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NACA RM A51F21 

~ATIOXAJl ADVISORY CC- lQRAERO3iAUTICS 

WINGSATSOBSORIC ARD LEiumRmHIcspEEDB-- 

By John C. Heitmeger and Rmald C. High-tower 

Awin@odymmM.nationhaving a plene txiangul.mwFng of aspect 
ratio 4 and 3+ercent&hLck'rounded nose sections fn streamwise planes 
has been investigated at both subsonic and supersonic mch nmibers. The 
Uft, drag, and pitching moment of the model are presented for Mach 
numbers from 0.60 to 0.92 and from 1.20 to 1.70 at Reynolds numbers of 
2.91million and 4.15 million. 

A research pro@mm ie in progress at the Amee Aeronautical Labora- 
tory to ascertafn experimentally at subemic and supersonic Mach numbers 
the characteristics of wings of interest in the design of highdpeed 
fighter airplanes. The effects of variations in plan fom, twfst, camber, 
and thiclmess are being investigated. The results of this program to -% 
date are presented in references 1 to 9. 

This report is one of a series pertaining to this program and pre- 
sent6 results of a wing-body cambination having a plane triangular ting 
of aspect ratio 4. The model is the same as that used fn reference 9, 
except that the jq?ercenGt,hick biconvex section of reference 9 was modi- 
fied. This modification ccmsisted of replacfng the portion of the 
biconvex section, forward of the midchord location, with an elliptical 
profile. The tangent to the airfoil section at the 5Oqercent-chord 
position was horizmtal. Figure 1 sho%s pictorially the extent of this 
modification. 
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As in reference8 1 to 9, the data herein are presented without 
analysis to expedite publication. 
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NOTATION 

mean aerodynamic chord 

local wing ohord 

length of body I.ncludIng porti& removed to accommodate sting 

Ifft-drag ratio 

maximum Lift-drag ratio 

Mach number 

free-e-bream dynamic pressure 

Reynolds number based cm the men aerodynamic chord 

radius of body 

maximum body radius 

total wing area, fncluding area formed by extending leading and 
trailing edges to plane of symetry 

longitudinal. distance from nose of body 

distance perpendicular to plane Of symmetry 

angle of attack of body axIs, degrees 

drag coefficient 
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c 0, lift lift coefficient - 
( > 9s 

c, pitching -moment coefficient referred to quarter point of mean 

aerodynamic chord 
> 

d?L 
da 

slope of the lift curve measured at zero Uft, per degree 

dc, ac, slope of the pitching+nczue nt curve measured at zero lift 

. WindTtmnelandEqui~t 

c 

The experimental investigation was conducted in the Ames 
&by 64oot supersonic wfnd tunnel. In this tind tunnel, the Irlach 
nmitm? can be varied cmtinuously and the stagnation pressure can be 
regulated to maintain a given test Reynolds nmber. The aFr is dried 
to prevent formation of condensation shocks. Further information m 
this wind tunnel is presented in reference 10. 

The model was sting momted In the tunnel, the diameter of the 
sting being about 93 percent of the diameter of the body base. The 
pitch plane of the model support was horizontal. A &-Inch-diameter, 
four--component, strain-gage balance, described in reference II, enclosed 
within the body of the model, was used to measure the aerodynamic forces 
and moments. 

&de1 

A plan and a front view of the model and certain model dimensions 
are given in figure 2. Other important geometric characteristics of the 
model are a8 follows: 

Aspect ratio . . . . . . . . . . . . . . . . . . . . .:. . 4 
Taperratio................ . . . . . . . . 0 
Airfoil section (etreamwise). . 3*ercent-thick modified biconvex 
Total area, S, square feet . . . . . . . . . . . . . . . . 2.425 
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Mean aero$ynaxic chord, Z, feet . . . . . . . . . . . . . . 1.038 
Dihedral, degrees. . . l . . , , i. . . . . . . . . . . , 0 
Camber . . . . . . . . . . . . ..*.......* 
Twist,d&e&'...................... 

None 
0 

Incidence, degrees . . . . . . . . . . . . . . . . . . . . . 0 
Dietance, wing-chord plane to body axis, feet . . . . . , , 0 

J-b 

Fineness ratio (baaed upon len&h i; fig. 2) . . . . . . , 12.5 
Cross-section &ape . . , . . . . :. . . . . . . . . . Circular 
Msximum cros5eectional area, square feet . . . . . . . . 0.1235 
Ratio of maximum crof3s4ectional area to wing area , . . 0.0509 

The wing contour of the present model was obtained by covering the eolid 
steel wing of reference 9 with a tin bifmuxth alloy. Thebody sparwas 
steel and was covered with aluminum to form the body contours. The 
eurfaces of the wing and body were poli&ed smooth. 

Range of Test Variablee 

The characteristics of the model (ae a function of angle of attack) 
were investigated for a range of Mach numbers from 0.60 to 0.92 and frcmt 
1.20 to 1.70. The data were obtained at Reynolds numbers of 2.91million 
and 4.15 millian. 

Reduction of Data 

The teet data have been reduced to standard NACA coefficient form. 
Factors which could affect the accuracy of these reaultB, together with 
the correctlone applied, are discussed in the following paragraphs. 

Tunnel-wall interference.- Corrections to the Bubsonic results for 
the induced effects of the tunnel walla reeulting from lift on the model 
were made according to the methode of reference 12. The numerical values 
of these corrections (which were added to the uncorrected data) were: 

Aq) = 0.01035 c‘L2 

lo correctiona were made to the pitching+noment coefficients. 
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The effects of constriction of the flow at subsonic speeds by the 
tunnel walls were taken into account by the method of reference 13. 
This correction was calculated for conditions at zero angle of attack 
andwas appliedthroughoutthe angle-of-attackrange. At a Mach number 
of 0.90, this correction amounted to a g-percent increase In the Mach 
number and in the dynamLc pressure over that determined from a calibra- 
tion of the wind tunnel without a model in place. 

For the tests at supersonic speeds, the reflection from the tunnel 
walls of the Mach wave originating at the nose of the body did not cross 
the model, Ho corrections were required, therefore, for tunnel-wall 
effects. 

Stream variations.- Tests at subsonic speeds in the 6-by 6-foot 
supersonio wind tunnel of the present synunetricalmodel in both the 
normal and inverted positions have indicated a stream inclination of 
4.05O and a stream curvature capable of producing a pitching-moment 
coefficient of -0.004 at zero lift. No corrections were made to the 
data of the present report for the effect of these stream irregular- 
ities. ITo measurements have been made of the stream curvature in the 
yaw plane. At subsonic speeds, the longItudina1 variation of static 
pressure in the regicx of the model is not known acourately at present, 
but a preliminary survey has indicated that it is less than 2 peroent of 
the dynamic pressure. No correotion for this effect was made. 

A survey of the air stream in the &by &foot wind tunnel at super- 
sonic speeds (reference 10) has sham a stream curvature only fn the yaw 
plane of the model. The effects of this curvature on the measured char- 
acteristics of the present model are not Imown but are believed to be 
small as judgea by the results of reference 14. The survey of refer- 
ence 10 also indicated that there is a static+ressure variation in the 
test section of sufficient magnitude to affect the drag results. A 
correction was added to the measured drag uoefficient, therefore, to 
account for the longituddnalbuoyancy caused by this static~ressure 
variation. This correction varied from as much as -0.0008 at a Maah 
number of 1.30 to O.OCO6 at a Mach number of 1.70. 

Support interference.- At subsonic speeds, the effects of support 
interference on- e aero 0 characteristics of the model are not 
lmown. For the preset tailless model, it is believed that such effects 
consisted primarily of a change in the pressure at the base of the model. 
In an effort to correct at least partially for this support interfer- 
ence, the base pressure was measured and the drag data were adjusted to 
oorrespond to a base pressure equal to the static pressure of the free 
stream. 

At supersonic speeds, the effects of support interference of a 
body-sting configuration sfmilar to that of the present model are shown 
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by reference 15 to be confined to a ohange in base pressure. The pre- 
v-iously mentioned adjustment of the drag for base pressure, therefore, 
was applied at supersonic speeds. 

RESULTS 

The results are presented in this report without analysis in order 
to expedite publication. The variation of lift coefficient with angle 
of attauk and the variations of pitching-moment ooeffioient, drag coef- 
ficient, and lift-drag ratio with lift coefficient at Mach numbers from 
0.60 to 1.70 and at Reynolds numbers of 2.91 miU.ion and 4.15 million 
are shown In figure 3. 

The results presented in figure 3 for a Reynolds number of 4.15 
million have been summarized In figure 4 to show S~BB important par- 
eta-8 as functions of Mach number. Also presented in figure 4, for 
comparison purposes, are the data of reference 9 at a Reynolds number of 
4.15 million. The slope parwters In thi figure have been measured at 
zero lift. 
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