021 \\ .038 \\ -.067 \\ -.092 \\ -.108 \\ -.339 \\ -.125 \\ -.091 \\ -.045 \\ .013 \end{array}$	$\begin{array}{r} -.476 \\ 0.278 \\ .237 \\ .173 \\ .134 \\ .092 \\ .070 \\ .024 \\ -.005 \\ -.035 \\ -.049 \\ -.082 \\ -.075 \\ -.055 \\ -.023 \\ .015 \end{array}$	$\begin{array}{r} 0.580 \\ .356 \\ .307 \\ .274 \\ .203 \\ .153 \\ .126 \\ .087 \\ .050 \\ .020 \\ .004 \\ -.030 \\ -.027 \\ -.010 \\ -.009 \end{array}$	$\begin{array}{r} 0.576 \\ .421 \\ .779 \\ .262 \\ .212 \\ .181 \\ .132 \\ .1070 \\ .051 \\ .017 \\ .017 \\ .010 \\ \hline .013 \\ \hline .013 \end{array}$
$0.382 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 27.0 \\ 24.0 \\ 31.5 \\ 34.5 \\ 41.0 \\ 44.0 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.8 \end{array}$				$\begin{aligned} & -0.403 \\ & -1.252 \\ & -1.134 \\ & -1.230 \\ & -.982 \\ & -.962 \\ & -.896 \\ & =.850 \\ & =.815 \\ & -.767 \\ & -.788 \\ & -.764 \\ & -.767 \\ & -.745 \\ & -.423 \\ & -.238 \\ & -.137 \end{aligned}$	-.083 0.1417 .117 .059 .025 -.013 -.032 -.078 -.096 -.1080 -.130 -.113 $=.076$ -.016 .042	$\begin{array}{r} 0.350 \\ .238 \\ .210 \\ .145 \\ .111 \\ .062 \\ .035 \\ -.010 \\ -.025 \\ -.047 \\ -.063 \\ -.087 \\ -.073 \\ -.047 \\ -.008 \\ .038 \end{array}$	$\begin{array}{r} .-.742 \\ 0.313 \\ .284 \\ .217 \\ .179 \\ .129 \\ .100 \\ .052 \\ .000 \\ . .014 \\ -.040 \\ -.043 \\ -.032 \\ -.005 \end{array}$	$\begin{array}{r} . .486 \\ 0.373 \\ .348 \\ .279 \\ .1485 \\ .155 \\ .102 \\ .078 \\ .049 \\ . .025 \\ -.028 \\ =.035 \\ -.0011 \\ -.019 \end{array}$
$0.555 \mathrm{~b} / 2$	0 1.5 5.5 6.5 31.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.174 $=.9817$ $=.512$ $=.509$ $=.507$ $=.510$ $=.504$ $=.511$ $=.525$ -.547 $=.457$ $=.210$ $=.713$ -.027 .060	-0.043 -1.315 -1.217 -1.156 $=.855$ -.577 -.602 $=.601$ -.612 -.620 -.684 -.715 -.675 -.197 -.080 -.012 .062		$\begin{aligned} & -0.420 \\ & -1.340 \\ & -1.332 \\ & -1.314 \\ & -1.217 \\ & -1.159 \\ & -1.081 \\ & -1.044 \\ & -.998 \\ & -.995 \\ & -.916 \\ & -.867 \\ & -.629 \\ & -.729 \\ & =.613 \\ & =.520 \\ & -.345 \end{aligned}$	-.303 0.153 .133 .065 .035 -.012 -.033 -.070 -.082 -.097 -.100 -.112 -.03 -.000 -.006	0.392 0.251 .230 .156 .123 .074 .047 -.303 -.076 -.047 -.067 -.069 -.076 .005 .048	$\begin{array}{r} 0.442 \\ .317 \\ .297 \\ .223 \\ .185 \\ .130 \\ .102 \\ .054 \\ .003 \\ -.010 \\ -.035 \\ -.052 \\ -.030 \\ -.013 \\ .315 \end{array}$	

TABLE XI.- CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Sem1span Bta.	Percent ehord	UPPER SURFACE				LOWER SURTACE			
		Angle of attack				angle of attack			
		4°	6°	80	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	0	0.060	-0.177	-0.384	-0.58				
	1.5	-1.137	-1.355	-1.454	-. 9.950	0.3488	0.426	0.446	0.450
	5.5	- -.963	-1.280	-1.402	-. F .945	. 1746	.266 .240	. 323	. 366
	11.0	-. 550	-1.225	-1.250	-. 932	. 070	. 156	. 218	. 261
	14.5	-. 575	-1.185	-1.163	-. 934	-.041	. 130	. 185	- 226
	21.0	.565 -.560	-. 634	-1.091	-. 922	-.004 -.020	. 870	. 126	$\begin{aligned} & 160 \\ & .131 \end{aligned}$
	24.5 31.0	-. 560 -.530	-.629	-1.020	-. 8.98	-.020 -.054	. 050	. 0950	$\text { . } 131$
	34.5	-. 444	-. 685	-. 851	-. 837	-. 065	-. 005	.031	. 055
	41.8	-. 330	-. 727	-. $77{ }^{\circ}$	-. 796	-. 090	-. 035	-. 005	. 012
	44.5	-. 312	-. 464	-. 718	-. 762	-. 102	-. 053	-. 026	-. 016
	51.0	-. 263 -.177	-. 176	-. 640	-. 27.65	-. 2117	-. 0.085	-. 0.55	. .054 -.100
	71.0	-. 070	-. -.074	-. 380	-. 582	-. 0.05	-. 0.046	-. 065	-. 117
	79.5	01	-. 007	-. 270	-. 525	-. 0.05	-. 0009	-. 045	-. 140
	91.0	. 080	. 075	-. 090	-. 443	. 061	. 049	-. 005	-. 179
$0.831 \mathrm{~b} / 2$	0	0.170	-0.050	-0.244	-0.408				
	1.5	-1.167	-1.358	-. 922	-. 788	0.350	0.407	0.426	0.427
	5.5	-1.032	-1.330	-. 927	-. 790	. 161	. 237	. 300	- 335
	21.0	-1.043	-1.351	-. 9337	-. 796	. 071	. 149	. 205	. 239
	14.5		-1.236	-. 923	-. 787	- -1	- -	- -7	-
	21.5	-. 548	-1.172	-.890	-. 767	-. 013	. 058	. 103	. 1×2
	24.5	-. 449	-1.029	-. 818	-. 727	-. 030	. 034	. 081	. 102
	31.0	-- 330	-. 578	-. 7710	-. 684	-. 0.102	-..018	-.018	.038
	41.0	-. 269	-. 280	-. 6.651	-. 6.673	-. 231	-. 090	-..059	-.056
	44.5	-. 230	-. 310	-. 615	-. 649	-. 154	-. 121	-. 092	-. 098
	51.0	-. 200	-. 223	-. 570	-. 633	-. 143	-. 128	-. 117	-. 134
	59.5	-. 128	-. 125	-. 507	-.589	-. 218	$=.121$	-. 140	-. 199
	711.0	-. 0.018	-. 0.020	-.412 -.339	-. 5488 $=.507$	-.048 .009	-.057 -.002	-. 098	-.199 -.195
	91.0	. 090	. .883	-. 246	-. 446	. 073	. 058	-. 065	-. 223
$0.924 \mathrm{~b} / \mathrm{c}$		-0.200	-0.510	-0.720					
	1.5	-1. 133	-1.232	-. 753	-. 652	0.335	0.381	0.401	0.402
		-1.066	-1.182	-. 759	-. 660	. 161	. 235		. 308
		-1.066	-1.141	-. 755	$\begin{array}{r} -.641 \\ -.636 \end{array}$. 151	- 223	.270 .170	- 291
	11.0	-1.011 -.781	-1.021 -.932	. .751 -.719	-. 636	.050 -.010	. 121	. 1708	. 198
	14.5 21.0	-.781 -.331	-. -851	-. 6.198	-. -.595	-. 100	-. 040	. 010	. 030
	24.5	-	-: 75	-. 655	-. 270	-.160	-. 109	-. 061	-. 043
	31.0	-. 215	-. 669	-. 627	-. 568	-. 170	-. 145	-. 110	-. 100
	34.5	$\text { -. } 191$	-. 589	-. 587	-. 547	-. 156	-. 170	-. 149	-. 156
	41.5	$-.220$	-. 490	- 560 $=.530$	-. 549	-. 153	. .169 -.164	- $=.1780$	-. 325
	4.4	-. 203	-. 428	-.530 -.508	-. 522	-. 1150	=.164	-. 180	-.225 -.239
	59.5	-. 109	-. 2330	-. 450	-. 475	-. 088	-. 098	-. 148	-. 227
	72.0	-. 039	-. 116	-. 404	-. 463	-. 030	-. 040	-. 110	-. 203
	79.5 91.0	.0018	-.131 -.051	-.367 -.329	-.420 -.407	. 073	. 050	-. 0.101	-. 2280

TASEE XI.- ECNTIMUED.
(c) $0_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Soxisean eta.	($\begin{aligned} & \text { Percent } \\ & \text { chord }\end{aligned}$	पPPER SURFACE				LOWER subrace			
		Angie of attack				Angle of attaok			
		12°	16°	20°	24°	12°	16°	20°	24°
0.086 b/2						$\begin{array}{r} 0.121 \\ .481 \\ .446 \\ .380 \\ .390 \\ .290 \\ .261 \\ .210 \\ .147 \\ .147 \\ .080 \\ .055 \\ .029 \\ -.016 \\ -.024 \end{array}$			
0.195 b/2						- 0.5 . 326 . C 235 1419 : 1750 050 0 : 025 $\begin{array}{r} 0.017 \\ -.055 \\ -=0.0 \end{array}$			
$0.382 \mathrm{~b} / 2$						$\begin{array}{r}0.71 \\ .425 \\ \hline\end{array}$ 			
$0.555 \mathrm{~b} / 2$						0.450 .484 $\begin{array}{r}-315 \\ .274 \\ \hline 27\end{array}$.210 .0159 .051 .051 .027 -.015 -.060 -.098 -.058 $-.158$			

table XI.- Concluded.
(c) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

$\begin{aligned} & \text { Semi- } \\ & \text { epan. } \\ & \text { eta. } \\ & \hline \end{aligned}$	${ }_{\text {Peroent }}^{\text {Phord }}$	UPPER SURFACE				LOTER sURPage			
		Angle or attaok				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 5.5 \\ 5.5 \\ 1.5 \\ 11.0 \\ 14.0 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.0 \\ 34.5 \\ 44.0 \\ \hline 41: 5 \\ 51.0 \\ 71.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$								
$0.831 \mathrm{~b} / 2$									
$0.924 \mathrm{~b} / 2$		-.902 -0.983 -.786 -.762 -.662 -.742 -.742 -.720 -.718 -.697 -.695 -.665 -.622 -.620 -.758 -.562							

(a) $a_{2}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$.

Seriepan ta.	Peraent ohord	UPPER SURFACE				LOTER BURYMCE			
		Angle or attaok				sagle of attack			
		0°	$1{ }^{0}$	20	3°	0°	$1{ }^{\circ}$	2°	3°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 44.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 72.5 \\ 79.5 \\ 91.0 \end{array}$	0.576 .137 .051 .021 -.003 $=.034$ -.072 -.088 -.132 -.167 $=.202$ -.228 -.237 -.205 $=.116$ -.033	0.577 .052 .002 -.025 $=.043$ $=.073$ -.088 -.109 $=.120$ $=.167$ $=.200$ $=.236$ $=.263$ -.280 -.251 -.149 -.047	$\begin{aligned} & 0.568 \\ & =.036 \\ & =.043 \\ & =.070 \\ & =.061 \\ & =.109 \\ & =.180 \\ & =.141 \\ & =.149 \\ & =.196 \\ & =.265 \\ & =.2653 \\ & =.319 \\ & =.899 \\ & =.180 \\ & =.059 \end{aligned}$		$\begin{array}{r} . .702 \\ .041 \\ .012 \\ -.010 \\ =.032 \\ =.050 \\ -.075 \\ -.151 \\ -.133 \\ -.162 \\ -.007 \\ -.246 \\ =.229 \\ -.130 \\ -.034 \end{array}$	$\begin{array}{r} -.169 \\ .085 \\ .050 \\ .024 \\ -.001 \\ -.021 \\ -.049 \\ -.075 \\ -.107 \\ -.135 \\ -.182 \\ -.223 \\ -.004 \\ -.113 \\ -.031 \end{array}$	$\begin{array}{r} -.231 \\ .127 \\ .093 \\ .060 \\ .036 \\ -.019 \\ -.045 \\ -.075 \\ -.105 \\ -.153 \\ -.192 \\ -.170 \\ -.094 \\ -.028 \end{array}$	-0.287 0.167 .131 .093 .067 .040 .013 $=.018$ -.046 $=.077$ -.128 $=.168$ $=.244$ $=.082$ -.026
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 13.0 14.5 21.5 24.0 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0		0.485 $=.038$ $=.080$ $=.102$ $=.113$ $=.135$ $=.158$ $=.196$ $=.230$ $=.279$ $=.304$ $=.308$ $=.293$ $=.230$ -.086 .006	$\begin{aligned} & 0.459 \\ & =.155 \\ & =.146 \\ & =.164 \\ & =.160 \\ & =.198 \\ & =.219 \\ & =.255 \\ & =.232 \\ & =.345 \\ & =.357 \\ & =.359 \\ & =.269 \\ & =.100 \end{aligned}$	0.420 $=.289$ -.211 $=.228$ $=.208$ -.223 $=-238$ $=.280$ $=.271$ $=.298$ $=.343$ $=.350$ $=.395$ $=.410$ $=.350$ $=$.	$\begin{aligned} & 0.103 \\ & =.021 \\ & =.045 \\ & =.0660 \\ & =.093 \\ & =.116 \\ & =.138 \\ & =.171 \\ & -.201 \\ & =.227 \\ & -.231 \\ & -.268 \\ & =.260 \\ & -.068 \\ & . .009 \end{aligned}$	$\begin{array}{r} -.197 \\ .038 \\ .009 \\ -.023 \\ -.054 \\ =.081 \\ =.104 \\ =.141 \\ -.170 \\ =.196 \\ -.210 \\ -.243 \\ -.231 \\ -.157 \\ -.072 \\ .009 \end{array}$	-.274 0.000 .057 .018 -.017 $=.047$ $=.108$ -.137 -.187 -.176 $=.2150$ -.130 -.070 .008	$\begin{array}{r} -.79 \\ 0.342 \\ .142 \\ .106 \\ .060 \\ -.025 \\ -.009 \\ -.070 \\ -.100 \\ -.127 \\ -.142 \\ -.180 \\ -.162 \\ =.118 \\ -.060 \\ .009 \end{array}$
$0.352 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.8 14.5 21.6 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5	0.445 $=.010$ $=.100$ $=.124$ $=.146$ $=.169$ $=.217$ $=.238$ $=.242$ -.279 -.2651 -.224 $=.106$ -.033 .049	0.431 $=.151$ -.184 $=.202$ -.212 -.232 -.243 -.275 $=.298$ -.305 -.345 $=.350$ -.319 -.274 -.113 -.049 .041	$\begin{aligned} & 0.383 \\ & =.310 \\ & =.270 \\ & =.277 \\ & =.279 \\ & =.295 \\ & =.322 \\ & =.350 \\ & =.360 \\ & =.412 \\ & =.4000 \\ & =. .750 \\ & =.110 \\ & =.051 \end{aligned}$	0.308 $=.492$ $=.366$ $=.333$ $=.349$ $=.345$ $=.362$ $=.383$ $=.393$ -.476 $=.471$ $=.448$ $=.154$ -.959 .036	$\begin{array}{r} -0.039 \\ -.106 \\ -.129 \\ -.147 \\ -.199 \\ -.210 \\ -.242 \\ -.270 \\ =.283 \\ -.275 \\ -.270 \\ -.105 \\ -.101 \\ -.029 \end{array}$	$\begin{aligned} & 0.060 \\ & 0.060 \\ & =.058 \\ & =.092 \\ & -.120 \\ & -.150 \\ & -.171 \\ & -.208 \\ & -.235 \\ & -.240 \\ & -.231 \\ & -.248 \\ & -.192 \\ & -.103 \\ & -.031 \end{aligned}$	-.7 0.142 .025 .001 -.042 -.071 -.107 -.130 -.184 -.190 -.187 -.192 -.210 -.169 -.099 -.026 .053	-.821 0.089 .065 .011 -.020 $=.061$ $=.080$ $=.120$ $=.140$ $=.150$ $=.176$ $=.142$ -.083 -.019 .055
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 44.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.433 $=.054$ $=.153$ $=.174$ $=.184$ $=.236$ $=.239$ $=.243$ $=.240$ $=.269$ $=.266$ $=.240$ $=.278$ $=.020$.070	0.427 -.229 -.259 -.280 $=.271$ $=.288$ -.308 $=.312$ -.326 -.320 $=.310$ $=.284$ $=.224$ $=.101$ -.029 .065		0.298 $=.654$ $=.475$ $=.481$ $=.440$ $=.446$ $=.436$ $=.456$ $=.471$ $=.528$ $=.542$ $=.480$ $=.191$ -.104 -.024 .066	$\begin{array}{r} -0.079 \\ =.139 \\ =.196 \\ -.210 \\ -.235 \\ -.240 \\ =.254 \\ =.262 \\ =.260 \\ =.250 \\ =.194 \\ -.075 \\ -.011 \\ .072 \end{array}$	$\begin{aligned} & 0.040 \\ & -.060 \\ & -.080 \\ & -.130 \\ & -.149 \\ & -.177 \\ & -.150 \\ & -.210 \\ & -.220 \\ & -.221 \\ & -.214 \\ & -.200 \\ & -.160 \\ & -.081 \\ & -.015 \\ & .070 \end{aligned}$	$\begin{array}{r} 0.140 \\ .018 \\ -.004 \\ -.061 \\ -.082 \\ -.120 \\ -.136 \\ =.180 \\ -.170 \\ -.1767 \\ =.167 \\ -.244 \\ -.070 \\ -.010 \\ .070 \end{array}$.--7 0.085 .061 -.001 -.029 -.070 -.087 $=.118$ -.137 $=.143$ $=.145$ $=.143$ $=.068$ -.010 .060

NACA

TABLE XII. - CONTINUED.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - Concluded.

Sem1span sta.	Percent chord	UPPER SURFACE				LOMER SURFACE			
		Angle of attack				Angle of attaok			
		0°	$1{ }^{\circ}$	2°	3°	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	0	0.428	0.400	0.320	0.204				
	1.5	-. 067	-. 263	-. 379	-. 878	-0.072	0.077	0.191	0.277
	5.5	-. 176	-. 335	-. 460	-. 635	-. 164	-. 066	. 022	. 099
		-. 189	-. 380	-. 479	-. 639	-. 174	-. 081	. 004	. 073
	11.0 14.5	-.180 -.204	.389 $=.305$	$=.402$ $=.413$. .487 -.486	- 2.208 $=.216$	-.130 -.143	.059 -.074	$.00 E$ -.020
	21.0	-. 222	-. 301	-. .418	-. 494	-.224	-. .16	-. 108	-. 0.058
	24.5	-. 227	-. 299	-. 423	-. 500	-. 230	-.17\%	-. 120	-. 077
	31.0	-. 233	-. 299	-. 391	-. 512	-. 237	-. 189	-. 140	-. 0.096
	34.5	-. 234	-. 299	-. 374	-. 524	-. 230	-. 190	-. 141	-. 108
	41.0	-. 243	-. 298	-. 343	-. 512	-. 228	-. 193	-. 150	-. 125
	44.5	-. 240	-. 291	-. 308	-. 379	-. 230	- 201	-. 162	-. 139
	51.0	-.219 -.190	-.262 -.223	-. 234 -.211	-.230 -.168	-. 2200	-. 201	-.165 -.148	-. 1446
	71.0	-. 0.057	-. 0.068	-. .079	-. -.067	-..042	-. 066	-. 0.060	-. 0.065
	79.5	. 012	.003	-.004	-.003	. 019	. 008	. 005	-.001
	91.0	. 092	. 086	. 081	. 086	. 097	. 089	. 087	. 072
$0.831 \mathrm{~b} / 2$	0	0.412	0.443	0.388	0.297				
	1.5	-. 0665	-. 300	-. 604	-. 950	-0.077		0.213	0.291
	5.5	-.174 -.174	-. 320 -.313	-.509 -.503	-.740 -.719	-. 1772	-. 0.062	. 030	. 0991
	11.0	-. 183	-. 28 年	-. 434	-. 513	-. 190	-. 110	-. 037	.018
	14.5	-. 196	-. 292	-. 420	-. 541			- -	
	21.0	-. 213	-. 290			-. 213	-. 151	-. 098	-. 0.054
	24.5	-. 223	-. 294	-. 368	-. 546	-. 219	-. 162	-. 111	-. 068
	37.8	. .227 -.245	. .282 -.294	-.316 $=.303$	-. 474	-. 234 $=.244$	-. 190	-. 143	-. 108
	42.0	-. 245 -.260	-. 294	-.303 -.322	$=.363$ -.257	-. 244	-. 2129	-. 169	-.140 -.170
	44.5	-. 232	-. 267	-. 270	-. -134	-. 230	-. 2218	-. 203	-. 270
	51.8	-. 202	-. 232	-. 178	-. 165	-. 193	-. 176	-. 160	-. 270
	59.5	-. 114	-. 084	-. 118	-. 115	-. 126	-. 121	-. 113	-. 115
	71.0	-. 024	-. 035	-. 040	-. 039	-. 016	-. 023	-. 030	-. 038
	79.5	. 037	. 035	. 032	.030 .107	. 1176	. 042	. 1034	. 024
$0.924 \mathrm{~b} / 2$	0	0.439	0.355	0.180					
	2.5	-. 0022	-. 249	-. 585	-. 918	-0.093	0.082	0.212	0.287
	5.5	-. 181	-. 330	-. 527	-. 800	-. 177	-. 059	. 040	. 109
		-. 192	=. 336	-. 518	-. 799	-. 180	-. 064	. 032	. 100
	12.0	-. 201 -.245	-. 302	-. 438 $=.430$.6614 -.531	-. 206 -.240	-. 122	-. 0.048	.009 -.049
	21.0	-. 290	-. 359	-. 413	-. 572	-. 291	-. 239	-.182	-. 141
	24.5	-. 250	-. 308	-. 332	-. 225	-. 274	-. 260	-. 232	-. 212
	31.0	-. 213	-. 250	-. 185	-. 115	-. 223	-. 208	-. 197	-. 228
	34.5	-. 176	-. 166	-.182	-. 144	-. 185	-. 178	-. 164	-. 185
	41.8	-.182 -.170	-. 186	-. 217 -.198	-. 2000	-. 170	-. 165	-. 157	-. 151
	51.5	-. 131	-. 137	-. 144	-. 152	-. 140	-. 140	-. 133	-. 126
	59.5	-. 054	-. 066	-. 0.074	-. 081	-. 054	-. 060	-. 012	-. 071
	73.0	. 005	. 003	\bigcirc	-. 010	. 015	. 010	. 007	-. 010
	91.0	.120	. 122	. 117	. 097	. 131	.121	. 110	. 093

TABLE XII. - CONTIHUED.
(b) $a_{u,} 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Sealspan sta	Rereent chord	UPPER SURFACE				LCTER GURPMCE			
		Angle of attack				Angle of attaok			
		4°	6°	$8{ }^{\circ}$	10°	$4{ }^{\circ}$	$6{ }^{\circ}$	8	10°
$0.086 \mathrm{~b} / 2$	0	0.521	0.442	0.338	0.231				
	1.5	-. 238	-. 4772	-. 734	-2.047	0.340	0.430	0.510	0.572
	5.5	-. 141	-. 237	-. 335	-. 407	. 209	. 282	. 359	. 426
	$1{ }^{6.5}$	-. -162	-. 252 -.230	-. 347	-. 404 $=.369$. 121	. 2496	. 26	- 385
	14.5	-. 178	-. 238	-. 322	-. 398	.101	-163	.224	. 287
	21.0	-. 183	-. 214	-. 317	-. 381	. 070	. 127	. 188	. 240
	24.5	-. 200	-. 263	-. 326	-. 369	. 043	. 102	. 159	. 209
	31.0	-. 201	-. 260	-- 314	- 380	. 012	. 068	. 120	. 165
	34.5	-. 260	-. 320	-. 373	-. 435	-. 014	. 040	. 090	. 135
	41.0	-. 289	- 360	-. 420	-. 470	-. 0.46	. 008	. 0.56	. 098
	44.5 51.0	-. 325	-. 390	-. 4.50	-. 508	-. 127	-. -.050	-. -.002	. .070
	51.5	-. 2 Eb	二. F 40	-. 492	-. 550	-. 140	-..085	-. 0.03	.063
	11.0	-. 404	-. 475	-. 541	-. 600	-. 122	-. 080	-. 0.5	-. 015
	79.5	-. 291	-. 395 -.175	-. 4924	=. 579	-. 0.071	-.045 -.028	-. 024	-. 022
		-. 0.15	-. 175	-. 255		-. 030		-.031	05
0.195 b/2	0	0.350	0.197	0.045	-0.090				
	1.5	-. 430	-. 730	-1.021	-1.100	0.397	0.478	0.530	0.556
	5.5	-. 277	$=-373$	-. 607	-. 880	. 191	- 286	- 315	. 423
	11.0	-. 255	-. 3158	-. 460	-. 640	. 100	.177	- 247	- 309
	14.5	-. 269	-. 543	-. 470	-. 550	. 068	. 135	. 203	. 261
	21.0	-. 265	-. 35	-. 417	-. 517	. 024	. 0.6	. 157	. 210
	24.5	-. 275	-. 39	-. 420	-. 505	. 002	. 067	. 137	. 177
	37.0	-. 289	-. 367	-. 414	-. 507	-. 039	. 025	-080	. 127
	34.5 42 4	-. 325	-. 397	-. 4.513	-. 589	-. 0.097	-. 0.037	. 049	. 0.097
	44.5	-. 410	=. 480	-. 54	-. 605	-. 115	-. -.056	-.002	. 037
	51.0	-. 425	-. 485	-. 550	-. 613	-. 115	-. 092	-. 035	-. 002
	59.5	-. 457	- 515	-. 513	-. 627	-. 140	-. 090	-. 049	-. 025
	71.0	-. 804	-. 509 -.287	-.594 -.434	-.660 -.604	-.108 -.060	-. 075 -.047	-. 050 -.040	-. 0.058
	91.0	-. 0.036	-. 096	-. 104	-. -307	-. 0.004	-. 018	-. 039	-. 0.097
$0.382 \mathrm{~b} / 2$	${ }^{0}$	0.213	-0.020	- -1.168	-0.323	0.281	0.377	0.451	0.480
		-. 454	- $=.740$	-1.107	-1. 226	0.141	0.377	0.313	-. 367
	6.5	-. 440	-. 590	-1.163	-1.266	. 113	.267	. 28	-340
	11.0	-. 380	-. 5 22	- 2697	. 954	. 057	. 143	. 216	. 270
	14.5	-. 407	-. 510	-. 596	-. 885	. 020	. 103	. 175	. 226
	21.0	-. 390	-.501	-. 589	-. 2675	-. 0200	. 057	. 126	. 173
	31.0	-. 432	-. 511	=. 590	-. 680	-. 0.08	-.019	.045	. 086
	34.5	- -4.41	- 520	- 595	-. 668	- 109	-. 040	.020	. 057
	41.0	- 500	-. 668	=. 650	-. 714	$=220$	-. 059	-. 007	-036
	51.0	-.528	$=.603$	-. 670	-. 737	$=.175$	-. 103	-. 0.060	-. 040
	59.5	-. 555	-. 642	-. 707	-. 770	-. 135	-. 097	-. 072	-. 070
	719	-. 211	-. 353	-. 517 -.210	-. 750 -.510	-.086	-.071 -.030	.067 -.042 -.012	-.092 -.097
	91.0	-. 0.034	-. 003	-. 0.047	-. 280	-. .034	-. 016	-. 016	-. 116
$0.555 \mathrm{~b} / 2$	0	0.202	0.012	-0.172	-0.335				
	1.5	-. 936	-1. 224	-1.362	-1.417	0.287	0.380	0.434	0.459
	5.5	-. 5000	-I. 1.17	-1.270	-2. 355	. 1148	. 237	- 306	. 350
	11.0	-. 490	-. 737	-1.271	-1.350	. 049	. 146	. 208	. 52
	14.5	-. 502	-. 566	-1.289	-1.317	.018	. 105	. 169	. 211
	21.0	-. 508	-. 586	-. 760	-1.239	-. 030	. 048	. 210	. 146
	24.5 31.0	-. 507 $=.518$	- 5 . 598 $=-598$	-. 695 $=.650$	-1.180	-. 050	.029 -.020	. 081	. 113
	314.5	=.518	-. 898	-.660	-. 8.50	-. 0.102	-. 0.038	.031	.050
	41.0	-. 590	-. 662	-. 728	-.76\%	-. 120	-. 067	-. 024	-. 010
	44.5	-. 619	-. 702	-. 763	-. 780	-. 125	-. .972	-. 040	-. 032
	51.0	-. 606	-.700	-. 767	-. 818	-. 131	-. 090	-. 0.065	-. 077
	59.5	-. 270	-.568 -.148	-. 707	-.849	-. 1.125	- $=100$	-. 090	-. 112
	719.5	-. 099 -.011		-.207 -.143	-.800 -.458	-. 0.067	-.060 -.024	-. 070	-.125 -.132
	91.0	-. 0.070	-. 040	-. 0.085	-. 241	-.047	-..022	-.,034	-. 148

TABLE XII.- CONCLJDED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluced.

Semiapan sta.	Percent chord	UPPER SURFACE				LOMER SURFACE			
		Angle of attaok				Angle of attack			
		4°	6°	8°	10°	$4{ }^{\circ}$	6°	5°	10°
$0.707 \mathrm{~b} / 2$	0	0.095	-0.114	-0.311	-0.487				
	1.5	-1.070	-1.263	-1.390	-1.379	0.331	0.401	0.434	0.437
	5.5	-. 898	-1.180	-1.358	-1.360	. 150	. 242	- 305	. 335
	12.5	-. 880	-1.189	- 1.360	-1.357	. 124	. 213	. 279	- 325
	14.5	-. 566	-1.102	-1.273	-1.325	. 023	.102	. 160	. 188
	21.0	-. 580	-. 670	-1.208	-1.269	-. 022	. 046	. 100	. 120
	24.5	-. 582	-. 630	-1.068	-1.276	-. 040	. 022	. 071	. 088
	31.6	-. 584	-. 650	-. 823	-1.247	-. 073	-. 017	. 025	. 035
	34.5	-. 600	-. 667	-. 761	-1.221	-. 088	-. 032	. 02	. 010
	41.0	-. 654	-. 720	-. 693	-1.165	-. 112	-. 064	-. 036	-. 040
	44.5	-. 683	-. 773	-. 715	-1.162	-. 124	-. 088	-. 0.59	-. 070
	51.6	-. 323	-. 721	-.685	-1.030	-. 137	-. 106	-. 098	-. 113
	79.5	-. 0.040	-. 1874	-. 6.487	-. 0.681	-. 1479	-. 122	-. 128	-. 169
	79.5	. 019	-. 0.03	-. 390	-. 368	-. 0.016	-. 0.045	-. 2115	-. 214
	91.0	. 086	. 0.04	-. 222	-. 259	. 060	. 020	-. 085	.. 191
$0.831 \mathrm{~b} / 2$	0	0.203	0.014	-0.169	-0.327				
	1.5	-1.095	-1.280	-. 904	-1.240	0.335	0.393	0.416	0.409
	5.5	-. 978	-1.250	-. 917	-1.251	. 149	. 228	. 280	. 301
	6.5		-1.257	-. 921	-1.257	. 138	. 218	. 273	. 290
	11.0	-. 817	-1.188	-. 918	-1.247	. 059	. 131	. 185	. 204
	14.5 21.6		-1.160						-092
	21.0	-. 6.618	-1.099	-. 877	-1.183	-. 0.045	. 035	. 080	. 0952
	31.0'	-. 6.630	-1.018	-. 804	-1.218	-..083	-. 039	-. 007	. 004
	34.5	-. 637	-. 629	-. 745	-1.136	-. 120	--.074	-. 042	-. -.047
	41.0	-. 370	-. 610	-. 706	-1.134	-. 156	-. 119	-. 091	-. 103
	44.5	-. 151	-. 530	-. 689	-1.118	-. 193		-. 137	-. 157
	51.0	-. 100	-. 358	-. 652	-1.099	-. 187	-. 169	-. 164	-. 198
		-. 070	-. 268		-. 980	-. 131	-. 172	-. 220	-. 298
	71.0	-. 0.021	-. 088	-. 491 -.412	-. 825	-. 014	-. 081	-. 175	
	79.5 91.0	. 031	. 010	-.412 -.312	-.796	. 0175	-. 020	-.129 -.120	. .287 -.240
$0.924 \mathrm{~b} / 2$	0								
	1.5	-1.062	-0.165	-0.625	-0.176	$0.3 \overline{2} 6$		391	
	5.5	-1.050	-1.115	-. 771	-1.157	. 150	. 222	. 270	. 279
	6.5	-1.039	-1.082	-. 772	-1.147	.140	. 210	. 258	-268
	11. 14.5	-1.003			-1.130		. 110	.147	. 168
	14.5 21.0	-.876 -.630	-. 9.934	-. 750	-1.145	-. 016	.050 .054	.092 -.010	. 101
	24.5	-. 612	-. 783	-. 688	-1.079	-. 190	-. 133	-. 090	-. 0.090
	31.0	-. 200	-. 730	-. 659	-1.058	-. 233	-. 185	-. 149	-. 164
		-. 070			-1.048		-. 226	-. 201	-.234
	44.0	-. 099	-. 607	-. 608	-1.024	-. 222	-. 240	-. 235	-. 287
	44.5	-. 119	-. 551	. 582	-1.021	-. 167	-. 245	-. 270	-. 344
	59.5	-. 0.090	-. 3.34	-. 359	-1.011	-. 121	-. 197	-. 272	-. 373
	71.0	-. 026	-. 161	-. 442	-. 993	-. 020	. .046	-. 154	-. 374
	79.5	. 008	-. 159	-. 390	-. 959	. 021	. 001	-. 131	362
	91.0	. 064	-. 064	-. 345	-. 805	. 081	. 048	-. 130	-. 352

(a) $a_{u}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Senispan Eta.	Percent ahord	UPPER SLRFACE				LOTIER 80RPAOE			
		angie of attack				uncle of attacr			
		0°	1°	2°	3^{0}	0°	$1{ }^{\circ}$	2^{0}	3°
$0.086 \mathrm{~b} / 2$	0	0.578	0.580	0.572	0.555				
	1.5	. 2140	. 057	-. 0.030	-. 125	0.107	0.169	0.232	0.288
	5.5	. 051	-.005	-. 0.040	-.085	. 015	. 0750	. 135	. 173
	11.0	-.002	-. 0.040	$=.076$	-. 178	-.007	. 020	. 063	. 048
	114.5	-. 034	-. 070	-. 103	-. 142	-. 030	-. 001	. 035	. 070
	21.0	-. 052	$=.078$ $=.106$	- -113	$=.149$ $=.168$	-. 0.00	-. 0.023	. 010	. 015
	31.0	-.08E	-. 120	0.143	-. 171	-. 103	-. 080	-. 046	-. 016
	34.5	-. 134	-. 167	-. 193	-. 226	-. 126	-. 112	-. 075	-. 048
	41.8	-. 368	-. 203	-. 236	-. 265	-. 170	-. 274	-. 105	-.080
	44.5	- 202 $=-270$	-. 235	-. 260	-.392 -.320	-. 230	-. 204	-. -176	-. 238
	59.5	-. 230	-. 268	-. 314	-. 350	$=.240$	-. 220	-. 184	-. 159
	73.8	-8834	-. 285	-. 310	-. 385	- 250	-. 223	-. 170	-.147 -.088
	79.0 9	-. 136 -.042	-. 172	$=.200$ -.070	-. 252	-. 0.149	-. 227	-. 0937	-. 0888
$0.195 \mathrm{~b} / 2$		0.499	0.487	0.462	0.418			- -	
	1.5	. 0.40	-. 040	-. 151	-. 280	0.105	0.193	0.278	0.344
	5.5	-.015	-. 082	-. 159	-. 201	-. 019	. 037	. 096	- 1146
	6.5	-. 042	-. 108	-. 160	-. 220	-. 042	-.027	.062	. 1106
	11.8 14.5	-. 0682 $=.090$	-. 116	-. 156	-.200 -.217	-.066 -.095	-. 0.059	-.020	. 0630
	$\frac{14.5}{21.0}$	-. 090 -119	-. 140	-. 175	-.217 -.225	-. 095	-. 0.07	-.013	-.009
	24.5	-. 140	-. 184	-. 217	-. 254	-. 142	-. 110	-. 070	-. 030
	31.0	-. 160	-. 200	-. 233	-. 288	-. 279	-. 1151	-. 113	-. 070
	34.5	-. 197	--237	-. 259	-. 296	-. 2121	-.184 -.215	-. 139	- $=.102$
	41.0	-. 270	-. 289	-.310 -.34	-. 337	-.253	-. 222	-. 179	-. 215
	51.8	-. 275	-. 324	-. 359	-. 350	-. 230	-. 250	-. 208	-. 176
	59.5	-. 271	-. 374	-. 371	-. 411	-. 287	-. 267	-. 195	-. 166
	79.5	-. -.219	-. 0.099	-. $\mathrm{-} 114$	-. F - 166	-. 0.068	-. 085	-. 0.074	-. 0.06
	91.0	. .007	-.002	-.,001	-. 010	. 007	-.002	.008	. 007
$0.382 \mathrm{k} / 2$		0.442	0.429						
	1.5	-. 012 -.102	-.151 -.189	-. 303 -.268	$\begin{aligned} & =.479 \\ & -.361 \end{aligned}$	-0.038 -110	0.054 -.043	0.146 .030	0.221.
	5.5	-. 102	-. 180	-. 268	$\begin{aligned} & -.361 \\ & -.357 \end{aligned}$	-. 1128	-. -.065	. 005	. 06%
	11.0	-. 151	-. 219	-. 273	-. 330	-. 152	-. 101	-. 040	. 011
	14.5		-.239	-. 286		-. 176	-. 189	-. 070	-. 080
	21.0	-. 197	-.24\%	-. 293	-. 340	-. 202	-. 161	-. 109	-. 060
	24.5	-. 227	-. 282	-. 317	- 357	=-223	-. 180	-. 130	-.080
	31.5	-. 2.20	-:320	-. 345	-. 310	-. 274	-. 2124	-. 190	-. 141
	41. ${ }^{\text {d }}$	-. 301	-. 367	-. 411	-. 450	-. 295	-. 267	-. 193	-. 151
	47. 5	-. 315	-- 380	-. 426	-. 472	-. 312	-. 267	-. 192	-. 168
	51.0	-. 290	$=.369$ $=.317$	-.480	$=.469$ $=.488$	-. 306	-. 268	-. 217	-. 149
	71.0	-. 110	-.106	-. 115	$-.181$	-. 108	-. 116	-. 099	-.087
	79.5 91.0	-. 036	-. 04059	-. 036	-. 055	-. 032	- $\begin{array}{r}.036 \\ .047\end{array}$	-.021 .060	-.018 .059
$0.555 \mathrm{~b} / 2$									
		0.429	0.423	-. 413	0.31	-0.086	0.030	0.140	0.225
	5.5	-. 154	-. 258	-. 350	-. 463	-. 143	-.068	. 017	. 085
	6.5	-. 218	-. 261	-. 378	-. 475	-. 167	-. 089	-. 009	. 062
	11.0	-. 192	-. 274	-. 350	-. 435	-. 200	-. 140	-. 065	-. 001
	24.5	-. 215	-. 291	-. 359	-.433	=. 215	-. 160	-. 018	-. 030
	21.0	-. 241 $=.255$	-. 330	-. 380	-. 4.425	-. 249	-. 193	-.12	-.091
	31.6	-. 276	-. 350	-. 509	-. 441	-. 262	-. 227	-. 170	-. 222
	34.5	-. 264	-. 354	-. 418	-. 465	-. 267	-.238	-. 178	-. 137
	41.6	-. 200	-. 373	-. 455	-. 525	-. 276	-. 240	-. 161	-. 147
	44.5	-. 275	-. 345	-. 440	- 543 $=-53$	-. 269	-. 231	-. 174	-. 147
	51.5	-. 201	-. 312	-. 789	-. 227	-. 2198	-. 2166	-. 149	-. 131
	71.0	-. 0.088	-. 109	-. 092	-. 093	-. 080	-. 088	-. 070	-. 0.013
	79.5	-. 021	-. 031	-. 0.025	-. 011	-. 019	-. 026	-. 0.073	-. 0106
	91.0	. 070	. 061	. 063	. 013	- 0			

TABLE XIII. - CCNTINUED.
(a) $a_{u}, 0^{\circ}, 2^{\circ}, 2^{0}, 3^{\circ}$ - Concluded.

Semispan sta.	Percent chord	UPPER SURFACE				LOMER SURTACE			
		Angle of attack				Angle of attack			
		0°	1^{0}	2°	3^{0}	0°	$1{ }^{\circ}$	2°	3°
$0.707 \mathrm{~b} / 2$	0	0.418	0.394	0.322	0.215				
	1.5	-. 0.79	-. 2888	-. 530	-. 838	-0.085	0.062	0.187	0.272
	5.5	-. 191	-. 327	-. 459	-. 595	-. 181	-. 080	. 020	. 093
	6.5 11.0	-. 207	-.342 -.304	-. 477	-.622 -.487	-. 190	-.097 -.149	0.6	. 070
	14.5	-. 2221	-. 330	-. 419	-. 474	-. 232	-. 1.160	-. 0.081	-.,024
	21.0	-. 235	-. 341	-. 428	-. 485	-. 240	-. 180	-. 112	-. 0.06
	21.5	-. 2440	-. 3.36	-. 431	-. 494	-. 247	-. 190	-. 129	-. 080
	31.0	-. 249	-. 323	-. 433	-. 510	-. 250	-. 201	-. 243	-. 101
	34.5	-. 250	-. 312	-. 433	-. 527	-. 247	-. 200	-. 144	-. 1111
	41.0	-. 255	-. 301	-. 392	-. 574	-. 2371	-.202 -.210	-. 153	- -130
	51.0	-. 2229	-. 260	-. 325	-. 262	-. 234	-. 206	-. 1.170	-. 1142
	59.5	-. 200	-. 220	-. 192	-. 141	-. 200	-. 181	-. 153	-. 145
	71.0	-. 0.063	-. 070	.070 . .002	-. 049	-. 050	-. 070	-. 060	-. 066
	91.8	. 0972	.086	.088	. 0991	.099	. 0806	. 0910	. 079
$0.831 \mathrm{~b} / 2$		0.408	0.433	0.387	0.302	--		- ${ }^{-7}$	
	1.5	-. 0.79	-. 322	-. 603	-. 921	-0.088	0.080	0.207	0.285
		-. 191	-. 349	-. 512	-. 720	-. 189	-. 0.074	. 022	. 092
	6.5	-. 189	-. 342	=. 514	-.705 -.499	-. 187	-.077 -.120	.018 -042	. 087
	11.0 14.5	-. 198	$=.308$ $=.312$	-. 454	-. 499	-. 208	-. 120	-. 042	. 015
	21.0	-. 228	-. 302	-. 436	-. 5440	-. 221	-. 160	-. 101	-. 0.057
	24.5	-. 235	-. 302	-. 420	-. 551	-. 229	-. 170	-. 116	-. 069
						-. 248	-. 196		
	34.5	-.258 -254	- 301	-. 317	-. 505	-. 254	-217 $-\quad 249$	-. 169 -.200	-. 143
	41.0	-. 284	-. 321	-. 282	-.303 -.163	-. 274 -.264	-.249 -.253	-. 200	-. 273
	51.0	-. 223	-. 258	-. 168	-.12\%	-. 218	-. 195	-. 172	-. 190
	59.5	-. 080	-. 067	-. 1177	-. 094	-. 096	-. 108	-. 110	-. 111
	71.0	-. 0.028	-. 0336	-. 0.030 .033	-. 0288	-. 019	-. 0.044	-. 0288	-. 032
	91.0	.110	. 110	. 109	. 109	.118	. 111	. 107	. 093
$0.924 \mathrm{~b} / 2$	0	0.437							
	1.5	-. 013	-. 266	-. 599	-. 880	-0.091	0.081	0.210	0.281
		-. 193	-. 350	-. 564	-.788			. 038	. 103
	6.5 11.0	-. 206 -.211	-. 351 -.311	- 568 $=-.474$	$=.788$ $=.670$	-. 161 -.209	-. 065 -.123	.031 -.049	. 097
	14.5	-. 212	-. 331	-. -.468	-. 553	-. 240	-. 123	-. 0.098	-.049
	21. ${ }^{21.0}$	-. 306	-. 371	-. 441	-. 608	-. 293	-. 242	-. 186	-. 141
	24.5	-. 301	-. 349	-. 362	-. 550	-. 324	-. 298	-. 250	-. 219
		-. 248	-. 291	-. 160	-. 147				
	34.5	-.194 $=.175$	-.199 -.159	$=.157$ $=.205$. .087 -.150	-. 210	-. 195 -.165 .15	-. -.175	-. 228
	44.5	-. 1.168	-. 1.16	-. 201	-. 169	-. 2148	-. 147	-. -141	-. 136
	51.0	-. 121	-. 128	-. 143	-. 140	-. 331	-. 3.35	-. 130	-. 112
	59.5	-. 056	-. 069	-. 075	-. 079	-. 057	-. 050	-. 065	-. 070
	71.0	. 008	. 004	. 001	-. 003	. 019	. 010	. 003	-. 009
	79.5 91.0	. 122	. 120	. 1124	. 048	. 231	. 121	. 112	. 098

table Xili．－contikued．
（b）$\alpha_{n}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ ．

Seni－ sta．	Porent	UPPER BURTAOE				Levith surfiox			
		Angle of attack				Argie of attack			
		4°	6°	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.086 \mathrm{~b} / 2$	0	0.528	0.452	0.348					
	1.5	－ 2.227	－． 2525	0.614 $=328$		0．340	0．431		
	5．5	－． 137	－． 245	－． 3 － 35		． 170	． 247	． 319	
	11.0	－． 150	－-220	－． 2 St		．128	． 2198	－264	
	$\frac{14.5}{21.5}$	－． 174	－． 233	－． 315		． 1070	． 1267	． 185	
	21.5	－． 193	－． 251	－． 318		－094	． 102	－154	
	31.8	－． 196	－-235	－． 205		－．010	． 063	． 188	
	41.0	－． 2286	－－ 351	－．		－．051	．006	．057	
	41．5	－． 315	－． 370	＝．442		－．710	－． 056	－－008	
	519：5	二． 372	－-134	＝－484		－$=1374$	－．086	－-0.40	
	79.5	－． 312	－． 415	－． 4.59		－． 079	－． 0.05	－． 0.40	
$0.195 \mathrm{~b} / 2$									
	1.5	－ 0.355	－0．210	－0．057		0.400	0.479	0.530	
	5．5	－：223	－－-770	－1．600		． 191	． 280	． 350	
	11.5	二－284	－． 341	－． 5 5 5		－ 2151	． 238	： 348	
	12．5	＝－264	－： 315	－． 4.9		． 0.063	． 135	－ 201	
	21．0	－． 263	－． 3300	－． 4141		－．022	：066	－151	
	31.6	－：891	－－363	－－． 8134		－：．041	－021	－076	
	34．5	－． 320	－． 34	－．-.557		-.072 -.100	－． 012	． 010	
	4.5	－． 103	－：472	－：54t		－． 119	－：．066	－．010	
	51.0	－． 421	－．-507	－． 543		－-150	－． 096	－． 0.046	
		－． 420	－． 515	－． 388		－． 113	－． 089	－． 064	
	79.5	－． 282	－． 3.147	－． 2.235		－．：078	－．068	－．062	
$0.382 \mathrm{~b} / 2$									
	1.5	－． 688	－1．020	－		0.282	0.376	0.940	
	5.5	－． 45	－． 720	－1．129		． 140	． 233	509	
	11.0	－． 710	－．${ }^{\text {cog }}$	－1．-6.65		． 058	－140	－210	
	21.5	－． 388	－． 496	－． 559		．050	． 100	－170	
	21.5	－． 3804	－．-490	－． 575		－．080	．057	． 320	
	31.8	－． 424	－．-.456	－． 585		－．089	－．023	． 035	
	34.5	－． 438	－． 5151	－-840		－．-112	－． 0.078	－020	
	41.5	－． $\mathrm{F}^{2} 20$	－．-290	－． 667		－． 141	－．：090	－．0．041	
	52.0	－－512	－－989	－ 6.65		－ 2161	－ 1116	－ 078	
	71：0	－： 2667	－． 7.750	－． 663		－． 0.092	こ－． 09	－．099	
	79．5	－． 086	－． 201	－-330		－． 031	－． 050 -.006	－．	
$0.555 \mathrm{~b} / 2$									
	1.5	－． 2.816	－1．159	－0．147		0.289		0.430	
	5.5	－ 57	－1．069	－1． 25		． 139	． 23.236	－ 303	
	11．5	－． 478	－1． 073	－1．213		：149	： 130	：2073	
	14.5	－． 485	－． 545	－1．210		． 016	． 093	－161	
	21.0 24.5	－．-494	－． 88	$\square \mathrm{Z}$.		－．030	：033	． 0.70	
	31.0	－． 504	－． 592	－． 657		－． 090	－． 037	． 027	
	34.5	－． 519	－． 95	－． 665		－． 110	－． 055	－． 009	
	41.0	－． 769	－． 643	－． 715		－．	－． 0.04	－． 0.64	
	51.0	－． 595	－． 676	－．764		－ 13	－． 114	－． 090	
	59.5	－． 382	－． $\mathrm{-} .216$	-784 -.776		－． $\mathrm{-}$－ 067	－＝．124	－． $\mathrm{-} 1100$	
	79.5	－． 011	－． 0.097	－． 182		－．020	－． 047	－． 088	
	91.0	． 075	． 005	－． 099		． 048	． 02	－． 066	

TABLE XIII. - CONCLUDED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 5^{\circ}, 10^{\circ}$ - Conoluded.

Beralepan eta.	Percent chord	UPPER SUEFACE				LOMER BURFACE			
		Angle of attack				Angle of attaoz			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} 0.111 \\ -1.024 \\ -.857 \\ -.838 \\ -.532 \\ -.553 \\ -.566 \\ -.568 \\ -.570 \\ -.589 \\ -.642 \\ =.690 \\ -.488 \\ -.141 \\ -.033 \\ .031 \\ .093 \end{array}$	$\begin{array}{r} -0.088 \\ -1.206 \\ -1.120 \\ -1.132 \\ -1.077 \\ -1.043 \\ -.632 \\ -.613 \\ -.640 \\ -.657 \\ -.705 \\ -.757 \\ -.750 \\ -.326 \\ -.133 \\ -.035 \\ .055 \end{array}$	$\begin{aligned} & -0.277 \\ & -1.352 \\ & -1.314 \\ & -1.311 \\ & -1.258 \\ & -1.245 \\ & -1.208 \\ & -1.163 \\ & -.965 \\ & -.891 \\ & -.836 \\ & =.698 \\ & =.715 \\ & =.639 \\ & -.423 \\ & =.382 \\ & -.848 \end{aligned}$		0.325 .147 .123 .046 .020 $-.027$ $-.046$ -.076 -.090 $-.113$ $-.127$ $-.142$ -.147 -.084 . .017 .063	0.395 .233 .207 .123 .093 .033 .008 $-.047$ $-.080$ $-.100$ $-.124$ $-.144$ -.111 -.067 .014	$\begin{array}{r} -.430 \\ . .295 \\ . .270 \\ .183 \\ .147 \\ .086 \\ .057 \\ .007 \\ =.015 \\ =.065 \\ =.081 \\ =.117 \\ =.152 \\ =.148 \\ =.153 \\ -.130 \end{array}$	
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} 0.217 \\ -1.050 \\ -.930 \\ =.937 \\ =.873 \\ -.706 \\ -.604 \\ =.616 \\ =.622 \\ =.635 \\ =.594 \\ =.265 \\ =.098 \\ =.040 \\ =.001 \\ . .043 \\ . .102 \end{array}$	$\begin{array}{r} 0.043 \\ -1.201 \\ -1.169 \\ -1.172 \\ -1.105 \\ -1.075 \\ -1.010 \\ -1.023 \\ -.833 \\ -.719 \\ -.708 \\ -.710 \\ -.253 \\ -.111 \\ -.020 \\ .039 \\ .086 \end{array}$	$\begin{aligned} & -0.133 \\ & -1.148 \\ & -1.140 \\ & -1.138 \\ & -1.113 \\ & -1.054 \\ & -.985 \\ & -.955 \\ & -.908 \\ & -.815 \\ & -.760 \\ & -.740 \\ & =.708 \\ & -.640 \\ & =.551 \\ & =.478 \\ & -.365 \end{aligned}$	-	$\begin{array}{r} 0.330 \\ .141 \\ .132 \\ .055 \\ -.028 \\ -.043 \\ -.085 \\ =.121 \\ =.159 \\ -.198 \\ -.200 \\ -.144 \\ -.040 \\ .020 \\ .081 \end{array}$	$\begin{array}{r} -.385 \\ .217 \\ .208 \\ .121 \\ .028 \\ .008 \\ . .048 \\ -.085 \\ =.128 \\ =.172 \\ -.192 \\ -.224 \\ =.112 \\ -.020 \\ .041 \end{array}$	0.4006 .265 .254 .166 .060 .037 -. 024 $-.063$ $-.115$ $-.163$ $-.196$ $-.270$ -. 245 $-.200$ $-.166$	
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.127 \\ -1.015 \\ -1.001 \\ -.991 \\ -.935 \\ -.920 \\ -.613 \\ -.640 \\ -.441 \\ -.131 \\ . .065 \\ . .080 \\ =.089 \\ -.071 \\ -.013 \\ .017 \\ .070 \end{array}$	$\begin{aligned} & -0.361 \\ & -1.162 \\ & -1.176 \\ & -1.169 \\ & -1.101 \\ & -1.098 \\ & -1.040 \\ & -1.006 \\ & -.853 \\ & -.743 \\ & -.559 \\ & -.540 \\ & =.368 \\ & -.170 \\ & -.008 \\ & -.020 \\ & .018 \end{aligned}$	$\begin{array}{r} -0.588 \\ -.902 \\ -.903 \\ -.900 \\ -.873 \\ -.850 \\ -.819 \\ -.761 \\ -.732 \\ -.712 \\ -.697 \\ -.673 \\ -.652 \\ -.583 \\ -.523 \\ -.459 \\ -.390 \end{array}$		$\begin{array}{r} -.326 \\ 0.148 \\ .139 \\ .042 \\ =.016 \\ -.123 \\ =.192 \\ -.240 \\ =.269 \\ -.253 \\ =.207 \\ =.127 \\ -.070 \\ -.013 \\ .027 \\ .085 \end{array}$	0.365 .211 201 .201 .040 $-.062$ -.148 -.206 $-.253$ $-.278$ -.310 -.289 $-.128$ -. 044 .058	$\begin{array}{r} -.360 \\ 0.351 \\ .241 \\ .140 \\ .077 \\ -.029 \\ -.113 \\ =.177 \\ -.236 \\ =.273 \\ =.321 \\ -.340 \\ -.311 \\ =.229 \\ -.192 \\ -.170 \end{array}$	

(a) $a_{1}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$.

Sen 1epaln sta.	Percent ohord	UPPER SURPICE				LOMER Butsios			
		Angle of attack				Angle of attadr			
		0°	$1{ }^{\circ}$	2^{0}	3°	0°	1°	2°	3°
$0.086 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 17.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.5 \\ 34.5 \\ 41.5 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 92.0 \end{gathered}$	0.584 .146 .060 .031 .005 -.027 -.046 $=.065$ -.081 $=.125$ -.197 $=.289$ $=.257$ $=.253$ $=.149$ -.049	0.589 .069 .017 -.010 -.030 $=.059$ -.075 $=.095$ $=.106$ $=.151$ -.220 $=.255$ -.250 -.282 -.175 -.057	0.578 $=.021$ $=.032$ $=.057$ $=.069$ $=.097$ -.108 $=.128$ $=.1356$ $=.224$ $=.253$ -.283 $=.317$ $=.525$ $=.298$	0.562 $=.111$ $=.076$ $=.099$ $=.106$ $=.131$ $=.136$ $=.154$ $=.215$ $=.251$ $=.255$ $=.311$ $=.367$ $=.287$ $=.121$	$\begin{array}{r} -.111 \\ 0.050 \\ .021 \\ -.002 \\ =.025 \\ =.047 \\ =.070 \\ =.059 \\ -.132 \\ =.165 \\ -.23 \\ -.23 \\ =.236 \\ =.262 \\ =.164 \\ -.051 \end{array}$	$\begin{array}{r} . .779 \\ .095 \\ .064 \\ .036 \\ .051 \\ . .021 \\ -.037 \\ =.066 \\ -.099 \\ -.134 \\ -.196 \\ =.202 \\ =.218 \\ =.121 \\ -.034 \end{array}$	-.213 .136 .107 .068 .042 .018 -.009 -.039 -.096 -.105 -.164 $=.182$ $=.185$ $=.157$ -.035	-.75 0.296 .177 .142 .105 .076 .050 .023 -.003 -.039 -.073 $=.133$ $=.155$ $=.254$ -.094 -.038
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11: 0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31: 0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.505 .076 -.008 $=.035$ -.057 -.082 -.111 -.134 -.154 -.230 -.270 -.280 -.287 -.227 -.084 .005	0.498 $=.022$ -.066 $=.089$ -.100 -.122 -.146 $=.166$ -.184 $=.279$ -.370 $=.315$ $=.327$ -.268 -.097 .007	0.469 $=.140$ $=-130$ $=.150$ $=-146$ $=.186$ $=-.207$ $=.223$ $=.249$ $=.299$ $=.35$ $=.355$ $=.374$ $=-167$ $=.070$		$\begin{array}{r} 0.171 \\ =.011 \\ =.036 \\ =.059 \\ =.018 \\ =.111 \\ =.177 \\ -.200 \\ -.244 \\ -.259 \\ -.277 \\ -.293 \\ -.248 \\ -.087 \end{array}$	-.207 0.049 .018 $=.014$ $=.046$ $=.073$ -.096 $=.138$ -.171 $=.217$ $=.234$ -.259 $=.169$ -.076 .008	-.07 0.282 .099 .067 .026 -.008 -.040 -.066 -.105 -.134 -.165 -.175 -.204 -.219 $=.147$ -.083 .001	$\begin{array}{r} 0.349 \\ .152 \\ .115 \\ .069 \\ .033 \\ -.009 \\ =.065 \\ -.095 \\ -.125 \\ -.141 \\ -.177 \\ =.172 \\ -.132 \\ -.077 \\ \hline .004 \end{array}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.0 24.5 31.8 34.5 41.0 44.5 51.8 59.5 71.8 79.5 91.0				0.326 $=.456$ $=.338$ $=.346$ $=-332$ $=-329$ $=.347$ $=.367$ $=.360$ $=-462$ $=.464$ $=.501$ $=.312$ $=.074$.043	$\begin{aligned} & -0.034 \\ & =.104 \\ & -.121 \\ & -.147 \\ & -.173 \\ & -.201 \\ & -.224 \\ & -.253 \\ & -.278 \\ & -.289 \\ & -.313 \\ & -.340 \\ & -.102 \\ & -.099 \\ & -.023 \\ & -.053 \end{aligned}$			-.224 0.093 .0677 .014 -.0189 -.079 -.121 -.147 . .157 -.179 -.1964 -.096 -.024 .054
$0.555 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.5 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$	0.429 -.052 -.153 -.182 -.192 -.216 -.249 -.280 -.286 -.392 -.292 -.265 $=.184$ -.690 -.022 .070			0.316 -.612 $=.448$ $=.459$ $=.420$ $=.421$ $=.429$ $=.434$ $=.453$ $=.522$ $=.547$ $=.541$ $=.146$ $=.006$ -.082	$\begin{array}{r} -0.086 \\ -.145 \\ -.166 \\ -.207 \\ -.218 \\ -.249 \\ -.267 \\ -.295 \\ -.316 \\ -.315 \\ -.297 \\ -.264 \\ -.176 \\ -.083 \\ -.018 \\ .073 \end{array}$		$\begin{aligned} & -.139 \\ & 0.007 \\ & -.069 \\ & -.099 \\ & -.790 \\ & -.178 \\ & -.173 \\ & -.185 \\ & -.1986 \\ & -.177 \\ & -.150 \\ & =. .009 \\ & -.075 \end{aligned}$	-.227 0.082 .059 -.006 $=.033$ -.096 -.097 -.127 -.143 -.161 -.157 -.157 $=.0668$ -.013 .063

TABLE XIV.- GONTINUED.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - concluded.

Semispan sta.	Percent ohord	UPPER SURFAGE				LOWER SURFAGE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{0}$	2°	3^{0}	0°	2°	2°	3^{0}
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.415 \\ & -.082 \\ & -.197 \\ & =.214 \\ & -.211 \\ & -.241 \\ & -.254 \\ & -.252 \\ & =.255 \\ & -.254 \\ & -.256 \\ & -.251 \\ & -.226 \\ & =.200 \\ & -.072 \\ & .021 \\ & .097 \end{aligned}$	$\begin{aligned} & 0.401 \\ & -.273 \\ & -.315 \\ & -.334 \\ & -.298 \\ & -.321 \\ & -.337 \\ & -.341 \\ & -.339 \\ & -.322 \\ & -.299 \\ & -.280 \\ & -.232 \\ & =.206 \\ & -.061 \\ & .018 \\ & .098 \end{aligned}$	0.330 -.506 $=.449$ $=.467$ -.401 $=.424$ -.436 $=.447$ $=.461$ $=.462$ -.433 $=.355$ $=.119$ -.044 .014 .093	0.230 -.803 -.576 -.576 -.601 . .498 $-.481$ $-.486$ $-.504$ $-.519$ -.519 -.618 -.509 -.147 -.147 -.029 .034 .103	$\begin{array}{r} -.058 \\ -0.088 \\ -.187 \\ -.196 \\ -.231 \\ -.249 \\ -.267 \\ -.269 \\ -.267 \\ -.249 \\ -.231 \\ -.227 \\ -.222 \\ -.205 \\ -.062 \\ .026 \\ .103 \end{array}$	$\begin{aligned} & 0.066 \\ & -.074 \\ & -.088 \\ & -.138 \\ & -.152 \\ & -.173 \\ & -.182 \\ & -.191 \\ & -.189 \\ & =.191 \\ & -.199 \\ & -.197 \\ & -.174 \\ & -.059 \\ & .018 \\ & .100 \end{aligned}$	$\begin{array}{r} -.178 \\ .013 \\ =.007 \\ -.069 \\ =.088 \\ -.120 \\ -.133 \\ -.148 \\ =.150 \\ -.154 \\ -.171 \\ =.171 \\ =.160 \\ -.065 \\ .013 \\ .096 \end{array}$	$\begin{array}{r} -.064 \\ 0.087 \\ .064 \\ -.008 \\ -.031 \\ -.068 \\ -.085 \\ -.106 \\ -.117 \\ -.134 \\ -.175 \\ -.152 \\ -.152 \\ -.080 \\ -.083 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 15.5 \\ 5.5 \\ 61.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.402 \\ & -.085 \\ & -.196 \\ & =.199 \\ & -.200 \\ & -.212 \\ & =.224 \\ & -.231 \\ & -.231 \\ & -.248 \\ & -.284 \\ & -.286 \\ & -.238 \\ & =.053 \\ & -.019 \\ & .042 \\ & .118 \end{aligned}$	$\begin{aligned} & 0.437 \\ & -.314 \\ & -.346 \\ & -.345 \\ & -.314 \\ & -.319 \\ & -.307 \\ & -.297 \\ & -.279 \\ & -.282 \\ & -.304 \\ & -.302 \\ & -.254 \\ & -.055 \\ & -.026 \\ & .042 \\ & .119 \end{aligned}$	$\begin{aligned} & 0.392 \\ & -.586 \\ & -.505 \\ & =.508 \\ & =.451 \\ & -.459 \\ & -.457 \\ & -.459 \\ & -.439 \\ & =.405 \\ & -.339 \\ & -.255 \\ & -.113 \\ & -.089 \\ & -.027 \\ & .040 \\ & .114 \end{aligned}$	0.315 -.385 -.658 -.686 $-.525$ -.509 -.530 $-.543$ -.553 -.560 $-.568$. .354 -.116 $-.047$ -.003 .049 .139	$\begin{array}{r} -0.098 \\ -.199 \\ -.197 \\ . .217 \\ -.221 \\ -.223 \\ -.238 \\ -.247 \\ -.275 \\ -.287 \\ . .234 \\ -.068 \\ -.211 \\ .052 \\ .124 \end{array}$	$\begin{aligned} & -.083 \\ & -.070 \\ & -.072 \\ & -.115 \\ & -.155 \\ & -.182 \\ & -.187 \\ & -.205 \\ & -.239 \\ & -.260 \\ & -.199 \\ & -.089 \\ & -.017 \\ & .049 \\ & .120 \end{aligned}$	$\begin{array}{r} -.19 \\ .017 \\ .013 \\ -.046 \\ -.098 \\ -.114 \\ -.144 \\ -.166 \\ -.202 \\ -.233 \\ -.206 \\ -.095 \\ -.019 \\ .044 \\ .114 \end{array}$	$\begin{array}{r} 0.275 \\ .084 \\ .079 \\ .008 \\ -.062 \\ -.072 \\ -.110 \\ -.143 \\ -.178 \\ -.218 \\ -.219 \\ -.120 \\ -.025 \\ .035 \\ .101 \end{array}$
2. $924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.5 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.439 \\ & -.006 \\ & -.187 \\ & -.199 \\ & -.205 \\ & -.241 \\ & -.297 \\ & =.327 \\ & -.278 \\ & -.223 \\ & -.184 \\ & -.249 \\ & -.099 \\ & -.053 \\ & .012 \\ & .069 \\ & .129 \end{aligned}$	$\begin{aligned} & 0.352 \\ & -.265 \\ & -.351 \\ & -.351 \\ & -.308 \\ & -.329 \\ & -.355 \\ & -.349 \\ & -.292 \\ & -.806 \\ & -.150 \\ & -.151 \\ & -.114 \\ & -.058 \\ & .019 \\ & .073 \\ & .130 \end{aligned}$	$\begin{aligned} & 0.187 \\ & -.585 \\ & -.571 \\ & -.573 \\ & -.490 \\ & -.493 \\ & -.494 \\ & -.430 \\ & -.245 \\ & -.127 \\ & -.138 \\ & -.159 \\ & =.124 \\ & -.064 \\ & .009 \\ & .064 \\ & .118 \end{aligned}$	$\begin{aligned} & 0.030 \\ & -.857 \\ & =.769 \\ & =.771 \\ & -.659 \\ & -.616 \\ & -.501 \\ & =.631 \\ & =.463 \\ & =.203 \\ & -.081 \\ & =.091 \\ & =.091 \\ & -.057 \\ & .007 \\ & .052 \\ & .103 \end{aligned}$	$\begin{array}{r} -0.097 \\ -.181 \\ -.182 \\ -.206 \\ -.236 \\ -.292 \\ -.340 \\ -.294 \\ -.236 \\ -.181 \\ -.122 \\ -.108 \\ -.052 \\ .022 \\ .076 \\ .139 \end{array}$	$\begin{aligned} & 0.091 \\ & -.052 \\ & -.056 \\ & -.114 \\ & -.155 \\ & -.229 \\ & -.294 \\ & -.263 \\ & -.200 \\ & -.162 \\ & -.124 \\ & =.116 \\ & -.053 \\ & .018 \\ & .069 \\ & .132 \end{aligned}$		0.275 .100 .094 .006 -.047 -.240 -.200 -.261 -.282 -.238 -.173 -.091 -.057 .003 .044 .104

TABLE XIY.- COHTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{0}, 10^{\circ}$.

$\begin{aligned} & \text { Sens- } \\ & \text { spana } \\ & \text { sta. } \end{aligned}$	${ }_{\text {Pareent }}$	UPPER BURFAOE				Lerer surface			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.086 \mathrm{~b} / 2$									
$0.195 \mathrm{~b} / 2$									
$0.382 \mathrm{~b} / 2$									
$0.555 \mathrm{~b} / 2$									

TABLE XIV. - CONCLDDED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}-$ Concluded.

Sem1span stan.	Percent chord	UPPER SUAPACE				LOMER SURFACE			
		Angle of attack				Angle of attack			
		4°	$6{ }^{\circ}$	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.0 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.0 \\ 31.5 \\ 34.0 \\ 41.5 \\ 44.0 \\ 51.5 \\ 59.0 \\ 71.5 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} 0.124 \\ -1.008 \\ -.033 \\ -.814 \\ -.522 \\ -.549 \\ -.560 \\ -.559 \\ -.561 \\ -.078 \\ -.632 \\ -.683 \\ -.660 \\ -.200 \\ -.054 \\ .098 \\ \hline \end{array}$	$\begin{array}{r} -0.062 \\ -1.192 \\ -1.110 \\ -1.120 \\ -1.077 \\ -1.037 \\ -.604 \\ -.597 \\ =.629 \\ -.650 \\ -.697 \\ -.740 \\ -.755 \\ -.603 \\ -.286 \\ -.121 \\ .013 \end{array}$			0.321 .1144 . .049 .015 -.032 -.057 -.083 -.094 -.117 -.132 -.146 -.044 -.097 -.0284 .064	$\begin{array}{r} 0.386 \\ .225 \\ .198 \\ .082 \\ .022 \\ -.004 \\ -.045 \\ -.063 \\ -.097 \\ -.117 \\ -.1427 \\ -.142 \\ -.109 \\ -.019 \end{array}$		
$0.831 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.0 \\ & 24.0 \\ & 31.5 \\ & 34.5 \\ & 41.5 \\ & 44.0 \\ & 51.5 \\ & 59.5 \\ & 71.0 \\ & 79.0 \\ & 91.0 \end{aligned}$	$\begin{array}{r} 0.232 \\ -1.030 \\ -.917 \\ -.923 \\ -.762 \\ -.697 \\ -.597 \\ -.602 \\ -.611 \\ -.631 \\ =.659 \\ -.592 \\ =.169 \\ -.037 \\ .017 \\ .057 \end{array}$	$\begin{array}{r} 0.069 \\ -1.199 \\ -1.177 \\ -1.181 \\ -1.119 \\ -1.099 \\ -1.041 \\ -1.037 \\ -.843 \\ -.705 \\ -.721 \\ -.799 \\ -.659 \\ -.1084 \\ -.081 \\ -.016 \end{array}$.--22 0.324 .132 .048 .090 -.032 -.046 -.120 -.164 -.206 -.219 -.191 -.043 .024 .084	$\begin{array}{r} .-.374 \\ .202 \\ .192 \\ .1053 \\ .013 \\ -.051 \\ . .065 \\ -.103 \\ -.147 \\ -.196 \\ -.279 \\ -.180 \\ -.064 \\ .022 \end{array}$		
$0.924 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.5 \\ & 14.5 \\ & 21.5 \\ & 24.5 \\ & 31.5 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \end{aligned}$	$\begin{array}{r} -0.102 \\ -. .998 \\ -1.007 \\ -.996 \\ -.927 \\ -.593 \\ -.637 \\ -.623 \\ -.475 \\ -.100 \\ -.052 \\ -.046 \\ -.039 \\ .006 \\ .028 \\ .090 \end{array}$	$\begin{aligned} & -0.329 \\ & -1.169 \\ & -1.199 \\ & -1.201 \\ & -1.129 \\ & -1.126 \\ & -1.115 \\ & -1.103 \\ & -1.074 \\ & -.952 \\ & -.587 \\ & -.567 \\ & -.382 \\ & -.230 \\ & -.052 \\ & -.025 \\ & -.007 \end{aligned}$			0.316 .142 .045 -.017 -.113 -.195 -.246 -.286 -.293 -.189 -.054 -.007 .031 .086	$\begin{array}{r} 0.377 \\ 0.199 \\ .189 \\ .086 \\ -.074 \\ -.159 \\ -.224 \\ -.279 \\ -.307 \\ -.357 \\ -.363 \\ -.249 \\ -.072 \\ -.009 \\ .044 \end{array}$		

(a) $\alpha_{12}, 0^{0}, 1^{0}, 2^{0}, 3^{\circ}$.

Senispan ta.	Percent chord	UPPER SURTSACE				LOMER Buarace			
		Angle of attack				Angle of attaok			
		0°	$1{ }^{0}$	2^{0}	3°	0°	$1{ }^{\circ}$	$2^{\text {a }}$	3°
$0.086 \mathrm{~b} / 2$	0	0.594	0.596	0.590	0.574				
	1.5	. 154	. 080	0.50	-. 089	0.122	0.387	0.257	0.306
		. 068	. 025	-. 015	-. 0.05	. 060	. 104	. 149	. 190
		. 039	0	-. 040	-. 085	. 037	. 070	. 115	. 173
	17.0	. 014	-. 017	-. 054	-. 096	. 007	. 043	. 055	. 115
	14.5	-. 016	.047 . .063	-. 080	-.118 -.120	-. 016	. 017	. 055	. 087
	21.0 24.5	$=.036$ $=.058$	-. 068	-.090 -.110	-.120 -.137	-. 031	-.003 -.030	. 036	. 053
	31.6	-. 0.07	-. 0.096	-. 119	-. 134	-. -.090	-.060	-.027	-.002
	34.5	-. 120	-. 148	-. 170	-. 200	-. 125	-. 095	-. 0.60	-. 0.034
		-. 158	-. 190	-. 214	-. 237	-. 160	-. 132	-.098	-. 070
	44.5	-. 189	- 278	-. 245	-. 272				- ${ }^{-14}$
	51.0 59.5	-. 224 -.250	-. 246	-. 270	-. 296	-. 234	-. 200	-. 163	-. 134
	71.0	-. 274	-. 297	-. 329	-. 36	-. 270	-. $25 \frac{7}{}$	-. 2.804	-. -134
	79.5	-. 188	-. 215	-. 260	-. 303	-. 190	-. 160	-. 118	-. 107
		-. 077	-. 067				-. 057		
0.195 b/2	15	0.512	0.506	0.481	0.436				
	1.5	. 056	-. 017	-. 123	-. 247	0.120	0.211	0.290	0.354
			-. 0.054	-. 115	- -180	-. 002	. 0.055	. 110	-157
	6.5 11.0	-. 028	-.080	-.138 -.132	-.396 -.378	-.029 -.050	-. 057	.078	. 127
	14.5	-. 074	-. 113	-. 153	-. 194	-. 0.00	-. 040	. 001	037
	21.0	-. 103	-. 113	-. 176	-. 201	-. 103	-. 070	-.032	07
	24.5	-. 129	-. 162	-. 199	-. 230	-. 130	-. 095	-. 060	-. 023
	31.0	-. 149	-. 183	-. 215	-. 249	-. 110	-. 135	-. 100	-. 064
	34.5	-. 182	-. 216	- 244	-. 279	-. 206	-. 170	-. 133	-. 100
	41.0	$=.235$ $=.267$	-. 261	-. 289	-. 320	-. 243	-. 207	-. 1168	-. 132
	51.0	-. 279	-. 313	-. $=34$	-. 375	-. 292	-. 240	-. 200	-. 2.179
	59.5	-. 309	-. 340	-. 370	-. 397	-. 313	-. 272	-. 241	-. 204
	71.0	- 262	- 301	-. 348	-. 392	- 267	- 222	-. 7.76	-. 151
	79.5 91.0	$=.150$ -.003	-. 184 -.010	-. 24.	-. 319	-.149 -.007	- -1110	-. 0988 -.012	-.103 -.032
$0.382 \mathrm{~b} / 2$		0.452							
	1.5	. 001	-. 12	-. 271	-. 430	-0.027	0.065	$0.15{ }^{\text {P }}$	0.223
	5	-. 090	-. 162	-. 243	-. 322	-. 098	-. 029	. 036	. 090
	6.5	-. 112	-. 180	-. 250	-. 336	-. 116	-. 050	. 011	. 065
	11.0	$=.140$	-. 196	-. 25	- 307	-. 141	-. 089	-. 035	. 018
	21.5	=.161	-. 217	-. 268	-. 319	-. 169	-. 118	-. 0.104	-. 021 -.062
	21.5	-. 220	-. 259	-. 296	-. 340	-. 2025	-. 174	-.128	-.009
	31.0	-. 250	-. 250	-. 321	-. 359	-. 259	-. 209	-. 159	-. 127
	34.5	-. 265	-. 302	-. 340	-. 369	-. 285	-. 235	-. 192	-. 158
		-. 319	-. 362	-. 400	-. 434	-. 309	-. 257	-. 220	-. 184
	44.5	- 338	-. 580	-. 425	-. 468	-. 328	-. 278	-. 240	-. 192
	51.0	- $=351$	-. 390	-. 428	-. 455	-. 361	-. 327	-. 260	-.209 -.193
	71.0	-. 210	-. 301	-. 395	-: 435	-. 213	-. 206	-. 113	-. 124
	79.5 91.0	-.014 .060	-.017	-. 042	-. 165	-. 0.067	. .020 .060	. .029 .060	-. 042 .040
$0.924 \mathrm{~b} / 2$		0.429		0.400					
	1.5	-. 0.050	-. 194	-. 369	-. 579	-0.088	0.054	0.138	0.2I9
		- 151	-. 236	-. 332	-. 429	-. 176	-. 0.03	. 017	. 079
	6.5	- 180	-. 260	-. 351	-. 440	-. 170	-. 0.05	-. 009	. 05
	11.0	- 192	-. 259	-. 329	- 401	-. 207	-. 133	-. 0.06	-. 012
	$\frac{14.5}{21.6}$	-. 218	-. 273	-. 340	-. 403	-.222 -.260	. .154 -.196	-. 095 $=.142$	-. 0.043
	24.5	-. 278	-. 300	-. 370	-:419	-. 261	-. 220	-. -163	-. 111
	31.6	-. 298	-. 350	-. 392	-. 427	-. 306	-. 253	-. 193	-. 142
	34.5	-. 312	-. 361	-. 414	-. 4.42	-. 330	-.280	-. 207	-. 160
		-. 369	-. 433	-. 466	-. 508	-. 352	-.302	-. 211	-. 189
	44.5	- -373	-.436	-. 486	-. 543	-. 364	-. 298	-. 211	-. 200
	51.0	-.338 -.237	. .405 . .341	-. 482	-.528 -.581	-. 336 $=.250$	-.257 -.138	-189 -.153	$=.180$ $=.152$
	79.5	-. 235	-. 341	-. 947	-. 581	=. 250	-. 1376	-. 153	-. 158
	79.5	-. 017	-. 006	. 032	-. 032	-. 005	-. 014	-. 010	-. 023
	91.0	. 073	. 081	. 093	. 081	. 079	. 078	. 080	. 060

TABLE XY.- CONTINUED.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - Concluded.

Sem1span sta.	Percent chord	UPPER SURPACE				LONER SURFACE			
		angle of attack				Angle of attack			
		0°	$1{ }^{\circ}$	2°	3^{0}	0°	$1{ }^{0}$	2°	3°
$0.707 \mathrm{~b} / 2$	0	0.408	0.396	0.341	0.250				
	1.5	-. 0888	-. 268	-. 4740	-. 742	-0.097	0.046	0.163	0.248
	5.5	-. 206	-. 311	-. 430	-.550 -.575	-. 200	-. 0978	0.002 -.022	. 070
	11.0	-. 223	-. 303	-. 359	-. 484	-. 250	-. 168	-. 088	-. 027
	14.5	-. 257	-. 330	-. 403	-. 490	-. 264	-.189	-. 105	-. 051
	21.0	-: 289	-. 355	-. 418	-. 46471	- 2.290	-. 221 -.232	-. 140	-. 094
	31.5	-. 322	-. 387	-. 44.45	-. 4490	-. 337	-. 241	-. 166	-. 130
	34.5	-. 322	-. 409	-. 464	-. 512	-. 330	-. 219	-. 161	-. 139
	41.0	-. 308	-. 416	-. 510	-. 571	-. 299	-. 195	-. 161	-. 150
	44.5	-. 278	-. 384	-. 515	-. 618	-. 268	-. 184	-. 175	-. 165
	52.0	-.223 -.167	-. 334	-. 470 -.270	-.601 -.379	-. 215	-. 195	-. 184	$\underline{-.171}$
	71.0	-. 081	-. 0.049	-. 010	-. 068	-. 071	-. 080	-. 081	-. 106
	79.5	.021	. 026	. 054	. 036	. 027	. 022	. 018	-. 019
	91.0	. 102	. 103	. 112	. 120	.107	. 106	. 108	. 088
$0.831 \mathrm{~b} / 2$	${ }^{0}$	0.386 -.109	0.421 -.299	0.398	0.342 -.819	-0. 219	0.074	0.178	0.253
		-. 229	-:.352	-. 49	-. 0.643	-0.219	-. 0.109	-. 0.001	-. 0623
	6.5	-. 231	-. 359	-. 492	-. 642	-. 227	-. 110	-. 007	. 058
	11.2	-. 240	-. 340	-. 442	-. 561	-. 259	-. 150	-. 0.065	-. 012
	14.5	-. 260							-. -8.
	21.0 24.5	-. 270	-.372 -.381	-. 463	-. 51.528	-. 274	-. 170	-. 1118	-. 0.081
	34.5	-. 246	-. 369	-. 4.456	-.542	-. 254	-. 189	-. 153	-. 123
	34.5	-. 241	-. 346	-. 493	-. 556	-. 241	-. 201	-. 169	-. 150
	41.5		-. 313			-. 245		-. 208	-. 191
	44.5	-. 278	-. 296	-. 436	-. 650	-. 276	$\begin{array}{r}-278 \\ -.267 \\ \hline-.050\end{array}$	-. 250	-. 235
	51.0	-. 260 -.072	-. 206	-. 284	-. 392	-.249 -.087	-. 267	-. 254 -.100	-. 249
	71. 3	-.007	-. 0.014	. 019	. 025	-0	-0	-. 001	-. 0221
	79.5	. 050	. 051	. 068	. 077	. 060	. 059	. 059	. 050
	91.0	.126	. 127	. 128	. 131	. 131	. 126	. 124	. 112
$0.924 \mathrm{~b} / 2$		0.422	0.349	-0.210	0.069				
	1.5	-. 029	-. 269	-. 535	-. 793	-0.121	0.068	0.188	0.256
	5.5	-. 218	-. 381	-. 559	-. 727	-. 211	-. 071	. 020	. 080
	6.5	-. 2222	-390 $=-358$	-. 56	-. 229	-- 208	-.071 -.123	-.017	-.076
	314.5	-. 250	-. 380	-. 500	-. 630	-. 242	-. 159	-. 0.09	-. 056
	21.0	-. 291	-. 406	-. 527	-. 577	-. 284	-. 227	-. 180	-. 149
	24.5	-. 324	-. 393	-. 549	-. 6181	-. 332	-. 299	-. 262	-. 230
	31.0	-. 295	-. 337	-. 465	-. 581	-. 307	-. 314	--299	- 273
	34.5	-. 246	-. 220	-. 353	-. 553	-. 253	-. 270 -.226	-. 302	-. 313
	41.2	-. 208	-. 1119	-. 0.05	-. 4171	-. 2141	-:226	-.203	-: 304
	51.8	-. 078	-. 092	-.045	-. 043	-. 084	-. 067	-. 083	-. 232
	59.5	-. 042	-. 050	-. 031	-.006	-. 041	-. 046	-. 037	-. 012
	71.0	. 021	. 021	. 027	. 039	. 030	. 022	. 021	. 020
	91:0	. 135	. 135	. 126	.112	. 147	.136	. 127	.110

TABLE XY.- CORTINUED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Seniepan cta.	Parcent chord	UPPER BURFACE				LOMES SURFACE			
		angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ \hline 1.5 \\ 56.5 \\ 11.5 \\ 11.0 \\ 21.5 \\ 24.0 \\ 31.8 \\ 31.0 \\ \hline 41.5 \\ 44.0 \\ 54.5 \\ 51.0 \\ \hline 99.5 \\ 71.0 \\ 99.5 \end{array}$	$\begin{aligned} & 0.548 \\ & =.194 \\ & -.309 \\ & =-.129 \\ & -.125 \\ & =-150 \\ & =.177 \\ & =.170 \\ & =.230 \\ & -.250 \\ & =.292 \\ & -.322 \\ & =.345 \\ & =.340 \\ & =.345 \\ & -.171 \end{aligned}$	$\begin{aligned} & 0.477 \\ & -.414 \\ & -.194 \\ & -.210 \\ & -.185 \\ & -.211 \\ & -.220 \\ & =.225 \\ & -.225 \\ & -.276 \\ & -.319 \\ & =.354 \\ & =.373 \\ & =.401 \\ & -.450 \\ & =.414 \\ & -.244 \end{aligned}$			$\begin{array}{r} 0.37 \\ .555 \\ .190 \\ .147 \\ .087 \\ .060 \\ .026 \\ -.005 \\ -.042 \\ -.104 \\ -.130 \\ =.137 \\ -.054 \\ -.059 \end{array}$	-.477 0.4401 .263 .253 .161 .143 .117 .080 .050 .016 -.050 -.084 -.097 -.076 -.066		
$0.195 \mathrm{~b} / 2$			0.241 $=.667$ $=.330$ $=.350$ $=.305$ $=.303$ $=.320$ $=.340$ $=.360$ $=.408$ $=.441$ $=.479$ $=.497$ $=.419$ $=.208$			$\begin{array}{r} 0.423 \\ .209 \\ .170 \\ .179 \\ .075 \\ .010 \\ .011 \\ -.060 \\ -.061 \\ -.091 \\ -.110 \\ -.151 \\ -.150 \\ -.097 \\ -.047 \end{array}$	-.47 0.491 .294 .250 .189 .107 .1076 .070 -.007 -.040 -.060 -.098 -.109 -.102 -.094 -.100		
$0.382 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.5 \\ & 34.0 \\ & 41.5 \\ & 44.5 \\ & 51.5 \\ & 59.5 \\ & 71.0 \\ & 91.5 \end{aligned}$	0.252 -640 -. 423 $=.334$ $=-361$ -.352 -371 $\begin{array}{r}\text {-. } 493 \\ = \\ \hline\end{array}$ $=.461$ -.498 -.544 $=.465$ $=.189$ $=.013$ $-.013$.--780 0.339 .239 .147 .103 .059 .030 -.026 -.050 -.073 -.100 -.132 -.147 -.142 $=.110$ -.077		
$0.555 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 11.0 \\ 21.5 \\ 24.0 \\ 31.5 \\ 31.0 \\ 41.5 \\ 41.0 \\ 41.5 \\ 51.0 \\ 79.5 \\ 71.0 \\ 79.5 \end{array}$					0.287 .139 .113 .045 .012 -.035 $=.059$ -.105 -.152 -.157 -.189 $=.154$ -.092 -.046 .023	0.372 .226 .202 .127 .090 .027 .002 -.047 -.071 -.105 -.122 -.149 -.170 -.139 -.112 -.087		

TABLE XY.- CONCLUDED.
(b) $a, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Benispan sta.	Peroent chord	UPPER SURFACE				LOWER SURFACT			
		Angie of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \end{array}$		$\begin{aligned} & -0.030 \\ & -1.142 \\ & -1.060 \\ & -1.070 \\ & -1.032 \\ & -.991 \\ & -.577 \\ & -.567 \\ & -.605 \\ & -.629 \\ & -.670 \\ & -.713 \\ & -.742 \\ & -.791 \\ & -.364 \\ & -. .230 \end{aligned}$. .313 0.135 .108 .030 -049 -.068 -.099 -.111 -.132 -.150 -.175 -.125 -.066 .052	-.81 0.386 .219 .191 .106 .010 .010 -.016 -.060 $=.118$ -.140 -.172 -.201 $=.182$ -.182 -.107		
$0.531 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 5.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.0 \\ 31.5 \\ 31.0 \\ 41.5 \\ 44.0 \\ 51.5 \\ 59.5 \\ 71.0 \\ 79.0 \\ 91.0 \end{array}$	$\begin{aligned} & 0.254 \\ & -.970 \\ & -.864 \\ & -.869 \\ & -.7250 \\ & -.585 \\ & -.590 \\ & -.595 \\ & -.610 \\ & -.670 \\ & -.698 \\ & -.340 \\ & -.1220 \\ & -.030 \\ & .033 \end{aligned}$	$\begin{array}{r} 0.101 \\ -1.149 \\ -1.131 \\ -1.137 \\ -1.076 \\ -1.058 \\ -1.000 \\ -.993 \\ -.800 \\ -.659 \\ -.690 \\ -.719 \\ -.810 \\ -.440 \\ -.202 \\ -.149 \\ -.079 \end{array}$			0.312 .121 .113 $=.35$ -.047 $=.060$ -.100 -.136 -.280 $=.240$ -.070 -.079 .088	-.367 .190 .180 -.091 -.010 -.027 -.080 $=.120$ -.160 $=.2170$ -.250 -.330 $=.297$ -.060		
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.5 \\ 44.0 \\ 51.5 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.059 \\ -.931 \\ -.940 \\ -.986 \\ -.868 \\ -. .882 \\ -. .667 \\ -.580 \\ -.495 \\ -.920 \\ -.076 \\ -.011 \\ .030 \\ .050 \\ .085 \end{array}$	$\begin{aligned} & -0.272 \\ & -1.116 \\ & -1.151 \\ & -1.155 \\ & -1.090 \\ & -1.000 \\ & -1.070 \\ & -1.072 \\ & -1.060 \\ & -.078 \\ & -.600 \\ & -.657 \\ & -.551 \\ & -.259 \\ & -.160 \\ & -.110 \\ & -.063 \end{aligned}$			-.7 0.304 .131 .124 .030 -.021 -.120 -.201 -.354 -.322 -.352 -.351 -.342 .010 .042 .085	-.07 0.347 .187 .180 .079 -.080 -.170 -.239 -.300 -.330 -.376 -.410 -.411 -.261 -.099 -.009		

(a) $a_{u}, 0^{\circ}, 1^{0}, 2^{\circ}, 3^{\circ}$.

Sen:epan sta.	Percent ahored	UPPER SGRTACE				LOTER SURYACE			
		Angle of attack				Angle of ettack			
		0°	$1{ }^{\circ}$	2°	3^{0}	0°	$1{ }^{\circ}$	2°	3°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.8 \end{array}$	0.606 .172 .087 .059 .033 .0018 $=.040$ $=.001$ $=.098$ $=.135$ $=.201$ $=.201$ $=.265$ $=.197$ -.096	0.606 .091 .039 .013 -.003 $=.034$ $=.050$ $=.071$ -.081 $=.136$ $=.260$ $=.202$ -.236 $=.268$ -.295 -.241 -.117	$\begin{array}{r} 0.603 \\ .014 \\ .003 \\ -.023 \\ -.033 \\ -.067 \\ -.077 \\ =.095 \\ -.100 \\ -.156 \\ -.195 \\ -.226 \\ -.253 \\ =.293 \\ =.335 \\ =.149 \\ -.149 \end{array}$	0.587 $=.074$ $=.043$ $=.064$ $=.070$ $=.097$ $=.106$ $=.123$ $=.126$ $=.287$ $=.258$ $=.252$ $=.304$ $=.351$ $=.366$ -.164	$\begin{array}{r} -.-7 \\ 0.137 \\ .076 \\ .046 \\ .024 \\ .001 \\ -.018 \\ -.044 \\ =.071 \\ -.105 \\ -.136 \\ -.186 \\ -.238 \\ -.301 \\ =.212 \\ -.101 \end{array}$	-.07 0.200 .117 .085 .057 .031 .010 -.017 -.046 -.076 -.111 -.160 -.219 -.273 -.185 -.091	$\begin{array}{r} -.0-7 \\ 0.264 \\ .128 \\ .1296 \\ .069 \\ .044 \\ .019 \\ -.012 \\ -.043 \\ -.078 \\ -.131 \\ -.162 \\ -.234 \\ =.151 \\ -.082 \end{array}$	$\begin{aligned} & -.316 \\ & .200 \\ & .165 \\ & .126 \\ & .104 \\ & .070 \\ & .044 \\ & . .013 \\ & =.015 \\ & -.072 \\ & -.108 \\ & -.166 \\ & =.197 \\ & -.124 \\ & -.076 \end{aligned}$
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 41.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$		0.490 .001 -.047 -.066 -.074 $=.099$ -.122 $=.145$ $=.165$ -.191 -.242 $=.279$ -.301 $=.332$ -.316 $=.083$	0.534 $=.103$ $=.097$ $=.118$ $=.134$ $=.135$ $=.1480$ $=.195$ $=.221$ $=.267$ $=.528$ $=.354$ $=.551$ $=.299$	0.452 $=.220$ $=.159$ $=.175$ $=.158$ $=.175$ $=.155$ $=.206$ $=.230$ $=.259$ $=.233$ $=.350$ $=.379$ $=.364$ $=.533$ -.149		-.284 0.288 .068 .036 -.025 -.052 -.078 -.375 -.146 -.177 -.194 -.234 -.285 -.250 -.156 -.052	-.302 0.123 .091 .051 .015 $=.016$ $=.042$ $=.080$ $=.113$ $=.145$ $=.202$ $=.254$ $=.204$ $=.234$ -.075	
$0.382 \mathrm{~b} / 2$	0 35.5 56.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.461 -.020 -.070 -.092 $=.122$ $=.149$ $=.164$ $=.201$ -.233 $=.305$ -.323 $=.343$ $=.352$ $=.295$ -.048 .067	$\begin{aligned} & 0.453 \\ & =.106 \\ & =.246 \\ & =.162 \\ & =.2781 \\ & =.212 \\ & =.2400 \\ & =.272 \\ & =.347 \\ & =.368 \\ & -.350 \\ & =.398 \\ & =.350 \\ & -.054 \\ & .057 \end{aligned}$		0.355 $=.402$ $=.309$ $=.381$ $=.302$ $=.300$ $=.319$ $=.340$ $=$.	$\begin{array}{r} -0.017 \\ -.082 \\ -.102 \\ -.126 \\ -.150 \\ -.175 \\ -.201 \\ =.232 \\ -.259 \\ -.289 \\ -.316 \\ -.371 \\ -.355 \\ -.310 \\ -.044 \\ .071 \end{array}$			
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.6 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.439 $=.036$ $=.375$ $=.1767$ $=.201$ $=.240$ $=.256$ -.290 $=.301$ $=.363$ $=.389$ $=.341$ $=.064$.021 .097		$\begin{aligned} & 0.410 \\ & =.341 \\ & =.310 \\ & =.310 \\ & =.321 \\ & =.345 \\ & =.348 \\ & =.373 \\ & =.455 \\ & =.475 \\ & =.485 \\ & =.488 \\ & =.022 \\ & =.087 \end{aligned}$	0.345 $=.550$ $=.406$ $=.414$ $=.381$ $=.587$ $=.598$ $=.405$ $=.412$ $=.429$ $=.459$ $=.521$ $=.509$ $=.476$ -.129 $=.036$	$\begin{array}{r} -0.069 \\ -.187 \\ -.148 \\ =.186 \\ -.205 \\ -.240 \\ -.293 \\ -.296 \\ =.326 \\ -.356 \\ -.384 \\ =.404 \\ =.356 \\ -.071 \\ .031 \\ .162 \end{array}$		$\begin{aligned} & 0.143 \\ & . .029 \\ & -.065 \\ & -.063 \\ & -.094 \\ & -.170 \\ & -.211 \\ & -.24 I \\ & -.264 \\ & -.285 \\ & -.258 \\ & -.2057 \\ & -.021 \\ & =.066 \end{aligned}$	

table xyi.- continued.
(a) $a_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - ConcIuded.

Semispan sta。	Percent chord	UPPER SURFACE				LOWER SURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{\circ}$	2^{0}	3°	0°	1°	2°	3°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$		$\begin{aligned} & 0.400 \\ & -.247 \\ & -.301 \\ & -.327 \\ & -.294 \\ & =.318 \\ & -.349 \\ & -.364 \\ & -.384 \\ & -.408 \\ & -.462 \\ & -.475 \\ & -.434 \\ & -.313 \\ & -.0068 \\ & .128 \end{aligned}$	0.351 -.434 $=.409$ $=.429$ -.372 $=.389$ -.407 $=.413$ -.434 $=.506$ $=.542$ -.530 $=.500$ -.206 .058 .143		$\begin{array}{r} -0.083 \\ -.186 \\ -.200 \\ -.237 \\ -.258 \\ -.288 \\ -.311 \\ -.352 \\ -.373 \\ -.388 \\ -.384 \\ -.347 \\ -.174 \\ -.022 \\ .050 \\ .125 \end{array}$	$\begin{array}{r} 0.046 \\ 0.096 \\ -.115 \\ =.167 \\ -.193 \\ -.234 \\ -.258 \\ =.298 \\ =.307 \\ =.302 \\ -.272 \\ -.151 \\ -.088 \\ -.026 \\ .120 \end{array}$	$\begin{aligned} & -.152 \\ & -.012 \\ & -.037 \\ & -.103 \\ & -.133 \\ & -.37 \\ & -.39 \\ & -.234 \\ & -.233 \\ & -.217 \\ & -.215 \\ & -.218 \\ & -.176 \\ & -.115 \\ & -.015 \\ & .109 \end{aligned}$	0.240 0.0622 .033 -.046 -.110 -.132 -.179 -.184 -.208 -.2196 $=.190$ $=.142$ -.081 .058
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.5 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5		0.414 $=.281$ $=.345$ $=.352$ -.337 $=.357$ $=.393$ $=.414$ -.423 -.428 $=.301$ $=.344$ -.046 .0454 .144	0.397 -.485 -.464 $=.467$ $=.423$ $=.437$ -.447 $=.473$ $=.480$ -.541 $=.421$ $=.495$ -.292 .022 .110 .162	0.347 $=.744$ $=-.604$ $=.529$ $=.525$ $=.507$ $=.500$ $=-522$ $=.538$ $=.643$ $=.640$ $=.260$ $=.099$ -.006 .122	$\begin{array}{r} 0.125 \\ =.239 \\ =.238 \\ -.274 \\ -.324 \\ =.335 \\ -.369 \\ =.355 \\ =.352 \\ =.347 \\ -.044 \\ .024 \\ .081 \\ .146 \end{array}$	$\begin{array}{r} 0.023 \\ -.134 \\ =.138 \\ -.190 \\ -.238 \\ -.232 \\ -.242 \\ -.221 \\ -.225 \\ -.253 \\ -.258 \\ -.107 \\ .018 \\ .146 \end{array}$	$\begin{aligned} & 0.135 \\ & -.046 \\ & -.052 \\ & -.114 \\ & -.165 \\ & -.165 \\ & -.165 \\ & \hline .186 \\ & -.219 \\ & -.254 \\ & -.270 \\ & -.210 \\ & -.010 \\ & .076 \\ & .143 \end{aligned}$	$\begin{array}{r} 0.229 \\ .035 \\ .028 \\ -.057 \\ -.131 \\ -.140 \\ =.173 \\ -.1929 \\ -.2655 \\ -.287 \\ -.129 \\ -.117 \\ .039 \\ .121 \end{array}$
$0.924 \mathrm{~b} / 2$	0 3.5 5.5 6.5 11.0 14.0 21.0 24.05 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0		0.351 $=.237$ -.372 $=.380$ $=.356$ $=.380$ $=.429$ $=.467$ $=.424$ $=.378$ $=.2482$ $=.038$ -.002 .052 .098 .151			$\begin{array}{r} -0.165 \\ -.261 \\ -.261 \\ -.292 \\ -.307 \\ -.355 \\ -.409 \\ -.380 \\ -.327 \\ -.213 \\ -.115 \\ -.057 \\ -.013 \\ .049 \\ .101 \\ .159 \end{array}$	$\begin{aligned} & 0.018 \\ & -.122 \\ & -.120 \\ & -.168 \\ & -.189 \\ & -.242 \\ & -.310 \\ & -.315 \\ & -.305 \\ & -.267 \\ & -.216 \\ & -.101 \\ & -.008 \\ & .044 \\ & .091 \\ & .149 \end{aligned}$	$\begin{aligned} & 0.138 \\ & -.022 \\ & -.022 \\ & -.089 \\ & -.120 \\ & -.191 \\ & -.270 \\ & -.310 \\ & -.325 \\ & -.329 \\ & -.317 \\ & -.283 \\ & .020 \\ & .052 \\ & .090 \\ & .143 \end{aligned}$	0.224 .049 .046 -.057 -.098 -.284 -.246 -.396 -.345 -.351 -.365 -.104 .032 .113 .117

table xyi. - CCNTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

$\begin{aligned} & \text { Seri-1 } \\ & \text { spant } \\ & \text { sta. } \\ & \hline \end{aligned}$	Percent chord	UPPER SORFACE				Lever burace			
		nugle of attack				Angle of attuek			
		$4{ }^{\circ}$	6	$8{ }^{\circ}$	10°	4°	6°	8°	10°
$0.086 \mathrm{~b} / 2$									
$0.195 \mathrm{~b} / 2$									
$0.382 \mathrm{~b} / 2$									
$0.555 \mathrm{~b} / 2$									

TABLE XVI. - CONCLUDED.
(b) $\alpha_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}-$ Concluded.

Sem1span ata.	Percent chord	UPPER StPrace				LOWER SURFACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.6 \end{array}$	$\begin{aligned} & 0.172 \\ & -.898 \\ & =.724 \\ & =.722 \\ & =.483 \\ & =.514 \\ & =.530 \\ & =.534 \\ & =.533 \\ & =.500 \\ & =.644 \\ & =.662 \\ & =.688 \\ & -.545 \\ & =.294 \end{aligned}$				$\begin{array}{r} .0 .295 \\ 0.215 \\ . .088 \\ . .008 \\ -.027 \\ -.085 \\ -.115 \\ -.157 \\ -.166 \\ -.207 \\ -.237 \\ . .281 \\ -.310 \\ -.205 \\ -.227 \\ -.192 \end{array}$			
$0.833 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.5 \\ 21.5 \\ 24.5 \\ 32.5 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 72.0 \\ 79.5 \end{array}$					$\begin{array}{r} -.274 \\ 0.076 \\ .068 \\ -.013 \\ -.105 \\ =.105 \\ =.120 \\ -.197 \\ =.262 \\ =.306 \\ =.352 \\ -.361 \\ =.351 \\ =.302 \\ -.154 \end{array}$			
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.5 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -0.003 \\ & -.848 \\ & -.853 \\ & -.853 \\ & -.790 \\ & -.781 \\ & -.576 \\ & =.624 \\ & -.624 \\ & =.517 \\ & =.662 \\ & -.674 \\ & =.661 \\ & -.261 \\ & -.200 \\ & -.122 \end{aligned}$				-.058 0.079 -.074 $=.072$ $=.165$ $=.254$ $=.325$ $=.376$ $=.416$ $=.457$ $=.450$ $=.477$ -.352 -.117			

(a) $\pi_{1}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Serispar s ta.	Percent chord	UPPER SURTEAE				LOTMR SURPLCE			
		Angie of attack				Angle of attacis			
		0°	1^{0}	$2^{\text {c }}$	3°	0°	$1{ }^{\text {b }}$	$2^{\text {d }}$	$3^{\text {a }}$
$0.086 \mathrm{~b} / 2$	$\begin{aligned} & 0.5 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.0 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$	0.491 .050 $=.041$ $=.047$ $=.069$ $=.086$ $=.098$ $=.103$ $=.105$ $=.109$ $=.160$ $=.154$ $=.155$ $=.133$ -.1058 $=.054$		$\begin{aligned} & 0.457 \\ & =.151 \\ & =.150 \\ & =.150 \\ & =.150 \\ & =.160 \\ & =.161 \\ & =.1667 \\ & =.189 \\ & =.201 \\ & =.1996 \\ & =.130 \\ & =.079 \\ & -.023 \end{aligned}$		$\begin{aligned} & 0.073 \\ & 0.016 \\ & =.057 \\ & =.045 \\ & =.068 \\ & =.076 \\ & =.096 \\ & =.107 \\ & =.125 \\ & -.136 \\ & -.148 \\ & =.127 \\ & =.104 \\ & -.069 \\ & -.016 \end{aligned}$	$\begin{array}{r} 0.103 \\ .030 \\ .004 \\ =.0079 \\ =.047 \\ =.069 \\ =.0011 \\ =.0916 \\ =-.161 \\ =.111 \\ =.0991 \\ =.005 \\ =.010 \end{array}$.770 0.170 .043 .043 $=.006$ $=.026$ $=.047$ $=.056$ $=.090$ -.710 $=.099$ $=.095$ $=.054$ $=.008$	$\begin{array}{r} 0.237 \\ .116 \\ .085 \\ .054 \\ .004 \\ -.014 \\ =.028 \\ =.017 \\ -.061 \\ -.085 \\ =.007 \\ =.065 \\ =.040 \end{array}$
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.6 \\ 34.0 \\ 41.5 \\ 44.0 \\ 51.0 \\ 59.5 \\ 71.5 \\ 79.0 \\ 91.5 \end{array}$	0.423 -.013 -.064 $=.098$ $=.103$ $=.136$ $=.103$ $=.120$ $=.160$ -.182 $=.162$ $=.157$ $=.1098$ $=.044$.014	0.406 -.155 -.155 $=.161$ $=.161$ $=.161$ $=.167$ $=.167$ $=.167$ $=.201$ $=.186$ $=.173$ $=.148$ $=.107$ $=.055$. .054	0.349 $=.288$ $=-218$ $=.218$ $=.288$ $=.206$ $=.178$ $=.212$ $=.283$ $=-.211$ $=.194$ $=.1262$ $=.1262$ $=.003$			$\begin{aligned} & 0.150 \\ & =.007 \\ & =.027 \\ & =.0570 \\ & =.008 \\ & =.090 \\ & =.116 \\ & =.126 \\ & =.1729 \\ & =.138 \\ & =.117 \\ & =.082 \\ & =.089 \end{aligned}$	$.0-245$ 0.055 .026 $=.010$ $=.035$ $=.068$ $=.0077$ $=.102$ $=.110$ $=.113$ $=.120$ $=.073$ $=.032$.015	$\begin{array}{r} 0.321 \\ .075 \\ .075 \\ .009 \\ =.014 \\ =.028 \\ =.056 \\ =.014 \\ =.085 \\ =.099 \\ =.086 \\ =.060 \\ =.023 \end{array}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.355 -.047 -.098 -.143 -.115 -.154 -.154 $=.160$ -.160 $=.166$ -.182 -.166 $=.146$ $=.127$ $=.079$ -.051 .026				$\begin{array}{r} -0.063 \\ -.104 \\ -.115 \\ =.127 \\ -.135 \\ -.141 \\ -.148 \\ =.160 \\ -.162 \\ -.160 \\ -.155 \\ =.152 \\ -.123 \\ =.080 \\ -.371 \end{array}$			
$0.555 \mathrm{~b} / 2$	0 3.5 5.5 6.5 11.0 14.5 21.5 24.5 37.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.6	0.406 $=.052$ -.137 $=.145$ $=.144$ $=.154$ $=.154$ $=.160$ $=.166$ $=.196$ $=.1441$ $=.107$ $=.075$ -.027 .030	0.400 $=.2146$ $=.2183$ $=.218$ $=.2226$ $=.206$ $=.206$ $=.218$ -.218 $=.164$ $=.163$ $=.1085$ -.039 .061	0.304 $=.435$ $=.31$ $=.274$ $=.257$ $=.277$ $=.229$ $=.235$ $=.263$ $=.217$ $=.189$ $=.142$ $=.099$ $=.014$.018	$\begin{aligned} & 0.134 \\ & =.650 \\ & =.409 \\ & =.390 \\ & =.295 \\ & =.275 \\ & =.252 \\ & =.255 \\ & =.258 \\ & =.258 \\ & =.282 \\ & =.157 \\ & =.104 \\ & -.049 \\ & =.019 \end{aligned}$		$\begin{aligned} & 0.056 \\ & -.026 \\ & =- \\ & =- \\ & =- \\ & -. \\ & -.133 \\ & . .133 \\ & . .126 \\ & . .1126 \\ & . .062 \\ & -.016 \\ & .036 \end{aligned}$		

TABLE XVII.- CONTINUED.
(a) $\alpha_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - OoncIuded.

Semispan eta.	Percent chord	UPFER SURPACE				LOHER GURPACE			
		Angle of attack				Angle of attack			
		0^{0}	$1{ }^{\circ}$	2°	3°	0°	2°	2^{0}	3^{7}
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.355 $=.064$ -.149 $=.154$ -.143 $=.154$ $=.166$ -.171 -.182 $=.209$ $=.164$ $=.148$ $=.119$ $=.073$ -.027 .033	0.349 -.252 -.240 $=.229$ -.212 $=.212$ $=.218$ $=.218$ -.228 $=.223$ $=.178$ $=.161$ $=.078$ -.028 .033	0.236 0.484 -.342 $=.348$ -.263 $=.274$ -.257 $=.269$ -.229 -.240 $=.257$ $=.206$ $=.184$ $=.150$ $=.097$ -.039 .027	0.022 $=.706$ $=.437$ $=.426$ $=.325$ $=.314$ -.303 $=.303$ $=.275$ $=.275$ $=.275$ $=.199$ $=.159$ $=.094$ -.037 .031	$\begin{aligned} & -0.062 \\ & -.113 \\ & -.121 \\ & -.138 \\ & -.138 \\ & -.146 \\ & -.151 \\ & -.158 \\ & -.180 \\ & -.158 \\ & -.358 \\ & -.148 \\ & =.120 \\ & -.064 \\ & -.017 \\ & .043 \end{aligned}$	-0.0 0.084 -.024 $=.039$ -.076 -.084 -.100 -.109 $=.122$ -.125 $=.126$ $=.126$ $=.125$ -.053 -.018 .048	$\begin{array}{r} 0.203 \\ .054 \\ .033 \\ -.019 \\ -.033 \\ -.056 \\ -.067 \\ =.092 \\ -.103 \\ =.104 \\ =.097 \\ =.097 \\ -.050 \\ -.046 \end{array}$	-.301 0.130 .1004 .042 .020 -.002 -.024 . .066 -.074 .079 -.0069 -.077 -.035 .051
$0.831 \mathrm{~b} / 2$	0 31.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.355 \\ & -.086 \\ & -.154 \\ & -.154 \\ & . .154 \\ & -.166 \\ & -.194 \\ & -. .205 \\ & -.199 \\ & . .215 \\ & -.160 \\ & -.151 \\ & -.069 \\ & -.063 \\ & .045 \end{aligned}$	0.394 0.274 -.263 -.246 -.218 -.229 -.223 -.229 -.229 -.228 -.169 $=.157$ $=.111$ $=.169$ $=.014$.044	0.343 -.496 $=.348$ $=.291$ -.274 -.274 -.274 -.269 -.263 -.229 -.263 $=.190$ -.173 $=.1258$ $=.023$ -.039	0.179 $=.689$ -.426 $=.426$ $=.321$ $=.321$ -.308 -.286 -.264 $=.264$ -.264 $=.207$ -.185 $=.130$ -.079 -.021 .044	$\begin{array}{r} -0.061 \\ -.123 \\ -.121 \\ -.131 \\ -.143 \\ -.141 \\ -.150 \\ -.149 \\ -.148 \\ -.146 \\ -.135 \\ -.108 \\ -.051 \\ -.005 \\ .049 \end{array}$	-.085 0.038 $=.040$ -.073 -.107 -.109 -.123 -.127 -.129 -.132 -.120 $=.094$ -.002 -.050	$\begin{array}{r} 0.082 \\ .037 \\ -.032 \\ -.017 \\ -.066 \\ -.066 \\ -.090 \\ -.102 \\ -.106 \\ -.109 \\ -.090 \\ -.040 \\ -.003 \\ -.047 \end{array}$	$\begin{array}{r} 0.299 \\ .110 \\ .1041 \\ .041 \\ -.024 \\ -.030 \\ -.058 \\ -.069 \\ -.080 \\ -.087 \\ -.088 \\ -.076 \\ -.003 \\ .0031 \end{array}$
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.355 $=.045$ -.166 $=.166$ -.171 $=.205$ -.205 $=.377$ -.199 -.166 -.199 -.139 -.079 -.039 -.003 .051	0.298 $=.229$ -.269 -.246 -.246 $=.218$ -.218 $=.212$ $=.206$ $=.218$ $=.145$ $=.085$ -.038 -.008 .056	$\begin{array}{r} 0.122 \\ -.456 \\ -.348 \\ -.342 \\ -.291 \\ -.286 \\ -.246 \\ -.240 \\ -.218 \\ -.212 \\ -.218 \\ -.162 \\ -.143 \\ -.093 \\ -.044 \\ .001 \\ .049 \end{array}$	$\begin{aligned} & -0.146 \\ & -.706 \\ & -.734 \\ & -.711 \\ & -.342 \\ & -.320 \\ & -.286 \\ & -.264 \\ & -.258 \\ & -.244 \\ & -.224 \\ & -.173 \\ & -.352 \\ & -.098 \\ & -.047 \\ & -.003 \\ & .048 \end{aligned}$	$\begin{array}{r} -0.075 \\ -.123 \\ -.126 \\ -.139 \\ -.146 \\ -.150 \\ -.146 \\ -.1436 \\ -.140 \\ -.135 \\ -.135 \\ -.075 \\ -.031 \\ .0069 \end{array}$	$\begin{aligned} & 0.067 \\ & -.039 \\ & -.049 \\ & -.085 \\ & -.100 \\ & =.115 \\ & -.117 \\ & -.122 \\ & -.121 \\ & -.123 \\ & -.1219 \\ & -.069 \\ & -.028 \\ & .008 \end{aligned}$	0.178 .033 .021 -.035 $=.067$ $=.095$ -.104 $=.107$ -.113 -.112 -.112 $=.070$ -.031 .001 .054	$\begin{array}{r} 0.273 \\ .104 \\ .090 \\ . .018 \\ -.056 \\ -.067 \\ -.051 \\ -.081 \\ -.091 \\ -.093 \\ -.093 \\ -.067 \\ -.029 \\ .051 \end{array}$

TABLE XVII．－CONTIMUED．
（b）$a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ ．

Semi－ ${ }^{\text {span }}$ sta	${ }_{\text {Percent }}^{\substack{\text { Phora }}}$	UPPER Buafice				LOVER BUREACE			
		Angle of attack				Angre or attack			
		4°	6°	8°	10°	4^{0}	6	$8{ }^{\text {8 }}$	10°
$0.086 \mathrm{k} / 2$	0	0.342	0.099	－0．236					
	2.5	－． 436	－． 713	－1．087	－3．555	－0．295	0.396		
	6	－：239	－－． 349	－： 459	$\mathrm{F}=\mathrm{F}$－ 54	．128	－209	－${ }^{287}$	－ 3 5 ${ }^{5}$
	$\frac{11.0}{14.5}$	－． 238	－． 2823	－． 381	$=-.454$	．089		． 230	．292
	14.5 21.0 24.5	－$=2228$	－2266	二－：366	－$=$－ 409	：033	－091	． 125	－209
	31．5	－． 21216	－． 25	－：-292	－-35	$\therefore 004$	：086	－1097	．155
	34.5	－． 216	－． 265	－． 29	\therefore－ 3 年	－．020	：025	． 079	． 172
	41．0	－． 233	－． 2171	二：314	－． 3 64	－． 037	． 08	．055	－ 104
	51.0	－．234	－． 269	－． 302	－． 35	－． 057	－． 019	－024	－067
	79.5	－-185	－． 223	－． 250	－：276	－$\because .05$	－． 016	．022	．061
	79.5	－：092	－． 1036	－：015	－： 1288	－．025	：026	． 0357	：065
0.195 d／2	0	0.105	－0．338	－0．991	－1．808				
	1.5	－ 617	－1．032	－1．665	－1．814	0.362	0.445	0.435	0.354
	6.5	－． 3 － 351	－． 478	－． 687	－．-790	：131	． 221	－ 302	． 375
	11.6	－． 612	－． 405	－．429	－． 616	－ 07	． 152	． 236	\％
	2	－．284	－． 338	－－． 392		． 09	－061	－1．14	－202
	24.5	－． 250	－． 310	－． 376	－． 454	：011	． 061	． 123	． 183
	31.0	－． 250	－ 29.29	－． 348	－． 398	－． 0807	． 027	． 085	－138
	41．0	－： 278	－． 321	－． 336	$\because \cdot .387$	$\because .057$	－．009	－044	：092
	44．5	－． 251	－． 290	－． 329	－． 369	－． 0.062	$-.014$	． 034	． 085
	51．0	－：	－：225	－：24	－： 262	－． 066	－． 0.018	．012	：050
	71.0	－． 135	－． 156	－． 170	－． 187	－． 045	－． 012	－020	． 05
	791：5	－．073	－：－085	－． 0095	\because	－． 0.029	：012	：057	
$0.382 \mathrm{~b} / 2$	0	－0．098	－0．769	－-1.719	－2．956				
	1．5	－． 9.464	－1． 657	－-8.86	－1：363	0.153	0.356	0.639	． 397
	50，	－． 442	－． 618	－．823	－2．081	．1029	． 26	－ 313	． 375
	11.8	－． 357	－． 48	－ 6.615	－．750	．072	． 176	． 2417	－ 307
	${ }^{14}$	－． 306	$=:=348$	－： 471	－：．560	：013	：084	． 153	：215
	${ }^{24} \cdot 5$	－． 306	－． 383	－-145	－． 510	－． 003	－064	． 130	－ 119
	31.0	－： 295	－． 349	－． 398	－－465	－． 033	－27	－079	－146
	$4{ }^{4}$	－． 295	－．-32	－． 364	－：420	－：005	－002	：056	． 102
	44.5	－． 25	－． 298	－－373	－ 377	－．062	－． 012	． 037	． 086
	51．0	－． 255	－$=2814$	－． 293	－$=253$	－．075	－． 0.025	： 1123	：057
	71.0	－	－	－． 145	－ 1 － 159	－． 037	－．008	． 024	－050
	79.5	－． 0107	－． 017	－． 0.015	－． 0.014	． 043	：025	：062	：074
$0.555 \mathrm{~b} / 2$		－0．154	－0．385	－2．066	－3．526				
	1.5	－： 205	－1．660	－2．021					． 314
	6.5	－． 504	－． 702	－． 207	－1．165	． 15	． 256	． 346	－ 399
	11．0	－． 836	－： 545	－-665	－ 644	．065	． 181	．266	－${ }^{39}$
	21：\％	－： 329	－	－．-1710	Z． 605	：020	：094	． 162	－225
	24.5	－． 595		－． 46	－． 7^{71}	． 211	． 075	． 147	． 204
	新．${ }^{\text {a }}$	二： 306	－． 36	－-.464	－． 4.465	－．024	．035	：1079	－ 138
	$4{ }^{4}$ ： 8	$=-.306$		－ F \％ 81	－$=143$	－：051	－002	－051	－105
	44.5 51.5	－：554	－－260	－． 342	－． 381	－．056	－．008	． 019	．069
	51.5	－． $\mathrm{-} .170$	－． 197	－． 22	－： 242	－． 063	－-016	． 005	． 042
	71．0	－． 109 -.052	－．-061	－．-136	－． 0.748	－．027	－． 0.02		－247
	91：\％	019	．019	． 015	． 015	． 047	．053	． 061	． 071

TABLS XVII. - COMTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

sable XYit. - CONTIMUED.
(c) $a_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Senispan sta.	Percent ohora	UPPER SURFACS				LOUER SURFACs			
		Angle of attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.086 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6 . .5 \\ 11.5 \\ 14.5 \\ 21.5 \\ 24.5 \\ 31.5 \\ 34.0 \\ 41.5 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & -1.301 \\ & -1.306 \\ & -.730 \\ & -.724 \\ & -.534 \\ & -.517 \\ & -.461 \\ & -.444 \\ & =.416 \\ & -.394 \\ & =.394 \\ & =.398 \\ & =.370 \\ & =.303 \\ & =.227 \\ & -.741 \\ & -.050 \end{aligned}$	-2.917 -2.748 -1.077 -1.014 -.738 -.699 $=.506$ -.575 $=.515$ $=.513$ $=.508$ $=.514$ $=.4784$ $=.390$ $=.201$ -.093	-4.977 -3.862 -1.464 -1.402 -1.016 -.948 -.792 -.780 $=.702$ $=.680$ $=.665$ $=.845$ $=.605$ $=.412$ $=.404$ $=.291$	-7.010 -5.206 -1.957 -1.906 -1.341 -1.299 -1.060 -1.004 -.920 -.898 -.887 -.869 $=.826$ -.725 -.601 -.469 -.301	$\begin{array}{r} 0.517 \\ .449 \\ .414 \\ .353 \\ .563 \\ .238 \\ .201 \\ .1800 \\ .149 \\ .108 \\ . .998 \\ .090 \\ .088 \end{array}$	-.444 0.445 .528 .472 .434 .380 .352 .382 .254 -.202 .180 .159 .143 .118	$0.2 \overline{6}$ $\begin{aligned} & .617 \\ & .618 \\ & .570 \\ & .537 \\ & .478 \\ & .453 \\ & .377 \\ & .334 \\ & .370 \\ & .270 \\ & .238 \\ & .203 \\ & .170 \end{aligned}$	0.089 .671 .65 .623 .527 . .444 . 323 .276 .178
$0.195 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5 \\ & 5.5 \\ & 11.5 \\ & 14.0 \\ & 21.5 \\ & 24.0 \\ & 31.5 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.8 \end{aligned}$	-2.808 -2.450 -1.066 -.988 -.730 -.668 $=.556$ $=.528$ $=.455$ $=.451$ -.411 $=.411$ -.364 $=.291$ $=.717$ $=.013$	-5.613 -3.857 -1.572 -1.403 -1.071 $=.924$ $=.761$ $=.699$ $=.631$ $=.615$ $=.564$ $=.541$ $=.478$ $=.382$ $=.277$ $=.177$ -.052	-5.380 -4.764 -2.786 -2.315 -1.652 -1.341 -1.016 -.726 $=.780$ $=.747$ $=.674$ $=.648$ -.550 -.378 $=.375$ -.140	-2.795 -2.461 -2.405 -2.293 -2.248 -2.058 -1.800 -1.677 -1.425 -1.357 -1.161 -1.114 -.959 -.833 -.666 -.562 -.379	$\begin{array}{r} -.796 \\ 0.1962 \\ .429 \\ .365 \\ .326 \\ . .63 \\ .192 \\ .1667 \\ .179 \\ .100 \\ .1085 \\ .079 \\ .085 \\ .058 \end{array}$	$\begin{aligned} & .332 \\ & .526 \\ & .527 \\ & .485 \\ & .4459 \\ & .459 \\ & .357 \\ & .309 \\ & .250 \\ & .244 \\ & .228 \\ & .189 \\ & .160 \\ & .136 \\ & .124 \\ & .108 \end{aligned}$		
$0.382 \mathrm{t} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.0 \\ 31.5 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.6 \end{array}$	-4.366 -3.111 -1.374 -1.545 $=.920$ $=.808$ $=.651$ $=.612$ $=.528$ $=.506$ $=.472$ $=.421$ $=.362$ $=.283$ $=.178$ -.093 .003	$\begin{aligned} & -3.542 \\ & -2.833 \\ & -2.415 \\ & -2.078 \\ & -1.853 \\ & -\frac{1}{2} .535 \\ & -\frac{1}{2} .239 \\ & -2.082 \\ & -.840 \\ & =.778 \\ & -.620 \\ & -.562 \\ & -.454 \\ & -.356 \\ & -.258 \\ & -.141 \\ & -.033 \end{aligned}$	-2.125 -1.901 -1.957 -1.917 -1.901 -1.789 -1.753 -1.846 -1.537 -1.453 -1.257 -1.176 -1.014 -.854 -.633 -.539 -.332	-1.565 -1.397 -1.305 -1.341 -1.369 -1.313 -1.341 -3.273 -1.296 -1.229 -1.289 -1.141 -1.314 -1.026 -.931 -.844 -.721	0.365 .424 - 365 - 329 .241 .197 . .148 .084 .075 .081 .083	0.238 .519 .510 .475 .446 .355 .354 .377 .238 .215 .173 .143 .113 .084 .084	0.27 .55 .537 .449 .363 .336 .261 .167 .120 .085	$\begin{array}{r} -.261 \\ 0.564 \\ .573 \\ .564 \\ .545 \\ .45 \\ .467 \\ .378 \\ .3266 \\ .296 \\ . .778 \\ .1066 \\ .035 \\ .096 \end{array}$
$0.555 \mathrm{~b} / 2$	0 3.5 56.5 31.5 14.5 21.5 24.5 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.8	-5.318 -3.481 -1.537 -1.397 -1.060 -.915 $=.730$ $=.688$ $=.567$ $=.528$ $=.700$ $=.327$ $=.364$ $=.264$ $=.166$ -.084 .001	$\begin{aligned} & -2.821 \\ & -2.613 \\ & -2.022 \\ & -1.853 \\ & -1.835 \\ & -1.684 \\ & -1.510 \\ & -1.391 \\ & -1.211 \\ & -1.132 \\ & -.969 \\ & -.891 \\ & -.751 \\ & -.624 \\ & -.456 \\ & -.360 \\ & -.236 \end{aligned}$	-1.290 -1.217 -1.173 -1.173 -1.133 -1.116 -1.083 -1.094 -1.067 -1.060 -1.038 -.971 -.949 -.875 -.803 -.729 -.845	$\begin{aligned} & -1.229 \\ & -1.116 \\ & -1.060 \\ & -1.072 \\ & -1.049 \\ & -3.027 \\ & -.999 \\ & -1.004 \\ & -.989 \\ & -.993 \\ & -.951 \\ & -.909 \\ & -.907 \\ & -.859 \\ & -.831 \\ & -.755 \\ & -.747 \end{aligned}$	$\begin{array}{r} -.089 \\ 0.447 \\ .437 \\ .386 \\ .347 \\ .280 \\ .257 \\ .187 \\ .150 \\ .135 \\ .205 \\ .077 \\ .074 \\ .074 \end{array}$	$\begin{array}{r} -.250 \\ 0.508 \\ .509 \\ .479 \\ .443 \\ .374 \\ .344 \\ .291 \\ .259 \\ .218 \\ .955 \\ .950 \\ .109 \\ .069 \\ .026 \end{array}$	$\begin{array}{r} 0.315 \\ .527 \\ .525 \\ .547 \\ .412 \\ .386 \\ .529 \\ .296 \\ .247 \\ .720 \\ .173 \\ .058 \\ . .005 \\ \hline .125 \end{array}$	$\begin{aligned} & 0.278 \\ & .520 \\ & .527 \\ & .527 \\ & .505 \\ & .4421 \\ & .3662 \\ & .338 \\ & .281 \\ & .248 \\ & .186 \\ & .031 \\ & -.041 \\ & -.207 \end{aligned}$

TABLE XVII.- CONCLUDED.
(o) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Serispan eta.	Percent chord	UPPER SURFACE				LOWEA SURFACE			
		Angle of attack				Angle of attack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 1.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -6.568 \\ -3.772 \\ -1.649 \\ -1.553 \\ -1.088 \\ -.999 \\ -.752 \\ -.708 \\ -.584 \\ -.556 \\ -.472 \\ =.415 \\ =.340 \\ =.256 \\ =.146 \\ -.075 \\ .005 \end{array}$	$\begin{aligned} & -1.386 \\ & -1.183 \\ & -1.234 \\ & -1.132 \\ & -1.149 \\ & -1.054 \\ & -1.071 \\ & -1.009 \\ & -1.009 \\ & -.941 \\ & =.958 \\ & =.818 \\ & -.755 \\ & -.704 \\ & =.622 \\ & =.550 \\ & =.466 \end{aligned}$	$\begin{array}{r} -1.027 \\ -.892 \\ -.943 \\ -.892 \\ -.892 \\ -.836 \\ -.881 \\ -.792 \\ -.836 \\ -.780 \\ -.836 \\ =.723 \\ -.723 \\ -.692 \\ -.677 \\ -.631 \\ -.502 \end{array}$	$\begin{array}{r} -0.971 \\ -.857 \\ -.892 \\ -.836 \\ -.842 \\ . .792 \\ -.808 \\ -.780 \\ -.808 \\ -.769 \\ -.786 \\ -.716 \\ -.721 \\ -.691 \\ -.678 \\ -.633 \\ -.596 \end{array}$	0.053 .441 . 389 .291 .258 . 204 280 .139 .139 .088 .056 .053 .053 .058	$\begin{array}{r} 0.268 \\ .499 \\ .495 \\ .447 \\ .413 \\ .342 \\ .307 \\ .254 \\ .221 \\ .173 \\ .109 \\ .1074 \\ .054 \\ .019 \\ . .019 \\ . .092 \end{array}$		0.139 - 500 .498 .415 .319 .224 .194 .139 .159 -.017 .057 -.077 -.196
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 11.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.6 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -5.539 \\ -3.582 \\ -1.570 \\ -1.441 \\ -1.173 \\ -1.080 \\ -.786 \\ -.702 \\ -.556 \\ -.511 \\ -.444 \\ -.370 \\ -.310 \\ -.226 \\ -.142 \\ -.082 \\ -.016 \end{array}$	$\begin{aligned} & -1.194 \\ & -.952 \\ & =.851 \\ & -.840 \\ & =.761 \\ & =.783 \\ & =.727 \\ & =.738 \\ & =.688 \\ & =.693 \\ & =.590 \\ & =.586 \\ & =.539 \\ & =.515 \\ & =.477 \\ & -.446 \end{aligned}$	$\begin{array}{r} -0.904 \\ -.741 \\ -.696 \\ -.724 \\ -.674 \\ -.696 \\ -.668 \\ -.668 \\ -.640 \\ =.663 \\ -.678 \\ -.561 \\ -.569 \\ =.536 \\ =.535 \\ -.498 \\ -.476 \end{array}$	$\begin{array}{r} -0.780 \\ -.724 \\ -.696 \\ -.680 \\ -.668 \\ -.664 \\ -.640 \\ -.651 \\ -.629 \\ -.635 \\ -.618 \\ =.565 \\ -.571 \\ -.547 \\ -.544 \\ -.504 \\ -.474 \end{array}$	0.058 .431 .430 . 371 .258 .227 .167 .137 .072 .047 .016 .017			0.198 .464 .464 .450 . 356 - 319 - 260 - 212 .121 .079 .006 -.053 -.090 . .186
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 2 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.6 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -7.038 \\ & -3.806 \\ & -1.419 \\ & -1.296 \\ & -1.128 \\ & -1.027 \\ & -.797 \\ & -.713 \\ & -.523 \\ & -.506 \\ & =.444 \\ & =.406 \\ & -.341 \\ & =.327 \\ & -.255 \\ & =.296 \\ & =.197 \end{aligned}$	$\begin{array}{r} -0.783 \\ -.676 \\ -.682 \\ -.620 \\ -.643 \\ -.615 \\ =.626 \\ =.569 \\ =.502 \\ -.530 \\ =.427 \\ =.424 \\ =.370 \\ =.369 \\ =.323 \\ -.323 \end{array}$	$\begin{array}{r} -0.568 \\ -.615 \\ -.512 \\ -.556 \\ -.601 \\ -.556 \\ =.556 \\ -.539 \\ -.545 \\ -.500 \\ -.511 \\ -.424 \\ -.424 \\ -.385 \\ -.390 \\ -.354 \\ -.352 \end{array}$	$\begin{array}{r} -0.629 \\ -.612 \\ -.590 \\ -.556 \\ -.573 \\ -.556 \\ -.573 \\ -.528 \\ -.556 \\ =.506 \\ -.523 \\ -.450 \\ =.453 \\ -.426 \\ -.425 \\ =.391 \\ -.378 \end{array}$	0.107 .405 .315 .160 .104 .065 . 020 -. 028 $-.030$ $-.054$ $-.040$ $-.042$ $-.022$	0.330 . 405 .382 .256 .183 .089 .051 .022 $-.006$ $-.021$ $-.056$ $-.068$. .090 -.128 $-.128$	$\begin{array}{r} 0.284 \\ .415 \\ .392 \\ .343 \\ .285 \\ .212 \\ .154 \\ .115 \\ .067 \\ .034 \\ .007 \\ -.017 \\ =.056 \\ =.077 \\ -.149 \end{array}$	$\begin{array}{r} 0.221 \\ .416 \\ .392 \\ .367 \\ .308 \\ .236 \\ .188 \\ .139 \\ .091 \\ .055 \\ .019 \\ -.005 \\ -.041 \\ =.077 \\ =.115 \\ -.260 \end{array}$

(a) $a_{u}, 0^{\circ}, 1^{0}, 2^{0}, 3^{\circ}$.

Serispan sta.	(Percent	UPPER SURFACE				Lotrer surface			
		Angio of attaok				Angie of attack			
		0°	$1{ }^{\circ}$	2°	3°	0°	1°	2°	${ }^{\circ}$
$0.086 \mathrm{~b} / 2$		0.455	0.455	0.435	0.395				
	$\frac{1}{5.5}$. 0.035	-. 0.089	--. 133	-. 308	-0.019	0.061	-. 0.151	0.208
	6.5	-.056	-. 106	-. 151	- 203	-.068	-. 229	-027	-064
	11.0 14.5	-.068	-. 129	-- 145	-. 185	-.082	-. 0.059	-. 002	:027
	21.0	-. 096	-. 129	-:157	-. 185	-. 102	-.077	-. 035	$\therefore 016$
	24.5 3.5	-. 0.09	-. 138	--. 151	-. 191	-. 119	-. 0.100	-.053	-. 0.045
	34.5	-:119	-. 152	-:168	-:200	-:142	- 2121	-:088	-:.06\%
	41.0	-148	- 169	$\because 158$	-206	$\because 148$	$\underline{-129}$	-. 096	-. 073
	51.5	-. 16	--187	--297	-. 220	- 160	-. 135	-. 108	-093
	19:5	-. 112	-. 164	-. 180	-. 188	- $=1514$	-. -103	-. 102	- -.068
	79.5 91.8	-.062	-:075	-:.076	-.088	-:065	-. 0.014	-.042	-:.033
$0.195 \mathrm{~b} / 2$	0	0.427	0.406	0.352	0.257				
	1.5	-. 004	-. 132	--269	-. 264	0.005	0.127	0.228	
	6.5	-..090	- -132	--203	--263	--.09\%	-. 040	-021	:070
	17.0	-. 099	- -144	- 7178	-. 234	-. 113	-. 075	-. 025	-019
	21.5	-. 119	-. 145	-. 1788	--231	-. 128	-.089	-:053	-:.030
	24.5	- 112	-. 155	-. 177	-. 212	-. 133	-. 098	-. 068	-. 03
	31.5	-. 142	-. 164	-. 178	-.208	-. 151	-. 132	-:102	-:082
	41.5	- 1148	-. 172	- -197	-.217	-. 159	- -138	-. 1111	-. 0.98
	51.5	-. 148	- -167	-. 183	-. 203	-:153	- -135	-:111	-. 0.093
	515	-	-	- -154	- -.174	- $\because 133$	-. $\mathrm{-} .118$	-. 0974	-:088
	79.5	-. 041	- 054 $=050$	-. 059	-. 059	-.047	-.940	-.030	-.065
$0.382 \mathrm{~b} / 2$									
	,	0.398	0.377	0.300	0.145				
	5.5	-.096	-: 175	- -352	\because	-0.119	0.032 -.040	0.142	
	6.5	-. 119	\cdots		-. 329	-. 128	-. 080	-007	. 062
	11.5	-	-. 184	- 2203	-. 263	- -142	-. 0.089	-.033	.021
	21. 21	-. 142	-. 175	-.208	- -265	- $\because 151$	-.109	-:.045	-:.0.076
	24.5	-. 148	-. 175	-. 206	-. 251	-. 153	-. 118	-. 075	-. 045
	31.0.	-. 1148	-. 2169	-. 188	-. 232	-. 1717	-. 132	-. 0.108	-:.073
	42.8	-. 162	-. 181	$\therefore 203$	-. 231	-. 168	-. 138	-. 111	-.088
	44.5	-. 156	\square	-. 203	--. 231	\square	-. 18.184	=. 1121	-. 0.093
	59.5	- -133	-. 146	- -160	- -174	-. 128	-. 145	-.094	-.088
	71.8	-. -041	-. 0848	- -1.102	-. 0.052	-. 080	-. O	-. 059	-. 0.059
	91.8	-. 019	-.022	-. 013	-.004	:016	.026	.028	
$0.555 \mathrm{~b} / 2$		0.424	0.426	0.329	0.162				
	1.5	-. 016	-. 187	-.381	-.590	-0.073	0.052	0.165	0.251
	\%.5	-:996	- -190	-. 2866	-. 367	-. 105	-:040	0.047	. 119
	11.0	-. 111	-.164	-.229	-. 292	-. 119	-. 072	-.013	.044
	714.5	- -117	--161	-. 220	-. 2277	-- 1128	-. 075	-. 014	-.030
	24.5	-. -125	-. 155	-. 191	-. 234	-. 131	-. 103	-.062	-.022
	31.8	-. 131	- -15	--191	-229	-. 139	-. 112	-. 073	-. 045
	34,	-. 151	$\because \mathrm{O} .167$	-. 197	-.217	-. 145	-. 2123	-.093	-. -.068
	44.5	-. 148	-. 164	- 191	-. 214	-. 142	-. 126	-. 099	-. 0.075
	51.0	-. -131	-. 3149	-. -180	-. 2148	-:.134	-. 2121	-:105	-.076
	71: ${ }^{\text {a }}$	-. 065	-. 075	-. 034	-. 003	-. 066	-. 046	-. 037	--033
	${ }_{91} 7$	-.036	-.026	-.026	-.024	-. 042	-.041	-042	. 064

TABLE XVIII.- CONTINUED.
(a) $\alpha_{1}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}$ - ooncluded.

Semispan eta.	Percent ohord	UPPER SURFACE				LOWER SURFACE			
		Angle of ettack				Angle of attack			
		0°	$1{ }^{0}$	2^{0}	3^{0}	0°	$1{ }^{\circ}$	2^{0}	3^{0}
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.421 -.036 $-.262$ $-.114$ $-.108$ $-.219$ $-.128$ $-.139$ $=.145$ -148 $-.148$ $-.137$ $-.062$ $-.016$.042	$\begin{aligned} & 0.391 \\ & =.213 \\ & =.210 \\ & =.213 \\ & =.172 \\ & =.178 \\ & =.181 \\ & =.175 \\ & =.178 \\ & =.176 \\ & =.164 \\ & =.149 \\ & =.121 \\ & =.075 \\ & =.020 \\ & .038 \end{aligned}$	0.268 $-.421$ -.297 .303 $=.231$ -. 229 -. 220 -211 -.206 $-.206$ -200 -191 -.165 -.137 $-.079$.033 .039	0.047 -.654 -. 389 -.384 -.295 $-.292$ -.263 -.246 $-.234$ -.234 -.220 $-.217$ -.188 -.148 $-.085$ -.033 .036	$\left\{\begin{array}{r} -.07 \\ -0.062 \\ -.114 \\ =.119 \\ -.131 \\ -.134 \\ -.137 \\ =.142 \\ -.148 \\ -.151 \\ -.148 \\ -.145 \\ -.134 \\ =.108 \\ -.050 \\ -.007 \\ .044 \end{array}\right.$	$\begin{aligned} & -.075 \\ & 0.075 \\ & =.034 \\ & -.072 \\ & -.077 \\ & -.092 \\ & -.103 \\ & -.118 \\ & =.106 \\ & -.122 \\ & -.115 \\ & =.123 \\ & =.075 \\ & =.046 \\ & -.006 \\ & .052 \end{aligned}$	$\begin{array}{r} .0 .211 \\ .056 \\ .039 \\ . .007 \\ -.022 \\ -.048 \\ =.056 \\ -.076 \\ -.079 \\ =.094 \\ =.096 \\ =.102 \\ =.079 \\ =.036 \\ .001 \\ .050 \end{array}$	$\begin{array}{r} 0.300 \\ .131 \\ .1005 \\ .044 \\ . .027 \\ -.010 \\ =.019 \\ -.045 \\ =.071 \\ =.076 \\ =.099 \\ =.071 \\ -.033 \\ .007 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} 0.369 \\ -.033 \\ =.108 \\ -.102 \\ -.105 \\ =.116 \\ =.122 \\ -.125 \\ =.125 \\ =.128 \\ =.151 \\ =.142 \\ -.131 \\ -.088 \\ -.050 \\ -.007 \\ .047 \end{array}$	$\begin{aligned} & 0.420 \\ & =.215 \\ & -.210 \\ & =.192 \\ & =.178 \\ & =.172 \\ & =.161 \\ & =.161 \\ & =.158 \\ & =.158 \\ & =.161 \\ & =.155 \\ & =.152 \\ & =.103 \\ & =.014 \\ & =.046 \end{aligned}$	$\begin{aligned} & 0.360 \\ & =.415 \\ & -.306 \\ & -.289 \\ & =.220 \\ & -.220 \\ & =.197 \\ & -.188 \\ & =.177 \\ & -.168 \\ & =.185 \\ & =.160 \\ & =.114 \\ & =.068 \\ & =.016 \\ & .053 \end{aligned}$	0.211 $-.645$ -.392 -.364 -. 292 -.280 -.246 .237 -.214 -. 208 $=.214$ $=.194$ $-.171$ $-.125$ -.073 -.019 .044	$\begin{array}{r} -0.062 \\ -.114 \\ -.119 \\ -.125 \\ -.131 \\ -.131 \\ -.128 \\ -.131 \\ -.128 \\ -.128 \\ -.116 \\ -.099 \\ -.042 \\ -.002 \\ .056 \end{array}$	$\begin{aligned} & -.057 \\ & 0.0029 \\ & =.043 \\ & -.069 \\ & -.100 \\ & =.100 \\ & =.103 \\ & =.106 \\ & =.121 \\ & =.115 \\ & =.100 \\ & =.096 \\ & -.043 \\ & -.003 \\ & .055 \end{aligned}$	$\begin{array}{r} -.074 \\ 0.044 \\ .042 \\ -.013 \\ -.053 \\ -.065 \\ -.073 \\ -.082 \\ =.091 \\ -.094 \\ -.082 \\ =.076 \\ -.036 \\ -.010 \\ .053 \end{array}$	$\begin{aligned} & -.300 \\ & 0.116 \\ & .113 \\ & .039 \\ & =.027 \\ & =.036 \\ & =.053 \\ & -.062 \\ & =.071 \\ & =.073 \\ & =.073 \\ & =.073 \\ & =.039 \\ & .053 \end{aligned}$
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.8 34.5 41.0 44.5 52.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.415 \\ & .007 \\ & =.116 \\ & -.125 \\ & -.119 \\ & -.128 \\ & -.128 \\ & =.125 \\ & =.122 \\ & -.116 \\ & -.131 \\ & -.131 \\ & -.108 \\ & -.073 \\ & -.036 \\ & .007 \\ & .056 \end{aligned}$	$\begin{aligned} & 0.334 \\ & =.175 \\ & =.213 \\ & =.215 \\ & =.175 \\ & =.176 \\ & =.161 \\ & =.155 \\ & =.146 \\ & =.129 \\ & =.129 \\ & =.132 \\ & =.116 \\ & =.080 \\ & -.031 \\ & .003 \\ & .049 \end{aligned}$	$\begin{aligned} & 0.162 \\ & -.389 \\ & -.303 \\ & -.292 \\ & -.220 \\ & -.280 \\ & =.188 \\ & -.162 \\ & =.157 \\ & =.151 \\ & -.157 \\ & -.154 \\ & -.128 \\ & =.096 \\ & =.042 \\ & .001 \\ & .044 \end{aligned}$	$\begin{aligned} & 0.108 \\ & =.636 \\ & =.392 \\ & =.389 \\ & -.277 \\ & =.266 \\ & =.220 \\ & =.206 \\ & =.185 \\ & =.165 \\ & =.168 \\ & =.162 \\ & =.139 \\ & =.099 \\ & =.045 \\ & -.010 \\ & .044 \end{aligned}$	$\begin{array}{r} -0.071 \\ -.116 \\ -.119 \\ -.128 \\ -.131 \\ -.139 \\ -.137 \\ -.131 \\ . .128 \\ -.128 \\ -.116 \\ -.108 \\ -.071 \\ -.033 \\ .013 \\ .067 \end{array}$	-.072 0.0740 $=.0443$ -.077 $=.089$ $=.107$ -.106 $=.109$ -.109 -.112 -.109 $=.106$ $=.069$ -.037 .015 .061	0.300 .042 .030 -.025 -.045 -.043 -.075 $-.091$ -.102 -.096 $-.099$ $-.099$ -.102 -.065 $-.036$.047	0.271 .102 .090 .016 -.013 -.045 $-.065$ $=.073$ -.076 $-.088$ -. 088 -. 091 $-.062$ $-.030$.044

TABLE XVIII. - COMTIMUED.
(b) $\alpha_{a}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

TABLE XVIII.- CONTINUED.
(b) $x_{u}, 4^{\circ}, 6^{\circ}, 5^{\circ}, 10^{\circ}$ - Ooncluded.

Sem1span sta.	Percent chord	UPPER SUETAOS				LOWIER SURFACTS			
		Angle of attack				Angle or attaok			
		4°	6°	$8{ }^{\circ}$	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.9 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.6 \end{array}$	$\begin{array}{r} -0.274 \\ =.932 \\ -.504 \\ =.493 \\ =.369 \\ =.349 \\ =.303 \\ =.289 \\ =.272 \\ -.263 \\ -.249 \\ -.234 \\ =.206 \\ =.016 \\ =.091 \\ -.033 \\ .036 \end{array}$	$\begin{array}{r} -1.268 \\ -1.679 \\ -.763 \\ -.723 \\ -.528 \\ . .476 \\ -.407 \\ -.378 \\ =.338 \\ -.329 \\ -.303 \\ =.283 \\ . .246 \\ -.188 \\ -.108 \\ .045 \\ .010 \end{array}$	$\begin{array}{r} -2.726 \\ -2.139 \\ -1.044 \\ -.992 \\ =.693 \\ =.627 \\ -.512 \\ =.471 \\ =.424 \\ =.397 \\ -.359 \\ -.336 \\ =.282 \\ =.215 \\ =.126 \\ -.054 \\ .032 \end{array}$	$\begin{array}{r} -4.529 \\ -2.976 \\ -1.325 \\ -1.256 \\ -.860 \\ =.762 \\ =.612 \\ =.562 \\ =.483 \\ =.454 \\ -.402 \\ =.374 \\ =.313 \\ =.236 \\ -.138 \\ -.054 \\ .029 \end{array}$	0.369 .165 .099 .082 .016 $-.016$ -. 019 -.045 -.045 $-.066$ $-.053$ -. 019 .050	0.421 .300 .283 .197 .105 .085 .044 .036 .004 $-.007$ -. 019 -.019 .004 .016 .056	0.380 .377 .363 .268 236 .179 .147 .104 .092 .055 .040 .003 .020 .035 .061 .061	0.233 .420 .409 - 331 .233 .207 $.15 \%$.095 .084 .058 .043 .049 .064
$0.831 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.065 \\ -.892 \\ -.501 \\ =.473 \\ -.358 \\ -.343 \\ -.289 \\ =.272 \\ =.240 \\ -.231 \\ -.226 \\ -.214 \\ -.188 \\ =.131 \\ -.073 \\ -.016 \\ .044 \end{array}$	$\begin{array}{r} -0.949 \\ -1.510 \\ -.748 \\ -.691 \\ -.504 \\ -.470 \\ -.375 \\ -.355 \\ -.303 \\ -.289 \\ -.272 \\ -.251 \\ =.217 \\ -.157 \\ -.088 \\ -.027 \\ .042 \end{array}$	$\begin{array}{r} -2.286 \\ -2.090 \\ -1.024 \\ -.955 \\ -.667 \\ -.609 \\ -.480 \\ -.437 \\ -.365 \\ -.351 \\ -.330 \\ -.293 \\ -.250 \\ -.178 \\ -.103 \\ -.043 \\ .035 \end{array}$	$\begin{array}{r} -3.974 \\ -2.873 \\ -1.314 \\ -1.196 \\ -.839 \\ -.739 \\ -.566 \\ -.512 \\ =.431 \\ =.420 \\ -.359 \\ =.330 \\ =.276 \\ =.204 \\ =.115 \\ =.052 \\ .023 \end{array}$	0.363 .188 .102 .076 .007 -.0055 . .030 -.050 -.059 -.066 $=.027$.007 .056	0.429 .294 .274 .288 .085 .073 .030 .016 -.013 $-.016$ $-.030$ -.045 -.013 .010 .050	$\begin{array}{r} .0 .386 \\ .360 \\ .351 \\ .266 \\ .156 \\ .150 \\ .081 \\ .058 \\ .029 \\ .015 \\ .003 \\ . .020 \\ . .006 \\ .012 \\ .052 \end{array}$	0.242 .417 .409 . 328 .213 .196 138 .110 .072 .049 .040 .006 .015 .022
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 24.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.478 \\ =.904 \\ =.490 \\ =.461 \\ =.343 \\ =.309 \\ =.260 \\ =.231 \\ =.203 \\ =.185 \\ =.185 \\ -.174 \\ =.145 \\ =.102 \\ =.045 \\ -.013 \\ .045 \end{array}$	$\begin{array}{r} -1.584 \\ -1.656 \\ -.720 \\ =.677 \\ -.473 \\ -.415 \\ -.335 \\ -.297 \\ -.257 \\ -.237 \\ -.231 \\ =.214 \\ =.185 \\ =.128 \\ =.073 \\ -.042 \\ . .004 \end{array}$	$\begin{array}{r} -3.074 \\ -2.246 \\ =.980 \\ -.908 \\ =.621 \\ -.535 \\ =.417 \\ =.368 \\ =.310 \\ =.302 \\ =.276 \\ =.267 \\ =.224 \\ =.178 \\ =.112 \\ =.092 \\ =.040 \end{array}$	$\begin{aligned} & -4.949 \\ & -3.094 \\ & -1.242 \\ & -1.139 \\ & -.762 \\ & -.650 \\ & -.494 \\ & =.437 \\ & =.365 \\ & -.351 \\ & -.322 \\ & -.307 \\ & -.270 \\ & =.221 \\ & =.158 \\ & -.149 \\ & -.092 \end{aligned}$	0.343 .171 .156 .067 .036 .016 .030 -.050 $-.059$ $-.073$ -.073 -.076 -. 062 .030 -.004 .044	$\begin{array}{r} . .41 \\ 0.415 \\ .276 \\ .260 \\ .159 \\ .102 \\ .039 \\ .004 \\ . .016 \\ -.033 \\ =.046 \\ . .059 \\ . .068 \\ . .059 \\ . .039 \\ -.013 \\ .035 \end{array}$	0.386 . 340 - 328 . 225 .167 .047 .012 -. 017 $-.034$ $-.046$ $-.052$ -.049 -.034 $-.020$.012	$\begin{array}{r} -.068 \\ 0.388 \\ .377 \\ .282 \\ .219 \\ .127 \\ .078 \\ .043 \\ .009 \\ -.014 \\ -.020 \\ =.043 \\ =.049 \\ -.034 \\ -.031 \\ .006 \end{array}$

TABLE XVIII. - GOMPIMUED.
(a) $a_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Senfspan ta.	Parcent chord	UPPER SURTACE				LOUTR SURFsics			
		angle of attmox				Angle of attaok			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.086 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 34.5 \\ 21.0 \\ 24.5 \\ 31.8 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.8 \\ 79.5 \\ 91.0 \end{gathered}$	-1.418 -1.886 -.785 -.745 $=.549$ -.529 -.492 $=.348$ $=.399$ -.395 -.391 $=.368$ $=.305$ -.39 -.146 -.046	$\begin{aligned} & -3.022 \\ & -2.87 \\ & -1.095 \\ & -1.021 \\ & -.765 \\ & -.693 \\ & -.586 \\ & -.563 \\ & =.497 \\ & =.422 \\ & -.469 \\ & -.428 \\ & =.351 \\ & -.269 \\ & =.169 \\ & -.054 \end{aligned}$	$\begin{aligned} & -5.147 \\ & -1.026 \\ & -1.435 \\ & -1.369 \\ & -.861 \\ & -.869 \\ & -.723 \\ & -.694 \\ & -.616 \\ & -.513 \\ & -.588 \\ & -.536 \\ & -.437 \\ & =.364 \\ & -.266 \\ & -.125 \end{aligned}$	$\begin{aligned} & -7.566 \\ & -5.477 \\ & -1.797 \\ & -1.670 \\ & -1.207 \\ & -2.141 \\ & -1.016 \\ & -1.034 \\ & -.930 \\ & -.937 \\ & -.681 \\ & -.823 \\ & =.733 \\ & =.606 \\ & =.476 \\ & -.314 \end{aligned}$	0.495 .437 . 337 .253 .221 -170 -170 .084 .081	$\begin{array}{r} .0-7 \\ 0.406 \\ .509 \\ .506 \\ .417 \\ .414 \\ .357 \\ .334 \\ .299 \\ .265 \\ .235 \\ .199 \\ .176 \\ .177 \\ .141 \\ .121 \end{array}$	$\begin{array}{r} -.777 \\ 0.504 \\ .544 \\ .541 \\ .576 \\ .464 \\ .435 \\ .369 \\ .335 \\ .35 \\ .283 \\ .246 \\ .205 \\ .182 \\ .139 \end{array}$	
$0.195 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 34.5 \\ 21.5 \\ 24.5 \\ 31.5 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 11.0 \\ 79.5 \\ 91.0 \end{gathered}$	-2.924 -2.545 -1.064 $=.975$ -.733 $=.644$ $=.546$ $=.509$ $=.448$ $=.437$ $=.408$ $=.402$ $=.351$ $=.799$ $=.198$ $=.1006$ -.006		$\begin{array}{r} -9.097 \\ -5.428 \\ -2.044 \\ -1.814 \\ -1.297 \\ -1.110 \\ -.909 \\ -.846 \\ =.743 \\ -.726 \\ -.674 \\ =.665 \\ -.586 \\ =.493 \\ =.364 \\ =.099 \\ -.099 \end{array}$		0.156 .469 .354 - 259 .190 .167 .133 .087 .081	$\begin{array}{r} -.77 \\ 0.437 \\ .508 \\ .466 \\ .426 \\ .377 \\ .299 \\ .276 \\ .245 \\ .159 \\ .178 \\ .147 \\ .147 \\ .130 \end{array}$		
$0.382 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.8 \\ 24.5 \\ 31.6 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	-4.536 -3.117 -1.343 -1.528 -.897 -.782 -.638 $=.508$ -.509 -.474 $=.437$ $=.45$ -.353 $=.279$ $=.169$ -.092 .009	-6.532 -4.765 -1.924 -1.717 -1.242 -1.070 $=.634$ $=.759$ $=.538$ $=.509$ $=.529$ $=.417$ $=.317$ $=.328$ $=.112$ $=.008$.--7 -1.499 -1.499 -1.456 -1.461 -1.412 -1.427 -1.375 -1.357 -1.317 -1.282 -1.227 -1.161 -1.080 $=.938$ -.834 -.670	-.774 0.354 .420 .357 .317 .268 .245 .193 .175 .144 .130 .104 .052 .052 .052 .052	$\begin{array}{r} 0.043 \\ .478 \\ .478 \\ .455 \\ .466 \\ .354 \\ .302 \\ .279 \\ .245 \\ .256 \\ .1567 \\ .1358 \\ .130 \\ .110 \end{array}$	-0.280 -.488 .535 .547 .540 .470 .437 .355 .350 .283 .245 .197 .154 .128 .067	$\begin{array}{r} -.719 \\ 0.562 \\ .567 \\ .576 \\ .553 \\ .575 \\ .420 \\ .355 \\ .336 \\ .577 \\ .206 \\ .134 \\ .082 \\ -.054 \end{array}$
$0.555 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.8 79.5 91.0	-5.464 -3.554 -1.512 -1.350 -.595 -.857 $=.690$ $=.578$ -.535 $=.506$ -.443 -.420 -.351 -.256 -.155 -.072 .012	$\begin{array}{\|} -10.306 \\ -5.464 \\ -2.159 \\ -1.961 \\ -1.415 \\ -1.231 \\ -.911 \\ -.622 \\ -.681 \\ -.635 \\ -.549 \\ -.512 \\ -.523 \\ -.307 \\ -.104 \\ -.106 \\ -.020 \end{array}$	$\begin{array}{r} -4.285 \\ -1.615 \\ -1.570 \\ -1.518 \\ -1.498 \\ -1.426 \\ -1.435 \\ -1.355 \\ -1.358 \\ -1.383 \\ -1.237 \\ -1.179 \\ -1.716 \\ -.967 \\ -.603 \\ -.662 \\ .490 \end{array}$	-2.034 -1.144 -1.109 -1.090 -1.083 -1.037 -1.034 -1.002 -1.011 -.999 -.993 -.973 -.973 $=.936$ -.860 -.803 -.743	$\begin{array}{r} 0.269 \\ .449 \\ .446 \\ .394 \\ .351 \\ .291 \\ .218 \\ .184 \\ .153 \\ .138 \\ .115 \\ .084 \\ .087 \\ .089 \\ .089 \end{array}$	$\begin{array}{r} -. .192 \\ .440 \\ .455 \\ .465 \\ .499 \\ .377 \\ .317 \\ .294 \\ .257 \\ .1995 \\ .150 \\ .115 \\ .058 \end{array}$	$\begin{array}{r} -.710 \\ 0.524 \\ .541 \\ .524 \\ .507 \\ .4406 \\ .367 \\ .326 \\ . .277 \\ .257 \\ .1745 \\ .1145 \\ . .055 \\ -.027 \end{array}$	$\begin{array}{r} 0.154 \\ .527 \\ .579 \\ .527 \\ .572 \\ .447 \\ .385 \\ .354 \\ .302 \\ .567 \\ .212 \\ .125 \\ .065 \\ -.002 \\ -.172 \end{array}$

TABLE XYIII. - CONCLDDED.
(o) $\alpha_{2}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Oonoluded.

Semiapan sta.	Peroent ohord	UPPIER BURTMCE				LOINR SURTACE			
		Angle of attack				angle or attaok			
		12^{0}	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.5 \\ 14.0 \\ 21.5 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.5 \\ 44.5 \\ 51.5 \\ 59.5 \\ 71.5 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -6.810 \\ & -3.908 \\ & -1.662 \\ & -1.541 \\ & -1.041 \\ & -.917 \\ & -.716 \\ & -.658 \\ & -.549 \\ & -.514 \\ & -.746 \\ & -.423 \\ & -.342 \\ & -.256 \\ & -.141 \\ & -.063 \\ & -.023 \end{aligned}$	12.544 -5.372 -2.427 -2.329 -1.469 -1.277 -.934 -.851 -.710 -.664 -.569 -.520 -.428 -.307 $=.187$ -.306 -.049	$\begin{aligned} & -1.696 \\ & -1.208 \\ & -1.064 \\ & -1.030 \\ & -1.024 \\ & -.978 \\ & -.975 \\ & -.935 \\ & -.950 \\ & -.921 \\ & -.941 \\ & -.912 \\ & -.901 \\ & -.832 \\ & -.771 \\ & -.978 \\ & -.912 \end{aligned}$	$\begin{aligned} & -1.323 \\ & -.886 \\ & -.860 \\ & -.849 \\ & -.831 \\ & -.803 \\ & -.797 \\ & -.771 \\ & -.748 \\ & -.768 \\ & =.748 \\ & -.765 \\ & =.733 \\ & -.716 \\ & -.667 \\ & -.626 \end{aligned}$	$\begin{array}{r} -0.011 \\ .443 \\ .446 \\ .391 \\ .360 \\ .291 \\ .265 \\ .210 \\ .190 \\ .147 \\ .090 \\ .062 \\ .061 \\ .061 \\ .064 \end{array}$	$\begin{array}{r} -0.785 \\ .397 \\ .440 \\ .463 \\ .446 \\ .397 \\ .314 \\ .314 \\ .231 \\ .231 \\ .167 \\ .138 \\ .1070 \\ .051 \\ .055 \end{array}$	0.062 .490 .493 .487 .403 .312 .228 .142 .027 .033 .148 .148	
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 61.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & -6.142 \\ & -3.73 \\ & -1.604 \\ & -1.451 \\ & -1.015 \\ & -.900 \\ & -.678 \\ & -.615 \\ & -.797 \\ & -.454 \\ & -.399 \\ & -.365 \\ & -.307 \\ & -.224 \\ & -.123 \\ & -.075 \\ & . .009 \end{aligned}$	$\begin{aligned} & -11.083 \\ & -4.336 \\ & -2.958 \\ & -2.976 \\ & -1.967 \\ & -1.765 \\ & -1.975 \\ & -1.003 \\ & =.736 \\ & -.670 \\ & -.520 \\ & -.437 \\ & -.339 \\ & -.2121 \\ & =.126 \\ & -.080 \\ & -.049 \end{aligned}$	$\begin{aligned} & -1.369 \\ & =.792 \\ & =.777 \\ & -.736 \\ & -.777 \\ & =.691 \\ & =.674 \\ & =.677 \\ & -.651 \\ & -.680 \\ & -.662 \\ & -.644 \\ & -.645 \\ & -.588 \\ & -.536 \end{aligned}$		$-0-$.443 .432 .53 -.265 .239 .184 .153 .107 .089 .066 .023 .029 .032 .040		$\begin{array}{r} 0.797 \\ .475 \\ .472 \\ .447 \\ .340 \\ .306 \\ .248 \\ .217 \\ .165 \\ .128 \\ .093 \\ -.013 \\ -.036 \\ -.177 \end{array}$	0.310 .447 .472 .455 -.356 .330 .370 . .385 .137 .099 .013 -.045 -.187
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 12.0 14.0 21.5 24.0 31.5 34.5 41.5 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{array}{r} -7.212 \\ -4.100 \\ -1.527 \\ -1.397 \\ =.929 \\ -.765 \\ =.595 \\ =.532 \\ =.440 \\ =.417 \\ =.374 \\ =.368 \\ =.316 \\ =.284 \\ =.218 \\ =.248 \end{array}$	$\begin{aligned} & -2.398 \\ & -2.062 \\ & -2.021 \\ & -1.872 \\ & -1.895 \\ & -1.719 \\ & -1.659 \\ & -1.561 \\ & -1.517 \\ & -1.320 \\ & -1.940 \\ & -1.044 \\ & =.713 \\ & -.800 \\ & =.538 \\ & -.589 \\ & -.372 \end{aligned}$	$\begin{aligned} & -0.789 \\ & -.562 \\ & -.508 \\ & -.588 \\ & -.576 \\ & -.550 \\ & -.539 \\ & =.513 \\ & -.504 \\ & =.490 \\ & -.501 \\ & -.476 \\ & =.499 \\ & -.493 \\ & =.455 \\ & -.435 \end{aligned}$	$\begin{aligned} & -0.655 \\ & -.566 \\ & -.534 \\ & -.511 \\ & -.508 \\ & -.490 \\ & -.487 \\ & =.479 \\ & -.470 \\ & =.476 \\ & -.456 \\ & -.473 \\ & -.453 \\ & -.453 \\ & -.412 \\ & -.395 \end{aligned}$	0.055 .411 .386 .322 .356 .161 .110 .078 .009 -.020 -.023 $=.052$ $=.037$ -.046 -.020	-.066 0.0449 .423 .383 .3176 .176 .127 .084 .061 .0026 .0017 . .011 .0066 -.043	-.754 0.254 .426 .406 .35 .325 .125 .182 .1396 .093 .027 .001 -.045 -.076 $=.182$ -.160	$\begin{array}{r} -.212 \\ 0.417 \\ .394 \\ .362 \\ .310 \\ .1145 \\ .151 \\ .108 \\ .067 \\ .036 \\ -.045 \\ -.050 \\ -.106 \\ -.164 \end{array}$

(a) $a_{\text {u }}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{0}$.

Serispan ata.	Percent ohord	UPPER BLIFACE				LOTEH SURFACE			
		Angle of attack				Angie of attmok			
		0°	$1^{\text {a }}$	$2{ }^{\circ}$	3°	0°	1°	2^{0}	3°
$0.086 \mathrm{~b} / 2$	$\begin{aligned} & 0.5 \\ & 5.5 \\ & 5.5 \\ & 11.5 \\ & 14.0 \\ & 21.5 \\ & 21.0 \\ & 31.5 \\ & 31.0 \\ & 41.5 \\ & 41.0 \\ & 51.5 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$	0.484 .038 -.027 $=.031$ $=.057$ $=.074$ $=.108$ $=.104$ $=.113$ $=.130$ $=.155$ $=.132$ $=.164$ $=.068$ -.010	$\begin{aligned} & 0.475 \\ & =.067 \\ & =.071 \\ & -.079 \\ & -.085 \\ & -.110 \\ & -.110 \\ & -.115 \\ & =.116 \\ & -.146 \\ & -.170 \\ & -.181 \\ & =.179 \\ & =.153 \\ & -.117 \\ & =.067 \\ & -.015 \end{aligned}$		0.402 $=.284$ $=.160$ $=.164$ $=.156$ $=.160$ $=.168$ $=.173$ $=.181$ $=.194$ $=.220$ $=.215$ $=.181$ $=.142$ $=.024$	-.071 -.045 $=.036$ $=.047$ $=.068$ $=.076$ -.094 $=.109$ $=.123$ -.130 -.150 $=.129$ -.107 $=.070$	$\begin{array}{r} -.106 \\ 0.033 \\ .008 \\ =.008 \\ =.032 \\ =.044 \\ -.062 \\ =.076 \\ -.086 \\ -.111 \\ -. .327 \\ -.112 \\ -.090 \\ -.057 \\ -.011 \end{array}$	$\begin{array}{r} 0.273 \\ .078 \\ .047 \\ .021 \\ -.004 \\ -.019 \\ -.037 \\ -.051 \\ -.069 \\ -.084 \\ -.108 \\ -.093 \\ -.076 \\ -.049 \\ -.005 \end{array}$	$\begin{array}{r} 0.239 \\ .123 \\ .090 \\ .059 \\ .030 \\ -.009 \\ -.025 \\ -.041 \\ -.059 \\ -.055 \\ -.075 \\ -.067 \\ -.037 \\ .003 \end{array}$
$0.195 \mathrm{~b} / 2$	0 3.5 56.5 11.5 14.5 21.6 24.5 31.0 34.5 41.6 44.5 51.0 39.5 79.8 91.5		0.402 $=.165$ -.153 -.157 -.153 -.153 $=.157$ $=.157$ -.157 $=.197$ -.191 $=.173$ $=.145$ $=.1082$ -.055 .005			0.032 $=.067$ $=.086$ $=.095$ $=.123$ $=.134$ $=.147$ $=.155$ $=.157$ $=.155$ $=.135$ $=.045$.041	$\begin{array}{r} 0.155 \\ .007 \\ -.024 \\ =.051 \\ =.095 \\ -.096 \\ -.086 \\ =.1066 \\ -.127 \\ -.127 \\ -.136 \\ -.117 \\ -.080 \\ -.017 \end{array}$	-.240 0.057 .025 -.010 $=.019$ $=.045$ -.061 $=.087$ $=.097$ $=.107$ $=.110$ $=.120$ $=.069$ -.028 .019	
$0.382 \mathrm{~m} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 21.0 \\ 31.5 \\ 34.0 \\ 59.5 \\ 44.0 \\ 51.5 \\ 59.5 \\ 71.5 \\ 79.5 \\ 91.0 \end{gathered}$			0.252 -.370 $=.276$ -.280 $=.229$ $=.217$ $=.203$ $=.198$ $=.198$ $=.203$ $=.209$ $=.187$ $=.160$ $=.030$ -.017	0.145 $=.550$ $=.327$ $=.227$ $=.276$ $=.241$ $=.242$ $=.233$ $=.237$ $=-237$ $=.265$ $=.175$ $=.112$ $=.051$.015		-.107 0.028 -.041 $=.067$ -.080 -.100 -.117 -.123 $=.128$ $=.137$ $=.108$ -.067 -.020 .031	-.744 0.032 .017 -.022 $=.075$ $=.060$ -.071 $=.093$ -.100 $=.105$ $=.116$ $=.093$ $=.057$ -.014 .033	
$0.555 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 31.0 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.0 \\ & 34.5 \\ & 41.0 \\ & 41.5 \\ & 51.0 \\ & 39.5 \\ & 11.0 \\ & 91.5 \end{aligned}$	0.407 $=.053$ $=.133$ $=.130$ $=.143$ $=.151$ $=.151$ $=.151$ $=.180$ $=.155$ -.145 $=.073$ -.008 .030	$\begin{aligned} & 0.393 \\ & -.271 \\ & -.27 \\ & -.238 \\ & -.195 \\ & -.195 \\ & -.195 \\ & -.195 \\ & -.195 \\ & -.200 \\ & -.164 \\ & -.167 \\ & -.127 \\ & -.034 \\ & -.035 \end{aligned}$	0.316 -. 417 $-.284$ -. 241 -.235 -.224 -.203 -.224 -.207 -.229 -.206 -.184 -.140 -.103 -.041 -.020		-0.062 -.107 -.109 $=.107$ $=.127$ $-.140$ -.137 -.149 -.153 -.149 -.148 $=.145$ $=.125$ -.066 $=.020$ -. 02020	$\begin{aligned} & 0.070 \\ & =.015 \\ & =.033 \\ & =.0646 \\ & =.097 \\ & -.100 \\ & =.108 \\ & =. .1183 \\ & -. .124 \\ & -.110 \\ & -.060 \\ & -.016 \end{aligned}$	$\begin{array}{r} .-.162 \\ .043 \\ .025 \\ -.018 \\ -.068 \\ =.066 \\ =.067 \\ -.098 \\ -.106 \\ -.107 \\ -.009 \\ -.005 \\ -.017 \\ -.0136 \end{array}$	$\begin{array}{r} -.251 \\ . .109 \\ .091 \\ .034 \\ . .020 \\ -.021 \\ -.055 \\ -.067 \\ -.085 \\ -.078 \\ -.087 \\ -.075 \\ -.040 \\ -.004 \\ .041 \end{array}$

TABLE XIX. - CONTIMUED.
(a) $\alpha_{1}, 0^{\circ}, 1^{0}, 2^{0}, 3^{\circ}-$ Conoluded.

Semispan eta.	Percent ohord	UPPER SURTACE				LOMER SURPACE			
		Angle of attaor				Angle of attack			
		0°	1°	2°	3°	0^{0}	1°	2^{0}	3°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 47.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & 0.359 \\ & =.061 \\ & -.126 \\ & -.126 \\ & -.113 \\ & -.130 \\ & -.156 \\ & -.156 \\ & -.160 \\ & -.164 \\ & -.173 \\ & -.149 \\ & -.132 \\ & -.113 \\ & -.065 \\ & -.019 \\ & .040 \end{aligned}$	$\begin{aligned} & 0.324 \\ & -.264 \\ & =.251 \\ & -.238 \\ & =.204 \\ & -.200 \\ & -.230 \\ & -.204 \\ & -.208 \\ & -.200 \\ & -.204 \\ & -.184 \\ & -.165 \\ & =.135 \\ & -.080 \\ & -.030 \\ & .032 \end{aligned}$	0.261 $-.452$ $-.301$ -. 319 $-.250$ $-.241$ $-.233$ $-.237$ $-.224$ $-.237$ -. 229 $-.206$ -. 182 $-.150$ $-.089$ $-.036$. O28	0.029 0.675 -.409 -.499 -.392 - 310 -.293 -.280 -. 271 -.250 -.246 $-.241$ $-.225$ -.198 -.161 $-.094$ -.039 .031	$\begin{array}{r} -0.057 \\ -.108 \\ =.118 \\ =.134 \\ =.134 \\ =.140 \\ =.146 \\ =.151 \\ =.153 \\ =.143 \\ =.140 \\ =.114 \\ =.057 \\ =.011 \\ .047 \end{array}$	$\begin{aligned} & -.107 \\ & 0.010 \\ & =.025 \\ & -.067 \\ & =.072 \\ & -.091 \\ & =.101 \\ & =.114 \\ & -.112 \\ & =.118 \\ & -.117 \\ & -.124 \\ & =.105 \\ & -.052 \\ & =.011 \\ & .046 \end{aligned}$	$\begin{array}{r} 0.201 \\ .051 \\ .033 \\ -.019 \\ -.031 \\ -.053 \\ -.068 \\ -.088 \\ -.092 \\ -.102 \\ -.104 \\ -.109 \\ -.094 \\ -.047 \\ -.010 \\ .044 \end{array}$	$\begin{array}{r} -.297 \\ .127 \\ .110 \\ .040 \\ .026 \\ =.012 \\ =.052 \\ =.060 \\ =.073 \\ -.077 \\ -.088 \\ =.077 \\ =.034 \\ -.002 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & 0.355 \\ & -.065 \\ & -.147 \\ & -.143 \\ & -.138 \\ & -.157 \\ & -.156 \\ & -.164 \\ & -.164 \\ & -.181 \\ & -.194 \\ & -.146 \\ & -.132 \\ & -.094 \\ & -.065 \\ & -.009 \\ & .047 \end{aligned}$	$\begin{aligned} & 0.384 \\ & =.299 \\ & =.247 \\ & -.247 \\ & -.200 \\ & -.230 \\ & -.281 \\ & =.221 \\ & -.195 \\ & -.204 \\ & -.208 \\ & -.173 \\ & -.158 \\ & -.114 \\ & -.077 \\ & -.017 \\ & .042 \end{aligned}$	0.347 $-.452$ $-.323$ $-.323$ $-.241$ $-.237$ $-.241$ $-.233$ $-.237$ $-.216$ $-.229$ $-.190$ $-.173$ $-.126$ $-.077$ -. 022 .037	$\begin{aligned} & 0.192 \\ & -.696 \\ & -.413 \\ & -.383 \\ & -.519 \\ & -.214 \\ & -.280 \\ & -.271 \\ & -.246 \\ & -.237 \\ & -.237 \\ & =.207 \\ & -.183 \\ & -.132 \\ & -.075 \\ & -.022 \\ & .041 \end{aligned}$	$\begin{array}{r} -0.057 \\ -.120 \\ -.111 \\ -.128 \\ =.136 \\ =.133 \\ =.141 \\ -.140 \\ =.140 \\ =.138 \\ =.129 \\ =.103 \\ -.047 \\ .046 \\ .056 \end{array}$	$\begin{aligned} & -.104 \\ & -.024 \\ & -.027 \\ & -.061 \\ & -.096 \\ & =.098 \\ & =.089 \\ & -.113 \\ & -.118 \\ & -.118 \\ & =.113 \\ & =.096 \\ & =.043 \\ & -.001 \\ & .051 \end{aligned}$	0.201 .036 .031 . .021 $-.061$ $-.069$ -.089 -.097 $-.105$ -.108 -.106 $-.089$ $-.042$ $-.005$.047	0.295 .109 .100 .037 $-.020$ $-.032$ $-.060$ -. 069 -. 079 -. 087 $-.088$ $-.077$ -.036 .052 .050
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.359 -.031 -.151 -.151 -.156 -.160 -.173 -.160 -.160 -.156 -.151 -.123 -.113 -.073 -.033 .012 .056	$\begin{aligned} & 0.256 \\ & =.251 \\ & -.273 \\ & -.247 \\ & -.238 \\ & -.234 \\ & -.230 \\ & =.195 \\ & -.195 \\ & =.170 \\ & =.187 \\ & =.146 \\ & =.134 \\ & =.087 \\ & -.040 \\ & .006 \\ & .052 \end{aligned}$	$\begin{aligned} & 0.149 \\ & -.422 \\ & =.327 \\ & -.323 \\ & -.245 \\ & -.250 \\ & -.229 \\ & -.203 \\ & -.194 \\ & =.190 \\ & =.186 \\ & -.160 \\ & -.142 \\ & -.093 \\ & -.045 \\ & .002 \\ & .048 \end{aligned}$	$\begin{array}{r} -0.138 \\ -.671 \\ -.443 \\ -.409 \\ -.314 \\ -.284 \\ -.259 \\ -.241 \\ -.220 \\ -.203 \\ -.205 \\ -.171 \\ -.151 \\ -.097 \\ -.046 \\ -.002 \\ .045 \end{array}$	$\begin{array}{r} -0.066 \\ -.120 \\ =.123 \\ -.135 \\ -.137 \\ -.143 \\ -.140 \\ -.139 \\ -.132 \\ -.124 \\ -.114 \\ -.113 \\ -.118 \\ -.023 \\ .018 \\ .069 \end{array}$	0.090 $-.024$ -.033 -.072 .. 089 -.109 -.109 . .114 -1115 $-.116$ $-.104$ -.071 -.026 .007 .060	0.174 .020 $-.037$ -.058 -.086 $-.086$ $-.096$ $-.099$ $-.108$ -.107 . .106 $-.073$ -.030 .005 .052 .052	0.270 .101 .015 $-.016$ $-.060$ $-.077$ $-.080$ $-.091$ -.092 -.094 -. 0.069 $-.030$.051

TABLE XIX. - CONTIMUED.
(b) $a_{a}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Semispan ste.	Parcent chord	UPPER SURIACE				LOXER Butface			
		angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	$8{ }^{\circ}$	10°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 44.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.6 \end{array}$	0.338 -.413 -.229 -.298 -.203 -.194 $=.198$ $=.194$ -.23 -.245 -.236 -.1353 -.792 -.031	0.319 -.711 -.339 -.331 -.284 $=.284$ -.262 -.258 -.245 -.245 -.254 $=.279$ -.269 $=.223$ -.168 -.102 -.031		$\begin{array}{r} -0.713 \\ -1.489 \\ -.535 \\ -.588 \\ -.484 \\ -.428 \\ -.415 \\ -.372 \\ -.376 \\ -.342 \\ -.355 \\ -.359 \\ -.376 \\ -.276 \\ -.127 \\ -.041 \end{array}$	$\begin{array}{r} . .296 \\ .163 \\ .128 \\ .088 \\ .060 \\ .013 \\ . .005 \\ -.021 \\ -.036 \\ -.060 \\ =.059 \\ =.049 \\ -.030 \\ .008 \end{array}$.396 .350 .210 .159 .126 .092 .047 .029 .010 .017 .017 . .005 .005 .029	0.465 .326 .286 .227 .190 .152 .125 .097 .020 .058 .024 .024 .027 .038 .050	$\begin{array}{r} 0.503 \\ .391 \\ .356 \\ .290 \\ .207 \\ .184 \\ .149 \\ .128 \\ .101 \\ .067 \\ .067 \\ .060 \\ .063 \\ .071 \end{array}$
$0.195 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.5 \\ 24.5 \\ 37.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 11.0 \\ 79.5 \\ 91.0 \end{array}$		$\begin{aligned} & -0.321 \\ & -. .659 \\ & -.497 \\ & -.46 \pi \\ & -.378 \\ & -.399 \\ & -.322 \\ & -.2928 \\ & -.292 \\ & -.288 \\ & -.289 \\ & -.261 \\ & -.213 \\ & -.152 \\ & -.063 \\ & 0 \end{aligned}$	$\begin{array}{r} -0.984 \\ -1.529 \\ -.675 \\ -.641 \\ -.516 \\ -.460 \\ -.409 \\ -.396 \\ -.366 \\ -.374 \\ -.366 \\ -.396 \\ -.293 \\ -.237 \\ -.168 \\ -.091 \\ -.004 \end{array}$	-1.769 -1.842 -.646 -.799 -.622 -.749 $=.448$ -.398 -.411 -.372 -.366 -.328 -.265 -.187 -.103 -.006	-.378 .165 .1277 .050 .016 .001 . .027 .0036 . .060 .0 .078 . .068 . .046 -.012 .029	$.0-75$.266 .224 .160 .126 .080 .067 .029 . .010 -.015 -.031 -.028 -.014 .014 .042	-.43 0.433 .350 .307 .195 .198 .146 .123 .085 .066 .043 .034 .012 .010 .021 .038 .062	$\begin{array}{r} 0.353 \\ .418 \\ .372 \\ .306 \\ .204 \\ .184 \\ .181 \\ .118 \\ .094 \\ .081 \\ .059 \\ .050 \\ .051 \\ .062 \\ .075 \end{array}$
$0.382 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$		$\begin{aligned} & -0.754 \\ & -1.343 \\ & -.626 \\ & -.591 \\ & -.459 \\ & -.446 \\ & -.369 \\ & -.347 \\ & -.327 \\ & -.322 \\ & -.292 \\ & -.293 \\ & -.260 \\ & -.212 \\ & -.135 \\ & -.066 \\ & .014 \end{aligned}$	$\begin{array}{r} -1.701 \\ -1.726 \\ -.868 \\ -.808 \\ -.628 \\ -.755 \\ -.455 \\ -.456 \\ -.437 \\ -.370 \\ -.376 \\ -.359 \\ -.238 \\ -.147 \\ -.073 \\ .015 \end{array}$	$\begin{aligned} & -2.911 \\ & -2.381 \\ & -1.105 \\ & -1.014 \\ & -.760 \\ & -.674 \\ & -.570 \\ & -.523 \\ & -.463 \\ & -.432 \\ & -.398 \\ & -.375 \\ & -.325 \\ & -.257 \\ & -.160 \\ & -.079 \end{aligned}$	0.294 .147 .122 .076 .045 .010 -.006 -.036 -.046 -.057 -.065 -.078 $=.036$ -.001 .037	$\begin{array}{r} 0.396 \\ .255 \\ .209 \\ .163 \\ .131 \\ .083 \\ .065 \\ .029 \\ . .013 \\ -.010 \\ -.030 \\ -.024 \\ -.004 \\ .022 \\ .051 \end{array}$	$.0-490$ 0.336 .312 .239 .253 .151 .087 .069 .049 .034 .015 .015 .021 .043	0.474 .400 .378 .310 .216 .190 .146 .127 .099 .058 .050 .050 .063
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -0.113 \\ -.581 \\ -.495 \\ -.486 \\ -.370 \\ -.357 \\ -.297 \\ -.293 \\ -.280 \\ -.260 \\ -.263 \\ -.255 \\ -.227 \\ -.173 \\ -.35 \\ -.355 \\ .015 \end{array}$	$\begin{aligned} & -0.890 \\ & -1.508 \\ & -.711 \\ & -.677 \\ & -.510 \\ & -.46 \pi \\ & -.408 \\ & -.369 \\ & -.339 \\ & -.327 \\ & -.322 \\ & -.296 \\ & -.260 \\ & -.195 \\ & -.127 \\ & -.062 \\ & .019 \end{aligned}$		$\begin{array}{r} -3.450 \\ -2.696 \\ -1.234 \\ -1.152 \\ -.842 \\ -.760 \\ -.609 \\ -.570 \\ -.497 \\ -.467 \\ -.415 \\ -.385 \\ -.327 \\ -.244 \\ -.153 \\ -.072 \\ .015 \end{array}$	$\begin{array}{r} -.319 \\ .156 \\ .147 \\ .090 \\ .063 \\ .014 \\ . .006 \\ -.047 \\ -.052 \\ -.059 \\ -.069 \\ -.066 \\ -.031 \\ .053 \\ .042 \end{array}$	-.421 0.4280 .261 .165 -1850 .053 .076 .039 .022 .002 -.006 -.019 -.027 -.002 .023 .056	0.440 .357 .337 .262 .225 .160 .141 .099 .078 .052 .041 .029 .009 .021 .065 .063	0. 400 .416 .400 .333 .294 .222 .303 .156 .134 .100 .088 .068 .047 .047 .059

table xix.- Continued.
(b) $\alpha_{1}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

TABLE XIX．－CORFIMUED．
（c）$\sigma_{12}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$.

Beal－ span	Percent chard	UPPER BURFACE				LONER BUBPACE			
			mirese of	attack			ngle	attaok	
		12°	16°	20°	24°	12°	16°	20°	24^{6}
$0.086 \mathrm{~b} / 2$	0	－1．269	－2． 829	－4． 807	－7．002				
	1．5	－1．783	－2．730	-3.760 -1.361	－1． -1.759	0.517		0．252	
	5	－－．712	－1．989	－1． 35	－1．756	－ 415	－523	－607	－663
	11.0 14.5	－	－．713	－． 858	－1．231	－ 353	． 428	－558	． 653
	21.5	－．467	－： 579	－． 723	－1．010	： 268	－ 376	－4 4	－563
	$\frac{24}{31} .5$	－： 724	－． 5 ¢5	－$=123$	－： 976	．238	－ 3178	． 407	－ S 63
	34．5	－． 390	－． 502	－-66	－． 889	． 184	： 287	－ 385	：453
	41.0	－． 377	－． 488	－． 646	－ 8.89	－156	－25	－38	－
	$\frac{43}{51.5}$	－． 368	二： 45	二： 681	－$=812$	－ 115	－ 203	－277	－ 3 建
	79.5	－． 225	－． 3.274	－． 5000	－． 714	．1096	． 179	． 237	．238
	79.5	－． 133	－． 187	－． 292	－ 74.4	：096	． 145	． 174	．130
						－			
$0.382 \mathrm{~b} / 2$	1.5	－2．778	－5．527	－8．686	－4．2044	0.200	－ 20	－079	－729
	5.5	－1．c5	－1．506	－2．338	－2．721	－ 467	－522	－598	－609
	5.5	－． 965	－1．359	－2．251	－2．493	－ 438	－ 474	：556	． 654
	14.5	－： 634	－-.876	－1．438	－2．666	－${ }^{\text {32 }}$	． 439	－ 54	－616
	21．0	－．54．	－． 723	－． 986	－1．752	．268	． 387	． 484	－ 525
	31.0	－． 454	－．583	－．783	－1． 351	． 179	－ 377	． 402	． 46
	54．5	－ 4.459	－-572	－． 78.8	－1．312	－ 175	－279	．368	－ 330
	4.5	－． 3199	－． 312	－：662	－1：070	－13	． 226	－ 304	－ 3
	51.0	－． 352	－ 2.45	－ 6.604	－－909	． 108	． 194	－258	－ 315
	7910	－． 196	－： 266	二：396	－： 656	－089	．132	． 176	－153
	79.5	－：．00\％	－． 3.048	－． i 134	－．533	． 0992	．132	． 1188	． 144
$0.382 \mathrm{~b} / 2$	\bigcirc	－4． 398	－8．${ }^{34}$	－3．535	－2．049				
	1.5	－3．099	－${ }^{-2.4 .98}$	－2．222	－1．4．407	0.373	． 118	． 6.15	
	6.5	－1．230	－-1.967	－1．915	－1．359	． 429	．499	－56	－ 576
	11.8	－． 715	－1．428	－1．918	－1．364	－ 373	－476	－543	：575
	14.5 21.0	－． 765	－1．28	－1．872	－1．320	－374	－ 347	－ 14	：531
	24：5	－：650	－：85		－1：366	：248	：363	：426	：472
	31.0	－．510	－． 704	－1． 512	－1．260	． 203	－ 3818	－ 370	－400
	54．5	－． 4.497	－． 6.575	－-1.202	－1．213	．154	：285	－ 34	－ 388
	49.5	－． 40 \％	－．53	－1．166	－1．144	．133	－ 221	． 266	－ 366
	$51 .{ }^{51}$	－． 348	－：． 365	－． 282	－1．025	：091	． 148	． 176	． 14
	71．0	－． 169	－． 5	－． 575	－． 9172	：081	－123	． 129	． 125
	79.5 91.5	－．081	－． 1665	－$=.264$	－． 6962	．097	：118	：0988	－． 058
$0.555 \mathrm{~b} / 2$									
	1.5	－5．${ }^{\text {2 }}$	－3．105	－1．657	－1．718	0.297	0.191	0.285	0.227
	5：5	1．513	－2．356	－1．210	－1：062	－${ }_{4}$	：517	：526	：531
	11．0	－1．016	－1．950	－1．171	－1．032	－ 389	－487	－512	． 537
		－． 887	－1．764	－1．150	－1．014	－352	． 348	－ 4.4	－ 515
	24	－．-869	－1．700	－1．103	－． 9.96	． 260	－ 354	－ 38	－475
	31.0	－．553	－1．176	－1．098	－． 965	． 209	． 298	－332	－374
	37．	－．-45	－1．736	－1．05	二：	．151	：287	：35	：356
	4.5	－． 418	－． 745	－1．020	－． 974	． 136	． 201	． 236	256
	51.0	－－352	－． 420	－．994	－．9666	． 078	．117	． 176	－ 124
	71.0	－-15	－ 270	－$=82$	－887	． 077	． 094	． 065	． 042
	91.0	－．016	－－．051	－． 68	$=.773$	．088	：051	－．104	－：． 194

TABLE XIX. - CONCLUDED.
(c) $\alpha_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Berinspan sta.	Percent chord	UPPER BURTACE				LONER BUAFACE			
		Angle of attack				angle of attack			
		12°	16°	20°	24°	12°	26°	20°	24°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 24.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -6.499 \\ -3.811 \\ -1.642 \\ -1.530 \\ -1.059 \\ -.939 \\ -.755 \\ -.682 \\ =.583 \\ -.544 \\ -.480 \\ -.406 \\ =.335 \\ -.250 \\ =.136 \\ =.063 \\ .021 \end{array}$	$\begin{aligned} & -1.717 \\ & -1.674 \\ & -1.357 \\ & -1.264 \\ & -1.256 \\ & -1.187 \\ & -1.148 \\ & -1.114 \\ & -1.070 \\ & -1.032 \\ & -.984 \\ & -.935 \\ & -.880 \\ & -.784 \\ & =.663 \\ & =.566 \\ & -.403 \end{aligned}$	$\begin{array}{r} -1.206 \\ -.979 \\ -.924 \\ -.877 \\ -.885 \\ -.825 \\ -.842 \\ -.804 \\ -.804 \\ -.787 \\ -.804 \\ -.762 \\ -.768 \\ -.725 \\ -.700 \\ -.655 \\ -.609 \end{array}$	$\begin{array}{r} -1.105 \\ -.889 \\ -.859 \\ -.859 \\ -.833 \\ -.799 \\ -.795 \\ =.773 \\ -.795 \\ -.756 \\ -.773 \\ -.718 \\ -.724 \\ -.701 \\ -.683 \\ -.645 \\ -.598 \end{array}$	0.058 .449 .444 .388 . 289 . 261 .206 . 154 .142 .091 .060 .057 .067	0.173 .501 .501 .454 .424 - 352 .322 .264 .236 .188 .123 .047 .014 $-.034$.7. 0.188 .498 .499 .470 .442 .378 .346 .285 .199 .180 .119 .050 -.009 -.068 -.183	$\begin{array}{r} 0.118 \\ .495 \\ .406 \\ .499 \\ .472 \\ .457 \\ .324 \\ .294 \\ .231 \\ .200 \\ .142 \\ .067 \\ . .008 \\ =.072 \\ =.189 \end{array}$
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 24.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 54.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -5.822 \\ -3.674 \\ -1.612 \\ -1.470 \\ -1.059 \\ -.956 \\ -.716 \\ -.656 \\ -.544 \\ =.502 \\ -.433 \\ -.371 \\ =.306 \\ -.223 \\ -.136 \\ =.077 \\ -.006 \end{array}$	$\begin{array}{r} -1.527 \\ -.989 \\ -.907 \\ -.898 \\ . .833 \\ . .842 \\ -.807 \\ . .807 \\ -.777 \\ . .760 \\ -.747 \\ =.693 \\ . .685 \\ -.644 \\ . .603 \\ =.553 \\ -.513 \end{array}$	$\begin{array}{r} -1.060 \\ =.761 \\ =.610 \\ -.697 \\ =.672 \\ =.676 \\ =.650 \\ =.633 \\ =.607 \\ =.612 \\ =.580 \\ =.585 \\ =.560 \\ =.562 \\ =.525 \\ =.496 \end{array}$	-0.881 -.726 -.657 $=.678$ -.652 -.644 -.635 -.622 -.609 $=.601$ -.605 $=.562$ -.572 $=.551$ $=.543$ $=.504$ -.476		$\begin{array}{r} 0.256 \\ .462 \\ .461 \\ .406 \\ . .294 \\ .264 \\ .201 \\ .170 \\ .126 \\ .095 \\ .060 \\ . .006 \\ =.025 \\ =.062 \\ =.246 \end{array}$	$\begin{array}{r} .0 .246 \\ .463 \\ .461 \\ .422 \\ .316 \\ .353 \\ .220 \\ .182 \\ .132 \\ .098 \\ .055 \\ . .008 \\ . .057 \\ . .296 \end{array}$	0.188 .472 .452 .356 .323 .219 .164 .083 .012 $-.044$ $=.089$ -.176
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{array}{r} -7.104 \\ -3.995 \\ -1.509 \\ -1.397 \\ -.974 \\ =.845 \\ =.656 \\ =.577 \\ =.493 \\ -.459 \\ -.377 \\ =.372 \\ =.377 \\ =.292 \\ -.255 \\ -.162 \end{array}$	$\begin{array}{r} -0.898 \\ -.764 \\ =.764 \\ =.747 \\ -.717 \\ -.682 \\ -.682 \\ -.631 \\ =.631 \\ -.583 \\ -.596 \\ -.504 \\ -.504 \\ =.447 \\ -.447 \\ -.394 \\ -.402 \end{array}$	$\begin{aligned} & -0.687 \\ & -.612 \\ & -.582 \\ & -.573 \\ & =.582 \\ & -.535 \\ & -.539 \\ & =.505 \\ & -.505 \\ & =.462 \\ & =.479 \\ & -.426 \\ & =.437 \\ & =.496 \\ & =.378 \\ & -.375 \end{aligned}$	$\begin{array}{r} -0.648 \\ -.588 \\ -.579 \\ -.545 \\ -.557 \\ -.562 \\ -.545 \\ -.501 \\ -.514 \\ -.480 \\ -.493 \\ -.446 \\ -.451 \\ =.423 \\ -.424 \\ -.392 \\ -.377 \end{array}$	$\begin{array}{r} 0.105 \\ .403 \\ .386 \\ .316 \\ .247 \\ .161 \\ .105 \\ .067 \\ .021 \\ .002 \\ .026 \\ =.032 \\ . .055 \\ =.036 \\ =.042 \\ . .017 \end{array}$	0.304 .408 .388 - 324 .260 .189 .135 .052 .030 .003 $-.022$ $-.066$ -.090 -.146 $-.146$	$\begin{array}{r} -. .770 \\ 0.415 \\ .391 \\ .342 \\ .284 \\ .213 \\ .161 \\ .118 \\ .074 \\ .039 \\ .009 \\ . .017 \\ =.055 \\ =.083 \\ =.107 \\ . .150 \end{array}$	$\begin{array}{r} . .219 \\ .417 \\ .397 \\ .369 \\ .347 \\ .197 \\ .146 \\ .097 \\ .067 \\ .031 \\ . .065 \\ -.073 \\ -.104 \\ -.155 \end{array}$

 (a) $\alpha_{11}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

Sanispan sta.	Percent chord	UPPER SUPFICE				LOTMR SURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{0}$	20	3^{0}	0°	$1{ }^{0}$	2°	3^{0}
$0.086 \mathrm{~b} / 2$	0 1.5 5.5 67.5 14.0 27.5 24.0 31.5 34.5 4.0 44.0 51.8 59.5 79.0 91.5	$\begin{aligned} & 0.502 \\ & .064 \\ & -.010 \\ & =.007 \\ & =.043 \\ & =.061 \\ & =.081 \\ & =.103 \\ & =.132 \\ & =.155 \\ & =.150 \\ & =.163 \\ & =.150 \\ & =.156 \\ & -.074 \end{aligned}$	0.493 0.043 $=.064$ $=.080$ $=.091$ $=.109$ -.118 $=.133$ -.158 -.163 -.187 -.217 -.218 $=.181$ $=.145$ $=.090$ -.053	1.170 0.148 $=.121$ -.132 $=.132$ $=.146$ $=.155$ $=.168$ $=.179$ $=.191$ $=.216$ $=.234$ $=.233$ $=.199$ $=.157$ $=.099$	$\begin{aligned} & 0.436 \\ & =.262 \\ & =.169 \\ & -.1867 \\ & -.167 \\ & =.192 \\ & =.196 \\ & -.196 \\ & =.218 \\ & -.237 \\ & =.285 \\ & =.216 \\ & =.170 \\ & =.107 \end{aligned}$	$\begin{aligned} & 0.056 \\ & 0.036 \\ & -.0074 \\ & -.042 \\ & =.094 \\ & =.075 \\ & =.098 \\ & -.114 \\ & -.137 \\ & -.155 \\ & -.172 \\ & -.153 \\ & -.130 \\ & -.086 \\ & -.029 \end{aligned}$		-.7 0.183 .056 .051 .026 .001 -.019 -.040 -.056 -.079 -.100 -.129 -.118 -.102 -.067 -.017	.--1 0.245 .129 .093 .059 .052 .009 -.012 -.028 -.049 -.068 -.101 -.097 -.086 -.054 -.009
0.195 b/2	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.444 -.005 -.061 $=.088$ -.101 -.112 -.128 -.139 -.146 $=.173$ $=.184$ $=.186$ -.376 $=.152$ -.116 -.060 .005	0.424 $=.133$ $=.136$ $=.149$ $=.149$ $=.15$ $=.171$ $=.180$ $=.205$ $=.217$ $=.220$ $=.204$ $=.174$ $=.133$ $=.002$	0.371 -.274 $=.207$ $=.220$ $=.198$ $=.298$ $=.207$ $=.213$ $=.213$ $=.231$ $=.243$ $=.245$ $=.225$ $=.197$ $=.144$ $=.080$ $=.004$	0.285 -.427 -.271 $=.252$ -.244 $=.245$ $=.244$ -.241 $=.2664$ -.2667 $=.245$ $=.207$ $=.154$ $=.006$	$\begin{aligned} & 0.090 \\ & -.067 \\ & =.051 \\ & =.099 \\ & =.112 \\ & =.125 \\ & -.137 \\ & =.157 \\ & -.172 \\ & =.177 \\ & -.178 \\ & =.785 \\ & -.155 \\ & -.114 \\ & -.059 \end{aligned}$	$\begin{aligned} & 0.155 \\ & =.003 \\ & -.027 \\ & =.054 \\ & -.067 \\ & -.088 \\ & -.104 \\ & -.128 \\ & -.145 \\ & -.153 \\ & -.156 \\ & -.166 \\ & -.142 \\ & -.103 \\ & -.054 \\ & .007 \end{aligned}$		$\begin{array}{r} 0.321 \\ .113 \\ .080 \\ .040 \\ .011 \\ -.020 \\ -.037 \\ -.066 \\ -.085 \\ -.135 \\ -.1119 \\ -.104 \\ -.074 \\ -.035 \\ .018 \end{array}$
$0.382 \mathrm{~b} / 2$	0 1.5 5.5 6.5 17.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 11.0 79.5 91.0	0.408 $=.039$ $=.117$ $=.128$ $=.147$ $=.132$ $=.157$ $=.175$ $=.200$ $=.187$ $=.172$ $=.150$ -.094 -.024	0.390 $=.2005$ $=.205$ $=.208$ $=.198$ $=.208$ $=.207$ $=.210$ $=.205$ $=.220$ $=.200$ $=.172$ $=.121$ $=.054$	0.308 $=.286$ $=.280$ $=.252$ -.245 -.245 $=.240$ -.249 $=.236$ $=.252$ $=.245$ $=.280$ $=.189$ -.060 .013	0.176 -.578 $=.371$ $=.360$ $=.318$ $=.303$ $=.287$ $=.276$ $=.268$ -.275 $=.268$ -.240 $=.203$ $=.1356$ $=.013$	$\begin{aligned} & -0.071 \\ & =.117 \\ & -.123 \\ & =.139 \\ & -.145 \\ & -.155 \\ & -.162 \\ & -.178 \\ & -.183 \\ & -.174 \\ & -.180 \\ & -.181 \\ & -.145 \\ & -.093 \\ & -.037 \\ & -.001 \end{aligned}$	0.044 -.043 -.058 -.086 -.094 $=.111$ -.145 -.155 -.153 -.158 -.162 -.131 $=.083$ -.031	$\begin{array}{r} -.141 \\ .025 \\ .006 \\ . .030 \\ . .047 \\ =.074 \\ . .088 \\ . .113 \\ . .123 \\ . .126 \\ =.132 \\ -.139 \\ -.112 \\ . .071 \\ -.023 \end{array}$	-.022 .0869 .0026 . .002 -.035 -.051 -.099 . .097 $=.105$. .117 .094 $=.058$.014 .035
$0.555 \mathrm{~b} / 2$	0 7.5 5.5 6.5 71.8 14.5 21.0 24.5 31.0 34.5 41.0 41.5 51.0 59.5 71.0 79.5 91.0		0.413 $=.241$ $=.225$ $=.241$ $=.212$ -.210 $=.205$ -.20 $=.224$ $=.214$ -.293 $=.150$ -.102 -.084		$\begin{aligned} & 0.188 \\ & =.675 \\ & =.422 \\ & =.418 \\ & =.341 \\ & =.332 \\ & =.303 \\ & =.2876 \\ & =.2800 \\ & =.263 \\ & =.284 \\ & =.235 \\ & =.119 \\ & =.055 \\ & .064 \end{aligned}$	$\begin{array}{r} -0.072 \\ -.120 \\ -.185 \\ -.144 \\ -.147 \\ -.161 \\ -.163 \\ -.174 \\ -.180 \\ -.176 \\ -.174 \\ -.169 \\ -.145 \\ -.087 \\ -.029 \\ .036 \end{array}$	$\begin{aligned} & 0.053 \\ & -.05\} \\ & -.052 \\ & -.090 \\ & -.113 \\ & -.122 \\ & -.142 \\ & =.148 \\ & -.149 \\ & =.151 \\ & -.150 \\ & =.152 \\ & -.074 \\ & -.026 \end{aligned}$		0.249 .107 .088 .032 .010 -.032 -.045 -.083 -.092 $=.097$ -.109 -.095 -.051 -.010 .040

table xX.- OONTINUED.
(a) $\alpha_{u}, 0^{\circ}, 1^{0}, 2^{0}, 3^{\circ}$ - Conoluded.

Semispan sta	Percent chord	UPPER SURFACE				LOITR BURFACE			
		Angle of attaok				Angle of attack			
		0°	$1{ }^{\circ}$	2^{0}	3°	0°	$1{ }^{\circ}$	$2{ }^{\circ}$	3^{0}
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.399 -.044 -.141 $=.137$ $=.141$ -.173 -.168 -.177 -.172 -.198 -.1762 -.135 -.077 -.026 .041	$\begin{aligned} & 0.379 \\ & -.257 \\ & -.250 \\ & =.246 \\ & -.216 \\ & -.223 \\ & -.219 \\ & -.219 \\ & -.217 \\ & -.228 \\ & -.210 \\ & -.189 \\ & -.155 \\ & -.092 \\ & -.037 \\ & .033 \end{aligned}$	0.267 -.482 -.360 $=.347$ -.276 -.263 -.270 -.258 -.250 -.247 -.254 -.236 -.209 -.170 -.098 -.039 .034	0.074 $=.736$ -.460 $=.435$ -.350 $=.337$ -.318 $=.300$ -.2876 -.282 -.258 -.256 -.180 $=.104$ -.041 .035	$\begin{aligned} & -0.072 \\ & -.130 \\ & -.139 \\ & -.159 \\ & -.161 \\ & -.167 \\ & -.173 \\ & -.178 \\ & -.172 \\ & -.169 \\ & -.169 \\ & -.166 \\ & -.137 \\ & -.071 \\ & -.021 \\ & .046 \end{aligned}$	$\begin{aligned} & 0.005 \\ & -.036 \\ & -.052 \\ & -.091 \\ & -.099 \\ & -.313 \\ & -.123 \\ & -.138 \\ & -.141 \\ & -.146 \\ & -.148 \\ & -.149 \\ & -.127 \\ & -.067 \\ & -.020 \\ & .044 \end{aligned}$	-.206 0.048 .027 -.022 -.036 $=.070$ -.083 -.102 -.108 -.119 -.123 -.128 -.131 -.057 -.015 .044	$\begin{array}{r} 0.298 \\ .129 \\ .097 \\ .016 \\ . .027 \\ -.042 \\ -.068 \\ -.075 \\ -.092 \\ -.098 \\ -.107 \\ -.095 \\ -.046 \\ -.009 \\ .046 \end{array}$
$0.831 \mathrm{~b} / 2$	0 1.5 56.5 61.5 11.0 14.5 21.0 24.5 31.0 44.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.386 $=.068$ -.146 $=.150$ $=.146$ $=.171$ $=.182$ -.178 $=.188$ -.171 $=.158$ $=.114$ $=.067$ -.013 .050	$\begin{aligned} & 0.440 \\ & =.270 \\ & -.255 \\ & -.248 \\ & -.219 \\ & -.223 \\ & -.221 \\ & -.221 \\ & -.208 \\ & -.216 \\ & -.219 \\ & -.197 \\ & -.180 \\ & -.130 \\ & -.078 \\ & -.021 \\ & .046 \end{aligned}$	$\begin{aligned} & 0.367 \\ & -.495 \\ & -.364 \\ & -.355 \\ & -.277 \\ & -.285 \\ & -.263 \\ & -.263 \\ & -.240 \\ & -.243 \\ & -.238 \\ & -.217 \\ & -.194 \\ & -.139 \\ & -.080 \\ & -.021 \\ & .047 \end{aligned}$		$\begin{array}{r} -0.076 \\ -.143 \\ -.138 \\ -.155 \\ -.163 \\ -.162 \\ -.170 \\ -.170 \\ -.169 \\ -.165 \\ -.152 \\ -.051 \\ -.004 \\ .059 \end{array}$	$\begin{aligned} & -0.092 \\ & 0.051 \\ & -.056 \\ & -.089 \\ & -.121 \\ & -.123 \\ & -.139 \\ & -.144 \\ & -.148 \\ & -.148 \\ & -.140 \\ & -.116 \\ & -.056 \\ & -.006 \\ & .054 \end{aligned}$	$\begin{array}{r} -.205 \\ 0.031 \\ .028 \\ -.029 \\ -.076 \\ -.084 \\ -.108 \\ -.116 \\ -.126 \\ -.129 \\ -.125 \\ -.107 \\ -.052 \\ -.006 \\ .053 \end{array}$.--7 0.295 .1046 .027 -.036 -.047 -.077 -.089 -.103 -.110 -.1096 -.047 -.004 .051
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.5 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.404 -.018 -.168 -.164 -.174 $=.184$ -.173 -.175 -.153 -.1770 $=.153$ -.087 -.039 .059	$\begin{aligned} & 0.278 \\ & -.226 \\ & -.271 \\ & -.266 \\ & -.241 \\ & =.235 \\ & -.219 \\ & -.205 \\ & -.199 \\ & -.180 \\ & -.190 \\ & -.167 \\ & -.149 \\ & -.098 \\ & -.045 \\ & .056 \end{aligned}$	0.155 -.466 -.374 -.360 -.290 -.270 -.250 -.229 -.216 -.200 -.213 -.181 -.158 -.046 -.004 .055	$\begin{array}{r} -0.101 \\ -.739 \\ -.475 \\ -.453 \\ -.351 \\ -.323 \\ -.264 \\ -.255 \\ -.239 \\ -.219 \\ -.223 \\ -.194 \\ -.168 \\ -.110 \\ -.05 I \\ -.001 \\ .049 \end{array}$	$\begin{array}{r} -0.094 \\ -.150 \\ -.153 \\ -.165 \\ -.172 \\ -.174 \\ -.171 \\ -.168 \\ -.154 \\ -.150 \\ -.142 \\ -.138 \\ -.086 \\ -.029 \\ .016 \\ .072 \end{array}$	$\begin{aligned} & 0.062 \\ & -.057 \\ & -.064 \\ & -.103 \\ & -.123 \\ & -.141 \\ & -.136 \\ & -.143 \\ & -.137 \\ & -.140 \\ & -.136 \\ & -.133 \\ & -.086 \\ & -.034 \\ & .008 \\ & .063 \end{aligned}$	$\begin{array}{r} -.179 \\ .023 \\ .014 \\ -.047 \\ -.075 \\ -.099 \\ -.111 \\ -.120 \\ -.123 \\ -.128 \\ -.123 \\ -.122 \\ -.084 \\ -.034 \\ .062 \\ .057 \end{array}$	$\begin{array}{r} -.271 \\ 0.097 \\ .085 \\ . .007 \\ -.027 \\ -.068 \\ -.086 \\ -.100 \\ -.107 \\ -.116 \\ -.117 \\ -.117 \\ -.082 \\ -.037 \\ .003 \end{array}$

TABLE XX.- COMTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

$\begin{aligned} & \text { Semi- } \\ & \text { apan } \\ & \text { ontion } \end{aligned}$	Percent	UPPER BURFICS				Hover surfme			
		Angle of attack				Angie or attaok			
		4°	6	8°	10°	4°	6°	8	10°
$0.086 \mathrm{~b} / 2$	0	0.383	0.224	-0.040	-0.356				
	1.5	-. 39	-. 6740	-1.058	-1. 631	0. 2028	0. 398	0.473	0.531
	${ }^{5} .5$	-. 231	--337	--461	--593	.134	. 216	- 285	. 365
	11.0	-. 212	-. 29.29	-. 389	-. 4749	.093	. 1362	. 2195	. 296
	21.6	-. 228	-. 288	- -359	二. 438	-036	:096	-154	-216
	24. ${ }^{24}$	--. 233	-:. 290	-. -3.39	-:433	-.016	:073	. 1200	.189
	\}4.5	-. 249	-. 298	--357	-. 421	-. 0202	.028	.077	. 132
	41.0	-. 263	-. 3098	-- S^{662}	-. 421	-. 041	. 006	. 051	.101
	51.8	--. 276	--315		-. 413	-.079	-. 02.	-014	. 059
	79.5	--. 232	-. -203	-. 322	-. 342	. 074	-. 023	.0214	.049
	79.5 91.0	-. 114	-. 127	-. 149	-. 178	Ol	-.003	026	:054
0.195 b/2									
	1.5		-1. 019	-1.763	-2.135	0.379	0.453	0.458	0.45
	5.5	-. 344	-. 592	-. 6.69	-1.061	. 163	.223	. 3403	. 376
	11.0	-. 304	--.407	-. 525	-. 68	-055	.162	- 234	- 306
	$\frac{14.5}{21.6}$	-:. 295	-. 384	-:4912	-: 6.53	.044	.124	- 143	. 268
	24.5	-..281	-. 3 248	-. 430	-. 509	-.004	.060	. 119	. 279
	31.0	-. 272	-. 332	-. 398	$=-.468$	-. 0.054	.025	.079	. 136
	41.6	-. 295	-. 336	-. 394	-. 454	-. 070	-. 015	:033	:083
	44.5	-. 266	-. 3 34		$=.443$ $=-397$	-. -0.97	-. 084	. 022	. 074
	59.5	-.221	-. 248	-. 285	-. 321	-. 0.04	-. 0.040	-. 002	-035
	71.0	-. 16.	-. -181	-. 207	-. 234	-. 060	-. 0.024	.006	. 036
	91.0	-. 007	-. 008	-. 019	-. 038	. 025	. 039	. 050	. 061
$0.382 \mathrm{~b} / 2$	0	-0.018	-0.523	-1.038	-1.173				
	1.5	- 80.5	-1.471	-2.037	-1.356	0.291	0.394	0.446	
	6.5	-. 4.46	-:644	-1.016	-1.008	. 143	:252	. 331	- 36
	13.0	-. 384	-. 511	-. 705	-. 940	-072	. 160	. 235	. 297
	14.5	-. 361	-. 476	-. 613	-. 802	. 042	.126	. 198	. 261
	21.0.	-. 338	-. 422		-. 686	-.004	.058	.121	- 278
	31.6	-. 315	-. 380	-:461	-. 607	-. 0.046	. 020	:077	. 132
	34.5	-. 303	--357	- 430	-. 549	-. 060	. 004	. 059	. 111
	44.5	-. 291	-. 336	-. 3130	-. 4.46	-. 076	-.,024	:022	.068
	51.0	-. 259	-. 284	-. 341	-. 401	-. 0.02	-. 043	-. 0001	. 040
	79	-. 213	-. 15	-. 178	-. 320	-. -.04	-. 01014	-. 0.009	:033
	79:5	-. 0.069	-.076	-:005	-. i 136	-:004	.018	.031	:047
$0.555 \mathrm{~b} / 2$									
	${ }^{\circ}$	-0.044	-0.612	-1.052	-1.293				
	$\frac{1}{5} \cdot 5$	-. 532	-1.80	-1.162	-1.182	- 0.327	0.422 .278		
	5. 5	-. 525	-. 738	-. 950	-1.112	. 148	- 257	- 35	- 383
	11.0.0.	- $=.429$	--568	-. 577	-1.001	-088	-171	- 215	- 313
	21.5	-. 3974	--. 523	-:. 595	-. 846	.059	.1468	. 151	.275
	24.5	-. 336	-.422	-:	-. 665	-. -006	-068	. 122	. 185
	31.0	--. 317	-. 378	-. 745	-. 575	-. 039	.029	. 0.068	. 134
	41:8	--. 306	-. 375	-. 414	-.486	-. 06	-.007	. 039	. 083
	44.5	-. 2885	-. 3 3 ${ }^{\text {a }}$	-. 3 .38	-. 4597	-. 0780	-:.017	-026	. 064
	59.5	--195	-. 218	-. 249	-. 296	-. 0.077	-..035	-.011	. 017
	71.0	-. 0.05	-. 137	-. 156	-. 196	-. 037	-. 010	. 006	. 23
	91.5	-. 025	-. 0.025	-.005	-:.042	-.004	.015	:047	:036

table xx. - CONTINUED.

$$
\text { (b) } a_{u}, 4^{\circ}, 6^{\circ}, 5^{\circ}, 10^{\circ} \text { - concluded. }
$$

Seriupan sta.	Percent chord	UPPER SURFACE				LOWRR SUAPACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	-	-0.203	-0.851	-1.097	-1.344				
	1.5	-1.038	-2.090	-1.550	-1.323	0.365	0.434	0.430	0.409
	5.5	-. 589	-. -849	-2.040	-1.054	. 168	. 300	. 360	. 405
	11.0	-. 431	-. 5 -. 592	-. $\mathrm{-}$ 872	-. 9.978	. 091	. 185	. 251	. 307
	14.5	-. 408	-. 541	-.742	-. 885	.065	. 154	. 216	. 273
	21.0	-. $37{ }^{2}$	-. 469	-. 668	-. 860	. 016	. 094	. 151	. 206
	24.5 31.0	-. 347	-. 4333	-.599 -.532	-. 722	-.003 -.034	. 071	. 128	. 179
	34.5	-. 517	-. 371	-. 4970	-. 553	-. 0.045	.017	. 065	. 109
	41.0	-. 310	-. 352	-. 431	-. 488	-. 065	-. 010	. 029	. 069
	44.5	-. 282	-. 322	-. 396	-. 438	-. 0.072	-. 022	. 014	. 051
	51.0	-. 244	-. 273	-. 330		-. 085	-. 041	-. 011	. 021
	79.5	-.193 -.108	-. 209	-. 251	-. 278	-.080 -.037	-. 0.047	$=.025$ -.007	-.004
	79.5	-. 0.044	-. 046	-..085	-. 1175	-.003	-.008	. 009	. 006
	91.0	. 036	. 037	-. 007		. 048	. 049	. 039	018
$0.831 \mathrm{~b} / 2$	5	-0.018	-0.619						
	1.5	-1.048	-2.069	$\begin{aligned} & -1.303 \\ & -1.031 \end{aligned}$	-1.265	0.361	0.425	0.417	0.393
	5.5	-. 591	-. 835	-1.031	-1.154	.169	.260	. 336	. 372
	11.0	-. 431	-. 589	-. 857	-1.003	. 087	. 175	. 235	. 287
	14.5	-. 413	-. 546	-. 745	-. 860	--	-	-	-
	21.0	-. 361	-. 451	-. 678	-. 868	. 005	. 075	. 131	. 279
	24.5	-. 342	-. 419	-. 585	-. 727	-. 01011	. 057	. 105	. 152
	31.0	-. 306	-. 362 $=.343$	-. 495	-. 614	-.046 $=.063$	-.012	. 029	.068
	41.5	-. 289	-. 343	-:373	-. 523	-.080	-. 0.035	-.003	.029
	44.5	-. 251	-. 280	-. 338	-. 370	-. 0.08	-. 050	-. 015	. 007
	51.0	-. 220	-. 239	-. 276	-. 301	-. 098	-. 060	-. 038	-. 014
	79.5	-.154 -.087	-.166 -.092	-. 213 -.129	-.237 -.167	-.085 -.041	-. 065	-.053 -.036	-. 040
	79.5	-.007	-..029	-. -.077	-. 128	-. 0003	-.002	-.009	-. 0.017
	91.0	046	. 041	-. 013	-. 074	. 050	. 043	. 020	-. 006
$0.924 \mathrm{~b} / 2$	\bigcirc								
	1.5	-1.056	-2.087 -.830	-1.642	$\begin{aligned} & -1.720 \\ & -1.251 \end{aligned}$	0.337 .160	0.401	0.395 .313	0.374 .355
	5.5	-. 596	-. 8.766	-1.84	-1.256	. 147	. 250	. 297	. 339
	17.0	-. 424	-. 550	-. 653	-1.107	. 056	. 146	. 196	- 24
	14.5	-. 377	-. 476	-. 698	-. 860	. 022	. 089	. 135	. 181
	21.0	-. 324	-. 391	-. 564	-. 778	-. 039	. 018	. 060	. 098
	24.5 31.0	-. 288	-. 339	-. 479 -.389	-. 625	-.062 -.061	-. 0104	.012	. 018
	31.0 34.5	-. 264	-. 381	-. 385	-. 4975	-. 0.092	-. -.065	-..047	-..022
	41.0	-. 2440	-. 274	-. 322	-. 377	-. 103	-. 0.079	-..064	-..042
	44.5	-. 209	-. 240	-. 293	-. 376	-. 1107	-. 0.01	-. 078	-. 0665
	51.0 59.5	-. 181 -.119	-. 203 -.144 -.074	-. 255 -.216	-. 309 -.312 -.34	-. 1108	-. $\mathrm{-}$-. 074	-. 08.	-. 066 -.066
	71.0	-. 0.05	-. 0.079	-. 2167	-. 243	-. 0.039	-:.043	-.046	-. 048
	79.5	-. 01011	-. 0.045	-. 160	-. 244	-. 0098	-. 021	-. 030	-. 039
	91.0	. 038	. 005	-. 092	-. 170	. 04			-.029

TABLE XX.- CORTIRUED.
(0) $\alpha_{n}, 12^{\circ}, 14^{\circ}, 16^{\circ}, 20^{\circ}$.

	Percent	OFPER SURAFACE				Lovin murict			
		migle of attaok				magie of atteok			
		12°	14°	16°	20°	12°	14°	16°	20°
$0.086 \mathrm{~b} / 2$			- 0.993 -2.155 -:975 -: 697 -: 69 $=-59$ -.57 -: 330 - 117						
0.195 b/2									
$0.382 \mathrm{~b} / 2$									
$0.555 \mathrm{~b} / 2$							-.726 0.426 .4766 $: 412$ $: 376$ $: 308$.279 .201 .160 .159 .103 .063 .045 .032 .066		

TABLE XX. - CONCLUDED.
(c) $a_{u}, 12^{\circ}, 14^{\circ}, 16^{\circ}, 20^{\circ}$ - Concluded.

Sem1epan ota.	Percent chord	UPPER SURFACE				LOVER SURFACE			
		Angle of attack				Angle of attack			
		12°	14°	16°	20°	12°	14°	16°	20°
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.0 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & -1.526 \\ & -1.128 \\ & -1.247 \\ & -1.079 \\ & -1.177 \\ & -1.056 \\ & -1.112 \\ & -.946 \\ & -.843 \\ & -.714 \\ & -.616 \\ & -.544 \\ & -.446 \\ & -.355 \\ & -.250 \\ & -.200 \\ & -.127 \end{aligned}$	$\begin{aligned} & -1.382 \\ & -1.201 \\ & -1.189 \\ & -1.130 \\ & -1.128 \\ & -1.055 \\ & -1.071 \\ & -1.076 \\ & -.998 \\ & -.937 \\ & -.909 \\ & -.854 \\ & -.802 \\ & -.708 \\ & -.591 \\ & -.504 \\ & -.372 \end{aligned}$			$\begin{array}{r} 0.371 \\ .443 \\ .425 \\ .356 \\ .322 \\ .252 \\ .223 \\ .170 \\ .148 \\ .103 \\ .043 \\ .010 \\ .002 \\ -.007 \\ -.017 \end{array}$	$\begin{array}{r} 0.356 \\ .474 \\ .462 \\ .397 \\ .362 \\ .292 \\ .261 \\ .179 \\ .130 \\ .107 \\ .065 \\ .020 \\ 0 \\ -.026 \\ -.066 \end{array}$		
$0.831 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	-1.427 -1.427 -1.163 -1.275 -1.121 -1.198 -1.053 -1.037 -.908 -.779 -.709 -.587 -.546 -.454 -.393 -.202 -.268 -.207	$\begin{aligned} & -1.048 \\ & -.822 \\ & -.796 \\ & -.772 \\ & -.751 \\ & -.714 \\ & -.690 \\ & -.664 \\ & -.639 \\ & -.615 \\ & -.606 \\ & -.568 \\ & -.567 \\ & -.717 \\ & -.453 \\ & -.419 \end{aligned}$			$\begin{array}{r} 0.367 \\ .417 \\ .410 \\ .334 \\ .221 \\ .192 \\ .131 \\ .059 \\ .056 \\ .0092 \\ -.036 \\ -.040 \\ -.043 \\ -.060 \end{array}$	$\begin{array}{r} -.362 \\ 0.437 \\ .429 \\ .359 \\ .247 \\ .215 \\ .153 \\ .118 \\ .071 \\ .042 \\ . .008 \\ -.064 \\ \hline .087 \\ -.148 \end{array}$		
$0.924 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 5.5 \\ & 6.5 \\ & 11.5 \\ & 14.5 \\ & 21.0 \\ & 24.5 \\ & 31.0 \\ & 34.5 \\ & 41.5 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.5 \end{aligned}$	$\begin{array}{r} -1.098 \\ -.997 \\ -1.004 \\ -.906 \\ -.945 \\ -.819 \\ -.775 \\ -.676 \\ -.560 \\ -.539 \\ -.534 \\ -.493 \\ -.464 \\ -.366 \\ -.361 \\ -.311 \\ -.274 \end{array}$	$\begin{aligned} & -0.681 \\ & -.598 \\ & -.601 \\ & -.566 \\ & -.577 \\ & -.530 \\ & -.526 \\ & -.477 \\ & -.427 \\ & -.424 \\ & -.379 \\ & -.376 \\ & -.327 \\ & -.336 \\ & -.300 \\ & -.310 \end{aligned}$			$\begin{array}{r} -.371 \\ 0.387 \\ .370 \\ .280 \\ .215 \\ .130 \\ .078 \\ . .007 \\ =.026 \\ -.047 \\ -.062 \\ -.070 \\ =.064 \\ \hline .068 \\ \hline .085 \end{array}$	-.370 0.380 .393 .375 .294 .148 .094 .052 .009 -.018 -.044 -.064 -.085 -.094 -.107 -.143		

(a) $a_{u}, 0^{0}, 1^{0}, 2^{0}, 3^{0}$.

table XXI.- CONrINUED.
(a) $\alpha_{u}, 0^{\circ}, 1^{\circ}, 2^{\circ}, 3^{\circ}=$ Goncluded.

Sem1span sta.	Percent chord	UPPER SURFAGE				LOWER BURFACE			
		Angle of attack				Angle of attack			
		0°	$1{ }^{\circ}$	2°	3°	0°	2°	2°	3^{0}
$0.707 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & 0.378 \\ & =.059 \\ & -.137 \\ & =.137 \\ & =.146 \\ & -.174 \\ & =.165 \\ & -.160 \\ & =.160 \\ & =.188 \\ & =.155 \\ & -.143 \\ & -.071 \\ & -.043 \\ & .040 \end{aligned}$	0.365 -.236 -.228 -.184 -.200 -.200 -.192 -.181 -.197 -.192 $=.1761$ -.134 -.079 -.030 .062	0.263 -.444 -.313 $=.307$ -.257 -.243 -.226 -.226 -.223 -.207 -.182 -.149 -.090 -.039	0.241 -.681 -.416 $=.3102$ $=.305$ $=.291$ $=.277$ -.263 -.263 -.227 -.201 -.164 $=.097$ -.058 .030	$\begin{array}{r} -0.068 \\ -.118 \\ -.112 \\ -.129 \\ -.131 \\ -.142 \\ -.145 \\ -.151 \\ -.150 \\ -.152 \\ -.149 \\ -.148 \\ -.123 \\ -.068 \\ -.026 \\ .041 \end{array}$	$\begin{aligned} & 0.079 \\ & -.029 \\ & -.045 \\ & -.079 \\ & -.075 \\ & -.097 \\ & -.105 \\ & -.118 \\ & -.119 \\ & -.126 \\ & -.124 \\ & -.127 \\ & -.107 \\ & -.062 \\ & -.014 \\ & .044 \end{aligned}$	0.195 .046 .027 -.016 -.028 -.060 -.062 -.089 -.094 -.105 -.111 -.096 -.046 -.011 .043	-.291 0.122 .097 .042 .023 -.031 -.058 -.058 .078 -.051 -.090 -.080 -.004 -.047
$0.831 \mathrm{~b} / 2$	0 11.5 56.5 11.0 14.5 21.0 24.5 31.0 44.5 41.0 44.5 51.8 59.5 71.0 79.5 91.0	0.353 $=.070$ $=.046$ $=.046$ $=.046$ $=.160$ $=.174$ $=.1765$ $=.160$ $=.177$ -.150 $=.142$ $=.104$ $=.0716$ $=.041$	0.385 -.248 -.236 -.214 -.192 $=.206$ -.200 -.186 -.192 -.200 -.168 -.156 -.115 $=.065$ -.019 .041	$\begin{aligned} & 0.358 \\ & =.447 \\ & . .332 \\ & -.343 \\ & -.259 \\ & -.232 \\ & -.237 \\ & -.221 \\ & -.221 \\ & -.221 \\ & -.191 \\ & -.174 \\ & -.076 \\ & -.023 \\ & . .038 \end{aligned}$	0.200 -.681 -.422 $=.402$ -.310 $=.280$ -.268 $=.252$ $=.241$ -.238 -.209 -.188 -.134 $=.080$ -.024 .039	$\begin{array}{r} -0.069 \\ -.127 \\ -.116 \\ -.126 \\ -.142 \\ -.141 \\ -.148 \\ -.147 \\ -.147 \\ -.144 \\ -.129 \\ -.109 \\ -.054 \\ -.007 \\ .049 \end{array}$	$\begin{array}{r} 0.077 \\ -.044 \\ -.047 \\ -.072 \\ -.101 \\ -.103 \\ -.118 \\ -.119 \\ -.125 \\ -.124 \\ -.118 \\ =.099 \\ -.048 \\ -.005 \\ .051 \end{array}$	$\begin{array}{r} 0.195 \\ .032 \\ .026 \\ -.015 \\ -.060 \\ -.072 \\ -.094 \\ -.099 \\ -.108 \\ -.109 \\ -.096 \\ -.054 \\ -.005 \\ .048 \end{array}$	$\begin{array}{r} .0 .090 \\ .102 \\ .094 \\ .039 \\ -.025 \\ -.035 \\ -.067 \\ -.075 \\ -.084 \\ -.090 \\ -.089 \\ -.081 \\ -.037 \\ -.001 \\ \hline .049 \end{array}$
$0.924 \mathrm{~b} / 2$	0 7.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.5 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.373 \\ & =.034 \\ & =.150 \\ & =.154 \\ & =.154 \\ & =.146 \\ & =.160 \\ & =.151 \\ & =.151 \\ & =.146 \\ & -.135 \\ & =.086 \\ & -.038 \\ & .004 \\ & .049 \end{aligned}$	0.312 -.211 -.245 $=.239$ -.200 $=.206$ $=.186$ $=.1816$ -.176 $=.279$ $=.144$ -.137 $=.087$ -.040 .051	$\begin{aligned} & 0.162 \\ & -.419 \\ & =.324 \\ & =.316 \\ & =.260 \\ & -.232 \\ & -.223 \\ & =.215 \\ & -.181 \\ & -.182 \\ & -.160 \\ & -.145 \\ & -.095 \\ & -.042 \\ & -.002 \\ & .046 \end{aligned}$		$\begin{array}{r} -0.082 \\ -.130 \\ -.132 \\ -.143 \\ -.130 \\ -.141 \\ -.138 \\ =.138 \\ =.133 \\ -.135 \\ -.127 \\ -.125 \\ -.081 \\ -.331 \\ .010 \\ .061 \end{array}$	$\begin{array}{r} 0.058 \\ =.048 \\ =.054 \\ =.087 \\ =.088 \\ =.113 \\ =.111 \\ =.115 \\ -.115 \\ -.119 \\ -.113 \\ =.076 \\ -.030 \\ .008 \\ .058 \end{array}$	-0.171 .026 .016 -.024 -.046 -.087 $=.089$ -.100 $=.103$ -.111 -.108 -.109 -.077 -.033 .051	-.075 0.095 .085 .024 -.010 -.051 -.064 -.080 -.096 -.097 -.099 -.072 -.032 -.044

FABLE XXI．－CONTIMUED．
（b）$\pi_{0}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ ．

$\begin{aligned} & \text { Seal1- } \\ & \text { span } \\ & \text { sta. } \end{aligned}$	Peroent chord	UPPER SURTACE				LOUER SURFICE			
		angle of attack				Angle or attack			
		4°	6°	8°	10°	$4{ }^{\circ}$	6°	8°	30
$0.086 \mathrm{~b} / 2$	0	0.336	0.113	－0． 213	－0．646				
	2.5	－．-234	－．722	－1．049	－1．423	0.286	0.360	0.459	0.506
	5．5	－． 225	－． 3378	－． 491	－． 809	．163	． 2485	． 3200	－ 392
	11.8	－－231	－： 307	－． 375	－： H H	．284	． 154	－284	－
	$2{ }^{21} 2.5$	－． 2230	－． 285	－． 363	－． 427	． 056	．128	． 185	－ 253
	21.5	－． 217	－． 274	－． 316	－． 375	－009	．067	． 127	． 182
	31.0	－：223	－． 276	－－319	－． 341	－． 006	． 043	． 094	－ 125
	4	二： 220	－． 2786	－－ 318	－． 350	－． 0.048	．025	．075	． 129
	44.5	－． 246	－． 286	－：324	－． 356			－	－102
	51.0	－． 236	－． 273	－． 35	－． 355	－． 0.068	－． 022	． 017	． 065
	17．5	－． 254	－． 2.274	－． 2191	－． 2207	－．．068	－．．019	．017	．058
	79.5 91.5	－． 0951	－．-.036	－ $\mathrm{-}$－ 0419	－． 2131	－．030	－． 001	－039	：066
$0.195 \mathrm{~b} / 2$									
	1.5								
	5.5	－． 339	－． 415	－． 669	－－． 845	． 1265	． 264	． 3 2	－． 3 ．
	11．8	－． 3 34	－．480	－． 627	－． 775	． 127	－ 220	－ 298	－ 371
	14.5	－：27	－－360	－： 74	－：535	－045	：157	．189	． 259
	21.8	－． 273	－． 332	－． 311	－． 4.45	． 011	－ 077	－ 139	． 205
	31.0	－． 248	－． 302	－． 35	－． 402	－：．03I	：025	． 1180	． 175
	閨．5	－． 259	－-307	－． 5 施	－． 397	－． 049	－006	－05	－117
	44.5	－． 25	－． 294	－． 332	－：366	－：065	－－．012	． 028	－090
	51.0	－． 232	－． 270	－． 296	－． 325	－．063	－． 036	－007	：055
	$7{ }_{71}$	－． 1140	－． 215	－． 239	－． 268	－．．058	－． 032	． 017	． 248
	79.5	－． 01010	－．857	－． 066	－． 101	－． 013	－：010	：035	．066
	91.0	． 010	－． 005	－． 007	－． 005	． 027	． 041	． 056	． 075
$0.352 \mathrm{~b} / 2$		0．055	－0．724	－1．647	－2．${ }^{\text {5 }}$				
	5.5	－． 44	－－．641	－-7.75	－1．083	－．154	－． 250	． 330	－ 0.495
	$1{ }^{6} \cdot 5$	－．${ }^{425}$	－＝ 617	－ 7 756	－． 997	． 125	． 224	－ 305	－ 375
	14.5	－． 3 ． 31	－： 4.438	－：-54	－： 65	：044	：136	． 198	－ 26
	21.0	－． 306	－． 388	－． 472	－． 549	． 006	． 080	． 146	． 213
	24.5 31.5	－． 378	－． 365	－－435	－ C － 515	－． 009	． 060	－122	．156
	34．0	－． 276	－． 324	－． 375	－． 4.43	－． 0.05	．0008	：062	． 124
	41.0	－． 276	－． 310	－． 363	－． 377	－． 060	－． 005	．c45	． 099
	54：5	－． 2526	－：258	－． 348	－． 375	－：．068	－． 0.017	：031	．083
	59.5	－． 250	－． 216	－． 23	－． 58	－．068	－． 027	－099	． 050
	79：5	－． 068	－：0才8	－：103	－． O －812	． 035	－．010	：019	：059
	91.0	． 010	． 008	． 09	． 013	：040	．050	．064	：079
$0.555 \mathrm{~b} / 2$	0	－0．109	－0．313	－1．977	－3．412				
	1.5	． 785	－1．421	－2．07	－2．734	0.328	0.420	0.442	0.403
	\％${ }^{5}$	－：492	－：853	． 967	－1． 2231	－174	． 278	． 35	． 4145
	11.0	－． 387	－．527	－． 674	－1833	．085	－180	：37	－ 370
	74．5	－． 362	－． 474	－． 611	－． 725	． 060	． 146	． 219	－ $5^{2} 2$
	24.5	－． 306	－． 388	－． 472	－．549	－01	－077	． 142	－201
	37.0	－． 28.8	－． 3 37	－． 419	－．482	－．028	－035	－093	－157
	4it．0	－． 276	－． 327	－． 369	－．422	－． 054	－．01	：005	－102
	44.5	－． 256	－． 307	－． 34	－． 384	－．061	－． 010	．037	． 088
	59	－． 123	－．200	－：．226	二－245	－：．077	－． 024	． 017	． 068
		－． 017	－． 132	－． 145	－． 35	－． 030	－．006	． 020	：049
	91：\％	． 016	． 016	－． 015	． 019	．044	：054	．062	：974

TABLE XXI.- CONTINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

Sem1span sta.	Percent chord	UPPER SURFACE				LOWER SURFACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	g°	10°
$0.707 \mathrm{~b} / 2$	0 1.5 5 6.5 11.5 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.0 71.0 79.5 91.0		-1.224 -1.563 -.778 -.731 -.736 -.759 -. 430 -.399 -.363 -.343 -.332 -.397 -.297 -.256 -. 200 -. 055	$\begin{array}{r} -2.585 \\ -2.194 \\ -1.058 \\ -.980 \\ -.697 \\ -.633 \\ -.530 \\ -.480 \\ -.433 \\ -.416 \\ -.388 \\ -.344 \\ -.291 \\ -.224 \\ -.132 \\ -.055 \\ .023 \end{array}$	-4.325 -2.989 -1.332 -1.246 -.864 -.772 -.626 -.582 -.496 -.411 -.386 -.320 -.243 -.129 -.065 .025	$\begin{array}{r} 0.367 \\ .1967 \\ .0991 \\ .067 \\ .0003 \\ .0035 \\ . .035 \\ -.057 \\ .057 \\ . .075 \\ -.059 \\ .0001 \end{array}$	0.427 .300 .272 .183 .157 .074 .037 .024 -.005 -.012 -.037 -.007 -.017 .054	0.388 .376 .350 .263 .169 .138 .094 .078 .045 .032 .008 -.004 .012 .059 .059	$\begin{array}{r} -.266 \\ .445 \\ .410 \\ .532 \\ .2989 \\ .202 \\ .153 \\ .134 \\ .090 \\ .057 \\ .029 \\ .037 \\ .065 \end{array}$
$0.831 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.5 14.5 21.0 24.0 31.5 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	-0.081 -.959 -.548 -.792 -.398 -.384 -.331 -.328 -.281 -.278 -.273 -.230 -.205 -.146 -.089 .009 .035	$\begin{array}{r} -0.923 \\ -1.491 \\ -.778 \\ -.755 \\ -.588 \\ -.502 \\ -.416 \\ -.302 \\ -.346 \\ -.332 \\ -.364 \\ -.337 \\ -.367 \\ -.101 \\ -.039 \\ .030 \end{array}$	$\begin{aligned} & -2.183 \\ & -6.152 \\ & -1.035 \\ & -.977 \\ & -.697 \\ & -.505 \\ & -.508 \\ & -.474 \\ & -.405 \\ & -.391 \\ & -.347 \\ & -.308 \\ & -.266 \\ & -.191 \\ & -.116 \\ & -.053 \\ & .020 \end{aligned}$	$\begin{array}{r} -3.786 \\ -2.920 \\ -1.324 \\ -1.227 \\ -1.141 \\ -.765 \\ -.610 \\ -.549 \\ -.477 \\ -.438 \\ -.388 \\ -.341 \\ -.291 \\ -.130 \\ -.130 \\ -.013 \end{array}$	$\begin{array}{r} 0.362 \\ .175 \\ .164 \\ .086 \\ .009 \\ -.004 \\ -.036 \\ -.048 \\ -.066 \\ -.073 \\ -.076 \\ -.071 \\ -.033 \\ -.001 \end{array}$	-.420 .280 .268 .176 .080 .062 .019 .002 -.023 -.035 .044 -.050 -.021 .005 .047	$\begin{array}{r} -0.104 \\ -.129 \\ -.140 \\ -251 \\ -.147 \\ .149 \\ .11970 \\ .048 \\ .017 \\ -.001 \\ -.014 \\ -.030 \\ -.010 \\ .009 \\ .072 \end{array}$	$\begin{array}{r} .-.756 \\ .407 \\ .401 \\ .317 \\ .205 \\ .178 \\ .122 \\ .097 \\ .039 \\ .020 \\ -.005 \\ .006 \\ .018 \\ .043 \end{array}$
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{array}{r} -0.500 \\ -.967 \\ -.542 \\ -.500 \\ -.384 \\ -.356 \\ -.303 \\ -.276 \\ -.253 \\ -.228 \\ -.231 \\ -.192 \\ -.168 \\ -.115 \\ -.061 \\ -.017 \\ .030 \end{array}$	$\begin{array}{r} -1: 547 \\ -1.705 \\ -.761 \\ -.697 \\ -.513 \\ -.355 \\ -.377 \\ -.332 \\ -.302 \\ -.276 \\ =.268 \\ -.228 \\ -.199 \\ -.144 \\ =.085 \\ -.044 \\ -.003 \end{array}$	-3.019 -2.255 -1.002 -.927 -.661 -.563 -.447 -.405 -.361 -.313 -.308 -.275 -.240 -.188 -.124 -.102 -.043	-4.909 -3.161 -1.268 -1.171 -.790 -.676 $=.527$ $=.466$ -.408 -.330 -.33 $=.383$ -.235 -.235 -.160 -.100	$\begin{array}{r} 0.378 \\ . .163 \\ . .062 \\ .023 \\ -.024 \\ . .042 \\ . .064 \\ -.075 \\ . .085 \\ . .090 \\ . .092 \\ -.035 \\ -.0099 \\ .039 \end{array}$		$\begin{array}{r} -.376 \\ .334 \\ .318 \\ .213 \\ .077 \\ .0666 \\ .004 \\ . .025 \\ . .041 \\ . .058 \\ \hline .067 \\ \hline .040 \\ . .031 \\ .009 \end{array}$	0.274 .384 .368 .2066 .123 .074 .038 0.017 -.044 -.147 .- .58 -.039 -.003

TABLE XXI．－OONTINUED．
（o）$C_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ ．

$\mathrm{semin}_{\text {sexan }}$$\begin{aligned} & \text { Bpan } \\ & \text { nta. } \\ & \hline \end{aligned}$	（ Percent	UPPER surface				LOWER sugrace			
		AngIe of attack				Angle of attack			
		12°	16°	20°	24°	12	16°	20°	24°
$0.086 \mathrm{~b} / 2$	0	－1．232	－2．750	－4，785	－6．975		0.450		
	1.5	－1．822	－2．750	－3．892	－4．900	0.518	0.450	－0．266	0.084
	6：5	－．：707	－． 9 93	－1．306	－ 1.688	－ 41.4	－${ }^{\text {cel }}$	． 602	： 54
	12.0	－．532	－： 681	－． 8572	－1．190	． 313	． 425	． 531	：623
	21．0	二－：$=1474$	－	－．740	－1．151	－ 2185	： 3745	． 475	－561
	31.0	－ 39	－． 250	－． 666	－1． 935	． 204	． 307	． 407	． 485
	34.5	－．405	－． 500	－． 650	－． 891	－151	－253	－3795	． 405
	$4{ }^{44 .}$	－． 394	－． 4772	－． 618	－：864	$\underline{-15}$	\bigcirc	． 336	\bigcirc
	51.0	－$=364$	－$=4.45$	二－：776	－：800	．109	．1799	：279	： 375
	71.0	－：204	－－367	－-3.35		． 0.092	－159	－	－ 245
	79.5 91.6	－-.136	－．-.065	－． 2745	$=. .440$	$\text { : } 0954$	$.147$	． 136	：120
0.195 b／2	0		－5．349	－8．697	－6．3g7				
	1.5	－2．463	－2．${ }^{2} 65$	－5．128	－2．983	0.207	． 317	． 038	． 935
	\％${ }^{5}$	－1．04	－1．341	－1．940	－2：57	430	－ Sll 17	． 562	． 63
	11.6	－． 726	－-954	－1．273	－2．455	－${ }^{366}$	－473	－541	： 614
	$\frac{11}{12.5}$	－：637	－． 854	－1．123	－2．175	． 364	． 336	： 487	． 59
	24.5	－． 310	－． 656	－． 894	－1．685	． 238	． 349	． 455	－ 54
	31.0	－． 458	－． 579	－－792	－2．346	－194	－ 31	－409	－ 47
	34.5	－－．452	－．：519	－．-711	－-1.302	．142	． 241	－${ }^{2}$	． 357
	44.5	－． 403	－． 491	－． 685	－1．048	．127	－ 224	－ 3 264	－ 35
	59.5	－：．258	－． 3.45	－． 499	－－．757	－038	－166	． 219	：257
	71.0	－． 198	－． 243	－． 380	－－602	－082	． 1348	． 1186	． 200
	79	－：1106	－：1027	－：119	－－． 316	：094	： 123	． 111	－279
$0.382 \mathrm{~b} / 2$	T	－4．347	－5．276	－5．677					
	7．5	－3．122	－4．653	-2.487 -2.474	－1．456	． $374{ }^{4}$	0.115	0.112	． 1457
	\％ $5 \cdot 5$	－1．343	－ 1.275	－2．474	－1．430	． 427	：488	． 575	． 5 弱
	11.6	－． 586	－1． 253	－2．314	－1．395	－ 367	． 460	－${ }^{515}$	－ 575
	－14．5	－． 784	－1．088	－2．130	－1．343	－ 372	． 385	： 4183	－554
	21.5	－-.595	－． F^{73}	－1．930	－1．${ }^{12}$	：246	－ 55	－429	：475
		－． 521	－． 670	－1．55	－1．310	－1988	－ 385	－ 375	． 422
	34.5 4 4	－：．455	－：-53	－1．465	－$-1.27{ }^{2}$	． 178	． 285	－3037	
	$4{ }^{4 .}$	－． 415	－． 5 张 3	－1．092	－1．186	． 137	． 244	－273	－ 310
	51.8	－－． 35	－－ 345	－： 8.65	－1．146	－058	． 159	． 183	． 198
	71.0	－－170	－：323	－． 449	－． 941	：079	－133	－ 1240	\％
	79.5	－． 0.086	－． 026	－． 395	－． $68{ }^{\text {c }}$	．089	：103	：110	－．057
$0.555 \mathrm{~b} / 2$				－3．651					
	1.5	－5．548	10．559	－1．336	－1．080	0.300	－0．068	0.182	
	5．5	－1．512	－2．255	－1．312	－1．064	－438	4791	－ 524	－ 515
	11.0	－1．005	－1．484	－1．265	－1．050	3 3	－473	－517	－556
	14．6	－． 885	－1．284	－1．213	－1．034	－ 350	． 353	． 4829	． 517
	21．5	－－． 63	－ 857	－1． 210	－1．001	258	－ 369	－ 397	－ 436
	31.8	－-546	－． 678	－1．191	－． 988	． 215	－3118	－345	－378
	41.6	－： 48	－－670	－1．144	－． 9.976	． 142	． 243	－ 264	． 291
	44.5	－-4.424	－ 5.560	－${ }^{-1.089}$	－-941	． 1326	． 2218	． 236	． 259
	59.5	－． 364	－． 4.357	－1．955	－－．947	：077	－138	： 130	． 125
	71.0	－	－．-141	－． 8.745	－：852	：777	． O 114	． 972	．047
	79．5	－．078	－． 057	－． 596	－． 78	：087	：070	．．0\％${ }^{2}$	－191

TABLE XXI. - COMCLUDED.
(o) $a_{u}, 12^{\circ}, 16^{\circ}, 20^{\circ}, 24^{\circ}$ - Concluded.

Semiepan ta.	Percent chord	UPPER SURFACE				LOWER SURFACE			
		Angle or attack				Angle of sttack			
		12°	16°	20°	24°	12°	16°	20°	24°
$0.707 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 61.0 34.5 41.5 44.5 51.0 59.5 71.0 79.5 91.0	1.516 -6.5161 -3.898 -1.658 -1.534 -1.050 -.928 -.734 -.673 -.568 -.532 -.471 -.415 -.347 -.259 -.145 -.066 .022	-1.305 -2.305 -2.830 -2.931 -2.574 -2.458 -2.222 -1.820 -1.724 -1.218 -1.204 -.766 -.780 -.499 -.408 -.229 -.146 -.042	-2.330 -.957 -.952 -.921 -.927 -.891 -.900 -.867 -.831 -.847 -.805 -.810 -.765 -.729 -.675 -.624	-1.798 -.837 -.861 -.828 -.837 -.801 -.720 -.799 -.795 -.780 -.739 -.745 -.721 -.704 -.656 -.018	. .056 0.443 .440 .383 .353 .285 .254 .203 .182 .137 .080 .059 .058 .058 .068	$\begin{array}{r} -0.206 \\ .483 \\ .497 \\ .479 \\ .451 \\ .350 \\ .353 \\ .296 \\ .266 \\ .155 \\ .192 \\ .1006 \\ .082 \\ .064 \\ .047 \end{array}$	$\begin{array}{r} 0.115 \\ .498 \\ .501 \\ .480 \\ .450 \\ .357 \\ .357 \\ .267 \\ .210 \\ .187 \\ .130 \\ .064 \\ .001 \\ -.065 \\ -.176 \end{array}$	$\begin{array}{r} .0-044 \\ 0.488 \\ .503 \\ .500 \\ .476 \\ .419 \\ .387 \\ .354 \\ .232 \\ .202 \\ .142 \\ .065 \\ -.007 \\ \hline .075 \\ \hline . .194 \end{array}$
$0.831 \mathrm{~b} / 2$	0 1.5 56.5 61.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 79.5 71.0 79.5 91.0	-5.041 -3.755 -1.628 -1.501 -1.041 -.928 -.712 $=.648$ -.532 -.436 -.337 -.379 -.319 -.235 -.145 -.085 -.005	-3.765 -1.424 -1.377 -1.308 -1.295 -1.200 -1.237 -1.174 -1.176 -1.116 -1.091 -1.020 -.960 -.848 -.649 -.552 -.344	$\begin{aligned} & -2.768 \\ & -.748 \\ & -.732 \\ & -.729 \\ & -.713 \\ & -.696 \\ & -.680 \\ & -.666 \\ & -.658 \\ & -.644 \\ & -.652 \\ & -.606 \\ & -.615 \\ & -.588 \\ & -.588 \\ & -.753 \\ & -.520 \end{aligned}$.- .548 -.686 -.672 -.664 -.645 -.645 -.637 -.626 -.618 -.615 -.618 -.576 -.587 -.567 -.519 -.519 -.492	$\begin{array}{r} 0.051 \\ .430 \\ .426 \\ .365 \\ .254 \\ .226 \\ .167 \\ .137 \\ .076 \\ .048 \\ .016 \\ .017 \\ .022 \\ .035 \end{array}$	$\begin{array}{r} .071 \\ 0.071 \\ .479 \\ .438 \\ -.329 \\ .397 \\ .237 \\ .200 \\ .156 \\ .1257 \\ .0046 \\ .0288 \\ .007 \\ -.027 \end{array}$	-.180 0.471 .492 .432 .327 .293 .228 .192 .142 .063 -.004 -.056 -.098 -.185	. .736 0.437 .467 .452 -.357 .354 .259 .223 .165 .1272 .008 -.048 -.090 -.182
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 17.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & -7.263 \\ & -4.129 \\ & -1.550 \\ & -1.418 \\ & -.969 \\ & -.812 \\ & -.629 \\ & -.560 \\ & -.477 \\ & -.447 \\ & -.275 \\ & -.382 \\ & -.331 \\ & -.298 \\ & -.229 \\ & -.253 \\ & -.164 \end{aligned}$	$\begin{aligned} & -1.817 \\ & -1.044 \\ & -1.011 \\ & -.965 \\ & -.959 \\ & -.907 \\ & -.896 \\ & -.841 \\ & -.849 \\ & -.786 \\ & -.813 \\ & -.730 \\ & -.704 \\ & -.726 \\ & -.648 \\ & -.616 \end{aligned}$	$\begin{aligned} & -1.026 \\ & -.625 \\ & -.600 \\ & -.586 \\ & -.586 \\ & -.562 \\ & -.562 \\ & -.529 \\ & -.529 \\ & -.488 \\ & -.712 \\ & -.448 \\ & -.459 \\ & -.427 \\ & -.409 \\ & -.401 \end{aligned}$	$\begin{aligned} & -0.782 \\ & -.571 \\ & -.563 \\ & -.535 \\ & -.552 \\ & -.527 \\ & -.511 \\ & -.505 \\ & -.522 \\ & -.481 \\ & -.508 \\ & -.453 \\ & -.462 \\ & -.439 \\ & -.439 \\ & -.409 \\ & -.394 \end{aligned}$	0.089 .399 .373 .345 .160 .101 .064 . .0017 -.031 -.007 -.061 . .043 -.031 -.019	-.289 0.431 .407 .353 .287 .153 .157 .072 .049 .020 .007 -.027 .045 -.065 -.135	0.076 0.417 .397 .351 .293 .219 .172 .182 .076 .043 -.010 -.059 .083 .110 -.161	$\begin{array}{r} 0.199 \\ .413 \\ .396 \\ .372 \\ .315 \\ .247 \\ .190 \\ .095 \\ .065 \\ .026 \\ -.001 \\ -.051 \\ -.078 \\ \hline .111 \end{array}$

(a) $\alpha_{k}, \infty^{0}, 1^{0}, 2^{0}, 3^{0}$.

Seaiapan sta.	Percent obord	UPPER SUEFAGE				LOMER SURFACE			
		Angle of ettack				angle of attack			
		0°	$1{ }^{0}$	2°	3°	0°	I°	2^{0}	3°
$0.086 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	0.485 .050 .015 $=.034$ $=.051$ $=.069$ $=.086$ $=.094$ $=.105$ $=.146$ $=.161$ $=.160$ $=.137$ $=.197$ $=.062$ $=.015$	$\begin{aligned} & 0.487 \\ & =.043 \\ & =.087 \\ & =.083 \\ & =.086 \\ & =.104 \\ & =.118 \\ & =.123 \\ & =.124 \\ & =.146 \\ & =.165 \\ & =.185 \\ & -.182 \\ & =.155 \\ & =.162 \\ & =.072 \\ & =.020 \end{aligned}$	$\begin{aligned} & 0.464 \\ & =.148 \\ & =.139 \\ & =.131 \\ & =.131 \\ & =.144 \\ & =.150 \\ & =.160 \\ & =.161 \\ & =.177 \\ & =.206 \\ & =.201 \\ & =.170 \\ & =.134 \\ & =.081 \\ & =.026 \end{aligned}$	0.419 -.273 -.178 $-.183$ -.174 -.180 $-.180$ $-.182$ -.183 -.199 -212 $-.219$ -.178 -.142 -.142 -.087 $-.029$	$\begin{aligned} & -.007 \\ & 0.012 \\ & =.044 \\ & =.051 \\ & =.071 \\ & =.082 \\ & =.102 \\ & =.113 \\ & =.144 \\ & -.17 \\ & =.154 \\ & =.112 \\ & =.073 \\ & =.019 \end{aligned}$	$\begin{aligned} & 0.081 \\ & .055 \\ & -.001 \\ & -.020 \\ & =.039 \\ & =.052 \\ & -.074 \\ & =.082 \\ & =.106 \\ & -.193 \\ & -.175 \\ & -.119 \\ & =.100 \\ & =.064 \\ & =.013 \end{aligned}$	$\begin{array}{r} . .784 \\ 0.077 \\ .039 \\ .014 \\ -.008 \\ =.027 \\ =.046 \\ =.059 \\ =.077 \\ =.094 \\ -.175 \\ =.103 \\ =.087 \\ =.053 \\ -.007 \end{array}$	$\begin{aligned} & -.023 \\ & 0.223 \\ & .1053 \\ & .048 \\ & .043 \\ & .020 \\ & -.018 \\ & =.032 \\ & =.051 \\ & -.066 \\ & -.091 \\ & -.0964 \\ & -.072 \\ & -.042 \\ & 0 \end{aligned}$
$0.195 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 12.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 32.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	0.445 .006 $=.055$ -.080 $=.092$ $=.105$ $=.124$ $=.126$ $=.132$ $=.149$ $=.165$ $=.156$ $=.132$ $=.096$ $=.048$.009	$\begin{aligned} & 0.428 \\ & -.120 \\ & -.123 \\ & -.139 \\ & -.140 \\ & -.142 \\ & -.154 \\ & =.180 \\ & =.163 \\ & =.179 \\ & -.182 \\ & -.189 \\ & =.177 \\ & =.148 \\ & =.171 \\ & =.057 \\ & .005 \end{aligned}$	$\begin{aligned} & 0.367 \\ & -.257 \\ & =.186 \\ & -.200 \\ & =.186 \\ & -.184 \\ & =.188 \\ & =.186 \\ & =.185 \\ & =.207 \\ & =.213 \\ & -.213 \\ & =.197 \\ & =.163 \\ & =.1064 \\ & . .002 \end{aligned}$	0.269 $-.404$ $-.259$ $-.261$ $-.237$ $-.227$ -. 216 $-.218$ $-.229$ -.237 -.231 .225 -.177 -.177 $=.137$ -0	$\begin{aligned} & =.031 \\ & 0.069 \\ & =.086 \\ & =.097 \\ & =.111 \\ & =.121 \\ & =.129 \\ & =.146 \\ & =.177 \\ & =.160 \\ & =.164 \\ & =.138 \\ & =.098 \\ & =.045 \\ & .009 \end{aligned}$	$\begin{aligned} & 0.144 \\ & =.007 \\ & =.089 \\ & =.053 \\ & =.072 \\ & =.089 \\ & =.098 \\ & =.179 \\ & =.122 \\ & =.159 \\ & =.149 \\ & =.146 \\ & =.123 \\ & =.087 \\ & -.042 \\ & .011 \end{aligned}$	$\begin{array}{r} .-.039 \\ .053 \\ . .023 \\ -.010 \\ =.034 \\ -.056 \\ -.068 \\ =.092 \\ -.106 \\ -.114 \\ -.117 \\ -.126 \\ -.107 \\ -.075 \\ -.034 \\ .016 \end{array}$	$\begin{array}{r} . .37 \\ 0.319 \\ .077 \\ .033 \\ .007 \\ . .022 \\ . .036 \\ =.062 \\ =.077 \\ =.088 \\ =.093 \\ =.105 \\ =.089 \\ -.062 \\ . .022 \\ .023 \end{array}$
$0.312 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.6 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	0.397 $=.015$ $=.090$ $=.109$ $=.124$ $=.128$ $=.245$ $=.157$ $=.151$ $=.166$ $=.172$ $=.130$ $=.079$ $=.037$.021	0.382 -.163 $=.175$ -.781 -.177 $=.177$ $=.179$ $=.281$ -.182 $=.181$ $=.194$ $=.170$ $=.147$ $=.094$ -.045 .016	$\begin{aligned} & 0.294 \\ & =.337 \\ & =.257 \\ & =.267 \\ & =.224 \\ & =.222 \\ & =.219 \\ & =.219 \\ & =.215 \\ & =.207 \\ & =.221 \\ & =.212 \\ & =.192 \\ & =.163 \\ & =.104 \\ & =.052 \\ & \hline \end{aligned}$	0.147 -523 -.347 -.335 $=.286$ $=.256$ $=.254$ $=.250$ -237 -.237 -.232 -.208 -.175 -.113 -.058 .012 .012	$\begin{aligned} & -0.059 \\ & =.106 \\ & =.118 \\ & =.126 \\ & =.135 \\ & =.1448 \\ & =.161 \\ & =.165 \\ & =.158 \\ & =.159 \\ & =.161 \\ & =.189 \\ & =.081 \\ & =.071 \\ & .024 \end{aligned}$	$\begin{aligned} & 0.046 \\ & =.037 \\ & =.053 \\ & =.076 \\ & -.090 \\ & =.103 \\ & =.134 \\ & =.132 \\ & =.137 \\ & =.137 \\ & =.242 \\ & =.117 \\ & =.066 \\ & -.025 \\ & .026 \end{aligned}$	$\begin{array}{r} 0.139 \\ .027 \\ .008 \\ -.026 \\ -.046 \\ -.067 \\ =.080 \\ =.102 \\ =.109 \\ =.110 \\ =.115 \\ -.122 \\ =.098 \\ =.060 \\ -.017 \\ .031 \end{array}$	$\begin{array}{r} 0.223 \\ .090 \\ .068 \\ .023 \\ -.001 \\ -.028 \\ -.044 \\ =.070 \\ -.078 \\ -.084 \\ =.089 \\ =.100 \\ -.080 \\ =.048 \\ -.009 \\ .036 \end{array}$
$0.55 .5 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.8 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	$\begin{aligned} & 0.425 \\ & =.030 \\ & -.095 \\ & -.124 \\ & =.122 \\ & =.126 \\ & =.136 \\ & =.141 \\ & =.147 \\ & -.163 \\ & =.168 \\ & -.159 \\ & =.145 \\ & =.115 \\ & -.077 \\ & -.032 \\ & .026 \end{aligned}$	$\begin{aligned} & 0.428 \\ & -.186 \\ & -.182 \\ & =.198 \\ & =.181 \\ & =.181 \\ & =.181 \\ & =.177 \\ & =.181 \\ & -.182 \\ & =.195 \\ & =.184 \\ & -.167 \\ & -.132 \\ & =.089 \\ & =.039 \\ & .082 \end{aligned}$	0.348 -. 381 -. 282 -. 291 $-.243$ $-.240$ -. 224 -. 219 -. 219 -. 219 -. 222 -. 209 $-.188$ $-.147$ -. 098 .046 .019	0.181 $-.592$ $-.379$ -. 315 -294 $=-275$ $=.275$ $=.250$ $=.248$ $=.244$ -231 . .259 $=.108$ -.051 .019	$\begin{aligned} & -0.071 \\ & -.106 \\ & =.115 \\ & -.134 \\ & -.135 \\ & -.146 \\ & =.156 \\ & =.160 \\ & =.154 \\ & =.153 \\ & =.149 \\ & =.1374 \\ & -.027 \\ & .031 \end{aligned}$	$\begin{aligned} & 0.054 \\ & =.020 \\ & =.037 \\ & =.076 \\ & =.085 \\ & =.107 \\ & -.110 \\ & =.125 \\ & =.133 \\ & =.133 \\ & =.133 \\ & =.133 \\ & =.066 \\ & -.023 \\ & .030 \end{aligned}$	$\begin{aligned} & -.07 \\ & 0.163 \\ & .044 \\ & .027 \\ & -.020 \\ & . .036 \\ & -.065 \\ & -.073 \\ & =.093 \\ & =.105 \\ & =.100 \\ & =.117 \\ & =.112 \\ & =.103 \\ & -.057 \\ & -.017 \\ & .033 \end{aligned}$	$\begin{array}{r} -.251 \\ 0.110 \\ .092 \\ .034 \\ . .017 \\ =.026 \\ =.036 \\ =.060 \\ =.073 \\ =.085 \\ =.090 \\ =.085 \\ =.044 \\ =.007 \\ .038 \end{array}$

MACA

TABLE XXII.- CONTINUED.
(a) $a_{12}, 0^{\circ}, 2^{\circ}, 2^{\circ}, 3^{\circ}$ - OonoIuded.

Sem1span sta.	Percent chord	UPPER SURFACE				LONER BURFACE			
		Angle of attack				Angie or attack			
		0°	1°	2°	3°	0°	1^{3}	2°	$3{ }^{\circ}$
$0.707 \mathrm{~b} / 2$	$\begin{aligned} & 0 \\ & 1.5 \\ & 55.5 \\ & 51.6 \\ & 14.0 \\ & 21.5 \\ & 24.0 \\ & 31.5 \\ & 34.0 \\ & 41.5 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$	$\begin{aligned} & 0.405 \\ & . .034 \\ & -.113 \\ & -.115 \\ & . .118 \\ & .145 \\ & . .147 \\ & -.157 \\ & . .1172 \\ & . .176 \\ & -.141 \\ & -. .119 \\ & -.024 \\ & . .035 \end{aligned}$	0.376 $=.211$ -.205 $=.202$ $=.179$ $=.181$ $=.180$ $=.184$ $=.182$ -.198 $=.184$ -.166 $=.235$ $=.034$ -.059		$\begin{array}{r} 0.050 \\ -.639 \\ . .498 \\ -.398 \\ -.311 \\ -.295 \\ -.286 \\ . .273 \\ -.256 \\ -.254 \\ -.252 \\ -.202 \\ -.163 \\ -.098 \\ -.044 \\ .027 \end{array}$	$\begin{array}{r} -0.057 \\ -.106 \\ -.115 \\ -.136 \\ -.136 \\ -.144 \\ -.149 \\ -.153 \\ -.153 \\ -.154 \\ -.142 \\ -.124 \\ -.066 \\ -.022 \\ .039 \end{array}$	0.079 -.024 -.038 -.078 -.084 -.105 -.112 -.124 -.125 -.133 -.132 -.233 $=.113$ -.059 -.020 .037	-.203 0.054 .034 -.021 -.024 -.065 -.074 $=.091$ -.108 $=.109$ -.113 $=.100$ $=.053$ -.015 .038	$.0-97$.1266 .102 .037 .017 -.035 -.055 -.065 -.081 -.093 -.083 -.040 -.007 .043
$0.831 \mathrm{~b} / 2$	0 1.5 6.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.5 79.5 91.5	0.368 -.048 -.128 $=.122$ -.113 -.144 -.161 -.157 -.164 -.189 -.114 -.104 -.063 .- .016 .042	0.411 -.224 -.222 -.209 -.181 $=.196$ -.190 $=.182$ -.186 -.184 -.174 -.118 $=.071$ -.021 .038	0.351 -.447 . .318 -.347 -.259 -.240 -.234 -.219 -.215 -.194 -.178 $=.079$ -.025 .036	$\begin{aligned} & 0.206 \\ & =.651 \\ & . .415 \\ & =.398 \\ & =.313 \\ & =.278 \\ & =.271 \\ & =.246 \\ & =.239 \\ & -.217 \\ & =.189 \\ & -.138 \\ & =.082 \\ & -.027 \end{aligned}$	$\begin{array}{r} -0.079 \\ -.128 \\ -.120 \\ -.131 \\ -.186 \\ -.183 \\ -.190 \\ -.190 \\ -.190 \\ -.186 \\ -.177 \\ -.096 \\ -.007 \\ -.050 \end{array}$	$\begin{array}{r} 0.074 \\ -.034 \\ -.041 \\ -.075 \\ -.107 \\ =.109 \\ -.124 \\ -.125 \\ -.132 \\ -.132 \\ -.104 \\ -.053 \\ -.009 \\ .046 \end{array}$	$\begin{array}{r} 0.193 \\ .041 \\ . .030 \\ -.070 \\ -.075 \\ -.095 \\ . .102 \\ . .112 \\ . .112 \\ . .095 \\ -.049 \\ -.008 \\ .045 \end{array}$	
$0.924 \mathrm{~b} / 2$	0 1.5 5.5 6.5 11.0 14.5 21.0 24.5 31.0 34.5 43 44.0 51.5 59.5 71.0 79.5 91.0		0.319 -.200 -.234 -.251 -.198 -.196 -.179 -.175 -.166 -.165 -.143 -.097 -.043 0 .047	0.157 -.425 -.325 -.3187 -.242 -.221 -.005 -.200 -.184 -.184 -.163 -.048 -.049 -.004 .043	$\begin{array}{r} -0.102 \\ -.656 \\ -.427 \\ -.392 \\ -.313 \\ -.292 \\ -.256 \\ -.235 \\ -.218 \\ -.199 \\ -.195 \\ -.174 \\ -.156 \\ -.104 \\ -.052 \\ -.005 \\ .039 \end{array}$	$\begin{array}{r} -0.087 \\ -.135 \\ -.119 \\ -.135 \\ -.136 \\ -.141 \\ -.139 \\ -.134 \\ -.135 \\ -.125 \\ -.125 \\ -.081 \\ -.031 \\ .010 \\ .052 \end{array}$	$\begin{aligned} & 0.051 \\ & -.056 \\ & -.075 \\ & -.095 \\ & . .114 \\ & . .117 \\ & -.122 \\ & -.121 \\ & -.125 \\ & -.120 \\ & -.080 \\ & -.034 \\ & . .003 \\ & .054 \end{aligned}$	$\begin{array}{r} 0.166 \\ 0.034 \\ -.037 \\ -.051 \\ -.085 \\ -.094 \\ -.104 \\ -.107 \\ -.117 \\ -.112 \\ -.079 \\ -.076 \\ -.002 \\ -.049 \end{array}$	-.270 .100 .091 -.013 -.053 -.067 -.082 -.089 -.708 -.1011 -.074 -.734 -.044 .046

TABLE XXII.- CONTIEUED.
(b) $a_{11}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$.

Semiapan日ta.	Percent ohord	UPPER SURFACE				LOWER SURTACE			
		angle of attack				angle of attack			
		$4{ }^{\text {a }}$	6°	8°	10°	4°	6°	8	10°
$0.086 \mathrm{~b} / 2$			$\begin{aligned} & 0.141 \\ & =.676 \\ & -.356 \\ & -.345 \\ & -.294 \\ & -.264 \\ & -.277 \\ & =.269 \\ & -.269 \\ & -.273 \\ & =.287 \\ & -.273 \\ & =.228 \\ & =.174 \\ & =. .037 \end{aligned}$		$\begin{aligned} & -0.678 \\ & -\mathrm{I.} 424 \\ & -.616 \\ & -.584 \\ & -.469 \\ & -.435 \\ & -.398 \\ & -.381 \\ & -.358 \\ & -.360 \\ & -.356 \\ & -.361 \\ & -.337 \\ & -.208 \\ & -.128 \\ & -.044 \end{aligned}$	$\begin{array}{r} 0.085 \\ .165 \\ .124 \\ .085 \\ .050 \\ .069 \\ . .007 \\ -.023 \\ -.040 \\ -.063 \\ -.068 \\ -.056 \\ -.029 \\ .010 \end{array}$	$\begin{array}{r} 0.381 \\ .242 \\ .200 \\ .148 \\ .118 \\ .085 \\ .061 \\ .040 \\ .022 \\ .001 \\ -.025 \\ -.022 \\ -.017 \\ -.001 \\ .027 \end{array}$	0.458	$\begin{array}{r} -.507 \\ 0.388 \\ .349 \\ .389 \\ .049 \\ .204 \\ .788 \\ .147 \\ .098 \\ .062 \\ .0066 \\ .053 \\ .067 \\ .070 \end{array}$
$0.195 \mathrm{~b} / 2$	0 1.5 5.5 6.5 31.0 14.5 21.0 24.5 31.0 34.5 41.0 44.5 51.0 59.5 71.0 79.5	$\begin{aligned} & 0.122 \\ & -.573 \\ & -.535 \\ & -.387 \\ & -.270 \\ & -.275 \\ & -.249 \\ & -.242 \\ & -.242 \\ & -.253 \\ & -.253 \\ & -.232 \\ & -.189 \\ & -.140 \\ & -.076 \\ & -.001 \end{aligned}$		$\begin{aligned} & -0.939 \\ & -1.412 \\ & -.675 \\ & -.634 \\ & -.504 \\ & -.451 \\ & -.402 \\ & -.379 \\ & -.355 \\ & -.359 \\ & -.342 \\ & -.332 \\ & -.257 \\ & -.239 \\ & -.172 \\ & -.095 \\ & -.006 \end{aligned}$	$\begin{aligned} & -I .741 \\ & -I .914 \\ & -.854 \\ & -.789 \\ & -.601 \\ & -.542 \\ & -.473 \\ & -.447 \\ & =.411 \\ & -.407 \\ & -.361 \\ & -.369 \\ & -.326 \\ & -.262 \\ & -.186 \\ & -.103 \\ & -.008 \end{aligned}$	$\begin{array}{r} . .380 \\ .166 \\ .197 \\ .046 \\ .013 \\ -.007 \\ . .032 \\ -.0468 \\ -.069 \\ -.062 \\ -.070 \\ -.048 \\ -.012 \end{array}$	$\begin{array}{r} -.4 \overline{4} 1 \\ .255 \\ .214 \\ .152 \\ .115 \\ .073 \\ .056 \\ .021 \\ . .007 \\ -.018 \\ -.038 \\ -.034 \\ -.018 \\ .010 \\ .041 \end{array}$	0.437 .344 .299 .289 .139 .118 .079 .059 .037 .007 .007 .015 .036 .059	$\begin{aligned} & 0.3 \overline{5} \\ & .489 \\ & .367 \\ & .254 \\ & .200 \\ & .176 \\ & .154 \\ & .086 \\ & .075 \\ & .052 \\ & .045 \\ & .0460 \\ & .074 \end{aligned}$
$0.312 \mathrm{~b} / 2$	$\begin{aligned} & \hline 0 \\ & 3.5 \\ & 5.5 \\ & 6.5 \\ & 11.0 \\ & 24.5 \\ & 21.0 \\ & 24.5 \\ & 31: 0 \\ & 34.5 \\ & 41.0 \\ & 44.5 \\ & 51.0 \\ & 59.5 \\ & 71.0 \\ & 79.5 \\ & 91.0 \end{aligned}$		$\begin{array}{r} -0.693 \\ -1.210 \\ -.630 \\ -.594 \\ -.466 \\ -.426 \\ -.377 \\ -.350 \\ -.339 \\ -.511 \\ -.307 \\ -.297 \\ -.262 \\ =.215 \\ -.136 \\ -.073 \\ .008 \end{array}$	-1.625 -1.759 -.854 -.7922 -.602 -.545 -.466 -.434 -.402 $=.361$ -.338 -.338 -.226 -.152 -.079 .010	-2.797 -2.420 -1.087 -.997 -.744 -.661 -. 559 =. 5.424 -.434 -.409 $-.377$ -.359 -.164 -. 084 .011 .011		0.390 .245 .219 .152 .077 .056 .020 .007 -.005 $=.018$ -.035 -.015 -.010 .020 .052	-.439 .330 $\begin{array}{r}304 \\ .235 \\ \hline\end{array}$.198 .122 .085 .032 .011 .010 .020 .043 .065	
$0.555 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 5.5 \\ 61.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 99.5 \end{gathered}$	$\begin{aligned} & -0.081 \\ & -.837 \\ & -.481 \\ & -.471 \\ & -.373 \\ & =.345 \\ & -.310 \\ & =.291 \\ & =-274 \\ & =.270 \\ & -.254 \\ & =.244 \\ & =.174 \\ & -.715 \\ & -.056 \\ & .013 \end{aligned}$		-1.942 -2.034 $=.958$ -.901 $=.673$ -.602 -.504 $=.464$ -.415 -.394 -.374 -.396 -.296 $=.245$ -.072 -.016	$\begin{aligned} & -3.363 \\ & -2.760 \\ & -1.219 \\ & -1.129 \\ & -.826 \\ & -.734 \\ & -.597 \\ & -.542 \\ & -.480 \\ & -.454 \\ & -.417 \\ & -.385 \\ & -.329 \\ & -.245 \\ & -.156 \\ & -.076 \\ & .017 \end{aligned}$	$\begin{array}{r} 0.325 \\ .173 \\ .055 \\ .059 \\ .013 \\ 0 \\ -.029 \\ =.042 \\ -.054 \\ -.059 \\ =.069 \\ =.066 \\ -.031 \\ .065 \\ .045 \end{array}$	$\begin{array}{r} 0.416 \\ .278 \\ .252 \\ .175 \\ .142 \\ .084 \\ .068 \\ .012 \\ -.004 \\ -.013 \\ -.028 \\ -.033 \\ -.008 \\ .017 \\ .050 \end{array}$	$\begin{array}{r} 0.442 \\ .356 \\ .335 \\ .258 \\ .275 \\ .154 \\ .093 \\ .074 \\ .049 \\ .038 \\ .019 \\ .005 \\ .021 \\ .040 \\ .065 \end{array}$	$\begin{array}{r} 0.401 \\ .412 \\ .394 \\ .355 \\ .285 \\ .1196 \\ .149 \\ .127 \\ .0973 \\ .0599 \\ .039 \\ .0457 \\ .052 \end{array}$

TABLE XXII. - CONFINUED.
(b) $a_{u}, 4^{\circ}, 6^{\circ}, 8^{\circ}, 10^{\circ}$ - Concluded.

gemia epan sta.	Percent chord	UPPER SURFACE				LOWER BURFACE			
		Angle of attack				Angle of attack			
		4°	6°	8°	10°	4°	6°	8°	10°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.266 \\ -.903 \\ -.524 \\ -.500 \\ -.362 \\ -.361 \\ -.327 \\ -.310 \\ -.289 \\ -.274 \\ -.272 \\ -.252 \\ -.219 \\ -.177 \\ =.104 \\ -.046 \\ .027 \end{array}$	$\begin{array}{r} -1.176 \\ -1.503 \\ -.766 \\ -.725 \\ -.528 \\ -.485 \\ -.417 \\ =.390 \\ -.358 \\ -.345 \\ =.326 \\ -.300 \\ -.258 \\ =.204 \\ =.122 \\ -.057 \\ . .022 \end{array}$	$\begin{array}{r} -2.532 \\ -2.228 \\ -1.048 \\ -.979 \\ -.692 \\ -.624 \\ -.525 \\ -.487 \\ -.428 \\ -.411 \\ -.378 \\ -.342 \\ -.290 \\ -.224 \\ -.132 \\ -.061 \\ .024 \end{array}$	$\begin{array}{r} -4.270 \\ -3.041 \\ -1.335 \\ -1.243 \\ -.854 \\ -.768 \\ -.620 \\ -.577 \\ -.492 \\ -.469 \\ -.430 \\ =.366 \\ -.324 \\ -.247 \\ -.142 \\ -.068 \\ .023 \end{array}$	0.366 .191 .087 .065 .017 .. 026 -. 035 $-.075$ $-.061$ $-.066$ $-.029$.047	0.424 .293 .178 .148 .089 .032 .019 -.008 $=.016$ $-.033$ -.040 -.012 .012 .050	$\begin{array}{r} .0-7 \\ 0.393 \\ .374 \\ .362 \\ .228 \\ .162 \\ .139 \\ .094 \\ .078 \\ .034 \\ .010 \\ .004 \\ .014 \\ .028 \\ .061 \end{array}$	0.268 .421 .403 . 325 . 292 .222 .148 .129 .089 .047 .026 .033 .042 .064
$0.831 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 11.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 37.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.046 \\ =.892 \\ -.524 \\ -.500 \\ =.384 \\ =.367 \\ =.319 \\ =.306 \\ =.272 \\ =.265 \\ =.253 \\ =.229 \\ =.204 \\ =.146 \\ =.087 \\ -.030 \\ .035 \end{array}$	$\begin{array}{r} -0.887 \\ -1.481 \\ =.764 \\ -.723 \\ -.524 \\ -.496 \\ =-2 \\ =- \\ =- \\ -.270 \\ -.237 \\ =.171 \\ -.103 \\ -.044 \end{array}$	$\begin{array}{r} -2.147 \\ -2.170 \\ -1.035 \\ -.967 \\ -.688 \\ -.638 \\ =.508 \\ =.468 \\ =.406 \\ -.379 \\ -.351 \\ -.306 \\ =.265 \\ =.190 \\ -.116 \\ -.054 \\ .021 \end{array}$	$\begin{array}{r} -3.797 \\ -2.929 \\ -1.320 \\ -1.219 \\ -.851 \\ -.764 \\ =.606 \\ =.558 \\ =.471 \\ =.434 \\ =.394 \\ =.348 \\ =.297 \\ =.216 \\ =.133 \\ -.071 \\ .009 \end{array}$	0.359 .173 .161 .082 .009 $-.005$ -.037 -.046 $-.066$ $-.074$ -.075 -.073 $-.034$.047	0.417 .282 .261 .170 .170 .075 .057 .015 $-.002$ -.032 -.040 $-.048$ -.053 -.025 .025 .001 .043	$\begin{array}{r} 0.384 \\ .354 \\ .344 \\ .250 \\ . .143 \\ .119 \\ .070 \\ .048 \\ .017 \\ .073 \\ . .029 \\ -.008 \\ .011 \\ .045 \end{array}$	$.0-$ 0.258 .402 .394 .311 .199 .273 .117 .091 .055 .035 .016 . .010 .002 .015 .042
$0.924 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 5.5 \\ 6.5 \\ 21.0 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{array}{r} -0.467 \\ -.930 \\ -.550 \\ -.488 \\ -.367 \\ -.333 \\ -.269 \\ =.259 \\ -.232 \\ =.217 \\ -.213 \\ -.190 \\ -.168 \\ -.114 \\ -.061 \\ -.017 \end{array}$	$==-$ $=-=$ $=-=$ $=-=$ $=-=$ $=-2$ $=.230$ $=.202$ $=.147$ $=.089$ -.053 $=.006$	$\begin{array}{r} -2.984 \\ -2.326 \\ -1.005 \\ -.926 \\ -.643 \\ -.560 \\ =.449 \\ -.396 \\ =.353 \\ -.325 \\ -.300 \\ -.272 \\ -.239 \\ -.185 \\ =.123 \\ =.106 \\ -.048 \end{array}$	$\begin{array}{r} -4.868 \\ -3.190 \\ -1.275 \\ -1.166 \\ -.789 \\ -.678 \\ -.531 \\ =.471 \\ =.411 \\ -.379 \\ -.358 \\ =.326 \\ -.285 \\ =.241 \\ -.175 \\ =.165 \\ -.702 \end{array}$		0.400 .258 .243 .243 .091 .026 $-.004$ -. 030 $-.052$ -.065 -.075 -, 081 -. 070 -.040 -.021 .023	0.380 . 334 - 318 .213 .071 .037 .066 $-.023$ $-.041$ -. 058 $-.063$ -. 064 $-.038$ -.028 .013	0.273 $\begin{array}{r} .378 \\ .362 \\ . .267 \\ . .118 \\ . .070 \\ .033 \\ -.003 \\ -.023 \\ -.045 \\ -.052 \\ -.064 \\ -.041 \\ -.039 \\ -.003 \end{array}$

TABLE XXII. - CONTANUED.
(c) $\alpha_{u}, 12^{\circ}, 24^{\circ}, 16^{\circ}, 20^{\circ}$.

Seaista.	Percent chord	UPPER SURPACE				LCwar surface			
		Angle or attack				ingle of attact			
		12°	14°	16°	20°	$12^{\text {o }}$	14°	16°	20°
$0.086 \mathrm{~b} / 2$			-1.867 -. g 827 -.635 -.511 -. 5096 $-.447$ -.429 -.424 $=: 315$ $=-15$ $=-154$ -. 646				-500 0.500 .469 .406 .475 .377 .359 .253 .230 157 .152 .137 .125 .122 .115		
0.195 b/2	[${ }^{0}$						-001 0.496 .472 .419 .776 .717 .291 .220 .188 .175 .144 .127 .115 .115 .15		
$0.312 \mathrm{~b} / 2$									
$0.555 \mathrm{~b} / 2$									

TABLE XXII. - CONOLUDED.
(o) $\alpha_{u}, 12^{\circ}, 14^{\circ}, 16^{\circ}, 20^{\circ}-$ Concluded.

Semispan sta.	Percent chora	UPPER SURPACE				LONER SURPAOE			
		Angle of attack				Angle of attack			
		12°	14°	16°	20°	12°	14°	16°	20°
$0.707 \mathrm{~b} / 2$	$\begin{array}{r} 0 \\ 1.5 \\ 56.5 \\ 6.5 \\ 11.6 \\ 14.5 \\ 21.0 \\ 24.5 \\ 31.0 \\ 34.5 \\ 41.0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{array}$	$\begin{aligned} & -6.400 \\ & -3.911 \\ & -1.631 \\ & -1.515 \\ & -1.027 \\ & -.901 \\ & -.718 \\ & -.656 \\ & -.557 \\ & -.523 \\ & -.465 \\ & -.424 \\ & -.352 \\ & -.263 \\ & =.150 \\ & -.071 \\ & .022 \end{aligned}$	$\begin{array}{r} -8.897 \\ -4.816 \\ -1.973 \\ -1.815 \\ -1.210 \\ -1.056 \\ -.820 \\ -.747 \\ -.628 \\ -.579 \\ -.503 \\ -.458 \\ -.374 \\ -.274 \\ -.152 \\ -.073 \\ .014 \end{array}$	$\begin{array}{r} -10.748 \\ -4.520 \\ -3.558 \\ -3.377 \\ -1.654 \\ -1.530 \\ -.969 \\ -.769 \\ -.730 \\ -.686 \\ -.606 \\ -.544 \\ -.438 \\ -.366 \\ -.162 \\ -.074 \\ -.005 \end{array}$	$\begin{array}{r} -2.710 \\ -.971 \\ -.971 \\ -.936 \\ -.935 \\ -.900 \\ -.896 \\ -.865 \\ -.878 \\ -.847 \\ -.878 \\ -.842 \\ -.798 \\ -.755 \\ -.695 \\ -.632 \end{array}$	0.068 .442 .438 .380 .378 .278 .198 .178 .133 .117 .085 .055 .055 .058	$\begin{array}{r} -0.208 \\ .436 \\ .447 \\ .419 \\ .392 \\ .327 \\ .301 \\ .246 \\ .175 \\ .157 \\ .123 \\ .087 \\ .075 \\ .067 \\ .068 \end{array}$		$\begin{array}{r} 0.080 \\ .489 \\ .4975 \\ .449 \\ .388 \\ .355 \\ .300 \\ .270 \\ .183 \\ .134 \\ .067 \\ .010 \\ -.153 \\ -.188 \end{array}$
$0.831 \mathrm{~b} / 2$	0 11.5 56.5 71.0 14.0 14.5 21.0 24.5 31.0 44.5 41.0 44.5 51.0 59.5 71.0 79.5 91.0	-5.764 -3.750 -1.618 -1.489 $-.913$ -.634 -.523 -.486 -.430 $-.385$ -: 3240 .- .149 -.086 $-.004$	$\begin{aligned} & -8.097 \\ & -4.558 \\ & -1.938 \\ & -1.798 \\ & -1.197 \\ & -1.063 \\ & -.788 \\ & -.717 \\ & -.581 \\ & -.540 \\ & -.468 \\ & -.418 \\ & -.349 \\ & -.261 \\ & -.162 \\ & -.103 \\ & -.026 \end{aligned}$	$\begin{array}{r} -4.705 \\ -1.929 \\ -1.851 \\ -1.714 \\ -1.747 \\ -1.630 \\ -1.666 \\ -1.568 \\ -1.494 \\ -1.409 \\ -1.246 \\ -1.172 \\ -.897 \\ -.685 \\ -.287 \\ -.214 \\ -.064 \end{array}$	$\begin{aligned} & -2.217 \\ & -.748 \\ & -.729 \\ & -.715 \\ & -.705 \\ & -.691 \\ & -.678 \\ & -.660 \\ & -.656 \\ & -.641 \\ & -.647 \\ & -.625 \\ & -.682 \\ & -.616 \\ & -.616 \\ & -.576 \\ & -.537 \end{aligned}$	$\begin{array}{r} 0.058 \\ .448 \\ .425 \\ .361 \\ .250 \\ .226 \\ .1644 \\ .133 \\ .090 \\ .046 \\ .012 \\ .015 \\ .038 \end{array}$			0.156 .464 .460 .429 .327 .294 .231 .744 .708 .065 -.005 -.058 -.1997 -.188
$0.924 \mathrm{~b} / 2$	$\begin{gathered} 0 \\ 1.5 \\ 56 \\ 6.5 \\ 11: \% \\ 14: 5 \\ 21: 0 \\ 24.5 \\ 31.0 \\ 44.5 \\ 41: 0 \\ 44.5 \\ 51.0 \\ 59.5 \\ 71.0 \\ 79.5 \\ 91.0 \end{gathered}$	$\begin{aligned} & -7.164 \\ & -4.128 \\ & -1.549 \\ & -1.418 \\ & -.939 \\ & -.800 \\ & -.615 \\ & -.542 \\ & -.465 \\ & -.443 \\ & =.409 \\ & -.355 \\ & -.337 \\ & -.303 \\ & -.242 \\ & -.165 \end{aligned}$	$\begin{aligned} & -9.809 \\ & -5.064 \\ & -1.845 \\ & -1.679 \\ & -1.110 \\ & -.935 \\ & -.708 \\ & -.630 \\ & -.535 \\ & -.507 \\ & -.464 \\ & -.447 \\ & -.387 \\ & -.368 \\ & -.297 \\ & -.360 \\ & -.241 \end{aligned}$	-3.799 -1.289 -1.230 -1.176 -1.168 -1.088 -1.084 -1.005 -1.044 -1.967 -1.052 -1.992 -1.007 -1.900 -.809 -.617	$\begin{aligned} & -1.715 \\ & -.588 \\ & -.58 \\ & -.568 \\ & -.568 \\ & -.535 \\ & -.533 \\ & -.515 \\ & -.523 \\ & -.491 \\ & =.497 \\ & -.464 \\ & -.480 \\ & -.451 \\ & -.469 \\ & -.435 \\ & -.453 \end{aligned}$		$\begin{array}{r} -0.144 \\ .390 \\ .379 \\ .339 \\ .272 \\ .188 \\ .1284 \\ .031 \\ .013 \\ -.022 \\ -.026 \\ -.058 \\ -.041 \\ -.051 \\ -.034 \end{array}$	$\begin{array}{r} 0.095 \\ .427 \\ .410 \\ .367 \\ .304 \\ .169 \\ .130 \\ .082 \\ .060 \\ .029 \\ .020 \\ -.014 \\ -.011 \\ \hline . .035 \end{array}$	-.708 0.208 .3138 .354 .396 .223 .168 .123 .076 .043 . .016 -.059 -.085 -.113 -.167

HACAR

Aspect ratio	3.0
Taper ratio	0.5
Area, semispan	$10.083 \mathrm{ft}^{2}$
\bar{c}	2.688 ff
-	

TEDTCY KE YDYZ
figure 1.- Plan form of the wing.

Figure 2.- The model mounted in the Ames $12-$ Ifoot pressure wind tunnel. $^{\text {then }}$

Figure 3.-The location of the wall orificies in the Ames 12 -foot pressure wind-funnel test section.

Figure 4.-Crass sections of several seals at the base of the model.

$$
\begin{aligned}
& A=5 \quad \text { Aser } 185^{-\infty} \\
& A=3
\end{aligned}
$$

Figure 5.-The effect of Reynolds number on the low-speed aerodynamic characteristics. Mo, 0.25.

$$
c_{c_{\alpha}}=2.86 .5
$$

Figure 5.-Continued.

Figure 6. -The chorcwise distribution of pressure coefficiont of seven somispon stotions for severad angles of attock and Ryynolds numbers of 4,000,000, 8,000,000, and 18,000,000. 1., 0.25.

Figure 6.-Continued.

Figure 7.-The effect of Reynolds number on the section normal-force coefficients of seven semispan stations. $M_{0}, 0.25$.

Figure 8.-The variation of the section centers of pressure and the pitching-moment coefficient with angle of atfack for Reynolds numbers of $4,000,000,8,000,000$, and $18,000,000 . \mathrm{M}_{0}, 0.25$.

Figure 9.-The aerodynamic characteristics of Reynolds numbers of $4,000,000$ and $8,000,000$. Ah, 0.60 .

Figure 10. The chordwise distribution of pressure coefficient at seven semispan stations for several angles of atfack and Reynolds numbers of 4,000,000 and 8,000,000. $k_{6}, 0.60$.

Sta. $0.924 \frac{6}{2}$

Figure 11.-The effect of Reynolds number on the section normal-force coefficients at seven semispan stations. $M_{0}, 0.60$.

Flgure 12.-The variation of the section centers of pressure and the pitching-moment coefficient with angle of attack for Reynolds numbers of 4,000,000 and 8,000,000. $\mathrm{M}_{0}, 0.60$.

Figure 13.-The development of supersonic flow on the upper surface of the model and on the tunnel wall with increasing angle of attack. $M_{0}, 0.92 ; R, 4,000,000$.

(a) C_{z} vs a

Figure 14.-The effect of Mach number on the oerodynamic characteristics.

(b) $C_{L} \vee s C_{m}$

Figure 14:-Continued.

(c) C_{Z} vs C_{D}

Figure 14:-Concluded.

Figure 15. -The variation of the lift and pitching-moment coefficients with Mach number. R, 4,000,000.

Figure 16.-The variation of the drag coefficient with Mach number. $R, 4,000,000$.

Figure 17.-The variation of the lift-curve slope with Mach number. R, 4,000,000.

Figure 18.-The variation of the location of the aerodynamic center with Mach number. R,4,000,000.

Figure 19.-The variation of the maximum lift-to-drag ratio and the lift coefficient for the maximum lift-to-drag ratio with Mach number. R, 4,000,000.

Figure 20.-The chorctwise distribution of pressure coofficient at seven semispan stotions for several Mach numbers. $R, 4,000,000$.

Figure 21.-The lines of constant pressure coefficient on the upper and lower surfaces for several Mach numbers. $a_{u}, 2^{\circ} ; R, 4,000,000$.

nACA RM A51G31

Figure 22.-The spanwise distribution of section normal-force coefficient at several Mach numbers for three angles of attack. R, 4,000,000.

Figure 23.-The spanwise distributlon of loading coefficient at several Mach numbers. R, 4,000,000.

Figure 24.-The variation of the section centers of pressure with Mach number for three anglas of attack. $R, 4,000,000$.

(a) C_{L} vsa

Figure 25.- The effect of various seals at the base of the model on the aerodynamic characteristics at Mach numbers of 0.25 and 0.80 . R, 4,000,000.

(b) C_{L} vs C_{m}

Figure 25.-Continued.

(c) C_{L} vs C_{D}

Figure 25.-Concluded.

Figure 26. - The chordwise distribution of pressure coefficient at 0.086 b/2 for the model-turntable juncture seals A and B. $a_{u}, 16^{\circ}$; R, 4,000,000.

