
NACA 

BUFPETICMG-LOAD WASUREmN?7S ON A JET-POWERED - 

BOMBER AIRPLANE W H  EEEFLEXED FLAPS - 

By Jwbn A. 8,qe stnd WlUm 8. Aiken, Jr. 

dl 

6 
5 
3 
4 

3 

Aeroru~tuticd UboTat~~y 
' r 1 e y  Piehi, Va. 

- RM L51E24a 

- a  . - - -' .I 
8 - - I  

RESEARCH MEMORANDUM 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

WASHINGTON 
August 29,1951 

- - - - 
,+-\ , .  8 - 

" '  A t '  I 
A s .  ' 

8 8 

i 

https://ntrs.nasa.gov/search.jsp?R=19930086731 2020-06-17T14:21:43+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42799461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NACA RM ~ 5 1 ~ 2 4 a  

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARC H MEMORANDUM 

BUFFETING-LOAD MEASUREMENTS ON A JET-POWERED 

BOMBER AIRPLAN3 WITH REFLEXED FLAPS 

By John A. See and William S. Aiken, Jr. 

SUMMARY 

Buffet boundaries, buffeting-load increments f o r  the s t a b i l i z e r s  
and e levators ,  and buffet ing bending-moment increments f o r  the  s t ab i -  
l i z e r s  and wings a s  measured i n  gradual maneuvers f o r  a jet-powered 
bomber a i rp lane equipped with reflexed f l ap s  and a i l e rons  and t a i l - t i p -  
incidence changes a re  presented and compared with s imi lar  r e s u l t s  f o r  
the o r ig ina l  airplane configuration. The buffeting-load increments 
were determined from strain-gage measurements a t  the  roots  o r  hinge 
supports of the  various surfaces considered. The Mach numbers of the  
t e s t s  ranged from 0.35 t o  0.81 a t  pressure a l t i t u d e s  close t o  
30,000 f e e t .  The predominant buffet ing frequencies were close t o  the  
na tu ra l  frequencies of t he  s t r uc tu r a l  components. The magnitudes and 
trends of buffeting-load coeff ic ients  with Mach number f o r  the  reflexed- 
f l a p  configuration were s imi lar  t o  those f o r  t he  o r ig ina l  configuration. 
A t  low Mach numbers the magnitude of the maximum s t a b i l i z e r  buffet- load 
coef f i c ien t s  f o r  the reflexed-flap configuration appeared t o  increase 
with length of time i n  buffet ing.  

INTRODUCTION 

I n  order t o  obtain information concerning the aerodynamic loads 
and load d i s t r ibu t ions  on a high-speed, r e l a t i ve ly  f l ex ib l e  jet-bomber 
airplane,  a f l i g h t  invest igat ion has been conducted on a North American 
B-45A by the National Advisory Committee f o r  Aeronautics. The r e s u l t s  
from the program are  t o  be used t o  check the  v a l i d i t y  of avai lable  
computational methods and small-scale wind-tunnel measurements of items 
such a s  the  aerodynamic center  and the  ze ro - l i f t  pitching-moment coef- 
f i c i e n t  of the  wing-fuselage combination. References 1 t o  7 present  
r e su l t s  i n  time-history form of some of these t e s t s .  
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Concurrently with these t e s t s , .  airplane buffe t ing was experienced 
a t  severa l  combinations of Mach number, normal-force coef f i c ien t ,  and 
a l t i t u d e .  Reference 8 contains some of the buffe t ing r e s u l t s  obtained 
during the  port ion of the  program applicable t o  the  o r i g ina l  B - 4 5 ~  con- 
f igura t ion .  In  accordance with A i r  Force technical-order changes, sev- 
e r a l  modifications have been made t o  the  a i rp lane  since the  t e s t s  
reported i n  reference 8. This paper presents  comparisons of the  
buf feting-boundary, buffe t ing loads, and moment coef f i c ien t s  f o r  the 
o r i g ina l  configuration and the  modified configuration with reflexed 
f l a p s  and a i l e rons  and ta i l - t ip- incidence changes. 

, 

SYMBOLS 

CN normal-force coeff ic ient  

CBM bending-moment coef f i c ien t  (z) 
BM bending moment, inch-pounds 

Q dynamic pre ssure , pounds p r  square foot  6. TpM2) 

P f r ee  -stream s t a t i c  pressure, pounds .per square foot  

n airplane load fac to r ,  g u n i t s  

M Mach number 

W airplane weight, pounds 

S area  of component being considered, square f e e t  

b/2 semispan of component being considered, inches 

a slope of l i f t  curve, taken as 4.63 per radian 

Po mass densi ty  of a i r  at  sea l eve l ,  s lugs per cubic foot  

'e equivalent airspeed, f e e t  per second 

Ue e f fec t ive  gust  velocity,  f e e t  per  second 
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K gust a l l ev i a t i on  f ac to r ,  taken a s  1 .2  

A when used with coef f i c ien t s  denotes incremental values 

Subscripts : 

A a i rplane 

T hor izonta l  t a i l  

E e levator  

W wing 

B buf fe t  

C g center  of gravi ty  

APPARATUS AND TESTS 

Airplane 

The airplane used f o r  t h i s  invest igat ion i s  a B - 4 5 ~  and i s  shown 
i n  a three-view l i n e  drawing i n  f igure  1. Included i n  the  f igure  a r e  
the approximate locat ions  of the  bending-moment and shear strain-gage 
bridges. Some of the per t inent  charac te r i s t i c s  of the  t e s t  a i rp lane 
a re  given i n  t ab le  I. In  accordance with A5r Force t echn ica l  orders 
the  following modifications have been made t o  t he  a i rplane since t h e  
t e s t s  reported i n  reference 8. The wing f l ap s  were reflexed and a 
bent-down trai l ing-edge s t r i p  was  added a s  shown schematically i n  f i g -  
ure 2 i n  comparison with the  o r i g ina l  a i r f o i l  (NACA 66,2-215) f l a p  
contour. In addi t ion t o  the  reflexed f l ap ,  the  a i l e rons  were uprigged 
3O4.81 and end p la tes  added t o  the  f lap-fuselage and flap-nacelle junc- 
tu res .  The t i p  of t he  horizontal  t a i l  outboard o$ the e levator  was 
modified by bending down the  t r a i l i n g  edge rearward of the  r e a r  spar 20. 

Instrumentation 

Standard NACA photographic recording instruments were used t o  
measure airspeed and a l t i t ude ,  ro l l ing ,  pi tching and yawing ve loc i t i e s ,  
s ides l ip  angle, accelerat ions,  control  forces,  and control  posi t ions .  
Normal, transverse, and longi tudinal  accelera t ions  were measured a t  
the airplane center  of gravi ty  and a t  fuselage s t a t i on  714 (approx. the 
one-quarter mean chord of the horizontal  t a i l ) .  



NACA RM ~ 5 1 ~ 2 4 a  

An airspeed boom was mounted at' the  l e f t  wing t i p  with the  airspeed 
head approximately 1 loca l  chord ahead of the  leading edge of the  wing. 
The r e s u l t s  of a f l i g h t  ca l ib ra t ion  of the  airspeed system f o r  posi t ion 
e r r o r  and an analysis  of available data  f o r  a simi,lar i n s t a l l a t i on  
indicate  t h a t  the  measured Mach number d i f f e r s  from the  t rue  Mach number 
by l e s s  than a . 0 1  throughout the  t e s t  range. 

E lec t r i ca l  wire-resistance s t r a i n  gages located on the  main spars 
of the  wing and t a i l  surfaces were used f o r  measuring the  shear and 
bending moment. Each hinge of the  e levator  was instrumented with s t r a i n  
gages t o  measure the  load. The strain-gage outputs were recorded on 
two 18-channel oscil lographs with individual  galvanometer responses f l a t  
t o  60 cycles per second. A 0.1-second timer was used t o  synchronize a l l  3 

of the  records. 

In order t o  e s t ab l i sh  the  re la t ionship  of the  strain-gage-bridge 
output, a s  a function of shear o r  bending moment, ca l ib ra t ion  loads were 
applied t o  the a i rplane s t ructure  i n  the  Langley a i r c r a f t  loads c a l i -  
bra t ion laboratory. In general the  equations which were determined from 
the  cal ibra t ions  included several  terms. For example, the  net  shear 
on the  l e f t  s ide of the  horizontal  s t a b i l i z e r  was given by an equation 
of the  form 

Net shear ( l e f t  s t a b i l i z e r )  = A6 , + B 6 ~ %  + c 6 ~ %  

Where A, B, and C a r e  ca l ib ra t ion  coef f ic ien t s  and the  6 symbols 
a re  the strain-gage responses of the  l e f t  shear, l e f t  bending-moment, 
and r i gh t  bending-moment bridges, respectively.  For shear, the  
term A6sL i s  the  primary term and i s  the  only one used t o  evaluate 

the  buffe t ing loads inasmuch a s  preliminary checks showed t h a t  no sig- 
n i f i can t  l o s s  of accuracy i n  the  evaluation of the  buffeting-load 
increments resul ted from the  omission of t he  secondary terms. 

The bending moment on the horizontal  s t a b i l i z e r s  and the  wing root  
bending moments and shears were determined i n  a similar manner. 

During the t e s t s  on the  o r ig ina l  a i rplane configuration reported 
i n  reference 8, the  e levator  loads were measured by combining the  out- 
put from the  three outer hinge-bracket strain-gage bridges and the  three 
inner hinge-bracket strain-gage bridges and then determining the  elevator 
load from a ca l ib ra t ion  equation of t he  form 

Net load per s ide  (e levator)  = AGOutboard + B6inboard 
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where A- and B a re  ca l ib ra t ion  coeff ic ients  and the  6 ' s  a re  the  
e l e c t r i c a l l y  combined strain-gage-bridge responses. 

In order t o  check the  adequacy of t he  method of equation ( 1 )  
f o r  measuring the  e levator  buffe t ing load and a l so  t o  determine t he  
buffeting-load increments on the  individual  hinge brackets, some data  
were obtained with the  reflexed-flap configuration where the  load on 
the  r i gh t  elevator was determined from an e l e c t r i c a l  combination of all 
s i x  hinge-bracket strain-gage bridges a s  

Net load ( r igh t  e leva tor )  = C6a11 combin& ( 2  

The load on the  l e f t  e levator  was determined from individual  recording 
of each hinge-bracket' strain-gage response so t h a t  the  t o t a l  load on 
l e f t  e levator  had t o  be evaluated from an equation of the  form 

Net Load  eft Elevator) = DEl + E62 + F€j3 + G64 + HZi3 + 1 6 ~  (3 )  

In  equation ( 3 )  D, E, F, G, H, and I a re  ca l ib ra t ion  coeff ic ients  
and 61, . . . 66 a re  the strain-gage responses f o r  each of the  s i x  

hinge brackets. When the l e f t  e levator  load was determined from elec-  
t r i c a l  combination of a l l  s i x  bridges (equation ( 2 ) ) ,  the  r i gh t  elevator 
individual  hinge-bracket loads were recorded simultaneously and the  
t o t a l  load evaluated by means of equation (3) .  

Tests 

A l l  t e s t s  were made with the  airplane i n  the  clean condition. The 
t e s t  data  f a l l  in to  two classes,  in tent ional  buffeting and inadvertent 
buffeting. The data  obtained i n  intentional-buffeting maneuvers were 
f o r  several  f l i g h t s  i n  which the  p i l o t  was spec i f ica l ly  ins t ructed t o  
obtain values of airplane normal-force coeff ic ient  beyond the  buffeting 
boundary and t o  allow the airplane t o  shake f o r  periods of about 5 sec- 
onds. Since a t  the  highest Mach numbers buffeting was encountered i n  
l eve l  f l i g h t  the p i l o t  pushed down i n  an attempt t o  es tab l i sh  the buf- 
f e t  boundary. Inadvertent -buffeting data were obtained from wind-up 
turns  where the  p i l o t  s t a r ted  the  recovery immediately a t  the  onset 
of buffeting. With the  exception of two runs a t  approximately 
20,000 f e e t  a l l  the buffeting data. were obtained a t  30,000 f e e t  pressure 
a l t i t ude .  



RESULTS AND DISCUSSION 

Buffet Boundary 

The c r i t e r i o n  used t o  e s t ab l i sh  the gradual-turn buffe t  boundary 
was an incremental change i n  t a i l  load of SO0 pounds per side.  It ' 

was found from the  f l i g h t  t e s t s  on the  o r ig ina l  airplane configuration 
reported i n  reference 8 tha t  when the  p i l o t  in ten t iona l ly  approached 
buffeting the value chosen a s  the  c r i t e r i o n  coincided with the  p i l o t ' s  
opinion of onset of buffeting. 

The gradual-turn buffet-boundary data f o r  the  t e s t  airplane with 
reflexed f laps ,  ai lerons,  and tai l- incidence changes are  shown i n  f i g -  
ure 3 i n  terms of airplane normal-force coeff ic ient  C and Mach num- 

NA 
ber M.  I n  several  of the higher Mach number runs buffeting was.con- 
tinuous, i n  which case the minimum C obtained with buffeting s t i l l  

NA 
present i s  shown by inverted t r i ang l e s .  In  order t o  help i n  defining 
the  curve, several  points a re  shown' where no buffeting was obtained. 
Themaximumvaluesof C r e a c h e d i n t h e s e  c a s e s a r e  shownas tri- 

A 
angles. I n  one instance, rough air was encountered during the  maneuver 
where an attempt was being made t o  reach buffeting.  The data obtained 
during the rough-air run are  shown on the  appropriate f igures  and a r e  
discussed i n  d e t a i l  i n  the  sect ion e n t i t l e d  "Rough A i r .  " In f igure  3 
the  onset of airplane o sc i l l a t i on  due t o  rough a i r  i s  shown a s  a square 
a t  the  Mach nGber  of approximately 0.73 and a C of 0.62. 

A 

During the  process of obtaining loads information a t  20,000 f e e t  
pressure a l t i t ude ,  inadvertent buffe t ing occurred during two runs. 
While it i s  impossible from the  meager buffeting information at  t h i s  
a l t i t ude  t o  draw any def in i te  conclusions, the  data  seem t o  indicate  
t ha t  a marked reduction occurs i n  the buffe t  boundary a t  20,000 f e e t  
a t  the high Mach numbers. 

The fa i red  buffe t  boundary shown i n  f igure  3 i s  similar  t o  others 
obtained f o r  airplanes having unswept laminar flow o r  low-drag wings. 
A typ ica l  depression occurs around Mach number 0.53 with a peak around 
0.69, followed by a sharp drop t o  zero airplane normal-force coeff ic ient  
around 0.80 Mach number. For the  gross weight and altitud'e a t  which 
the t e s t  airplane was flown it was impossible t o  obtain buffeting between 
Mach numbers of approximately 0.67 and 0.74 without exceeding the  t e s t -  
program l imi ta t ions  of n = 3.0. 

The buffe t  boundary fo r  the  reflexed-flap airplane from f igure  3 
i s  compared i n  f igure  4 with the buffe t  boundary f o r  the o r ig ina l  
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configuration from reference 8. Both curves are f o r  t h e  clean condition 
a t  approximately 30,000 f e e t  pressure a l t i t ude .  A t  Mach numbers' below 
M = 0.72 the reflexed-flap-configuration buffe t  boundary i s  apparently 
reduced while a t  values of Mach number above M = 0.72 airplane buf- 
f e t i ng  i s  delayed u n t i l  a higher value of airplane normal-force coef- 
f i c i en t  i s  reached. 

Buffeting-Load Increments 

While the  basic strain-gage equations f o r  evaluating the net  s t ruc-  
t u r a l  hor izon ta l - t a i l  load, a s  mentioned previously, consis ts  of three  
terms, only the primary term was used f o r  evaluating the  o sc i l l a t o ry  
buffeting-load increments. -In order t o  compare the use of the  one- 
term and three-term equations f o r  shear, f igure  5 presents port ions of 
representative time h i s t o r i e s  of the net  s t r uc tu r a l  loads on the hori-  
zontal s t ab i l i z e r s  during a gradual tu rn  a t  a Mach number of 0.44 and 
a pressure a l t i t ude  close t o  30,000 f e e t .  

Two curves a re  shown, where the c i r c l e s  represent the  load on the 
s t ab i l i z e r  using a l l  the terms i n  the basic equation such a s  

Net load l e f t  s ide  (horizontal  s t a b i l i z e r )  = A6 + B6 + C6 
SL BML BMR 

The squares represent the load measured using only the primary term i n  
the expression where 

Net load l e f t  s ide  (horizontal  s t a b i l i z e r )  = A6 sL 

A maximum net  s t ruc tura l  buffeting-load increment of 3,330 pounds i s  
shown i n  f igure  5 f o r  the  l e f t  horizontal  s t ab i l i z e r  using all of the  
coeff ic ients  i n  the  equation while a maximum net  s t ruc tura l  buffeting- 
load increment of 3,220 pounds i s  shown f o r  the  same surface using only 
one coeff ic ient .  Similar r e s u l t s  a re  shown f o r  the  r i gh t  s t ab i l i z e r .  
For t h i s  par t i cu la r  case there seems t o  be no s ignif icant  difference 
between the maximum buffet-load increments evaluated by the two methods. 

Horizontal-stabil izer shear.- The incremental buffet ing loads on 
the horizontal  s t ab i l i z e r  were determined f o r  each buffeting run using 
only the  maximum double amplitude on both the l e f t  and r i g h t  horizontal  
s t ab i l i z e r s .  These buffeting increments on the s t ab i l i z e r s  were con- 
verted t o  coeff ic ient  form by use of 'the expression 
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where the  load i n  t h i s  case corresponds t o  the  double amplitude as 
measured from the  strain-gage records. 

Data similar  t o  those shown i n  f igure  5 using only the  primary 
term were used i n  the preparation of f igure  6 where the  horizontal-  
s t ab i l i z e r  buffeting-load coeff ic ient  i s  plot ted against  Mach number. 
In  f igure  6 the  c i r c l e s  represent the  values obtained f o r  the  l e f t  
s t ab i l i z e r  and the  squares represent those f o r  the  r i gh t  s t ab i l i z e r .  
In order t o  dis t inguish between intent ional  and inadvertent buffeting 
a cross superimposed on the c i r c l e  o r  square indicates  in tent ional  buf- 
fe t ing .  A l l  of the  points shown i n  f igure  6 were obtained with the  
reflexed-flap configuration and a boundary (from reference 8) i s  shown 
fo r  the  o r ig ina l  airplane t e s t  configuration. From f igure  6 it can be 
seen t ha t  the  magnitude of the buffe t ing loads obtained during inten- 
t i ona l  buffet ing are  l a rger  than those during inadvertent buffeting 
where recovery was made ra ther  abruptly. This r e s u l t  suggests t ha t  the  
magnitude of the  buffeting load may be dependent on the  time i n  buf- 
f e t i ng  before the  p i l o t  executes a recovery. 

A comparison of the  boundary l i n e  ( a s  given i n  reference 8) f o r  
the o r ig ina l  configuration with t he  t e s t  data  f o r  the modified configu- 
r a t i on  i n  f igure  6 indicates  t ha t  there  i s  no appreciable change i n  the  
maximum buffeting loads measured. The data  obtained a t  20,000 f e e t  
f a l l  considerably below those obtained f o r  e i t h e r  inadvertent or  inten- 
t i ona l  buffet ing a t  30,000 f ee t .  

S tab i l i ze r  bending moment. - The s t a b i l i z e r  bending-moment coef - 
f i c i e n t s  obtained during buffeting are  shown i n  f igure  7. A d i s t i nc t i on  
i s  again made between the l e f t  and r i gh t  s ides  and intent ional  and 
inadvertent buffet ing.  The bending-moment coeff ic ient  shown fo r  the  
s t ab i l i z e r  i s  defined a s  

Bending moment 
= bT ssq- 

where the bending moment i s  the maximum double amplitude f o r  each 
maneuver. Only the  port ion of the  bending moment measured by the  
bending-moment bridge on e i t he r  the  l e f t  o r  r i gh t  side i s  considered. 
The values of bending-moment increments obtained during in tent ional  
buffeting are  generally higher than during inadvertent buffeting.  
There i s  no s ignif icant  difference between the values f o r  the  l e f t  and 
r i gh t  t a i l .  Several of the maximum incremental bending-moment values 
obtained f o r  the  o r ig ina l  configuration ( f i g .  8, reference 8)  are shown 
f o r  comparison. The f igure  indicates t h a t  the  magnitudes of the  maximum 
incremental bending-moment coeff ic ients  are comparable f o r  the two con- 
f igurat ions .  The buffeting bending-moment coeff ic ients  obtained. a t  
20,000 f e e t  f a l l  below those obtained a t  30,000 f e e t .  
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Wing bending moment.- Left-  and right-wing buffe t ing bending- 
moment coef f i c ien t s  a s  a function of Mach number a re  p lo t t ed  i n  f i g -  

- 

ure 8. A d i s t i nc t i on  i s  again made between the  l e f t  and r i g h t  wings 
and inadvertent and in ten t iona l  buffet ing.  The wing bending-moment coef - 
f i c i e n t  shown i s  defined a s  

- - Bending Moment 
a c B ~ B  b~ 

s s q  

where the  bending moment i s  the  maximum double-amplitude measurement 
f o r  each maneuver while i n  buffet ing.  Only the  pa r t  of the  bending 
moment measured by the  bending-moment bridge on e i t h e r  the  l e f t  o r  
r i gh t  side i s  considered. I n  nearly a l l  cases the  incremental bending 
moment was higher f o r  in tent ional  buffe t ing than inadvertent buffet ing 
whi le - s imi la r i ty  i n  the  magnitude e x i s t s  between the  l e f t  and r i g h t  
wings. For a comparison of the  two configurations several  points  
obtained f o r  the o r ig ina l  a i rp lane configuration (from f i g .  9, r e f  - 
erence 8) are  shown. 

The wing buffe t ing bending-moment coef f i c ien t s  obtained at  
20,000 f e e t  are  considerably lower than those obtained a t  30,000 f e e t .  

Wing s t r uc tu r a l  shear buf fe t  increments are  not shown because i n  
al l  cases, f o r  both inadvertent and in ten t iona l  buffet ing,  the s t ruc -  
t u r a l  load was l e s s  than f1,000 pounds. The estimated reading accuracies 
f o r  the wing shear are  '400 pounds; therefore,  the  r e s u l t s  f o r  the  wing- 
shear buffe t ing increment have not been included. 

Elevator load. - As described under the  sect ion "Instrumentation" 
the  e levator  buffeting-load increments have been measured using three  
d i f fe ren t  recording systems .with the s t r uc tu r a l  loads obtained-from 
equations of the  form 

Net load per side (e leva to r )  = AGOUter + B6inner 

Net load ( r i gh t  e levator)  = C6a11 combined ( 2 )  

Net load ( left  e levator)  = D€jl + E62 + Fg3 + G64 + H6? + 166 ( 3 )  

In  previously reported r e su l t s  (reference 8), equation (1) was used f o r  
evaluating the e levator  buffeting-load increments, while f o r  the  reflexed- 
f l ap  configuration the three recording systems were used a t  various 
times during the  t e s t  program. 

The r e s u l t s  of measuring the  e levator  buffeting-load increments by 
the  use of equations ( 2 )  and (3 )  are shown i n  t ab le  11. This t ab le  
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presents the  maximum l e f t  e levator  hinge-bracket buffeting-load incre- 
ments f o r  hinges 1 t o  6 obtained during buffeting a t  Mach numbers from 
0.38 t o  0.81, the  summation of these  loads (equation ( 3 ) ) )  and the  maxi- 
mum buffet-load increments f o r  t he  r i g h t  e levator  (from equation ( 2 )  ). 
A l l  da ta  given in tab le  I1 a re  f o r  a pressure a l t i t u d e  of 30,000 f e e t  
and t he  loads in pounds are  double-amplitude s t ruc tu r a l  buffe t ing 
increments . 

Although the  time of occurrence i n  the  maneuver of the  various 
peak loads l i s t e d  f o r  each Mach number was not the  same, the  agreement 
between the  r e s u l t s  using equation (2 )  o r  equation ( 3 )  was reasonably 
good. The summation of loads (equation ( 3 ) ) )  on the  l e f t  e levator  was 
higher on the  average than the  recorded t o t a l  load f o r  the  r i g h t  e l e -  
vator; however, due t o  the  method of obtaining the t o t a l  s t r uc tu r a l  
load on the  l e f t  elevator,  no significance should be attached t o  t h i s  
r e s u l t  . 

The l e f t -  and r ight-e levator  buffeting-load coef f ic ien t s  f o r  both 
inadvertent- and intentional-buffeting maneuvers are  shown i n  f igure  9 
a s  a function of Mach number. The e levator  load coef f ic ien t  i s  
expressed a s  

nc Load = -  
N ~ ,  9% 

where the load i s  the  double amplitude f o r  one e levator  during buffeting 
and the  e levator  area  includes both e levators .  

Loads measured using equations (1)) ( 2 ) )  and (3 )  a re  presented i n  
the  f igure ,  where the  squares are  f o r  equation (2 )  having a l l  of the 
gages on t he  r i gh t  combined, and c i r c l e s  are  f o r  eqyation ( 3 )  f o r  sum- 
mation of individual  hinge loads on the  l e f t .  Triangles and diamonds 
represent loads measured using equation (1) f o r  the  l e f t  and r i gh t  
sides,  respectively.  The points shown a s  open symbols were obtained 
during inadvertent buffet ing while the  crossed symbols a re  f o r  in tent ional  
buffeting.  Again the loads measured on the  l e f t  o r  r i g h t  e levator  are  
not s ign i f ican t ly  d i f fe ren t ,  but loads obtained during in tent ional  
buffeting a r e  generally higher than those f o r  the  inadverent cases. 
Elevator buffeting-load increments obtained at  20,000 f e e t  a re  lower 
than those obtained a t  30,000 f ee t .  

The f a i r ed  boundary l i n e  obtained f o r  the  o r ig ina l  corf igurat ion 
( f i g .  10, reference 8) i s  shown i n  f igure  9. ~ l t h o u g h  several  points 
obtained with the reflexed-flap configuration a re  above the  previous 
boundmy, these points would be expected t o  be higher due t o  the  method 
of measurement of the loads on the l e f t  elevator.  
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Since the  e levator  buffet- load increments a r e  being measured by 
means of strain-gage bridges on the  hinge-bracket supports, it i s  not  
possible t o  separate f o r  buffe t ing condit ions the par t  of the  load on 
these brackets which i s  due t o  bending of the  s t a b i l i z e r  and the  p a r t  
due t o  the  ac tua l  load on the e levator .  Even i f  most of the  load on 
the hinges were due t o  e levator  load, a par t  of it would be due t o  the  
i n e r t i a  of t he  mass balances which would e f f e c t  only the  torque tube 
and hinge-bracket s t r e s s e s  . 

Extrapolat ion of Buffeting Loads 

No extrapola t ion of the  load coeff ic ients  t o  loads a t  various 
a l t i t u d e s  has been made i n  the present  paper since some doubt e x i s t s  
a s  t o  the  v a l i d i t y  of the  assumption t h a t  the  loads f o r  a given Mach 
number a re  d i r e c t l y  proport ional  t o  the  dynamic pressure.  This doubt 
has a r i s en  since the  issuance of reference 8. Unpublished r e s u l t s  of 
buffeting-load measurements on the  F-51D airplane have indicated t ha t ,  
a t  Mach numbers below M = 0.65, the  damping of the  vibra t ing s t ruc tu re  
may be increasing rapidly  enough with increasing air  densi ty  so a s  
p a r t i a l l y  t o  o f f s e t  the  increasing magnitude of the  forc ing function of 
buffet ing.  

Buffeting and S t ruc tu ra l  Frequencies 

A marked s im i l a r i t y  e x i s t s  between the  s t r uc tu r a l  na tu ra l  f r e -  
quencies and the frequencies measured from the  strain-gage records 
during buffet ing.  Table I11 l i s ts  some per t inent  airplane s t r uc tu r a l  
frequencies obtained primari ly from vibra t ion t e s t s  conducted on a 
North American XB-45 airplane at  Wright Patterson A i r  Force Base ( r e f -  
erence 9 ) .  Since the  t a i l  span i s  longer by several  f e e t  than the  one 
t es ted  by the  A i r  Force, the  t a i l  bending frequency l i s t e d  i n  the t ab l e  
was obtained. i n  ground t e s t s  a t  the Langley Aeronautical Laboratory. 

The lower pa r t  of t ab l e  I11 l i s t s  the most pronounced frequencies 
t h a t  were present with, the strain-gage record from which they were 
obtained. As f a r  a s  can be determined these frequencies a r e  the same 
a s  those estimated f o r  the o r i g ina l  configuration. The wing bending 
gages showed a frequency very close t o  4 cycles per second with occa- 
sional  low-amplitude o sc i l l a t i ons  near 10 and 1 4  cycles per second. 
The s t a b i l i z e r  shear and bending strain-gage records were composed 
mainly of o sc i l l a t i ons  a t  4, 6, 10, and 36 cycles per second. The e l e -  
vator shear-gage records were mainly composed of o sc i l l a t i ons  a t  6 and 
36 cycles per second. 

During buffet ing maneuvers the wings were generally o sc i l l a t i ng  
i n  phase but the  l e f t -  and r i gh t - s t ab i l i z e r  load o sc i l l a t i ons  were out  
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of phase a s  of ten a s  i n  phase. An i l l u s t r a t i o n  of the phase re la t ion-  
ship f o r  l e f t  and r i gh t  horizontal  s t ab i l i z e r s  i s  shown i n  f igure  5 
where the loads i n  buffeting on the two s ides  are  almost 180' out of 
phase. The loads measured on individual e levator  hinge brackets were 
out of phase a s  of ten a s  i n  phase regardless of the  recording system 
used. For the l e f t  e levator  where individual  hinge loads were measured, 
the  maximum buffeting loads seldom, i f  ever, occurred simultaneously 
on a l l  s i x  hinges. 

Time i n  Buffeting 

An e f f e c t  of length of time i n  buffeting i s  shown i n  f igure  10 
where the s t a b i l i z e r  load coeff ic ient  i s  given a s  a function of time 
i n  buffeting.  Time i n  buffeting i s  considered a s  the  time required t o  
reach the maximum value of incremental buffet ing load a f t e r  the i n i t i a l  
s t a r t  of buffet ing.  The l e f t  and r i gh t  sides of the  s t a b i l i z e r  are  
distinguished by c i r c l e s  and squares. For the  three  runs i l l u s t r a t e d  
the average Mach number was 0.45. For each condition the  change i n  
the airplane normal-force coeff ic ient  pNd b e t ~ e ~ n  s t a r t  of buffeting 

and maximum at ta ined buffeting load i s  a l so  shown. No corre la t ion 
appears t o  e x i s t  between AC and AC but the  f igure  indicates 

N ~ B  NA ' 
t h a t  LY2 increases with time i n  buffeting.  No conclusions should 

N ~ B  
be drawn from the  data  of f igure  10 concerning r e l a t i ve  e f f e c t s  of 
penetrat ion beyond the buffe t  boundary and time i n  buffeting f o r  higher 
Mach numbers. Tests  on other a i rplanes  have indicated t h a t ,  i n  the Mach 
number range where buffeting i s  encountered before maximum l i f t  is  
reached, some corre la t ion e x i s t s  between penetrat ion beyond the buffet  
boundary and the magnitude of buffeting loads; however, i n  the present 
case penetration beyond the  buffe t  boundary at high Mach numbers was 
not suf f ic ien t  t o  permit a s imilar  analysis .  

Rough A i r  

Rough a i r  was encountered during one f l i g h t  a t  a pressure a l t i t ude  
of approximately 30,000 f ee t  and a Mach number of 0.73. Using the 
effective-gust  -velocity equation presented i n  reference 10 where 

the  value fo r  Ue during rough air was found t o  equal 8.8 f e e t  per 

second. The assumption made herein i s  t ha t  the  measured center-of - 
gravi ty  acceleration represents the airplane acceleration.  

> 
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The maximum horizontal -s tabi l izer  shear and bending-moment coef- 
f i c i e n t s  and, wing bending-moment and elevator load coef f ic ien t s  
obtained i n  the  rough-air run a re  shown i n  f igures  6, 7, 8, and 9, 
respectively.  The s t a b i l i z e r  and elevator coeff ic ients  a re  of the same 
magnitude a s  those obtained during inadvertent buffeting.  The wing 
bending-moment coeff ic ient  obtained during rough air was considerably 
higher than the  in tent ional  o r  inadvertent buffeting coef f ic ien t s  
obtained a t  corresponding Mach numbers with an absolute value of 
+480,000 inch-pounds, a value higher than any wing buffeting bending- 
moment increments . 

The wing bending-moment strain-gage records had d i f fe ren t  character- 
i s t ic ' s  i n  rough air than during buffeting; i n  rough air  the  wing vibra- 
t i o n  appeared t o  be purely a t  the  f i r s t  fundamental bending frequency 
of the  wing. 

SUMMARY OF RESULTS 

The gradual-maneuver buffe t  boundary, a s  established by the  onset 
of buffeting from strain-gage records, appears t o  be similar  t o  t ha t  
of o ther  airplanes with low-drag a i r f o i l s .  Reflexing the  f l a p s  and 
a i l e rons  and changing the  t a i l - t i p  incidence did not mater ia l ly  affect  
the  buffe t  boundary f o r  the  t e s t  airplane a s  compared with the  buffet  
boundary f o r  the o r ig ina l  configuration. 

Buffeting-load increments determined by the use of only the  primary , 

shear or  bending-moment strain-gage bridge showed no s ign i f ican t  d i f -  
ferences from those determined using a l l  bridges normally needed t o  
es tab l i sh  t a i l  loads. 

The loads measured during buffeting were generally higher f o r  
in ten t iona l  buffeting conditions a s  compared with inadvertent buffeting. 

A t  lower Mach numbers the magnitude of the  maximum s t ab i l i z e r  
buffeting-load coeff ic ients  appeared t o  increase with length of time 
i n  buffeting.  

A comparison of the  buffeting-load coeff ic ients  f o r  the  reflexed- 
f l a p  airplane and the  o r ig ina l  configuration indicated t ha t  s t ab i l i z e r  
buffeting load and bending-moment coeff ic ients  were e s sen t i a l l y  the 
same f o r  the two configurations. 

Elevator buffet-load coeff ic ients  f o r  the two configurations 
showed the  same trend with Mach number; however, where the  loads were 
measured using the individual  hinge-bracket-load summations some of the 
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reflexed-flap-configuration load coef f ic ien t s  were higher than the  
boundary established f o r  the  o r ig ina l  configuration. 

Wing bending moments and shears measured during buffeting were 
r e l a t i ve ly  s m a l l ,  and incremental -shears never exceeded f 1,000 pounds. 

Since some doubt e x i s t s  a t  the  present time a s  t o  the  method of 
extrapolating buffet-load data  t o  low a l t i tudes ,  no conclusions are  
drawn concerning the occurrence of c r i t i c a l  loads on the  s t a b i l i z e r  
and e levator .  

The buffeting frequencies estimated from the  ~ t r a i n - ~ a ~ e  records 
indicated a def in i te  s imi la r i ty  with the  s t ruc tu r a l  natural  frequencies. 
The l e f t  and r i gh t . e l eva to r  and s t ab i l i z e r  were at times i n  phase and 
a t  times out of phase while the  l e f t  and r i g h t  wings were generally 
inphase with one another during buffeting.  

I n  rough air a t  a Mach number of 0.73 the  incremental o sc i l l a t o ry  
loads on the  s t a b i l i z e r  and elevator were i n  general l e s s  than those 
measured during buffeting at the  same Mach number. For the wing the  
incremental bending moment i n  rough a i r  was higher than any values 
measured.during buffeting at any Mach number. I n  rough a i r  the  wing 
vibrat ion was at  the  f i r a t  fundamental bending frequency whereas during 
buffeting other frequencies were superposed on the  fundamental 
vibration.  

Langley Aeronautical Laboratory 
National Advisory Committee f o r  Aeronautics 

Langley Field, V a .  
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TABLE I 

CHARACTERISTICS OF TEST A I R P ~  

Wing: . . . . . . . . . . . . . . . . . . . . . . . . .  Span. f e e t  89.04 . . . . . . . . . . . . . . . . . . . . .  Area. square f e e t  117'3 . . . . . . . . . . . . . . . .  Mean aerodynamic chord. f e e t  14.02 . . . . . . . . . . . . . . . . . . . .  Airfoi l .  root  NACA 66. 2.215 . . . . . . . . . . . . . . . . . . . . . .  Airfoi l .  t i p  NACA 66. 1.212 
Taper r a t i o  . . . . . . . . . . . . . . . . . . . . . . . .  2.42 

Horizontal t a i l  surfaces : . . . . . . . . . . .  Area ( including fuselage ) . square f e e t  289.44 . . . . . . . . . . . . . . . . . . . . . . . . .  Span. f e e t  43.87 

Elevator : . . . . . . . . . . . . .  Area (including tabs) .  square f e e t  67.71 

. . . . . . . .  Gross weight. pounds (range a s  flown) 55. 000 t o  63. 000 

. . . .  Center of gravity (range a s  flown). percent M.A.C. 26.4 t o  28.2 



TABLE I1 

COMPARISON OF ELEVATOR AND ELEVATOR HINGE-BRACKET MAXIMUM DOUBLE AMPLITUDE 

BUFFET-LOAD INCRFNENTS MEASURED AT 30,000 FEET 

Individual 1 
Mach number 1 ( Hinge 1 / (Hinge 2 

1 2 0 A i n .  515in.  

from center from center I line] / line) 

a~ough  a i r .  

Right e levator  load 
using equation ( 2 )  

( d l  s t r a i n  gages combined 
e l e c t r i c a l l y )  

( l b )  

Left elevator load 
using equation ( 3 )  

(summation of individual 
hinge loads) 

( l b )  

hinge-bracket loads on l e f t  e levator  
locat ion - in. from center l i n e )  

( l b )  

HFnge 6 
(216 in. 
center l i n e )  

"OBe 3 
(92 in .  from 
center line) 

Hinge 4 
(133 in .  

from center 
l i n e  ) 

Hinge 5 
(175 in .  

from center 
l i n e )  



TABLE I11 

FREQUENCY CHAFUC TER IST I C  S 

Natural frequencies of airplane components ( cps ) : 
Wing : 

. . . . . . . . . . . .  F i r s t  symmetrical bending 
Unsymmetrical wing bending and inner-panel tors ion . . . . . . . . . . . .  Second symmetrical bending 

Fuselage : 
. . .  Torsion and side bending (primarily tors ion)  . . . . . . . . . . . . . . . . .  Vertical bending 

Horizontal s tabi l izer :  . . . . . . . . . .  Primary bending ( symmetrical ) . . . . . . . . . . . . . . . . . . . . .  Torsion 
Elevator : 

. . . . . . . . . . . . . . .  Torque tube torsion 

. . . . . . . . . . . . . . .  Symmetrical rotat ion 

NACA RM ~ 5 1 ~ 2 4 . a  

Buffeting frequencies estimated from records f o r  the following 
strain-gage bridges ( cps ) : . . . . . . . . . . . . . . . . . . . . . . .  Wingbending 4.10. 14 . . . . . . . . : .  . . . . . . . . .  Stabi l izer  shear ; 4. 6. 10. 36 . . . . . . . . . . . . . . . . .  Stabi l izer  bending .4. 5. 6. 10. 36 . . . . . . . . . . . . . . . . . . . . . . . .  Elevator shear 6. 36 
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Figure 1.- Three-view drawing of t e s t  a i rp lane showing approximate 
locations of strain-gage bridges. 



Figure 2.-  Original-  and ref lexed-f lap  p rof i l e .  
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Figure 3.- Buffet boundary f o r  t e s t  a i rplane with reflexed f laps .  



Figure 4.-  Comparison of gradual-turn buf fe t  boundaries f o r  t e s t  a i rp lane .  



NACA RM L51~24a 

Figure 5.- Comparison of time h i s t o r i e s  of s t a b i l i z e r  buffet ing loads 
obtained by two methods of evaluating strain-gage data. M = 0.44; 
pressure a l t i t ude ,  30,000 f e e t .  
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V 

0 . / .2 .3 .a .5 .6 .7 .8 .9 

Much number, M 

~ i g u r e  6. - Stab i l i z e r  buffeting-load coeff ic ients .  

/. 
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Figure 7.- Stabilizer buffeting bending-moment coefficients. 



NACA RM ~ 5 1 ~ 2 4 a  

./ .2 .3 .4 .5 .6 .7 .8 .9 

Much number, M 

Figure 8.- Wing buffeting bending-moment coefficient. 
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Figure 9.- Elevator buffeting-load coeff ic ients .  

t 

- 

Zquaf/bn 2 

o//g/ho/ con f/gur~f/'dn 
doundur--., E~ud f joh  I 

\ 

\ A Left e/evafor, /hodvertenf 
f 7~0/;0/7 I 

@ @ Leff e/e vofor, /i,fenfiona/ 
Eguof/on J 

6 H&ht e/e vator, /nadvertenf 
Egua f i o n  I 

ffl Righ f e/e uu for, /hfenf/&/ 



28 NACA RM L5U2ha 

Figure 10.- Effect  of time i n  buffet ing on s t a b i l i z e r  buffet-load 
coef f i c ien t  a s  i l l u s t r a t e d  by maximum buffet-load coeff ic ients  
fo r  each of three  maneuvers. 
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